1
|
Chuliver M, Agnolín FL, Scanferla A, Aranciaga Rolando M, Ezcurra MD, Novas FE, Xu X. The oldest tadpole reveals evolutionary stability of the anuran life cycle. Nature 2024; 636:138-142. [PMID: 39478214 DOI: 10.1038/s41586-024-08055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/16/2024] [Indexed: 12/06/2024]
Abstract
Anurans are characterized by a biphasic life cycle, with an aquatic larval (tadpole) stage followed by an adult (frog) stage, both connected through the metamorphic period in which drastic morphological and physiological changes occur1. Extant tadpoles exhibit great morphological diversity and ecological relevance2, but their absence in the pre-Cretaceous fossil record (older than 145 million years) makes their origins and early evolution enigmatic. This contrasts with the postmetamorphic anuran fossil record that dates back to the Early Jurassic and with closely related species in the Late Triassic (around 217-213 million years ago (Ma))3. Here we report a late-stage tadpole of the stem-anuran Notobatrachus degiustoi from the Middle Jurassic of Patagonia (around 168-161 Ma). This finding has dual importance because it represents the oldest-known tadpole and, to our knowledge, the first stem-anuran larva. Its exquisite preservation, including soft tissues, shows features associated with the filter-feeding mechanism characteristic of extant tadpoles4,5. Notably, both N. degiustoi tadpole and adult reached a large size, demonstrating that tadpole gigantism occurred among stem-anurans. This new discovery reveals that a biphasic life cycle, with filter-feeding tadpoles inhabiting aquatic ephemeral environments, was already present in the early evolutionary history of stem-anurans and has remained stable for at least 161 million years.
Collapse
Affiliation(s)
- Mariana Chuliver
- Fundación de Historia Natural "Félix de Azara", Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Federico L Agnolín
- Fundación de Historia Natural "Félix de Azara", Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
| | - Agustín Scanferla
- Fundación de Historia Natural "Félix de Azara", Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mauro Aranciaga Rolando
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín D Ezcurra
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Fernando E Novas
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Dornburg A, Zapfe KL, Williams R, Alfaro ME, Morris R, Adachi H, Flores J, Santini F, Near TJ, Frédérich B. Considering Decoupled Phenotypic Diversification Between Ontogenetic Phases in Macroevolution: An Example Using Triggerfishes (Balistidae). Syst Biol 2024; 73:434-454. [PMID: 38490727 DOI: 10.1093/sysbio/syae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024] Open
Abstract
Across the Tree of Life, most studies of phenotypic disparity and diversification have been restricted to adult organisms. However, many lineages have distinct ontogenetic phases that differ from their adult forms in morphology and ecology. Focusing disproportionately on the evolution of adult forms unnecessarily hinders our understanding of the pressures shaping evolution over time. Non-adult disparity patterns are particularly important to consider for coastal ray-finned fishes, which can have juvenile phases with distinct phenotypes. These juvenile forms are often associated with sheltered nursery environments, with phenotypic shifts between adults and juvenile stages that are readily apparent in locomotor morphology. Whether this ontogenetic variation in locomotor morphology reflects a decoupling of diversification dynamics between life stages remains unknown. Here we investigate the evolutionary dynamics of locomotor morphology between adult and juvenile triggerfishes. We integrate a time-calibrated phylogenetic framework with geometric morphometric approaches and measurement data of fin aspect ratio and incidence, and reveal a mismatch between morphospace occupancy, the evolution of morphological disparity, and the tempo of trait evolution between life stages. Collectively, our results illuminate how the heterogeneity of morpho-functional adaptations can decouple the mode and tempo of morphological diversification between ontogenetic stages.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Katerina L Zapfe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Rachel Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UR, UK
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Richard Morris
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Haruka Adachi
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Joseph Flores
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Francesco Santini
- Associazione Italiana per lo Studio della Biodiversità, Pisa 56100, Italy
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Bruno Frédérich
- Laboratory of Evolutionary Ecology, FOCUS, University of Liège, Quartier AGORA, Allée du six Août 11 (B6c), 4000 Liège, Belgium
| |
Collapse
|
3
|
Almeida-Silva D, Vera Candioti F. Shape Evolution in Two Acts: Morphological Diversity of Larval and Adult Neoaustraranan Frogs. Animals (Basel) 2024; 14:1406. [PMID: 38791625 PMCID: PMC11117230 DOI: 10.3390/ani14101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Phenotypic traits can evolve independently at different stages of ontogeny, optimizing adaptation to distinct ecological contexts and increasing morphological diversity in species with complex life cycles. Given the relative independence resulting from the profound changes induced by metamorphosis, niche occupation and resource utilization in tadpoles may prompt evolutionary responses that do not necessarily affect the adults. Consequently, diversity patterns observed in the larval shape may not necessarily correspond to those found in the adult shape for the same species, a premise that can be tested through the Adaptive Decoupling Hypothesis (ADH). Herein, we investigate the ADH for larval and adult shape differentiation in Neoaustrarana frogs. Neoaustrarana frogs, particularly within the Cycloramphidae family, exhibit remarkable diversity in tadpole morphology, making them an ideal model for studying adaptive decoupling. By analyzing 83 representative species across four families (Alsodidae, Batrachylidae, Cycloramphidae, and Hylodidae), we generate a morphological dataset for both larval and adult forms. We found a low correlation between larval and adult shapes, species with a highly distinct larval shape having relatively similar shape when adults. Larval morphological disparity is not a good predictor for adult morphological disparity within the group, with distinct patterns observed among families. Differences between families are notable in other aspects as well, such as the role of allometric components influencing shape and morphospace occupancy. The larval shape has higher phylogenetic structure than the adult. Evolutionary convergence emerges as a mechanism of diversification for both larval and adult shapes in the early evolution of neoaustraranans, with shape disparity of tadpoles reaching stable levels since the Oligocene. The widest occupation in morphospace involves families associated with dynamically changing environments over geological time. Our findings support the ADH driving phenotypic diversity in Neoaustrarana, underscoring the importance of considering ontogenetic stages in evolutionary studies.
