1
|
Sreelakshmi PA, Mahashaya R, Leitherer S, Rashid U, Hamill JM, Nair M, Rajamalli P, Kaliginedi V. Electric Field-Induced Sequential Prototropic Tautomerism in Enzyme-like Nanopocket Created by Single Molecular Break Junction. J Am Chem Soc 2024. [PMID: 39496492 DOI: 10.1021/jacs.4c12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Mastering the control of external stimuli-induced chemical transformations with detailed insights into the mechanistic pathway is the key for developing efficient synthetic strategies and designing functional molecular systems. Enzymes, the most potent biological catalysts, efficiently utilize their built-in electric field to catalyze and control complex chemical reactions within the active site. Herein, we have demonstrated the interfacial electric field-induced prototropic tautomerization reaction in acylhydrazone entities by creating an enzymatic-like nanopocket within the atomically sharp gold electrodes using a mechanically controlled break junction (MCBJ) technique. In addition to that, the molecular system used here contains two coupled acylhydrazone reaction centers, hence demonstrating a cooperative stepwise electric field-induced reaction realized at the single molecular level. Furthermore, the mechanistic studies revealed a proton relay-assisted tautomerization showing the importance of external factors such as solvent in such electric field-driven reactions. Finally, single-molecule charge transport and energetics calculations of different molecular species at various applied electric fields using a polarizable continuum solvent model confirm and support our experimental findings. Thus, this study demonstrates that mimicking an enzymatic pocket using a single molecular junction's interfacial electric field as a trigger for chemical reactions can open new avenues to the field of synthetic chemistry.
Collapse
Affiliation(s)
- P A Sreelakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rahul Mahashaya
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Susanne Leitherer
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK- 2100 Copenhagen Ø, Denmark
| | - Umar Rashid
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Joseph M Hamill
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK- 2100 Copenhagen Ø, Denmark
| | - Manivarna Nair
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Cao Z, Xie Y, Lin JL, Zhong S, Yan C, Yang Z, Li M, Zhou Z, Peng W, Qiu S, Liu J, Li Y. Flexible Crossbar Molecular Devices with Patterned EGaIn Top Electrodes for Integrated All-Molecule-Circuit Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406456. [PMID: 39295460 DOI: 10.1002/adma.202406456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Indexed: 09/21/2024]
Abstract
Here, a unique crossbar architecture is designed and fabricated, incorporating vertically integrated self-assembled monolayers in electronic devices. This architecture is used to showcase 100 individual vertical molecular junctions on a single chip with a high yield of working junctions and high device uniformity. The study introduces a transfer approach for patterned liquid-metal eutectic alloy of gallium and indium top electrodes, enabling the creation of fully flexible molecular devices with electrical functionalities. The devices exhibit excellent charge transport performance, sustain a high rectification ratio (>103), and stable endurance and retention properties, even when the devices are significantly bent. Furthermore, Boolean logic gates, including OR and AND gates, as well as half-wave and full-wave rectifying circuits, are successfully implemented. The unique design of the flexible molecular device represents a significant step in harnessing the potential of molecular devices for high-density integration and possible molecule-based computing.
