1
|
Yang Z, Wang X, Penocchio E, Ragazzon G, Chen X, Lu S, Zhou Y, Fu K, Liu Z, Cai Y, Yu X, Li X, Li X, Feng W, Yuan L. Beyond Single-Cycle Autonomous Molecular Machines: Light-Powered Shuttling in a Multi-Cycle Reaction Network. Angew Chem Int Ed Engl 2025; 64:e202414072. [PMID: 39152651 DOI: 10.1002/anie.202414072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Biomolecular machines autonomously convert energy into functions, driving systems away from thermodynamic equilibrium. This energy conversion is achieved by leveraging complex, kinetically asymmetric chemical reaction networks that are challenging to characterize precisely. In contrast, all known synthetic molecular systems in which kinetic asymmetry has been quantified are well described by simple single-cycle networks. Here, we report on a unique light-driven [2]rotaxane that enables the autonomous operation of a synthetic molecular machine with a multi-cycle chemical reaction network. Unlike all prior systems, the present one exploits a photoactive macrocycle, which features a different photoreactivity depending on the binding sites at which it resides. Furthermore, E to Z isomerization reverses the relative affinity of the macrocycle for two binding sites on the axle, resulting in a multi-cycle network. Building on the most recent theoretical advancements, this work quantifies kinetic asymmetry in a multi-cycle network for the first time. Our findings represent the simplest rotaxane capable of autonomous shuttling developed so far and offer a general strategy to generate and quantify kinetic asymmetry beyond single-cycle systems.
Collapse
Affiliation(s)
- Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xirui Wang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Giulio Ragazzon
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, University of Strasbourg, 67000, Strasbourg, France
| | - Xinnan Chen
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yidan Zhou
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kuirong Fu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zejiang Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yimin Cai
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
2
|
Penocchio E, Gu G, Albaugh A, Gingrich TR. Power Strokes in Molecular Motors: Predictive, Irrelevant, or Somewhere in Between? J Am Chem Soc 2025; 147:1063-1073. [PMID: 39705514 PMCID: PMC11728019 DOI: 10.1021/jacs.4c14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/22/2024]
Abstract
For several decades, molecular motor directionality has been rationalized in terms of the free energy of molecular conformations visited before and after the motor takes a step, a so-called power stroke mechanism with analogues in macroscopic engines. Despite theoretical and experimental demonstrations of its flaws, the power stroke language is quite ingrained, and some communities still value power stroke intuition. By building a catalysis-driven motor into simulated numerical experiments, we here systematically report on how directionality responds when the motor is modified accordingly to power stroke intuition. We confirm that the power stroke mechanism generally does not predict motor directionality. Nevertheless, the simulations illustrate that the relative stability of molecular conformations should be included as a potential design element to adjust the motor directional bias. Though power strokes are formally unimportant for determining directionality, we show that practical attempts to alter a power stroke have side effects that can in fact alter the bias. The change in the bias can align with what power stroke intuition would have suggested, offering a potential explanation for why the flawed power stroke mechanism can retain apparent utility when engineering specific systems.
Collapse
Affiliation(s)
- Emanuele Penocchio
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Geyao Gu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alex Albaugh
- Department
of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Todd R. Gingrich
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Al Shehimy S, Le HD, Amano S, Di Noja S, Monari L, Ragazzon G. Progressive Endergonic Synthesis of Diels-Alder Adducts Driven by Chemical Energy. Angew Chem Int Ed Engl 2024; 63:e202411554. [PMID: 39017608 DOI: 10.1002/anie.202411554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
The overwhelming majority of artificial chemical reaction networks respond to stimuli by relaxing towards an equilibrium state. The opposite response-moving away from equilibrium-can afford the endergonic synthesis of molecules, of which only rare examples have been reported. Here, we report six examples of Diels-Alder adducts formed in an endergonic process and use this strategy to realize their stepwise accumulation. Indeed, systems respond to repeated occurrences of the same stimulus by increasing the amount of adduct formed, with the final network distribution depending on the number of stimuli received. Our findings indicate how endergonic processes can contribute to the transition from responsive to adaptive systems.
Collapse
Affiliation(s)
- Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Hai-Dang Le
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shuntaro Amano
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Simone Di Noja
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Luca Monari
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
4
|
Wang Y, Zhang X, Huang CB, Hu L, Wang XQ, Wang W, Yang HB. Inducing and Switching the Handedness of Polyacetylenes with Topologically Chiral [2]Catenane Pendants. Angew Chem Int Ed Engl 2024; 63:e202408271. [PMID: 38837513 DOI: 10.1002/anie.202408271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
To explore the chirality induction and switching of topological chirality, poly[2]catenanes composed of helical poly(phenylacetylenes) (PPAs) main chain and topologically chiral [2]catenane pendants are described for the first time. These poly[2]catenanes with optically active [2]catenanes on side chains were synthesized by polymerization of enantiomerically pure topologically chiral [2]catenanes with ethynyl polymerization site and/or point chiral moiety. The chirality information of [2]catenane pendants was successfully transferred to the main chain of polyene backbones, leading to preferred-handed helical conformations, while the introduction of point chiral units has negligible effect on the overall helices. More interestingly, attributed to unique dynamic feature of the [2]catenane pendants, these polymers revealed dynamic response behaviors to solvents, temperature, and sodium ions, resulting in the fully reversible switching on/off of the chirality induction. This work provides not only new design strategy for novel chiroptical switches with topologically chiral molecules but also novel platforms for the development of smart chiral materials.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chang-Bo Huang
- Coatings Applied Research Asia Pacific, BASF Advanced Chemicals Co., Ltd., Shanghai, 200137, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
5
|
Pruchyathamkorn J, Nguyen BNT, Grommet AB, Novoveska M, Ronson TK, Thoburn JD, Nitschke JR. Harnessing Maxwell's demon to establish a macroscale concentration gradient. Nat Chem 2024; 16:1558-1564. [PMID: 38858517 PMCID: PMC11374679 DOI: 10.1038/s41557-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/30/2024] [Indexed: 06/12/2024]
Abstract
Maxwell's demon describes a thought experiment in which a 'demon' regulates the flow of particles between two adjoining spaces, establishing a potential gradient without appearing to do work. This seeming paradox led to the understanding that sorting entails thermodynamic work, a foundational concept of information theory. In the past centuries, many systems analogous to Maxwell's demon have been introduced in the form of molecular information, molecular pumps and ratchets. Here we report a functional example of a Maxwell's demon that pumps material over centimetres, whereas previous examples operated on a molecular scale. In our system, this demon drives directional transport of o-fluoroazobenzene between the arms of a U-tube apparatus upon light irradiation, transiting through an aqueous membrane containing a coordination cage. The concentration gradient thus obtained is further harnessed to drive naphthalene transport in the opposite direction.