Collapse
Affiliation(s)
- Diego Almeida-Silva
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas–Fundación Miguel Lillo, San Miguel de Tucumán 4000, Argentina;
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo 09606-045, SP, Brazil
| | - Florencia Vera Candioti
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas–Fundación Miguel Lillo, San Miguel de Tucumán 4000, Argentina;
| |
Collapse
|
4
|
Dias PHDS. First description of buccopharyngeal anatomy in Pelodryadinae larvae: Morphological comparison and systematic implications (Anura: Hylidae: Pelodryadinae: Litoria rubella and Ranoidea caerulea). J Morphol 2023; 284:e21651. [PMID: 37856280 DOI: 10.1002/jmor.21651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
Pelodryadinae, the Australian tree frogs, is a monophyletic group endemic to the Australo-Papuan region. Although we have a relatively good knowledge about tadpoles' phenotypic diversity in terms of external morphology, information about internal anatomy is rare for the subfamily; for instance, their buccopharyngeal cavity is completely unknown. Herein I describe for the first time the buccopharyngeal anatomy of two pelodryadins: Litoria rubella and Ranoidea caerulea. I compare my results with available evidence from Phyllomedusidae, that is, the sister clade to Pelodryadinae, and briefly comment on buccopharyngeal cavity within Hylidae. Both species can be readily distinguished based on lateral ridge, postnarial, buccal roof arena, infralabial papillae, and lingual papillae. Variation between the two species may suggest a large diversity within Pelodryadinae. Pelodryadinae and Phyllomedusinae present similar buccopharyngeal morphologies, although Agalychnis callidryas has a unique morphology and putative apomorphic transformations can be observed in Pithecopus + Phyllomedusa, Ranoidea, and Phasmahyla.
Collapse
Affiliation(s)
- Pedro Henrique Dos Santos Dias
- Leibniz Institut zur Analyse des Biodiversitätswandels, Zoologisches Museum Hamburg, Zentrum für Taxonomie und Morphologie, Hamburg, Germany
| |
Collapse
|
5
|
Vera Candioti F, Baldo D, Grosjean S, Pereyra MO, Nori J. Global shortfalls of knowledge on anuran tadpoles. NPJ BIODIVERSITY 2023; 2:22. [PMID: 39242681 PMCID: PMC11332183 DOI: 10.1038/s44185-023-00027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/13/2023] [Indexed: 09/09/2024]
Abstract
Despite the amount of data on different aspects of biodiversity, such as species distributions, taxonomy, or phylogenetics, there are still significant gaps and biases in the available information. This is particularly true for life history traits, with fragmentary data for most taxa, especially those with complex life cycles. Anurans (frogs and toads) show larval (premetamorphic) stages that are in general radically decoupled from adult forms in most biological aspects. Our understanding of this group is highly uneven, as the main wide-scope investigations focus on adult specimens and larval stages remain unknown for a significant part of the anuran tree. The main purpose of this work was to estimate the extent of knowledge gaps regarding the diversity of tadpoles, interpret their biological and geographical patterns, and discuss possible explanations and implications for other large-scale analyses. Our findings show that more than half of the anuran species described to date still lack information on their embryonic/larval stages. Furthermore, knowledge varies among taxonomic groups, larval ecomorphological guilds, and world ecoregions. Description percentages generally decrease in lineages with a higher proportion of species known or suspected to have endotrophic development. Also, geographic areas with the highest levels of ignorance in larval biology (Tropical Andes and New Guinea) coincide with the highest diversity of endotrophic guilds. Among exotrophic larvae, generalized lentic-lotic tadpoles have the widest distribution and levels of knowledge, whereas specialized lotic, fossorial, and terrestrial forms are more taxonomically and geographically restricted. Further large-scale analyses on tadpole biology are crucial for their impact in varied scientific disciplines including anuran conservation. At a conceptual level, the discussion of the anuran biphasic life cycle is pertinent in the context of shortfalls of biodiversity knowledge and their interrelationships.
Collapse
Affiliation(s)
- Florencia Vera Candioti
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Miguel Lillo), 4000, San Miguel de Tucumán, Argentina.
| | - Diego Baldo
- Laboratorio de Genética Evolutiva "Claudio Juan Bidau", Instituto de Biología Subtropical (CONICET-Universidad Nacional de Misiones) and Facultad de Ciencias Exactas Químicas y Naturales (UNaM), 3300, Posadas, Argentina
| | - Stéphane Grosjean
- Direction Générale Déléguée aux Collections, Muséum national d'Histoire naturelle, 75005, Paris, France
| | - Martín O Pereyra
- Laboratorio de Genética Evolutiva "Claudio Juan Bidau", Instituto de Biología Subtropical (CONICET-Universidad Nacional de Misiones) and Facultad de Ciencias Exactas Químicas y Naturales (UNaM), 3300, Posadas, Argentina
| | - Javier Nori
- Instituto de Diversidad y Ecología Animal (CONICET) and Centro de Zoología Aplicada (Universidad Nacional de Córdoba), 5000, Córdoba, Argentina.
| |
Collapse
|
6
|
Saltini M, Vasconcelos P, Rueffler C. Complex life cycles drive community assembly through immigration and adaptive diversification. Ecol Lett 2023. [PMID: 37125448 DOI: 10.1111/ele.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023]
Abstract
Most animals undergo ontogenetic niche shifts during their life. Yet, standard ecological theory builds on models that ignore this complexity. Here, we study how complex life cycles, where juvenile and adult individuals each feed on different sets of resources, affect community richness. Two different modes of community assembly are considered: gradual adaptive evolution and immigration of new species with randomly selected phenotypes. We find that under gradual evolution complex life cycles can lead to both higher and lower species richness when compared to a model of species with simple life cycles that lack an ontogenetic niche shift. Thus, complex life cycles do not per se increase the scope for gradual adaptive diversification. However, complex life cycles can lead to significantly higher species richness when communities are assembled trough immigration, as immigrants can occupy isolated peaks of the dynamic fitness landscape that are not accessible via gradual evolution.
Collapse
Affiliation(s)
- Marco Saltini
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Paula Vasconcelos
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Claus Rueffler
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Richardson EL, Marshall DJ. Mapping the correlations and gaps in studies of complex life histories. Ecol Evol 2023; 13:e9809. [PMID: 36820248 PMCID: PMC9937794 DOI: 10.1002/ece3.9809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
For species with complex life histories, phenotypic correlations between life-history stages constrain both ecological and evolutionary trajectories. Studies that seek to understand correlations across the life history differ greatly in their experimental approach: some follow individuals ("individual longitudinal"), while others follow cohorts ("cohort longitudinal"). Cohort longitudinal studies risk confounding results through Simpson's Paradox, where correlations observed at the cohort level do not match that of the individual level. Individual longitudinal studies are laborious in comparison, but provide a more reliable test of correlations across life-history stages. Our understanding of the prevalence, strength, and direction of phenotypic correlations depends on the approaches that we use, but the relative representation of different approaches remains unknown. Using marine invertebrates as a model group, we used a formal, systematic literature map to screen 17,000+ papers studying complex life histories, and characterized the study type (i.e., cohort longitudinal, individual longitudinal, or single stage), as well as other factors. For 3315 experiments from 1716 articles, 67% focused on a single stage, 31% were cohort longitudinal and just 1.7% used an individual longitudinal approach. While life-history stages have been studied extensively, we suggest that the field prioritize individual longitudinal studies to understand the phenotypic correlations among stages.