Collapse
Affiliation(s)
- Zhou Cao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, P. R. China
| | - Chenshuai Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Zhenyu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyao Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ziming Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shengzhe Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Singh N, Malik A, Sethi P, Mondal PC. Programmed Heterostructures for Enhanced Electrical Conductivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403108. [PMID: 39037401 DOI: 10.1002/smll.202403108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Interfacial electron transport in multicomponent systems plays a crucial role in controlling electrical conductivity. Organic-inorganic heterostructures electronic devices where all the entities are covalently bonded to each other can reduce interfacial electrical resistance, thus suitable for low-power consumption electronic operations. Programmed heterostructures of covalently bonded interfaces between ITO-ethynylbenzene (EB) and EB-zinc ferrite (ZF) nanoparticles, a programmed structure showing 67 978-fold enhancement of electrical current as compared to pristine NPs-based two terminal devices are created. An electrochemical approach is adopted to prepare nearly π-conjugated EB oligomer films of thickness ≈26 nm on ITO-electrode on which ZF NPs are chemically attached. A "flip-chip" method is employed to combine two EB-ZnFe2O4 NPs-ITO to probe electrical conductivity and charge conduction mechanism. The EB-ZnFe2O4 NPs exhibit strong electronic coupling at ITO-EB and EB-NPs with an energy barrier of 0.13 eV between the ITO Fermi level and the LUMO of EB-ZF NPs for efficient charge transport. Both the DC and AC-based electrical measurements manifest a low resistance at ITO-EB and EB-ZF NPs, revealing enhanced electrical current at ± 1.5 V. The programmed heterostructure devices can meet a strategy to create well-controlled molecular layers for electronic applications toward miniaturized components that shorten charge carrier distance, and interfacial resistance.
Collapse
Affiliation(s)
- Neha Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ankur Malik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Paras Sethi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
4
|
Jiang JN, Wan Q, Sun N, Zhang YL, Wang B, Zheng JF, Shao Y, Wang YH, Zhou XS. Label-Free Single-Molecule Electrical Sensor for Ultrasensitive and Selective Detection of Iodide Ions in Human Urine. ACS Sens 2024; 9:5578-5586. [PMID: 39415079 DOI: 10.1021/acssensors.4c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Herein, a label-free single-molecule electrical sensor was first proposed for the ultrasensitive and selective detection of iodide ions in human urine. Single-molecule conductance measurements in different halogen ion solutions via scanning tunneling microscopy break junction (STM-BJ) clearly revealed that I- ions strongly affect the stability and displacement distance (Δz) distribution of molecular junctions. Theoretical calculations prove that the specific adsorption of I- ions modifies the surface properties and weakens the molecular adsorption. Furthermore, the average conductance peak area versus the logarithm of the I- ion concentration has a very good linear relationship in the range of 5 × 10-6 to 5 × 10-10 M, with a correlation coefficient of 0.99. This quantitative analysis remains valid in the presence of interfering ions of SO42-, ClO4-, Br-, and Cl- as well as interfering molecules of ascorbic acid, uric acid, dopamine, and cysteine. A cross-comparison of the human urine detection results of this single-molecule electrical sensor with those of the clinical method of As3+-Ce4+ catalytic spectrophotometry revealed an average difference of 0.9%, which decreased the detection time of 2 h with the traditional method to approximately 15 min. This work proves the promising practical potential of the single-molecule electrical technique for relevant clinical analysis.
Collapse
Affiliation(s)
- Jia-Nan Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Qiang Wan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Nan Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Li Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Bo Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Shekhawat AS, Sahu B, Diwan A, Chaudhary A, Shrivastav AM, Srivastava T, Kumar R, Saxena SK. Insight of Employing Molecular Junctions for Sensor Applications. ACS Sens 2024; 9:5025-5051. [PMID: 39401974 DOI: 10.1021/acssensors.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Molecular junctions (MJs) exhibit distinct charge transport properties and have the potential to become the next generation of electronic devices. Advancing molecular electronics for practical uses, such as sensors, is crucial to propel its progress to the next level. In this review, we discussed how MJs can serve as a sensor for detecting a wide range of analytes with exceptional sensitivity and specificity. The primary advances and potential of molecular junctions for the various kinds of sensors including photosensors, explosives (DNTs, TNTs), cancer biomarker detection (DNA, mRNA), COVID detection, biogases (CO, NO, NH), environmental pH, practical chemicals, and water pollutants are listed and examined here. The fundamental ideas of molecular junction formation as well as the sensing mechanism have been examined here. This review demonstrates that MJ-based sensors hold significant promise for real-time and on-site detection. It provides valuable insights into current research and outlines potential future directions for advancing molecular junction-based sensors for practical applications.