Collapse
Affiliation(s)
| | - Bao-Nguyen T Nguyen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Angela B Grommet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Miroslava Novoveska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - John D Thoburn
- Department of Chemistry, Randolph-Macon College, Ashland, VA, USA
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Shi K, Jia G, Wu Y, Zhang S, Chen J. Dynamic control of circumrotation of a [2]catenane by acid-base switching. ChemistryOpen 2024; 13:e202300304. [PMID: 38333963 PMCID: PMC11319237 DOI: 10.1002/open.202300304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Dynamic control of the motion in a catenane remains a big challenge as it requires precise design and sophisticated well-organized structures. This paper reports the design and synthesis of a donor-acceptor [2]catenane through mechanical interlocking, employing a crown ether featuring two dibenzylammonium salts on its side arms as the host and a cyclobis(paraquat-p-phenylene) (CBPQT ⋅ 4PF6) ring as the guest molecule. By addition of external acid or base, the catenane can form self-complexed or decomplexed compounds to alter the cavity size of the crown ether ring, consequently affecting circumrotation rate of CBPQT ⋅ 4PF6 ring of the catenane. This study offers insights for the design and exploration of artificial molecular machines with intricate cascading responsive mechanisms.
Collapse
Affiliation(s)
- Kelun Shi
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Guohui Jia
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Ying Wu
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Shilong Zhang
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| |
Collapse
|
7
|
Marehalli Srinivas SG, Avanzini F, Esposito M. Thermodynamics of Growth in Open Chemical Reaction Networks. PHYSICAL REVIEW LETTERS 2024; 132:268001. [PMID: 38996287 DOI: 10.1103/physrevlett.132.268001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/12/2024] [Indexed: 07/14/2024]
Abstract
We identify the thermodynamic conditions necessary to observe indefinite growth in homogeneous open chemical reaction networks (CRNs) satisfying mass action kinetics. We also characterize the thermodynamic efficiency of growth by considering the fraction of the chemical work supplied from the surroundings that is converted into CRN free energy. We find that indefinite growth cannot arise in CRNs chemostatted by fixing the concentration of some species at constant values, or in continuous-flow stirred tank reactors. Indefinite growth requires a constant net influx from the surroundings of at least one species. In this case, unimolecular CRNs always generate equilibrium linear growth, i.e., a continuous linear accumulation of species with equilibrium concentrations and efficiency one. Multimolecular CRNs are necessary to generate nonequilibrium growth, i.e., the continuous accumulation of species with nonequilibrium concentrations. Pseudounimolecular CRNs-a subclass of multimolecular CRNs-always generate asymptotic linear growth with zero efficiency. Our findings demonstrate the importance of the CRN topology and the chemostatting procedure in determining the dynamics and thermodynamics of growth.
Collapse
Affiliation(s)
- Shesha Gopal Marehalli Srinivas
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Francesco Avanzini
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
- Department of Chemical Sciences, University of Padova, Via F. Marzolo, 1, I-35131 Padova, Italy
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
8
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
9
|
Marchetti T, Roberts BMW, Frezzato D, Prins LJ. A Minimalistic Covalent Bond-Forming Chemical Reaction Cycle that Consumes Adenosine Diphosphate. Angew Chem Int Ed Engl 2024; 63:e202402965. [PMID: 38533678 DOI: 10.1002/anie.202402965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
The development of synthetic active matter requires the ability to design materials capable of harnessing energy from a source to carry out work. Nature achieves this using chemical reaction cycles in which energy released from an exergonic chemical reaction is used to drive biochemical processes. Although many chemically fuelled synthetic reaction cycles that control transient responses, such as self-assembly, have been reported, the generally high complexity of the reported systems hampers a full understanding of how the available chemical energy is actually exploited by these systems. This lack of understanding is a limiting factor in the design of chemically fuelled active matter. Here, we report a minimalistic synthetic responsive reaction cycle in which adenosine diphosphate (ADP) triggers the formation of a catalyst for its own hydrolysis. This establishes an interdependence between the concentrations of the network components resulting in the transient formation of the catalyst. The network is sufficiently simple that all kinetic and thermodynamic parameters governing its behaviour can be characterised, allowing kinetic models to be built that simulate the progress of reactions within the network. While the current network does not enable the ADP-hydrolysis reaction to populate a non-equilibrium composition, these models provide insight into the way the network dissipates energy. Furthermore, essential design principles are revealed for constructing driven systems, in which the network composition is driven away from equilibrium through the consumption of chemical energy.
Collapse
Affiliation(s)
- Tommaso Marchetti
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131, Padua, Italy
| | - Benjamin M W Roberts
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131, Padua, Italy
| | - Diego Frezzato
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131, Padua, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131, Padua, Italy
| |
Collapse
|
10
|
Grelier M, Sivak DA, Ehrich J. Unlocking the potential of information flow: Maximizing free-energy transduction in a model of an autonomous rotary molecular motor. Phys Rev E 2024; 109:034115. [PMID: 38632770 DOI: 10.1103/physreve.109.034115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/30/2024] [Indexed: 04/19/2024]
Abstract
Molecular motors fulfill critical functions within all living beings. Understanding their underlying working principles is therefore of great interest. Here we develop a simple model inspired by the two-component biomolecular motor F_{o}-F_{1} ATP synthase. We analyze its energetics and characterize information flows between the machine's components. At maximum output power we find that information transduction plays a minor role for free-energy transduction. However, when the two components are coupled to different environments (e.g., when in contact with heat baths at different temperatures), we show that information flow becomes a resource worth exploiting to maximize free-energy transduction. Our findings suggest that real-world powerful and efficient information engines could be found in machines whose components are subjected to fluctuations of different strength, since in this situation the benefit gained from using information for work extraction can outweigh the costs of information generation.
Collapse
Affiliation(s)
- Mathis Grelier
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
- PULS Group, Department of Physics, FAU Erlangen-Nürnberg, IZNF, 91058 Erlangen, Germany
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
| | - Jannik Ehrich
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada
| |
Collapse
|
11
|
Astumian RD. Kinetic Asymmetry and Directionality of Nonequilibrium Molecular Systems. Angew Chem Int Ed Engl 2024; 63:e202306569. [PMID: 38236163 DOI: 10.1002/anie.202306569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 01/19/2024]
Abstract
Scientists have long been fascinated by the biomolecular machines in living systems that process energy and information to sustain life. The first synthetic molecular rotor capable of performing repeated 360° rotations due to a combination of photo- and thermally activated processes was reported in 1999. The progress in designing different molecular machines in the intervening years has been remarkable, with several outstanding examples appearing in the last few years. Despite the synthetic accomplishments, there remains confusion regarding the fundamental design principles by which the motions of molecules can be controlled, with significant intellectual tension between mechanical and chemical ways of thinking about and describing molecular machines. A thermodynamically consistent analysis of the kinetics of several molecular rotors and pumps shows that while light driven rotors operate by a power-stroke mechanism, kinetic asymmetry-the relative heights of energy barriers-is the sole determinant of the directionality of catalysis driven machines. Power-strokes-the relative depths of energy wells-play no role whatsoever in determining the sign of the directionality. These results, elaborated using trajectory thermodynamics and the nonequilibrium pump equality, show that kinetic asymmetry governs the response of many non-equilibrium chemical phenomena.