Collapse
Affiliation(s)
- Emily L. Richardson
- Centre for Geometric Biology, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Dustin J. Marshall
- Centre for Geometric Biology, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Butterworth NJ, Benbow ME, Barton PS. The ephemeral resource patch concept. Biol Rev Camb Philos Soc 2022; 98:697-726. [PMID: 36517934 DOI: 10.1111/brv.12926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Ephemeral resource patches (ERPs) - short lived resources including dung, carrion, temporary pools, rotting vegetation, decaying wood, and fungi - are found throughout every ecosystem. Their short-lived dynamics greatly enhance ecosystem heterogeneity and have shaped the evolutionary trajectories of a wide range of organisms - from bacteria to insects and amphibians. Despite this, there has been no attempt to distinguish ERPs clearly from other resource types, to identify their shared spatiotemporal characteristics, or to articulate their broad ecological and evolutionary influences on biotic communities. Here, we define ERPs as any distinct consumable resources which (i) are homogeneous (genetically, chemically, or structurally) relative to the surrounding matrix, (ii) host a discrete multitrophic community consisting of species that cannot replicate solely in any of the surrounding matrix, and (iii) cannot maintain a balance between depletion and renewal, which in turn, prevents multiple generations of consumers/users or reaching a community equilibrium. We outline the wide range of ERPs that fit these criteria, propose 12 spatiotemporal characteristics along which ERPs can vary, and synthesise a large body of literature that relates ERP dynamics to ecological and evolutionary theory. We draw this knowledge together and present a new unifying conceptual framework that incorporates how ERPs have shaped the adaptive trajectories of organisms, the structure of ecosystems, and how they can be integrated into biodiversity management and conservation. Future research should focus on how inter- and intra-resource variation occurs in nature - with a particular focus on resource × environment × genotype interactions. This will likely reveal novel adaptive strategies, aid the development of new eco-evolutionary theory, and greatly improve our understanding of the form and function of organisms and ecosystems.
Collapse
Affiliation(s)
- Nathan J. Butterworth
- School of Biological Sciences, Monash University Wellington Road Clayton VIC 3800 Australia
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia
| | - M. Eric Benbow
- Department of Entomology, Department of Osteopathic Medical Specialties, and Ecology, Evolution and Behavior Program Michigan State University 220 Trowbridge Rd East Lansing MI 48824 USA
| | - Philip S. Barton
- Future Regions Research Centre, Federation University University Drive, Mount Helen VIC 3350 Australia
| |
Collapse
|
9
|
Kahrl AF, Snook RR, Fitzpatrick JL. Fertilization mode differentially impacts the evolution of vertebrate sperm components. Nat Commun 2022; 13:6809. [PMID: 36357384 PMCID: PMC9649735 DOI: 10.1038/s41467-022-34609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Environmental change frequently drives morphological diversification, including at the cellular level. Transitions in the environment where fertilization occurs (i.e., fertilization mode) are hypothesized to be a driver of the extreme diversity in sperm morphology observed in animals. Yet how fertilization mode impacts the evolution of sperm components-head, midpiece, and flagellum-each with different functional roles that must act as an integrated unit remains unclear. Here, we test this hypothesis by examining the evolution of sperm component lengths across 1103 species of vertebrates varying in fertilization mode (external vs. internal fertilization). Sperm component length is explained in part by fertilization mode across vertebrates, but how fertilization mode influences sperm evolution varies among sperm components and vertebrate clades. We also identify evolutionary responses not influenced by fertilization mode: midpieces evolve rapidly in both external and internal fertilizers. Fertilization mode thus influences vertebrate sperm evolution through complex component- and clade-specific evolutionary responses.
Collapse
Affiliation(s)
- Ariel F Kahrl
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden.
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY, USA.
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| | - John L Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| |
Collapse
|
10
|
Ginal P, Kruger N, Wagener C, Araspin L, Mokhatla M, Secondi J, Herrel A, Measey J, Rödder D. More time for aliens? Performance shifts lead to increased activity time budgets propelling invasion success. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the Grinnellian niche concept, the realized niche and potential distribution is characterized as an interplay among the fundamental niche, biotic interactions and geographic accessibility. Climate is one of the main drivers for this concept and is essential to predict a taxon’s distribution. Mechanistic approaches can be useful tools, which use fitness-related aspects like locomotor performance and critical thermal limits to predict the potential distribution of an organism. These mechanistic approaches allow the inclusion key ecological processes like local adaptation and can account for thermal performance traits of different life-history stages. The African Clawed Frog, Xenopus laevis, is a highly invasive species occurring on five continents. The French population is of special interest due to an ongoing expansion for 40 years and a broad base of knowledge. We hypothesize that (1) the French population exhibits increased activity time in the invasive European range that could be devoted to fitness-relevant activity and (2) tadpoles may have less activity time available than adult frogs from the same range. We investigate how thermal performance traits translate into activity time budgets and how local adaptation and differences in the thermal responses of life-history stages may boost the European Xenopus invasion. We use a mechanistic approach based on generalized additive mixed models, where thermal performance curves were used to predict the hours of activity and to compare the potential activity time budgets for two life-history stages of native and invasive populations. Our results show that adult French frogs have more activity time available in Europe compared to South African frogs, which might be an advantage in searching for prey or escaping from predators. However, French tadpoles do not have more activity time in Europe compared to the native South African populations suggesting that tadpoles do not suffer the same strong selective pressure as adult frogs.
Collapse
|
11
|
Ponssa ML, Fratani J, Barrionuevo JS. Phalanx morphology in salamanders: A reflection of microhabitat use, life cycle or evolutionary constraints? ZOOLOGY 2022; 154:126040. [DOI: 10.1016/j.zool.2022.126040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
12
|
Schott RK, Bell RC, Loew ER, Thomas KN, Gower DJ, Streicher JW, Fujita MK. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biol 2022; 20:138. [PMID: 35761245 PMCID: PMC9238225 DOI: 10.1186/s12915-022-01341-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure. RESULTS We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments. CONCLUSIONS Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology, York University, Toronto, Ontario, Canada.
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA.