Collapse
Affiliation(s)
- Abhishek S Shekhawat
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Bhumika Sahu
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Aarti Diwan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Anjali Chaudhary
- Indian Institute of Technology Bhilai, Kutelabhata, Bhilai 491002, Chhattisgarh, India
| | - Anand M Shrivastav
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Tulika Srivastava
- Department of Electronics & Communication, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Shailendra K Saxena
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
6
|
Komoto Y, Ohshiro T, Notsu Y, Taniguchi M. Single-molecule detection of modified amino acid regulating transcriptional activity. RSC Adv 2024; 14:31740-31744. [PMID: 39376514 PMCID: PMC11457157 DOI: 10.1039/d4ra05488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Acetylation of lysine, a component of histones, regulates transcriptional activity. Simple detection methods for acetyl lysine are essential for early diagnosis of diseases and understanding of the physiological effects. We have detected and recognized acetyl lysine at the single-molecule level by combining MCBJ measurement and machine learning.
Collapse
Affiliation(s)
- Yuki Komoto
- SANKEN, Osaka University 8-1, Mihogaoka Ibaraki Osaka 567-0047 Japan
- Artificial Intelligence Research Center, Osaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Takahito Ohshiro
- SANKEN, Osaka University 8-1, Mihogaoka Ibaraki Osaka 567-0047 Japan
- Artificial Intelligence Research Center, Osaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Yuno Notsu
- Kakogawa Higashi High School 232-2 Kakogawachoawazu Kakogawa Hyogo 675-0039 Japan
| | | |
Collapse
|
7
|
Bro-Jørgensen W, Hamill JM, Mezei G, Lawson B, Rashid U, Halbritter A, Kamenetska M, Kaliginedi V, Solomon GC. Making the Most of Nothing: One-Class Classification for Single-Molecule Transport Studies. ACS NANOSCIENCE AU 2024; 4:250-262. [PMID: 39184833 PMCID: PMC11342344 DOI: 10.1021/acsnanoscienceau.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 08/27/2024]
Abstract
Single-molecule experiments offer a unique means to probe molecular properties of individual molecules-yet they rest upon the successful control of background noise and irrelevant signals. In single-molecule transport studies, large amounts of data that probe a wide range of physical and chemical behaviors are often generated. However, due to the stochasticity of these experiments, a substantial fraction of the data may consist of blank traces where no molecular signal is evident. One-class (OC) classification is a machine learning technique to identify a specific class in a data set that potentially consists of a wide variety of classes. Here, we examine the utility of two different types of OC classification models on four diverse data sets from three different laboratories. Two of these data sets were measured at cryogenic temperatures and two at room temperature. By training the models solely on traces from a blank experiment, we demonstrate the efficacy of OC classification as a powerful and reliable method for filtering out blank traces from a molecular experiment in all four data sets. On a labeled 4,4'-bipyridine data set measured at 4.2 K, we achieve an accuracy of 96.9 ± 0.3 and an area under the receiver operating characteristic curve of 99.5 ± 0.3 as validated over a fivefold cross-validation. Given the wide range of physical and chemical properties that can be probed in single-molecule experiments, the successful application of OC classification to filter out blank traces is a major step forward in our ability to understand and manipulate molecular properties.