Collapse
Affiliation(s)
- Raymond Dean Astumian
- Department of Physics and Astronomy, The University of Maine, 5709 Bennett Hall, Orono, ME-04469, USA
| |
Collapse
|
12
|
Zwick P, Troncossi A, Borsley S, Vitorica-Yrezabal IJ, Leigh DA. Stepwise Operation of a Molecular Rotary Motor Driven by an Appel Reaction. J Am Chem Soc 2024; 146:4467-4472. [PMID: 38319727 PMCID: PMC10885133 DOI: 10.1021/jacs.3c10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
To date, only a small number of chemistries and chemical fueling strategies have been successfully used to operate artificial molecular motors. Here, we report the 360° directionally biased rotation of phenyl groups about a C-C bond, driven by a stepwise Appel reaction sequence. The motor molecule consists of a biaryl-embedded phosphine oxide and phenol, in which full rotation around the biaryl bond is blocked by the P-O oxygen atom on the rotor being too bulky to pass the oxygen atom on the stator. Treatment with SOCl2 forms a cyclic oxyphosphonium salt (removing the oxygen atom of the phosphine oxide), temporarily linking the rotor with the stator. Conformational exchange via ring flipping then allows the rotor and stator to twist back and forth past the previous limit of rotation. Subsequently, the ring opening of the tethered intermediate with a chiral alcohol occurs preferentially through a nucleophilic attack on one face. Thus, the original phosphine oxide is reformed with net directional rotation about the biaryl bond over the course of the two-step reaction sequence. Each repetition of SOCl2-chiral alcohol additions generates another directionally biased rotation. Using the same reaction sequence on a derivative of the motor molecule that forms atropisomers rather than fully rotating 360° results in enantioenrichment, suggesting that, on average, the motor molecule rotates in the "wrong" direction once every three fueling cycles. The interconversion of phosphine oxides and cyclic oxyphosphonium groups to form temporary tethers that enable a rotational barrier to be overcome directionally adds to the strategies available for generating chemically fueled kinetic asymmetry in molecular systems.
Collapse
Affiliation(s)
- Patrick Zwick
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Axel Troncossi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
13
|
Albaugh A, Fu RS, Gu G, Gingrich TR. Limits on the Precision of Catenane Molecular Motors: Insights from Thermodynamics and Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:1-6. [PMID: 38127444 DOI: 10.1021/acs.jctc.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Thermodynamic uncertainty relations (TURs) relate precision to the dissipation rate, yet the inequalities can be far from saturation. Indeed, in catenane molecular motor simulations, we record precision far below the TUR limit. We further show that this inefficiency can be anticipated by four physical parameters: the thermodynamic driving force, fuel decomposition rate, coupling between fuel decomposition and motor motion, and rate of undriven motor motion. The physical insights might assist in designing molecular motors in the future.
Collapse
Affiliation(s)
- Alex Albaugh
- Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Rueih-Sheng Fu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Geyao Gu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Todd R Gingrich
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Borsley S, Gallagher JM, Leigh DA, Roberts BMW. Ratcheting synthesis. Nat Rev Chem 2024; 8:8-29. [PMID: 38102412 DOI: 10.1038/s41570-023-00558-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
15
|
Baluna A, Dommaschk M, Groh B, Kassem S, Leigh DA, Tetlow DJ, Thomas D, Varela López L. Switched "On" Transient Fluorescence Output from a Pulsed-Fuel Molecular Ratchet. J Am Chem Soc 2023; 145:27113-27119. [PMID: 38047919 PMCID: PMC10722508 DOI: 10.1021/jacs.3c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
We report the synthesis and operation of a molecular energy ratchet that transports a crown ether from solution onto a thread, along the axle, over a fluorophore, and off the other end of the thread back into bulk solution, all in response to a single pulse of a chemical fuel (CCl3CO2H). The fluorophore is a pyrene residue whose fluorescence is normally prevented by photoinduced electron transfer (PET) to a nearby N-methyltriazolium group. However, crown ether binding to the N-methyltriazolium site inhibits the PET, switching on pyrene fluorescence under UV irradiation. Each pulse of fuel results in a single ratchet cycle of transient fluorescence (encompassing threading, transport to the N-methyltriazolium site, and then dethreading), with the onset of the fluorescent time period determined by the amount of fuel in each pulse and the end-point determined by the concentration of the reagents for the disulfide exchange reaction. The system provides a potential alternative signaling approach for artificial molecular machines that read symbols from sequence-encoded molecular tapes.
Collapse
Affiliation(s)
- Andrei
S. Baluna
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Marcel Dommaschk
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Burkhard Groh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Salma Kassem
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - David A. Leigh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel J. Tetlow
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Dean Thomas
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Loli Varela López
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
16
|
Bilancioni M, Esposito M, Freitas N. A chemical reaction network implementation of a Maxwell demon. J Chem Phys 2023; 159:204103. [PMID: 38010324 DOI: 10.1063/5.0173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
We study an autonomous model of a Maxwell demon that works by rectifying thermal fluctuations of chemical reactions. It constitutes the chemical analog of a recently studied electronic demon. We characterize its scaling behavior in the macroscopic limit, its performances, and the impact of potential internal delays. We obtain analytical expressions for all quantities of interest: the generated reverse chemical current, the output power, the transduction efficiency, and correlation between the number of molecules. Due to a bound on the nonequilibrium response of its chemical reaction network, we find that, contrary to the electronic case, there is no way for the Maxwell demon to generate a finite output in the macroscopic limit. Finally, we analyze the information thermodynamics of the Maxwell demon from a bipartite perspective. In the limit of a fast demon, the information flow is obtained, its pattern in the state space is discussed, and the behavior of partial efficiencies related to the measurement and feedback processes is examined.