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Kate N Thomas
- Department of Life Sciences, The Natural History Museum, London, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
13
|
Bonett RM, Ledbetter NM. Paedomorphic salamanders are larval in form and patterns of limb emergence inform life cycle evolution. Dev Dyn 2022; 251:934-941. [PMID: 35443096 DOI: 10.1002/dvdy.479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Amphibians undergo a variety of post-embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH-based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question: "Are paedomorphs actual larvae?". To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, OK, USA
| | | |
Collapse
|
14
|
Schafft M, Wagner N, Schuetz T, Veith M. A near-natural experiment on factors influencing larval drift in Salamandra salamandra. Sci Rep 2022; 12:3275. [PMID: 35228557 PMCID: PMC8885912 DOI: 10.1038/s41598-022-06355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
The larval stage of the European fire salamander (Salamandra salamandra) inhabits both lentic and lotic habitats. In the latter, they are constantly exposed to unidirectional water flow, which has been shown to cause downstream drift in a variety of taxa. In this study, a closed artificial creek, which allowed us to keep the water flow constant over time and, at the same time, to simulates with predefined water quantities and durations, was used to examine the individual movement patterns of marked larval fire salamanders exposed to unidirectional flow. Movements were tracked by marking the larvae with VIAlpha tags individually and by using downstream and upstream traps. Most individuals showed stationarity, while downstream drift dominated the overall movement pattern. Upstream movements were rare and occurred only on small distances of about 30 cm; downstream drift distances exceeded 10 m (until next downstream trap). The simulated flood events increased drift rates significantly, even several days after the flood simulation experiments. Drift probability increased with decreasing body size and decreasing nutritional status. Our results support the production hypothesis as an explanation for the movements of European fire salamander larvae within creeks.
Collapse
Affiliation(s)
- Malwina Schafft
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany.,Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Norman Wagner
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany.,Zweckverband Natura Ill-Theel, In der Meulwies 1, 66646, Marpingen, Germany
| | - Tobias Schuetz
- Department of Hydrology, Trier University, Behringstraße 21, 54296, Trier, Germany
| | - Michael Veith
- Department of Biogeography, Trier University, Universitätsring 15, 54296, Trier, Germany.
| |
Collapse
|
15
|
Pavón-Vázquez CJ, Esquerré D, Keogh JS. Ontogenetic drivers of morphological evolution in monitor lizards and allies (Squamata: Paleoanguimorpha), a clade with extreme body size disparity. BMC Ecol Evol 2022; 22:15. [PMID: 35151266 PMCID: PMC8840268 DOI: 10.1186/s12862-022-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heterochrony, change in the rate or timing of development, is thought to be one of the main drivers of morphological evolution, and allometry, trait scaling patterns imposed by size, is traditionally thought to represent an evolutionary constraint. However, recent studies suggest that the ontogenetic allometric trajectories describing how organisms change as they grow may be labile and adaptive. Here we investigated the role of postnatal ontogenetic development in the morphological diversification of Paleoanguimorpha, the monitor lizards and allies, a clade with extreme body size disparity. We obtained linear and geometric morphometric data for more than 1,600 specimens belonging to three families and 60 species, representing ~ 72% of extant paleoanguimorph diversity. We used these data to undertake one of the largest comparative studies of ontogenetic allometry to date. Results Heterochrony is likely dictating morphological divergence at shallow evolutionary scales, while changes in the magnitude and direction of ontogenetic change are found mainly between major clades. Some patterns of ontogenetic variation and morphological disparity appear to reflect ontogenetic transitions in habitat use. Generally, juveniles are more similar to each other than adults, possibly because species that differ in ecology as adults are arboreal as juveniles. The magnitude of ontogenetic change follows evolutionary models where variation is constrained around an optimal value. Conversely, the direction of ontogenetic change may follow models with different adaptive optima per habitat use category or models where interspecific interactions influence its evolution. Finally, we found that the evolutionary rates of the ontogenetic allometric trajectories are phylogenetically variable. Conclusions The attributes of ontogenetic allometric trajectories and their evolutionary rates are phylogenetically heterogeneous in Paleoanguimorpha. Both allometric constraints and ecological factors have shaped ontogeny in the group. Our study highlights the evolutionary lability and adaptability of postnatal ontogeny, and teases apart how different evolutionary shifts in ontogeny contribute to the generation of morphological diversity at different evolutionary scales. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01970-6.
Collapse
Affiliation(s)
- Carlos J Pavón-Vázquez
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia. .,Department of Biological Sciences, New York City College of Technology, City University of New York, Brooklyn, NY, 11201, USA.
| | - Damien Esquerré
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
16
|
Semple TL, Vidal-García M, Tatarnic NJ, Peakall R. Evolution of reproductive structures for in-flight mating in thynnine wasps (Hymenoptera: Thynnidae: Thynninae). J Evol Biol 2021; 34:1406-1422. [PMID: 34258799 DOI: 10.1111/jeb.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 11/26/2022]
Abstract
Thynnine wasps have an unusual mating system that involves concurrent in-flight copulation and nuptial feeding of wingless females by alate males. Consequently, thynnine genitalia play a multifunctional role and have likely been subject to various different selective pressures for both reproductive success and food provisioning. Here, we present a new molecular phylogeny for the Australian Thynninae and use 3D-geometric morphometrics and comparative methods to investigate the morphological evolution of select genital structures across the group. We found significant morphological integration between all male and female structures analysed, which is likely influenced by sexual selection, but also reproductive isolation requirements and mechanical constraints. The morphology of the primary male and female coupling structures was correlated with female body size, and female genitalia exhibited strong negative size allometry. Those male and female coupling structures have evolved at similar evolutionary rates, whereas female structures appear to have evolved a higher degree of morphological novelty over time. We conclude that the unique reproductive strategies of thynnine wasps have resulted in complex evolutionary patterns in their genital morphology, which has likely played a central role in the extensive diversification of the subfamily across Australasia and South America. Our study reinforces the need to treat composite characters such as genitalia by their component parts, and to consider the roles of both male and female reproductive structures in evolutionary studies.
Collapse
Affiliation(s)
- Thomas L Semple
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Marta Vidal-García
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Nikolai J Tatarnic
- Collections & Research, Western Australian Museum, Welshpool, Australia.,Centre for Evolutionary Biology, The University of Western Australia, Crawley, Perth, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
17
|
Rühr PT, van de Kamp T, Faragó T, Hammel JU, Wilde F, Borisova E, Edel C, Frenzel M, Baumbach T, Blanke A. Juvenile ecology drives adult morphology in two insect orders. Proc Biol Sci 2021; 288:20210616. [PMID: 34130499 PMCID: PMC8206691 DOI: 10.1098/rspb.2021.0616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most animals undergo ecological niche shifts between distinct life phases, but such shifts can result in adaptive conflicts of phenotypic traits. Metamorphosis can reduce these conflicts by breaking up trait correlations, allowing each life phase to independently adapt to its ecological niche. This process is called adaptive decoupling. It is, however, yet unknown to what extent adaptive decoupling is realized on a macroevolutionary scale in hemimetabolous insects and if the degree of adaptive decoupling is correlated with the strength of ontogenetic niche shifts. It is also unclear whether the degree of adaptive decoupling is correlated with phenotypic disparity. Here, we quantify nymphal and adult trait correlations in 219 species across the whole phylogeny of earwigs and stoneflies to test whether juvenile and adult traits are decoupled from each other. We demonstrate that adult head morphology is largely driven by nymphal ecology, and that adult head shape disparity has increased with stronger ontogenetic niche shifts in some stonefly lineages. Our findings implicate that the hemimetabolan metamorphosis in earwigs and stoneflies does not allow for high degrees of adaptive decoupling, and that high phenotypic disparity can even be realized when the evolution of distinct life phases is coupled.