Collapse
Affiliation(s)
- William Bro-Jørgensen
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, Copenhagen Ø DK-2100, Denmark
| | - Joseph M. Hamill
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, Copenhagen Ø DK-2100, Denmark
| | - Gréta Mezei
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary
- ELKH-BME
Condensed Matter Research Group, Műegyetem rkp. 3., Budapest H-1111, Hungary
| | - Brent Lawson
- Department
of Physics, Chemistry and Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Umar Rashid
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - András Halbritter
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary
- ELKH-BME
Condensed Matter Research Group, Műegyetem rkp. 3., Budapest H-1111, Hungary
| | - Maria Kamenetska
- Department
of Physics, Chemistry and Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Veerabhadrarao Kaliginedi
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Gemma C. Solomon
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, Copenhagen Ø DK-2100, Denmark
- NNF
Quantum
Computing Programme, Niels Bohr Institute, University of Copenhagen, Jagtvej 155 A, Copenhagen N DK-2200, Denmark
| |
Collapse
|
8
|
Sen S, Mitchell AK. Many-Body Quantum Interference Route to the Two-Channel Kondo Effect: Inverse Design for Molecular Junctions and Quantum Dot Devices. PHYSICAL REVIEW LETTERS 2024; 133:076501. [PMID: 39213568 DOI: 10.1103/physrevlett.133.076501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Molecular junctions-whether actual single molecules in nanowire break junctions or artificial molecules realized in coupled quantum dot devices-offer unique functionality due to their orbital complexity, strong electron interactions, gate control, and many-body effects from hybridization with the external electronic circuit. Inverse design involves finding candidate structures that perform a desired function optimally. Here we develop an inverse design strategy for generalized quantum impurity models describing molecular junctions, and as an example, use it to demonstrate that many-body quantum interference can be leveraged to realize the two-channel Kondo critical point in simple 4- or 5-site molecular moieties. We show that remarkably high Kondo temperatures can be achieved, meaning that entropy and transport signatures should be experimentally accessible.
Collapse
|
9
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Fujii S, Seko S, Tanaka T, Yoshihara Y, Furukawa S, Nishino T, Saito M. Charge Transport through Single-Molecule Junctions with σ-Delocalized Systems. J Am Chem Soc 2024; 146:19566-19571. [PMID: 38957924 PMCID: PMC11258778 DOI: 10.1021/jacs.4c06732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Single-molecule junctions, formed by a single molecule bridging a gap between two metal electrodes, are attracting attention as basic models of ultrasmall electronic devices. Although charge transport through π-conjugated molecules with π-delocalized system has been widely studied for a number of molecular junctions, there has been almost no research on charge transport through molecular junctions with a σ-delocalized orbital system. Compounds with hexa-selenium-substituted benzene form a σ-delocalized orbital system on the periphery of the benzene ring. In this study, we fabricated single-molecule junctions with the σ-delocalized orbital systems arising from lone-pair interactions of selenium atoms and clarified their electronic properties using the break-junction method. The single-molecule junctions with the σ-orbital systems show efficient charge transport properties and can be one of the alternatives to those with conventional π-orbital systems as minute electronic conductors.
Collapse
Affiliation(s)
- Shintaro Fujii
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1
W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Saya Seko
- Department
of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Taichi Tanaka
- Department
of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Yuki Yoshihara
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1
W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shunsuke Furukawa
- Department
of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| | - Tomoaki Nishino
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1
W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Masaichi Saito
- Department
of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Sakura-ku, Saitama-city, Saitama 338-8570, Japan
| |
Collapse
|
11
|
Williams A, Aguilar MR, Pattiya Arachchillage KGG, Chandra S, Rangan S, Ghosal Gupta S, Artes Vivancos JM. Biosensors for Public Health and Environmental Monitoring: The Case for Sustainable Biosensing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10296-10312. [PMID: 39027730 PMCID: PMC11253101 DOI: 10.1021/acssuschemeng.3c06112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Climate change is a profound crisis that affects every aspect of life, including public health. Changes in environmental conditions can promote the spread of pathogens and the development of new mutants and strains. Early detection is essential in managing and controlling this spread and improving overall health outcomes. This perspective article introduces basic biosensing concepts and various biosensors, including electrochemical, optical, mass-based, nano biosensors, and single-molecule biosensors, as important sustainability and public health preventive tools. The discussion also includes how the sustainability of a biosensor is crucial to minimizing environmental impacts and ensuring the long-term availability of vital technologies and resources for healthcare, environmental monitoring, and beyond. One promising avenue for pathogen screening could be the electrical detection of biomolecules at the single-molecule level, and some recent developments based on single-molecule bioelectronics using the Scanning Tunneling Microscopy-assisted break junctions (STM-BJ) technique are shown here. Using this technique, biomolecules can be detected with high sensitivity, eliminating the need for amplification and cell culture steps, thereby enhancing speed and efficiency. Furthermore, the STM-BJ technique demonstrates exceptional specificity, accurately detects single-base mismatches, and exhibits a detection limit essentially at the level of individual biomolecules. Finally, a case is made here for sustainable biosensors, how they can help, the paradigm shift needed to achieve them, and some potential applications.