Collapse
Affiliation(s)
- Massimo Bilancioni
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
| | - Nahuel Freitas
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
18
|
Flatt S, Busiello DM, Zamuner S, De Los Rios P. ABC transporters are billion-year-old Maxwell Demons. COMMUNICATIONS PHYSICS 2023; 6:205. [PMID: 38665399 PMCID: PMC11041718 DOI: 10.1038/s42005-023-01320-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/26/2023] [Indexed: 04/28/2024]
Abstract
ATP-Binding Cassette (ABC) transporters are a broad family of biological machines, found in most prokaryotic and eukaryotic cells, performing the crucial import or export of substrates through both plasma and organellar membranes, and maintaining a steady concentration gradient driven by ATP hydrolysis. Building upon the present biophysical and biochemical characterization of ABC transporters, we propose here a model whose solution reveals that these machines are an exact molecular realization of the autonomous Maxwell Demon, a century-old abstract device that uses an energy source to drive systems away from thermodynamic equilibrium. In particular, the Maxwell Demon does not perform any direct mechanical work on the system, but simply selects which spontaneous processes to allow and which ones to forbid based on information that it collects and processes. In its autonomous version, the measurement device is embedded in the system itself. In the molecular model introduced here, the different operations that characterize Maxwell Demons (measurement, feedback, resetting) are features that emerge from the biochemical and structural properties of ABC transporters, revealing the crucial role of allostery to process information. Our framework allows us to develop an explicit bridge between the molecular-level description and the higher-level language of information theory for ABC transporters.
Collapse
Affiliation(s)
- Solange Flatt
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne—EPFL, Lausanne, 1015 Switzerland
| | - Daniel Maria Busiello
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne—EPFL, Lausanne, 1015 Switzerland
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187 Germany
| | - Stefano Zamuner
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne—EPFL, Lausanne, 1015 Switzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne—EPFL, Lausanne, 1015 Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne—EPFL, Lausanne, 1015 Switzerland
| |
Collapse
|
19
|
Bilancioni M, Esposito M, Penocchio E. A [3]-catenane non-autonomous molecular motor model: Geometric phase, no-pumping theorem, and energy transduction. J Chem Phys 2023; 158:224104. [PMID: 37310874 DOI: 10.1063/5.0151625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
We study a model of a synthetic molecular motor-a [3]-catenane consisting of two small macrocycles mechanically interlocked with a bigger one-subjected to time-dependent driving using stochastic thermodynamics. The model presents nontrivial features due to the two interacting small macrocycles but is simple enough to be treated analytically in limiting regimes. Among the results obtained, we find a mapping into an equivalent [2]-catenane that reveals the implications of the no-pumping theorem stating that to generate net motion of the small macrocycles, both energies and barriers need to change. In the adiabatic limit (slow driving), we fully characterize the motor's dynamics and show that the net motion of the small macrocycles is expressed as a surface integral in parameter space, which corrects previous erroneous results. We also analyze the performance of the motor subjected to step-wise driving protocols in the absence and presence of an applied load. Optimization strategies for generating large currents and maximizing free energy transduction are proposed. This simple model provides interesting clues into the working principles of non-autonomous molecular motors and their optimization.
Collapse
Affiliation(s)
- Massimo Bilancioni
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City 1511, Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City 1511, Luxembourg
| | - Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City 1511, Luxembourg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
20
|
Corra S, Curcio M, Credi A. Photoactivated Artificial Molecular Motors. JACS AU 2023; 3:1301-1313. [PMID: 37234111 PMCID: PMC10207102 DOI: 10.1021/jacsau.3c00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Accurate control of long-range motion at the molecular scale holds great potential for the development of ground-breaking applications in energy storage and bionanotechnology. The past decade has seen tremendous development in this area, with a focus on the directional operation away from thermal equilibrium, giving rise to tailored man-made molecular motors. As light is a highly tunable, controllable, clean, and renewable source of energy, photochemical processes are appealing to activate molecular motors. Nonetheless, the successful operation of molecular motors fueled by light is a highly challenging task, which requires a judicious coupling of thermal and photoinduced reactions. In this paper, we focus on the key aspects of light-driven artificial molecular motors with the aid of recent examples. A critical assessment of the criteria for the design, operation, and technological potential of such systems is provided, along with a perspective view on future advances in this exciting research area.
Collapse
Affiliation(s)
- Stefano Corra
- CLAN-Center
for Light Activated Nanostructures, Istituto
per la Sintesi Organica e Fotoreattività, CNR area della ricerca
Bologna, via Gobetti,
101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso-Montanari”, Alma Mater Studiorum - Università di Bologna, viale del Risorgimento, 8, 40136 Bologna, Italy
| | - Massimiliano Curcio
- CLAN-Center
for Light Activated Nanostructures, Istituto
per la Sintesi Organica e Fotoreattività, CNR area della ricerca
Bologna, via Gobetti,
101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso-Montanari”, Alma Mater Studiorum - Università di Bologna, viale del Risorgimento, 8, 40136 Bologna, Italy
| | - Alberto Credi
- CLAN-Center
for Light Activated Nanostructures, Istituto
per la Sintesi Organica e Fotoreattività, CNR area della ricerca
Bologna, via Gobetti,
101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso-Montanari”, Alma Mater Studiorum - Università di Bologna, viale del Risorgimento, 8, 40136 Bologna, Italy
| |
Collapse
|
21
|
Wang Y, Tang R, Zhang Y, Dai Y, Zhou Q, Zhou Y, Yan CG, Lu B, Wang J, Yao Y. Pillar[5]arene-Derived Terpyridinepalladium(II) Complex: Synthesis, Characterization, and Application in Green Catalysis. Inorg Chem 2023; 62:7605-7610. [PMID: 37162421 DOI: 10.1021/acs.inorgchem.3c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metal nanoparticle catalysts have attracted great interest because they possess high surface-to-volume ratios and exhibit a very large number of catalytically active sites per unit area. However, high surface-to-volume ratios will induce nanoparticle aggregates during the catalytic reactions, making them lose their catalytic activity. In this work, a monoterpyridine-unit-functionalized pillar[5]arene (TP5) was synthesized successfully, which can be used as anchoring sites for the controllable preparation of well-dispersed palladium nanoparticles [TP5/Pd(0) NPs]. The as-prepared TP5/Pd(0) NPs were fully characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, and powder X-ray diffraction. Importantly, the ultrafine TP5/Pd(0) NPs are found to be excellent and reusable catalysts for the reduction of nitrophenols in aqueous solution.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Qixiang Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Youjun Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, P. R. China
| | - Chao-Guo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, P. R. China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
22
|
Leighton MP, Sivak DA. Inferring Subsystem Efficiencies in Bipartite Molecular Machines. PHYSICAL REVIEW LETTERS 2023; 130:178401. [PMID: 37172234 DOI: 10.1103/physrevlett.130.178401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
Molecular machines composed of coupled subsystems transduce free energy between different external reservoirs, in the process internally transducing energy and information. While subsystem efficiencies of these molecular machines have been measured in isolation, less is known about how they behave in their natural setting when coupled together and acting in concert. Here, we derive upper and lower bounds on the subsystem efficiencies of a bipartite molecular machine. We demonstrate their utility by estimating the efficiencies of the F_{o} and F_{1} subunits of ATP synthase and that of kinesin pulling a diffusive cargo.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
23
|
Bai R, Zhang Z, Di W, Yang X, Zhao J, Ouyang H, Liu G, Zhang X, Cheng L, Cao Y, Yu W, Yan X. Oligo[2]catenane That Is Robust at Both the Microscopic and Macroscopic Scales. J Am Chem Soc 2023; 145:9011-9020. [PMID: 37052468 DOI: 10.1021/jacs.3c00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Polycatenanes are extremely attractive topological architectures on account of their high degrees of conformational freedom and multiple motion patterns of the mechanically interlocked macrocycles. However, exploitation of these peculiar structural and dynamic characteristics to develop robust catenane materials is still a challenging goal. Herein, we synthesize an oligo[2]catenane that showcases mechanically robust properties at both the microscopic and macroscopic scales. The key feature of the structural design is controlling the force-bearing points on the metal-coordinated core of the [2]catenane moiety that is able to maximize the energy dissipation of the oligo[2]catenane via dissociation of metal-coordination bonds and then activation of sequential intramolecular motions of circumrotation, translation, and elongation under an external force. As such, at the microscopic level, the single-molecule force spectroscopy measurement exhibits that the force to rupture dynamic bonds in the oligo[2]catenane reaches a record high of 588 ± 233 pN. At the macroscopic level, our oligo[2]catenane manifests itself as the toughest catenane material ever reported (15.2 vs 2.43 MJ/m3). These fundamental findings not only deepen the understanding of the structure-property relationship of poly[2]catenanes with a full set of dynamic features but also provide a guiding principle to fabricate high-performance mechanically interlocked catenane materials.