Collapse
Affiliation(s)
- Peter T Rühr
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Lepoldshafen, Germany.,Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Tomáš Faragó
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Fabian Wilde
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Elena Borisova
- Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Carina Edel
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Melina Frenzel
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Lepoldshafen, Germany.,Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Alexander Blanke
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany.,Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
18
|
Bonett RM, Ledbetter NM, Hess AJ, Herrboldt MA, Denoël M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Dev Dyn 2021; 251:957-972. [PMID: 33991029 DOI: 10.1002/dvdy.373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022] Open
Abstract
Observations on the ontogeny and diversity of salamanders provided some of the earliest evidence that shifts in developmental trajectories have made a substantial contribution to the evolution of animal forms. Since the dawn of evo-devo there have been major advances in understanding developmental mechanisms, phylogenetic relationships, evolutionary models, and an appreciation for the impact of ecology on patterns of development (eco-evo-devo). Molecular phylogenetic analyses have converged on strong support for the majority of branches in the Salamander Tree of Life, which includes 764 described species. Ancestral reconstructions reveal repeated transitions between life cycle modes and ecologies. The salamander fossil record is scant, but key Mesozoic species support the antiquity of life cycle transitions in some families. Colonization of diverse habitats has promoted phenotypic diversification and sometimes convergence when similar environments have been independently invaded. However, unrelated lineages may follow different developmental pathways to arrive at convergent phenotypes. This article summarizes ecological and endocrine-based causes of life cycle transitions in salamanders, as well as consequences to body size, genome size, and skeletal structure. Salamanders offer a rich source of comparisons for understanding how the evolution of developmental patterns has led to phenotypic diversification following shifts to new adaptive zones.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | | | - Alexander J Hess
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Madison A Herrboldt
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
19
|
Bardua C, Fabre AC, Clavel J, Bon M, Das K, Stanley EL, Blackburn DC, Goswami A. Size, microhabitat, and loss of larval feeding drive cranial diversification in frogs. Nat Commun 2021; 12:2503. [PMID: 33947859 PMCID: PMC8096824 DOI: 10.1038/s41467-021-22792-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
Habitat is one of the most important factors shaping organismal morphology, but it may vary across life history stages. Ontogenetic shifts in ecology may introduce antagonistic selection that constrains adult phenotype, particularly with ecologically distinct developmental phases such as the free-living, feeding larval stage of many frogs (Lissamphibia: Anura). We test the relative influences of developmental and ecological factors on the diversification of adult skull morphology with a detailed analysis of 15 individual cranial regions across 173 anuran species, representing every extant family. Skull size, adult microhabitat, larval feeding, and ossification timing are all significant factors shaping aspects of cranial evolution in frogs, with late-ossifying elements showing the greatest disparity and fastest evolutionary rates. Size and microhabitat show the strongest effects on cranial shape, and we identify a "large size-wide skull" pattern of anuran, and possibly amphibian, evolutionary allometry. Fossorial and aquatic microhabitats occupy distinct regions of morphospace and display fast evolution and high disparity. Taxa with and without feeding larvae do not notably differ in cranial morphology. However, loss of an actively feeding larval stage is associated with higher evolutionary rates and disparity, suggesting that functional pressures experienced earlier in ontogeny significantly impact adult morphological evolution.
Collapse
Affiliation(s)
- Carla Bardua
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Anne-Claire Fabre
- Department of Life Sciences, Natural History Museum, London, UK
- Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland
| | - Julien Clavel
- Department of Life Sciences, Natural History Museum, London, UK
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Margot Bon
- Department of Life Sciences, Natural History Museum, London, UK
| | - Kalpana Das
- Museum für Naturkunde, Leibniz Institut für Evolutions und Biodiversitätsforschung, Berlin, Germany
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, UK.
| |
Collapse
|
20
|
Moore MP, Martin RA. Natural Selection on Adults Has Trait-Dependent Consequences for Juvenile Evolution in Dragonflies. Am Nat 2021; 197:677-689. [PMID: 33989138 DOI: 10.1086/714048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAlthough natural selection often fluctuates across ontogeny, it remains unclear what conditions enable selection in one life-cycle stage to shape evolution in others. Organisms that undergo metamorphosis are useful for addressing this topic because their highly specialized life-cycle stages cannot always evolve independently despite their dramatic life-history transition. Using a comparative study of dragonflies, we examined three conditions that are hypothesized to allow selection in one stage to affect evolution in others. First, we tested whether lineages with less dramatic metamorphosis (e.g., hemimetabolous insects) lack the capacity for stage-specific evolution. Rejecting this hypothesis, we found that larval body shape evolves independently from selection on adult shape. Next, we evaluated whether stage-specific evolution is limited for homologous and/or coadapted structures. Indeed, we found that selection for larger wings is associated with the evolution of coadapted larval sheaths that store developing wing tissue. Finally, we assessed whether stage-specific evolution is restricted for traits linked to a single biochemical pathway. Supporting this hypothesis, we found that species with more wing melanization in the adult stage have evolved weaker melanin immune defenses in the larval stage. Thus, our results collectively show that natural selection in one stage imposes trait-dependent constraints on evolution in others.
Collapse
|
21
|
Endocranial Anatomy of the Giant Extinct Australian Mihirung Birds (Aves, Dromornithidae). DIVERSITY 2021. [DOI: 10.3390/d13030124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dromornithids are an extinct group of large flightless birds from the Cenozoic of Australia. Their record extends from the Eocene to the late Pleistocene. Four genera and eight species are currently recognised, with diversity highest in the Miocene. Dromornithids were once considered ratites, but since the discovery of cranial elements, phylogenetic analyses have placed them near the base of the anseriforms or, most recently, resolved them as stem galliforms. In this study, we use morphometric methods to comprehensively describe dromornithid endocranial morphology for the first time, comparing Ilbandornis woodburnei and three species of Dromornis to one another and to four species of extant basal galloanseres. We reveal that major endocranial reconfiguration was associated with cranial foreshortening in a temporal series along the Dromornis lineage. Five key differences are evident between the brain morphology of Ilbandornis and Dromornis, relating to the medial wulst, the ventral eminence of the caudoventral telencephalon, and morphology of the metencephalon (cerebellum + pons). Additionally, dromornithid brains display distinctive dorsal (rostral position of the wulst), and ventral morphology (form of the maxillomandibular [V2+V3], glossopharyngeal [IX], and vagus [X] cranial nerves), supporting hypotheses that dromornithids are more closely related to basal galliforms than anseriforms. Functional interpretations suggest that dromornithids were specialised herbivores that likely possessed well-developed stereoscopic depth perception, were diurnal and targeted a soft browse trophic niche.