Collapse
Affiliation(s)
- Ajoke Williams
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Mauricio R. Aguilar
- Departament
de Química Inorgànica i Orgànica, Diagonal 645, 08028 Barcelona, Spain
- Institut
de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | - Subrata Chandra
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Srijith Rangan
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Sonakshi Ghosal Gupta
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Juan M. Artes Vivancos
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
12
|
Raja SN, Jain S, Kipen J, Jaldén J, Stemme G, Herland A, Niklaus F. High-bandwidth low-current measurement system for automated and scalable probing of tunnel junctions in liquids. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:074710. [PMID: 39037302 DOI: 10.1063/5.0204188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
Tunnel junctions have long been used to immobilize and study the electronic transport properties of single molecules. The sensitivity of tunneling currents to entities in the tunneling gap has generated interest in developing electronic biosensors with single molecule resolution. Tunnel junctions can, for example, be used for sensing bound or unbound DNA, RNA, amino acids, and proteins in liquids. However, manufacturing technologies for on-chip integrated arrays of tunnel junction sensors are still in their infancy, and scalable measurement strategies that allow the measurement of large numbers of tunneling junctions are required to facilitate progress. Here, we describe an experimental setup to perform scalable, high-bandwidth (>10 kHz) measurements of low currents (pA-nA) in arrays of on-chip integrated tunnel junctions immersed in various liquid media. Leveraging a commercially available compact 100 kHz bandwidth low-current measurement instrument, we developed a custom two-terminal probe on which the amplifier is directly mounted to decrease parasitic probe capacitances to sub-pF levels. We also integrated a motorized three-axis stage, which could be powered down using software control, inside the Faraday cage of the setup. This enabled automated data acquisition on arrays of tunnel junctions without worsening the noise floor despite being inside the Faraday cage. A deliberately positioned air gap in the fluidic path ensured liquid perfusion to the chip from outside the Faraday cage without coupling in additional noise. We demonstrate the performance of our setup using rapid current switching observed in electromigrated gold tunnel junctions immersed in deionized water.
Collapse
Affiliation(s)
- Shyamprasad N Raja
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Saumey Jain
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- Division of Nanobiotechnology, SciLife Lab, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Javier Kipen
- Division of Information Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Joakim Jaldén
- Division of Information Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Göran Stemme
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, SciLife Lab, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, SE-171 77 Solna, Sweden
| | - Frank Niklaus
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
13
|
Gorenskaia E, Low PJ. Methods for the analysis, interpretation, and prediction of single-molecule junction conductance behaviour. Chem Sci 2024; 15:9510-9556. [PMID: 38939131 PMCID: PMC11206205 DOI: 10.1039/d4sc00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
This article offers a broad overview of measurement methods in the field of molecular electronics, with a particular focus on the most common single-molecule junction fabrication techniques, the challenges in data analysis and interpretation of single-molecule junction current-distance traces, and a summary of simulations and predictive models aimed at establishing robust structure-property relationships of use in the further development of molecular electronics.