Collapse
Affiliation(s)
- Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Weishuai Di
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Ouyang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
24
|
Penocchio E, Ragazzon G. Kinetic Barrier Diagrams to Visualize and Engineer Molecular Nonequilibrium Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206188. [PMID: 36703505 DOI: 10.1002/smll.202206188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/11/2022] [Indexed: 06/18/2023]
Abstract
Molecular nonequilibrium systems hold great promises for the nanotechnology of the future. Yet, their development is slowed by the absence of an informative representation. Indeed, while potential energy surfaces comprise in principle all the information, they hide the dynamic interplay of multiple reaction pathways underlying nonequilibrium systems, i.e., the degree of kinetic asymmetry. To offer an insightful visual representation of kinetic asymmetry, we extended an approach pertaining to catalytic networks, the energy span model, by focusing on system dynamics - rather than thermodynamics. Our approach encompasses both chemically and photochemically driven systems, ranging from unimolecular motors to simple self-assembly schemes. The obtained diagrams give immediate access to information needed to guide experiments, such as states' population, rate of machine operation, maximum work output, and effects of design changes. The proposed kinetic barrier diagrams offer a unifying graphical tool for disparate nonequilibrium phenomena.
Collapse
Affiliation(s)
- Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg, L-1511, Luxembourg
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingégnierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|
25
|
Singhania A, Chatterjee S, Kalita S, Saha S, Chettri P, Gayen FR, Saha B, Sahoo P, Bandyopadhyay A, Ghosh S. An Inbuilt Electronic Pawl Gates Orbital Information Processing and Controls the Rotation of a Double Ratchet Rotary Motor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15595-15604. [PMID: 36926805 DOI: 10.1021/acsami.3c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A direct external input energy source (e.g., light, chemical reaction, redox potential, etc.) is compulsory to supply energy to rotary motors for accomplishing rotation around the axis. The stator leads the direction of rotation, and a sustainable rotation requires two mutual input energy supplies (e.g., light and heat, light and pH or metal ion, etc.); however, there are some exceptions (e.g., covalent single bond rotors and/or motors). On the contrary, our experiment suggested that double ratchet rotary motors (DRMs) can harvest power from available thermal noise, kT, for sustainable rotation around the axis. Under a scanning tunneling microscope, we have imaged live thermal noise movement as a dynamic orbital density and resolved the density diagram up to the second derivative. A second input energy can synchronize multiple rotors to afford a measurable output. Therefore, we hypothesized that rotation control in a DRM must be evolved from an orbital-level information transport channel between the two coupled rotors but was not limited to the second input energy. A DRM comprises a Brownian rotor and a power stroke rotor coupled to a -C≡C- stator, where the transport of information through coupled orbitals between the two rotors is termed the vibrational information flow chain (VIFC). We test this hypothesis by studying the DRM's density functional theory calculation and variable-temperature 1H nuclear magnetic resonance. Additionally, we introduced inbuilt pawl-like functional moieties into a DRM to create different electronic environments by changing proton intercalation interactions, which gated information processing through the VIFC. The results show the VIFC can critically impact the motor's noise harvesting, resulting in variable rotational motions in DRMs.
Collapse
Affiliation(s)
- Anup Singhania
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satadru Chatterjee
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
| | - Sudeshna Kalita
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Supriya Saha
- Advanced Computation & Data Sciences Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Green Engineered Materials and Additive Manufacturing Division, CSIR-AMPRI, 462026 Bhopal, Madhya Pradesh, India
| | - Prerna Chettri
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Firdaus Rahaman Gayen
- Advanced Materials Group, Material Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Biswajit Saha
- Advanced Materials Group, Material Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pathik Sahoo
- International Center for Materials and Nanoarchitectronics (MANA) and Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
| | - Anirban Bandyopadhyay
- International Center for Materials and Nanoarchitectronics (MANA) and Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
| | - Subrata Ghosh
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Del Giudice D, Di Stefano S. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids. Acc Chem Res 2023; 56:889-899. [PMID: 36916734 PMCID: PMC10077594 DOI: 10.1021/acs.accounts.3c00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
ConspectusThe achievement of artificial systems capable of being maintained in out-of-equilibrium states featuring functional properties is a main goal of current chemical research. Absorption of electromagnetic radiation or consumption of a chemical species (a "chemical fuel") are the two strategies typically employed to reach such out-of-equilibrium states, which have to persist as long as one of the above stimuli is present. For this reason such systems are often referred to as "dissipative systems". In the simplest scheme, the dissipative system is initially found in a resting, equilibrium state. The addition of a chemical fuel causes the system to shift to an out-of-equilibrium state. When the fuel is exhausted, the system reverts to the initial, equilibrium state. Thus, from a mechanistic standpoint, the dissipative system turns out to be a catalyst for the fuel consumption. It has to be noted that, although very simple, this scheme implies the chance to temporally control the dissipative system. In principle, modulating the nature and/or the amount of the chemical fuel added, one can have full control of the time spent by the system in the out-of-equilibrium state.In 2016, we found that 2-cyano-2-phenylpropanoic acid (1a), whose decarboxylation proceeds smoothly under mild basic conditions, could be used as a chemical fuel to drive the back and forth motion of a catenane-based molecular switch. The acid donates a proton to the catenane that passes from the neutral state A to the transient protonated state B. Decarboxylation of the resulting carboxylate (1acb), generates a carbanion, which, being a strong base, retakes the proton from the protonated catenane that, consequently, returns to the initial state A. The larger the amount of the added fuel, the longer the time spent by the catenane in the transient, out-of-equilibrium state. Since then, acid 1a and other activated carboxylic acids (ACAs) have been used to drive the operation of a large number of dissipative systems based on the acid-base reaction, from molecular machines to host-guest systems, from catalysts to smart materials, and so on. This Account illustrates such systems with the purpose to show the wide applicability of ACAs as chemical fuels. This generality is due to the simplicity of the idea underlying the operation principle of ACAs, which always translates into simple experimental requirements.