Collapse
|
22
|
Shrimpton SJ, Streicher JW, Gower DJ, Bell RC, Fujita MK, Schott RK, Thomas KN. Eye‐body allometry across biphasic ontogeny in anuran amphibians. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10102-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractAnimals with biphasic lifecycles often inhabit different visual environments across ontogeny. Many frogs and toads (Amphibia: Anura) have free-living aquatic larvae (tadpoles) that metamorphose into adults that inhabit a range of aquatic and terrestrial environments. Ecological differences influence eye size across species, but these relationships have not yet been explored across life stages in an ontogenetic allometric context. We examined eye-body size scaling in a species with aquatic larvae and terrestrial adults, the common frog Rana temporaria, using a well-sampled developmental series. We found a shift in ontogenetic allometric trajectory near metamorphosis indicating prioritized growth in tadpole eyes. To explore the effects of different tadpole and adult ecologies on eye-body scaling, we expanded our taxonomic sampling to include developmental series of eleven additional anuran species. Intraspecific eye-body scaling was variable among species, with 8/12 species exhibiting a significant change in allometric slope between tadpoles and adults. Traits categorizing both tadpole ecology (microhabitat, eye position, mouth position) and adult ecology (habitat, activity pattern) across species had significant effects on allometric slopes among tadpoles, but only tadpole eye position had a significant effect among adults. Our study suggests that relative eye growth in the preliminary stages of biphasic anuran ontogenies is somewhat decoupled and may be shaped by both immediate ecological need (i.e. tadpole visual requirements) and what will be advantageous during later adult stages.
Collapse
|
23
|
Rose CS. Amphibian Hormones, Calcium Physiology, Bone Weight, and Lung Use Call for a More Inclusive Approach to Understanding Ossification Sequence Evolution. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.620971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeleton plays a huge role in understanding how vertebrate animals have diversified in phylogeny, ecology and behavior. Recent evo-devo research has used ossification sequences to compare skeletal development among major groups, to identify conserved and labile aspects of a sequence within a group, to derive ancestral and modal sequences, and to look for modularity based on embryonic origin and type of bone. However, questions remain about how to detect and order bone appearances, the adaptive significance of ossification sequences and their relationship to adult function, and the utility of categorizing bones by embryonic origin and type. Also, the singular focus on bone appearances and the omission of other tissues and behavioral, ecological and life history events limit the relevance of such analyses. Amphibians accentuate these concerns because of their highly specialized biphasic life histories and the exceptionally late timing, and high variability of their ossification sequences. Amphibians demonstrate a need for a whole-animal, whole-ontogeny approach that integrates the entire ossification process with physiology, behavior and ecology. I discuss evidence and hypotheses for how hormone mediation and calcium physiology might elicit non-adaptive variability in ossification sequence, and for adaptive strategies to partition larval habitats using bone to offset the buoyancy created by lung use. I also argue that understanding plasticity in ossification requires shifting focus away from embryonic development and adult function, and toward postembryonic mechanisms of regulating skeletal growth, especially ones that respond directly to midlife environments and behaviors.
Collapse
|
24
|
Robustness of life histories to environmental variability in complex versus simple life cycles. THEOR ECOL-NETH 2021. [DOI: 10.1007/s12080-021-00501-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractMost animal species have a complex life cycle (CLC) with metamorphosis. It is thus of interest to examine possible benefits of such life histories. The prevailing view is that CLC represents an adaptation for genetic decoupling of juvenile and adult traits, thereby allowing life stages to respond independently to different selective forces. Here I propose an additional potential advantage of CLCs that is, decreased variance in population growth rate due to habitat separation of life stages. Habitat separation of pre- and post-metamorphic stages means that the stages will experience different regimes of environmental variability. This is in contrast to species with simple life cycles (SLC) whose life stages often occupy one and the same habitat. The correlation in the fluctuations of the vital rates of life stages is therefore likely to be weaker in complex than in simple life cycles. By a theoretical framework using an analytical approach, I have (1) derived the relative advantage, in terms of long-run growth rate, of CLC over SLC phenotypes for a broad spectrum of life histories, and (2) explored which life histories that benefit most by a CLC, that is avoid correlation in vital rates between life stages. The direction and magnitude of gain depended on life history type and fluctuating vital rate. One implication of our study is that species with CLCs should, on average, be more robust to increased environmental variability caused by global warming than species with SLCs.
Collapse
|
25
|
Dos Santos Dias PH. The remarkable larval anatomy of Proceratophrys minuta Napoli, Cruz, Abreu and Del-Grande, 2011 (Amphibia: Anura: Odontophrynidae). J Morphol 2021; 281:1086-1097. [PMID: 33448444 DOI: 10.1002/jmor.21233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 11/08/2022]
Abstract
The free living larvae of anurans (i.e., tadpoles) are a key element in the evolution and diversification of this group, and as such, their morphology is an important element to understand the phylogenetic relationships of frogs. However, the lack of data on larval morphology prevents us from fully understanding larval evolution in several lineages. The Neotropical genus Proceratophrys currently comprises 39 species, but descriptions of the internal morphology of larvae in this group are rare and restricted to few aspects of their buccopharyngeal cavity, chondrocranium, and muscles. In the present study, I describe the internal anatomy of the tadpole of P. minuta and report a new remarkable myological character state for the species. Given the rarity of this material, the description of this species' buccopharyngeal and musculo-skeletal elements is based on two tadpoles in developmental stages 30 and 31. Several new apomorphic character states are described: (a) the presence of a conical papilla in the interior of the nostril; (b) a row of five short, conical papilla preceding the tall, postnarial papilla; and (c) the m. mandibulolabialis inserting in the gular skin. This latter feature is a remarkable, newly discovered character state that had never been reported in the literature before and is probably related to a particular feeding habit of the tadpoles of this species. The function of the m. mandibulolabialis in P. minuta is unknown.
Collapse
|
26
|
Ferreira JS, Weber LN. A survey of the external morphology, internal oral morphology, chondrocranium and hyobranchial apparatus of Elachistocleis larvae Parker, 1927 (Anura, Microhylidae). J Morphol 2021; 282:472-484. [PMID: 33399244 DOI: 10.1002/jmor.21318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 11/10/2022]
Abstract
The external morphology, internal oral morphology, the chondrocranium and the hyobranchial apparatus of Elachistocleis bumbameuboi, E. cf. piauiensis, E. cesarii and E. bicolor are described and compared with each other and with other species of microhylids using available descriptions from the literature. The general morphology of Elachistocleis species is conservative in many aspects. Differences between species are subtle and are found in the body shape, the edge of the snout, fin height, if the lateral line is evident, the presence of regular pustules in the buccal roof arena, the posterolateral edge of the cartilago suprarostralis, the shape of the fenestra in the occipital region, presence or absence of fenestra hypophysea, the margin of the processus antorbitalis, expansions in the ventrolateral process, the shape and inclination of the fenestra subocularis, whether the subotic process is single or slightly bifid, and the inclination of the processus anterolateralis hyalis.