Collapse
Affiliation(s)
- Elena Gorenskaia
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| |
Collapse
|
14
|
Guo J, Chen PK, Chang S. Molecular-Scale Electronics: From Individual Molecule Detection to the Application of Recognition Sensing. Anal Chem 2024; 96:9303-9316. [PMID: 38809941 DOI: 10.1021/acs.analchem.3c04656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
15
|
Guo Y, Li M, Zhao C, Zhang Y, Jia C, Guo X. Understanding Emergent Complexity from a Single-Molecule Perspective. JACS AU 2024; 4:1278-1294. [PMID: 38665639 PMCID: PMC11040556 DOI: 10.1021/jacsau.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024]
Abstract
Molecules, with structural, scaling, and interaction diversities, are crucial for the emergence of complex behaviors. Interactions are essential prerequisites for complex systems to exhibit emergent properties that surpass the sum of individual component characteristics. Tracing the origin of complex molecular behaviors from interactions is critical to understanding ensemble emergence, and requires insights at the single-molecule level. Electrical signals from single-molecule junctions enable the observation of individual molecular behaviors, as well as intramolecular and intermolecular interactions. This technique provides a foundation for bottom-up explorations of emergent complexity. This Perspective highlights investigations of various interactions via single-molecule junctions, including intramolecular orbital and weak intermolecular interactions and interactions in chemical reactions. It also provides potential directions for future single-molecule junctions in complex system research.
Collapse
Affiliation(s)
- Yilin Guo
- Beijing
National Laboratory for Molecular Sciences, National Biomedical Imaging
Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- School
of Materials Science and Engineering, Peking
University, No.5 Yiheyuan
Road, Haidian District, Beijing 100871, P. R. China
| | - Cong Zhao
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Yanfeng Zhang
- School
of Materials Science and Engineering, Peking
University, No.5 Yiheyuan
Road, Haidian District, Beijing 100871, P. R. China
| | - Chuancheng Jia
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Xuefeng Guo
- Beijing
National Laboratory for Molecular Sciences, National Biomedical Imaging
Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center
of Single-Molecule Sciences, Institute of Modern Optics, Frontiers
Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale
Optical Information Science and Technology, College of Electronic
Information and Optical Engineering, Nankai
University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
16
|
Chen L, Yang Z, Lin Q, Li X, Bai J, Hong W. Evolution of Single-Molecule Electronic Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1988-2004. [PMID: 38227964 DOI: 10.1021/acs.langmuir.3c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Single-molecule electronics can fabricate single-molecule devices via the construction of molecule-electrode interfaces and also provide a unique tool to investigate single-molecule scale physicochemical processes at these interfaces. To investigate single-molecule electronic devices with desired functionalities, an understanding of the interface evolution processes in single-molecule devices is essential. In this review, we focus on the evolution of molecule-electrode interface properties, including the background of interface evolution in single-molecule electronics, the construction of different types of single-molecule interfaces, and the regulation methods. Finally, we discuss the perspective of future characterization techniques and applications for single-molecule electronic interfaces.