Collapse
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
27
|
Ragazzon G, Malferrari M, Arduini A, Secchi A, Rapino S, Silvi S, Credi A. Autonomous Non-Equilibrium Self-Assembly and Molecular Movements Powered by Electrical Energy. Angew Chem Int Ed Engl 2023; 62:e202214265. [PMID: 36422473 PMCID: PMC10107654 DOI: 10.1002/anie.202214265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The ability to exploit energy autonomously is one of the hallmarks of life. Mastering such processes in artificial nanosystems can open technological opportunities. In the last decades, light- and chemically driven autonomous systems have been developed in relation to conformational motion and self-assembly, mostly in relation to molecular motors. In contrast, despite electrical energy being an attractive energy source to power nanosystems, its autonomous harnessing has received little attention. Herein we consider an operation mode that allows the autonomous exploitation of electrical energy by a self-assembling system. Threading and dethreading motions of a pseudorotaxane take place autonomously in solution, powered by the current flowing between the electrodes of a scanning electrochemical microscope. The underlying autonomous energy ratchet mechanism drives the self-assembly steps away from equilibrium with a higher energy efficiency compared to other autonomous systems. The strategy is general and might be extended to other redox-driven systems.
Collapse
Affiliation(s)
- Giulio Ragazzon
- Institut de Science et d'Ingégnierie Supramoléculaires (ISIS) UMR 7006, University of Strasbourg, CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Marco Malferrari
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefania Rapino
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Serena Silvi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,CLAN-Center for Light-Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy
| | - Alberto Credi
- CLAN-Center for Light-Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129, Bologna, Italy.,Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, viale del Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
28
|
Liu E, Cherraben S, Boulo L, Troufflard C, Hasenknopf B, Vives G, Sollogoub M. A molecular information ratchet using a cone-shaped macrocycle. Chem 2023. [DOI: 10.1016/j.chempr.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Freitas N, Esposito M. Information flows in macroscopic Maxwell's demons. Phys Rev E 2023; 107:014136. [PMID: 36797870 DOI: 10.1103/physreve.107.014136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
A CMOS-based implementation of an autonomous Maxwell's demon was recently proposed [Phys. Rev. Lett. 129, 120602 (2022)0031-900710.1103/PhysRevLett.129.120602] to demonstrate that a Maxwell demon can still work at macroscopic scales, provided that its power supply is scaled appropriately. Here we first provide a full analytical characterization of the nonautonomous version of that model. We then study system-demon information flows within generic autonomous bipartite setups displaying a macroscopic limit. By doing so, we can study the thermodynamic efficiency of both the measurement and the feedback process performed by the demon. We find that the information flow is an intensive quantity and that, as a consequence, any Maxwell's demon is bound to stop working above a finite scale if all parameters but the scale are fixed. However, this can be prevented by appropriately scaling the thermodynamic forces. These general results are applied to the autonomous CMOS-based demon.
Collapse
Affiliation(s)
- Nahuel Freitas
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
30
|
Amano S, Esposito M, Kreidt E, Leigh DA, Penocchio E, Roberts BMW. Using Catalysis to Drive Chemistry Away from Equilibrium: Relating Kinetic Asymmetry, Power Strokes, and the Curtin-Hammett Principle in Brownian Ratchets. J Am Chem Soc 2022; 144:20153-20164. [PMID: 36286995 PMCID: PMC9650702 DOI: 10.1021/jacs.2c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Chemically fueled autonomous molecular machines are catalysis-driven systems governed by Brownian information ratchet mechanisms. One fundamental principle behind their operation is kinetic asymmetry, which quantifies the directionality of molecular motors. However, it is difficult for synthetic chemists to apply this concept to molecular design because kinetic asymmetry is usually introduced in abstract mathematical terms involving experimentally inaccessible parameters. Furthermore, two seemingly contradictory mechanisms have been proposed for chemically driven autonomous molecular machines: Brownian ratchet and power stroke mechanisms. This Perspective addresses both these issues, providing accessible and experimentally useful design principles for catalysis-driven molecular machinery. We relate kinetic asymmetry to the Curtin-Hammett principle using a synthetic rotary motor and a kinesin walker as illustrative examples. Our approach describes these molecular motors in terms of the Brownian ratchet mechanism but pinpoints both chemical gating and power strokes as tunable design elements that can affect kinetic asymmetry. We explain why this approach to kinetic asymmetry is consistent with previous ones and outline conditions where power strokes can be useful design elements. Finally, we discuss the role of information, a concept used with different meanings in the literature. We hope that this Perspective will be accessible to a broad range of chemists, clarifying the parameters that can be usefully controlled in the design and synthesis of molecular machines and related systems. It may also aid a more comprehensive and interdisciplinary understanding of biomolecular machinery.
Collapse
Affiliation(s)
- Shuntaro Amano
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
- Institute
of Supramolecular Science and Engineering (ISIS), University of Strasbourg, 67000Strasbourg, France
| | - Massimiliano Esposito
- Department
of Physics and Materials Science, University
of Luxembourg, avenue de la Faïencerie, 1511Luxembourg City, G.D. Luxembourg
| | - Elisabeth Kreidt
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
- Department
of Chemistry and Chemical Biology, University
of Dortmund, Otto-Hahn-Str.