Collapse
Affiliation(s)
- Johnny S Ferreira
- Universidade Federal do Maranhão, Programa de Pós-Graduação em Biodiversidade e Conservação, Departamento de Biologia, São Louís, MA, Brazil
| | - Luiz N Weber
- Universidade Federal do Sul da Bahia, Instituto Sosígenes Costa de Humanidades, Bahia, Brazil
| |
Collapse
|
27
|
Nascimento FAD, de Sá RO, Garcia PCDA. Larval anatomy of monotypic painted ant nest frogs Lithodytes lineatus reveals putative homoplasies with the Leptodactylus pentadactylus group (Anura: Leptodactylidae). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Bertoluci J, Famelli S, Rocha PLB, Rodrigues MT. Effects of the presence of litter on the composition of stream tadpoles' assemblages in an Atlantic Forest remnant of southeastern Brazil. BIOTA NEOTROPICA 2021. [DOI: 10.1590/1676-0611-bn-2020-1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Many tropical anurans use forest streams to deposit their eggs, but resource use and selection by tadpoles in tropical forests are poorly known. In the present research, we hypothesized that leaf litter and water depth affect tadpole assemblages due to adult habitat selection for oviposition and/or microhabitat selection by tadpoles. Fieldwork was carried out in the Estação Biológica de Boracéia, an Atlantic Rainforest reserve in São Paulo state, southeastern Brazil. We sampled tadpoles during a year using 40 double-entry funnel-traps distributed along four streams in the forest. Only leaf litter effects are species dependent. We discussed that habitat structure significance depends on the morphological and ecological adaptation to forage and avoid competition within the tadpole community.
Collapse
|
29
|
Kruger N, Measey J, Vimercati G, Herrel A, Secondi J. Does the spatial sorting of dispersal traits affect the phenotype of the non-dispersing stages of the invasive frog Xenopus laevis through coupling? Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
In amphibians, spatial sorting progressively enhances the dispersal capacities of dispersing stages in expanding populations but may enhance or limit the performance of the earlier non-dispersing stages. Phenotypic traits of non-dispersing tadpoles and metamorphs can be coupled, through carry-over effects and trade-offs, or decoupled to dispersal traits in adults. We used the globally invasive amphibian, Xenopus laevis, to examine whether spatial sorting of adult phenotypes affects the phenotype of larval stages to metamorphosis in the core and at the periphery of an invasive population in France. We combined common garden laboratory and outdoor experiments to test the effect of parental pond location (core or periphery) on morphology, development and survival to metamorphosis and found no differences between tadpoles. After metamorphosis, the only difference observed in either of the experiments was the larger body size of metamorphs from the periphery, and then only when reared in the laboratory. Differences in metamorph size may indicate that a shift of dispersal traits occur after metamorphosis in X. laevis. Thus, our findings illustrate that decoupled evolution through spatial sorting can lead to changes of X. laevis adult phenotypes that would enhance dispersal without affecting the phenotype of tadpoles before metamorphosis.
Collapse
Affiliation(s)
- Natasha Kruger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - John Measey
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Anthony Herrel
- UMR 7179 Département Adaptation du Vivant, Centre National de la Recherche, Muséum national d’Histoire naturelle, Paris, France
| | - Jean Secondi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
- Faculté des Sciences, Université d’Angers, Angers, France
| |
Collapse
|
30
|
The Frog Fauna of Southwestern Australia: Diverse, Bizarre, Old, and Polyandrous. J HERPETOL 2020. [DOI: 10.1670/19-024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Geographic variation in shape and size of anuran tadpoles: Interpopulation comparisons in Scinax fuscovarius (Anura, Hylidae). ZOOLOGY 2020; 144:125855. [PMID: 33238234 DOI: 10.1016/j.zool.2020.125855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022]
Abstract
Among anuran species with biphasic life cycle, the occurrence of intraspecific larval morphotypes has been related to variations in developmental time, diet, geographical variation, or response to predators. Here, we evaluated the external morphological variation of larvae among three populations, located more than 270 km apart, of the anuran hylid Scinax fuscovarius by linear and geometric methods, to elucidate the presence of geographically different morphs. Comparisons targeted development, growth, and external morphology. Studied populations exhibited differences in reproductive seasonality, growth rate, timing of development, shape, and size. Shape and size comparisons revealed two well-differentiated morphs, one of them shared by the two closest populations. Morphological differences evidenced a smaller and depressed form of the entire body plan in the most distant population, which showed continuous reproduction throughout the rainy season and under more unpredictable conditions. We interpret the occurrence of the two different larval morphs in S. fuscovarius as a by-product of local geographical conditions, and discuss on possible associations with biotic and abiotic factors cues.
Collapse
|
32
|
Engelkes K, Kath L, Kleinteich T, Hammel JU, Beerlink A, Haas A. Ecomorphology of the pectoral girdle in anurans (Amphibia, Anura): Shape diversity and biomechanical considerations. Ecol Evol 2020; 10:11467-11487. [PMID: 33144978 PMCID: PMC7593145 DOI: 10.1002/ece3.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Frogs and toads (Lissamphibia: Anura) show a diversity of locomotor modes that allow them to inhabit a wide range of habitats. The different locomotor modes are likely to be linked to anatomical specializations of the skeleton within the typical frog Bauplan. While such anatomical adaptations of the hind limbs and the pelvic girdle are comparably well understood, the pectoral girdle received much less attention in the past. We tested for locomotor-mode-related shape differences in the pectoral girdle bones of 64 anuran species by means of micro-computed-tomography-based geometric morphometrics. The pectoral girdles of selected species were analyzed with regard to the effects of shape differences on muscle moment arms across the shoulder joint and stress dissipation within the coracoid. Phylogenetic relationships, size, and locomotor behavior have an effect on the shape of the pectoral girdle in anurans, but there are differences in the relative impact of these factors between the bones of this skeletal unit. Remarkable shape diversity has been observed within locomotor groups indicating many-to-one mapping of form onto function. Significant shape differences have mainly been related to the overall pectoral girdle geometry and the shape of the coracoid. Most prominent shape differences have been found between burrowing and nonburrowing species with headfirst and backward burrowing species significantly differing from one another and from the other locomotor groups. The pectoral girdle shapes of burrowing species have generally larger moment arms for (simulated) humerus retractor muscles across the shoulder joint, which might be an adaptation to the burrowing behavior. The mechanisms of how the moment arms were enlarged differed between species and were associated with differences in the reaction of the coracoid to simulated loading by physiologically relevant forces.