Collapse
Affiliation(s)
- Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Zixian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Qichao Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| |
Collapse
|
17
|
Ma T, Chang S, He J, Liang F. Emerging sensing platforms based on Cucurbit[ n]uril functionalized gold nanoparticles and electrodes. Chem Commun (Camb) 2023; 60:150-167. [PMID: 38054368 DOI: 10.1039/d3cc04851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cucurbit[n]urils (CB[n]s, n = 5-8, 10, and 14), synthetic macrocycles with unique host-guest properties, have triggered increasing research interest in recent years. Gold nanoparticles (Au NPs) and electrodes stand out as exceptional substrates for sensing due to their remarkable physicochemical characteristics. Coupling the CB[n]s with Au NPs and electrodes has enabled the development of emerging sensing platforms for various promising applications. However, monitoring the behavior of analytes at the single-molecule level is currently one of the most challenging topics in the field of CB[n]-based sensing. Constructing supramolecular junctions in a sensing platform provides an ideal structure for single-molecule analysis, which can provide insights for a fundamental understanding of supramolecular interactions and chemical reactions and guide the design of sensing applications. This feature article outlines the progress in the preparation of the CB[n] functionalized Au NPs and Au electrodes, as well as the construction and application of supramolecular junctions in sensing platforms, based on the methods of recognition tunneling (RT), surface-enhanced Raman spectroscopy (SERS), single-molecule force spectroscopy (SMFS), and electrochemical sensing (ECS). A brief perspective on the future development of and challenges in CB[n] mediated sensing platforms is also covered.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, USA.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
18
|
Gupta R, Bhandari S, Kaya S, Katin KP, Mondal PC. Thickness-Dependent Charge Transport in Three Dimensional Ru(II)- Tris(phenanthroline)-Based Molecular Assemblies. NANO LETTERS 2023. [PMID: 38048073 DOI: 10.1021/acs.nanolett.3c03256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We describe here the fabrication of large-area molecular junctions with a configuration of ITO/[Ru(Phen)3]/Al to understand temperature- and thickness-dependent charge transport phenomena. Thanks to the electrochemical technique, thin layers of electroactive ruthenium(II)-tris(phenanthroline) [Ru(Phen)3] with thicknesses of 4-16 nm are covalently grown on sputtering-deposited patterned ITO electrodes. The bias-induced molecular junctions exhibit symmetric current-voltage (j-V) curves, demonstrating highly efficient long-range charge transport and weak attenuation with increased molecular film thickness (β = 0.70 to 0.79 nm-1). Such a lower β value is attributed to the accessibility of Ru(Phen)3 molecular conduction channels to Fermi levels of both the electrodes and a strong electronic coupling at ITO-molecules interfaces. The thinner junctions (d = 3.9 nm) follow charge transport via resonant tunneling, while the thicker junctions (d = 10-16 nm) follow thermally activated (activation energy, Ea ∼ 43 meV) Poole-Frenkel charge conduction, showing a clear "molecular signature" in the nanometric junctions.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shapath Bhandari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Savas Kaya
- Department of Pharmacy, Faculty of Science, Cumhuriyet University, Sivas 58140, Turkey
| | - Konstantin P Katin
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
19
|
Li P, Hou S, Wu Q, Chen Y, Wang B, Ren H, Wang J, Zhai Z, Yu Z, Lambert CJ, Jia C, Guo X. The role of halogens in Au-S bond cleavage for energy-differentiated catalysis at the single-bond limit. Nat Commun 2023; 14:7695. [PMID: 38001141 PMCID: PMC10673828 DOI: 10.1038/s41467-023-43639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The transformation from one compound to another involves the breaking and formation of chemical bonds at the single-bond level, especially during catalytic reactions that are of great significance in broad fields such as energy conversion, environmental science, life science and chemical synthesis. The study of the reaction process at the single-bond limit is the key to understanding the catalytic reaction mechanism and further rationally designing catalysts. Here, we develop a method to monitor the catalytic process from the perspective of the single-bond energy using high-resolution scanning tunneling microscopy single-molecule junctions. Experimental and theoretical studies consistently reveal that the attack of a halogen atom on an Au atom can reduce the breaking energy of Au-S bonds, thereby accelerating the bond cleavage reaction and shortening the plateau length during the single-molecule junction breaking. Furthermore, the distinction in catalytic activity between different halogen atoms can be compared as well. This study establishes the intrinsic relationship among the reaction activation energy, the chemical bond breaking energy and the single-molecule junction breaking process, strengthening our mastery of catalytic reactions towards precise chemistry.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Boyu Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Haiyang Ren
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Jinying Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China
| | - Zhaoyi Zhai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350, Tianjin, People's Republic of China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 300350, Tianjin, People's Republic of China.
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China.
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350, Tianjin, People's Republic of China.
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, People's Republic of China.
| |
Collapse
|