6, 44227Dortmund, Germany
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
| | - Emanuele Penocchio
- Department
of Physics and Materials Science, University
of Luxembourg, avenue de la Faïencerie, 1511Luxembourg City, G.D. Luxembourg
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Benjamin M. W. Roberts
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, United
Kingdom
| |
Collapse
|
31
|
Borsley S, Leigh DA, Roberts BMW, Vitorica-Yrezabal IJ. Tuning the Force, Speed, and Efficiency of an Autonomous Chemically Fueled Information Ratchet. J Am Chem Soc 2022; 144:17241-17248. [PMID: 36074864 PMCID: PMC9501901 DOI: 10.1021/jacs.2c07633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Autonomous chemically fueled molecular machines that
function through
information ratchet mechanisms underpin the nonequilibrium processes
that sustain life. These biomolecular motors have evolved to be well-suited
to the tasks they perform. Synthetic systems that function through
similar mechanisms have recently been developed, and their minimalist
structures enable the influence of structural changes on machine performance
to be assessed. Here, we probe the effect of changes in the fuel and
barrier-forming species on the nonequilibrium operation of a carbodiimide-fueled
rotaxane-based information ratchet. We examine the machine’s
ability to catalyze the fuel-to-waste reaction and harness energy
from it to drive directional displacement of the macrocycle. These
characteristics are intrinsically linked to the speed, force, power,
and efficiency of the ratchet output. We find that, just as for biomolecular
motors and macroscopic machinery, optimization of one feature (such
as speed) can compromise other features (such as the force that can
be generated by the ratchet). Balancing speed, power, efficiency,
and directionality will likely prove important when developing artificial
molecular motors for particular applications.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Benjamin M W Roberts
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | | |
Collapse
|
32
|
Wang Y, Gong J, Wang X, Li W, Wang X, He X, Wang W, Yang H. Multistate Circularly Polarized Luminescence Switching through Stimuli‐Induced Co‐Conformation Regulations of Pyrene‐Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022; 61:e202210542. [DOI: 10.1002/anie.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Jiacheng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xianwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| |
Collapse
|
33
|
Wang Y, Gong J, Wang X, Li WJ, Wang XQ, He X, Wang W, Yang HB. Multistate Circularly Polarized Luminescence Switching through Stimuli‐induced Co‐conformation Regulations of Pyrene‐functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Jiacheng Gong
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xianwei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei-Jian Li
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xu-Qing Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xiao He
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Hai-Bo Yang
- East China Normal University Department of Chemistry 3663 N. Zhongshan Road 200062 Shanghai CHINA
| |
Collapse
|
34
|
Binks L, Tian C, Fielden SDP, Vitorica-Yrezabal IJ, Leigh DA. Transamidation-Driven Molecular Pumps. J Am Chem Soc 2022; 144:15838-15844. [PMID: 35979923 PMCID: PMC9446885 DOI: 10.1021/jacs.2c06807] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new class of synthetic molecular pumps that use a stepwise information ratchet mechanism to achieve the kinetic gating required to sequester their macrocyclic substrates from bulk solution. Threading occurs as a result of active template reactions between the pump terminus amine and an acyl electrophile, whereby the bond-forming reaction is accelerated through the cavity of a crown ether. Carboxylation of the resulting amide results in displacement of the ring to the collection region of the thread. Conversion of the carbamate to a phenolic ester provides an intermediate rotaxane suitable for further pumping cycles. In this way rings can be ratcheted onto a thread from one or both ends of appropriately designed molecular pumps. Each pumping cycle results in one additional ring being added to the thread per terminus acyl group. The absence of pseudorotaxane states ensures that no dethreading of intermediates occurs during the pump operation. This facilitates the loading of different macrocycles in any chosen sequence, illustrated by the pump-mediated synthesis of a [4]rotaxane containing three different macrocycles as a single sequence isomer. A [5]rotaxane synthesized using a dual-opening transamidation pump was structurally characterized by single-crystal X-ray diffraction, revealing a series of stabilizing CH···O interactions between the crown ethers and the polyethylene glycol catchment region of the thread.
Collapse
Affiliation(s)
- Lorna Binks
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Chong Tian
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stephen D P Fielden
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
35
|
Penocchio E, Avanzini F, Esposito M. Information thermodynamics for deterministic chemical reaction networks. J Chem Phys 2022; 157:034110. [DOI: 10.1063/5.0094849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Information thermodynamics relates the rate of change of mutual information between two interacting subsystems to their thermodynamics when the joined system is described by a bipartite stochastic dynamics satisfying local detailed balance. Here, we expand the scope of information thermodynamics to deterministic bipartite chemical reaction networks, namely, composed of two coupled subnetworks sharing species but not reactions. We do so by introducing a meaningful notion of mutual information between different molecular features that we express in terms of deterministic concentrations. This allows us to formulate separate second laws for each subnetwork, which account for their energy and information exchanges, in complete analogy with stochastic systems. We then use our framework to investigate the working mechanisms of a model of chemically driven self-assembly and an experimental light-driven bimolecular motor. We show that both systems are constituted by two coupled subnetworks of chemical reactions. One subnetwork is maintained out of equilibrium by external reservoirs (chemostats or light sources) and powers the other via energy and information flows. In doing so, we clarify that the information flow is precisely the thermodynamic counterpart of an information ratchet mechanism only when no energy flow is involved.
Collapse
Affiliation(s)
- Emanuele Penocchio
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Francesco Avanzini
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
36
|
Sharko A, Livitz D, De Piccoli S, Bishop KJM, Hermans TM. Insights into Chemically Fueled Supramolecular Polymers. Chem Rev 2022; 122:11759-11777. [PMID: 35674495 DOI: 10.1021/acs.chemrev.1c00958] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Supramolecular polymerization can be controlled in space and time by chemical fuels. A nonassembled monomer is activated by the fuel and subsequently self-assembles into a polymer. Deactivation of the molecule either in solution or inside the polymer leads to disassembly. Whereas biology has already mastered this approach, fully artificial examples have only appeared in the past decade. Here, we map the available literature examples into four distinct regimes depending on their activation/deactivation rates and the equivalents of deactivating fuel. We present increasingly complex mathematical models, first considering only the chemical activation/deactivation rates (i.e., transient activation) and later including the full details of the isodesmic or cooperative supramolecular processes (i.e., transient self-assembly). We finish by showing that sustained oscillations are possible in chemically fueled cooperative supramolecular polymerization and provide mechanistic insights. We hope our models encourage the quantification of activation, deactivation, assembly, and disassembly kinetics in future studies.
Collapse
Affiliation(s)
| | - Dimitri Livitz
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | | | - Kyle J M Bishop
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Thomas M Hermans
- University of Strasbourg & CNRS, UMR7140, Strasbourg 67000, France
| |
Collapse
|
37
|
Corra S, Bakić MT, Groppi J, Baroncini M, Silvi S, Penocchio E, Esposito M, Credi A. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. NATURE NANOTECHNOLOGY 2022; 17:746-751. [PMID: 35760895 DOI: 10.1038/s41565-022-01151-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Natural and artificial autonomous molecular machines operate by constantly dissipating energy coming from an external source to maintain a non-equilibrium state. Quantitative thermodynamic characterization of these dissipative states is highly challenging as they exist only as long as energy is provided. Here we report on the detailed physicochemical characterization of the dissipative operation of a supramolecular pump. The pump transduces light energy into chemical energy by bringing self-assembly reactions to non-equilibrium steady states. The composition of the system under light irradiation was followed in real time by 1H NMR for four different irradiation intensities. The experimental composition and photon flow were then fed into a theoretical model describing the non-equilibrium dissipation and the energy storage at the steady state. We quantitatively probed the relationship between the light energy input and the deviation of the dissipative state from thermodynamic equilibrium in this artificial system. Our results provide a testing ground for newly developed theoretical models for photoactivated artificial molecular machines operating away from thermodynamic equilibrium.
Collapse
Affiliation(s)
- Stefano Corra
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
- Dipartimento di Chimica Industriale 'Toso Montanari', Università di Bologna, Bologna, Italy
| | - Marina Tranfić Bakić
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
- Dipartimento di Chimica Industriale 'Toso Montanari', Università di Bologna, Bologna, Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Bologna, Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy
- Dipartimento di Chimica 'G. Ciamician', Università di Bologna, Bologna, Italy
| | - Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna, Italy.
- Dipartimento di Chimica Industriale 'Toso Montanari', Università di Bologna, Bologna, Italy.
| |
Collapse
|
38
|
Gingrich TR. Measuring how effectively light drives a molecular pump. NATURE NANOTECHNOLOGY 2022; 17:675-676. [PMID: 35760896 DOI: 10.1038/s41565-022-01152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Todd R Gingrich
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
39
|
Borsley S, Leigh DA, Roberts BMW. Chemical fuels for molecular machinery. Nat Chem 2022; 14:728-738. [PMID: 35778564 DOI: 10.1038/s41557-022-00970-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
Chemical reaction networks that transform out-of-equilibrium 'fuel' to 'waste' are the engines that power the biomolecular machinery of the cell. Inspired by such systems, autonomous artificial molecular machinery is being developed that functions by catalysing the decomposition of chemical fuels, exploiting kinetic asymmetry to harness energy released from the fuel-to-waste reaction to drive non-equilibrium structures and dynamics. Different aspects of chemical fuels profoundly influence their ability to power molecular machines. Here we consider the structure and properties of the fuels that biology has evolved and compare their features with those of the rudimentary synthetic chemical fuels that have so far been used to drive autonomous non-equilibrium molecular-level dynamics. We identify desirable, but context-specific, traits for chemical fuels together with challenges and opportunities for the design and invention of new chemical fuels to power synthetic molecular machinery and other dissipative nanoscale processes.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
40
|
Wachtel A, Rao R, Esposito M. Free-Energy Transduction in Chemical Reaction Networks: from Enzymes to Metabolism. J Chem Phys 2022; 157:024109. [DOI: 10.1063/5.0091035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We provide a rigorous definition of free-energy transduction and its efficiency in arbitrary---linear or nonlinear---open chemical reaction networks (CRNs) operating at steady state. Our method is based on the knowledge of the stoichiometric matrix and of the chemostatted species (i.e. the species maintained at constant concentration by the environment) to identify the fundamental currents and forces contributing to the entropy production. Transduction occurs when the current of a stoichiometrically balanced process is driven against its spontaneous direction (set by its force) thanks to other processes flowing along their spontaneous direction. In these regimes, open CRNs operate as thermodynamic machines. After exemplifying these general ideas using toy models, we analyze central energy metabolism. We relate the fundamental currents to metabolic pathways and discuss the efficiency with which they are able to transduce free energy.
Collapse
Affiliation(s)
- Artur Wachtel
- Yale University Department of Molecular Cellular and Developmental Biology, United States of America
| | - Riccardo Rao
- Institute for Advanced Study, United States of America
| | | |
Collapse
|
41
|
Albaugh A, Gingrich TR. Simulating a chemically fueled molecular motor with nonequilibrium molecular dynamics. Nat Commun 2022; 13:2204. [PMID: 35459863 PMCID: PMC9033874 DOI: 10.1038/s41467-022-29393-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
Most computer simulations of molecular dynamics take place under equilibrium conditions-in a closed, isolated system, or perhaps one held at constant temperature or pressure. Sometimes, extra tensions, shears, or temperature gradients are introduced to those simulations to probe one type of nonequilibrium response to external forces. Catalysts and molecular motors, however, function based on the nonequilibrium dynamics induced by a chemical reaction's thermodynamic driving force. In this scenario, simulations require chemostats capable of preserving the chemical concentrations of the nonequilibrium steady state. We develop such a dynamic scheme and use it to observe cycles of a particle-based classical model of a catenane-like molecular motor. Molecular motors are frequently modeled with detailed-balance-breaking Markov models, and we explicitly construct such a picture by coarse graining the microscopic dynamics of our simulations in order to extract rates. This work identifies inter-particle interactions that tune those rates to create a functional motor, thereby yielding a computational playground to investigate the interplay between directional bias, current generation, and coupling strength in molecular information ratchets.
Collapse
Affiliation(s)
- Alex Albaugh
- grid.16753.360000 0001 2299 3507Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Todd R. Gingrich
- grid.16753.360000 0001 2299 3507Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| |
Collapse
|
42
|
Borsley S, Kreidt E, Leigh DA, Roberts BMW. Autonomous fuelled directional rotation about a covalent single bond. Nature 2022; 604:80-85. [PMID: 35388198 DOI: 10.1038/s41586-022-04450-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
Biology operates through autonomous chemically fuelled molecular machinery1, including rotary motors such as adenosine triphosphate synthase2 and the bacterial flagellar motor3. Chemists have long sought to create analogous molecular structures with chemically powered, directionally rotating, components4-17. However, synthetic motor molecules capable of autonomous 360° directional rotation about a single bond have proved elusive, with previous designs lacking either autonomous fuelling7,10,12 or directionality6. Here we show that 1-phenylpyrrole 2,2'-dicarboxylic acid18,19 (1a) is a catalysis-driven20,21 motor that can continuously transduce energy from a chemical fuel9,20-27 to induce repetitive 360° directional rotation of the two aromatic rings around the covalent N-C bond that connects them. On treatment of 1a with a carbodiimide21,25-27, intramolecular anhydride formation between the rings and the anhydride's hydrolysis both occur incessantly. Both reactions are kinetically gated28-30 causing directional bias. Accordingly, catalysis of carbodiimide hydration by the motor molecule continuously drives net directional rotation around the N-C bond. The directionality is determined by the handedness of both an additive that accelerates anhydride hydrolysis and that of the fuel, and is easily reversed additive31. More than 97% of fuel molecules are consumed through the chemical engine cycle24 with a directional bias of up to 71:29 with a chirality-matched fuel and additive. In other words, the motor makes a 'mistake' in direction every three to four turns. The 26-atom motor molecule's simplicity augurs well for its structural optimization and the development of derivatives that can be interfaced with other components for the performance of work and tasks32-36.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK. .,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | | |
Collapse
|
43
|
Seale JSW, Feng Y, Feng L, Astumian RD, Stoddart JF. Polyrotaxanes and the pump paradigm. Chem Soc Rev 2022; 51:8450-8475. [DOI: 10.1039/d2cs00194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The year 2022 marks the 30th anniversary of the first reports of polyrotaxanes in the scientific literature.
Collapse
Affiliation(s)
- James S. W. Seale
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Liang Feng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - R. Dean Astumian
- Department of Physics and Astronomy, University of Maine, Orono, Maine 04469, USA
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|