Collapse
Affiliation(s)
- Karolin Engelkes
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| | - Lena Kath
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| | | | - Jörg U. Hammel
- Institute of Materials ResearchHelmholtz‐Zentrum GeesthachtGeesthachtGermany
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst‐Hackel‐Haus und BiologiedidaktikFriedrich‐Schiller‐Universität JenaJenaGermany
| | | | - Alexander Haas
- Center of Natural History (CeNak)Universität HamburgHamburgGermany
| |
Collapse
|
33
|
Phung TX, Nascimento JCS, Novarro AJ, Wiens JJ. Correlated and decoupled evolution of adult and larval body size in frogs. Proc Biol Sci 2020; 287:20201474. [PMID: 32811310 DOI: 10.1098/rspb.2020.1474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The majority of animal species have complex life cycles, in which larval stages may have very different morphologies and ecologies relative to adults. Anurans (frogs) provide a particularly striking example. However, the extent to which larval and adult morphologies (e.g. body size) are correlated among species has not been broadly tested in any major group. Recent studies have suggested that larval and adult morphology are evolutionarily decoupled in frogs, but focused within families and did not compare the evolution of body sizes. Here, we test for correlated evolution of adult and larval body size across 542 species from 42 families, including most families with a tadpole stage. We find strong phylogenetic signal in larval and adult body sizes, and find that both traits are significantly and positively related across frogs. However, this relationship varies dramatically among clades, from strongly positive to weakly negative. Furthermore, rates of evolution for both variables are largely decoupled among clades. Thus, some clades have high rates of adult body-size evolution but low rates in tadpole body size (and vice versa). Overall, we show for the first time that body sizes are generally related between adult and larval stages across a major group, even as evolutionary rates of larval and adult size are largely decoupled among species and clades.
Collapse
Affiliation(s)
- Tung X Phung
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA.,Department of Biology, Earlham College, Richmond, IN 47374-4095, USA
| | - João C S Nascimento
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Alexander J Novarro
- The Nature Conservancy, Long Island Chapter, Mashomack Preserve, Shelter Island, NY 11964-0738, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
34
|
Lima LR, Bruschi DP, Do Nascimento FAC, Scherrer De Araújo PV, Costa LP, Thomé MTC, Garda AA, Zattera ML, Mott T. Below the waterline: cryptic diversity of aquatic pipid frogs (Pipa carvalhoi) unveiled through an integrative taxonomy approach. SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1795742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Luana Rodrigues Lima
- Programa de Pós-Graduação em Diversidade Biológica e Conservação nos Trópicos, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, 57072-900, Alagoas, Brasil
- Laboratório de Biologia Integrativa, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, 57072-900, Alagoas, Brasil
| | - Daniel Pacheco Bruschi
- Programa de Pós-graduaçäo em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Filipe Augusto Cavalcanti Do Nascimento
- Laboratório de Biologia Integrativa, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, 57072-900, Alagoas, Brasil
- Setor de Herpetologia, Museu de História Natural, Universidade Federal de Alagoas, Maceió, 57010-020, Alagoas, Brasil
| | - Paulo Victor Scherrer De Araújo
- Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Vitória, 29075-910, Espírito Santo, Brasil
| | - Leonora Pires Costa
- Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Humanas e Naturais, Universidade Federal do Espírito Santo, Vitória, 29075-910, Espírito Santo, Brasil
| | - Maria Tereza Chiarioni Thomé
- Programa de Pós-Graduação em Diversidade Biológica e Conservação nos Trópicos, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, 57072-900, Alagoas, Brasil
- Laboratório de Biologia Integrativa, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, 57072-900, Alagoas, Brasil
| | - Adrian Antonio Garda
- Departamento de Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Rio Grande do Norte, Brasil
| | - Michelle Louise Zattera
- Programa de Pós-graduaçäo em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Tamí Mott
- Programa de Pós-Graduação em Diversidade Biológica e Conservação nos Trópicos, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, 57072-900, Alagoas, Brasil
- Laboratório de Biologia Integrativa, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, 57072-900, Alagoas, Brasil
| |
Collapse
|
35
|
Medina I, Vega-Trejo R, Wallenius T, Esquerré D, León C, Perez DM, Head ML. No link between nymph and adult coloration in shield bugs: weak selection by predators. Proc Biol Sci 2020; 287:20201011. [PMID: 32576112 PMCID: PMC7329039 DOI: 10.1098/rspb.2020.1011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/04/2020] [Indexed: 11/12/2022] Open
Abstract
Many organisms use different antipredator strategies throughout their life, but little is known about the reasons or implications of such changes. For years, it has been suggested that selection by predators should favour uniformity in local warning signals. If this is the case, we would expect high resemblance in colour across life stages in aposematic animals where young and adults share similar morphology and habitat. In this study, we used shield bugs (Hemiptera: Pentatomoidea) to test whether colour and colour diversity evolve similarly at different life stages. Since many of these bugs are considered to be aposematic, we also combined multi-species analyses with predation experiments on the cotton harlequin bug to test whether there is evidence of selection for uniformity in colour across life stages. Overall, we show that the diversity of colours used by both life stages is comparable, but adults are more cryptic than nymphs. We also demonstrate that nymphs and adults of the same species do not tend to look alike. Experiments on our model system suggest that predators can generalise among life stages that look different, and exhibit strong neophobia. Altogether, our results show no evidence of selection favouring colour similarity between adults and nymphs in this speciose clade.
Collapse
Affiliation(s)
- Iliana Medina
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Thomas Wallenius
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Damien Esquerré
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Constanza León
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Daniela M. Perez
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Megan L. Head
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
36
|
Bardua C, Fabre A, Bon M, Das K, Stanley EL, Blackburn DC, Goswami A. Evolutionary integration of the frog cranium. Evolution 2020; 74:1200-1215. [DOI: 10.1111/evo.13984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Carla Bardua
- Department of Genetics, Evolution, and EnvironmentUniversity College London London WC1E 6BT United Kingdom
- Department of Life SciencesNatural History Museum London SW7 5BD United Kingdom
| | - Anne‐Claire Fabre
- Department of Life SciencesNatural History Museum London SW7 5BD United Kingdom
| | - Margot Bon
- Department of Life SciencesNatural History Museum London SW7 5BD United Kingdom
| | - Kalpana Das
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und Biodiversitätsforschung Berlin 10115 Germany
| | - Edward L. Stanley
- Department of HerpetologyFlorida Museum of Natural History, University of Florida Gainesville Florida 32610
| | - David C. Blackburn
- Department of Natural HistoryFlorida Museum of Natural History, University of Florida Gainesville Florida 32611
| | - Anjali Goswami
- Department of Life SciencesNatural History Museum London SW7 5BD United Kingdom
| |
Collapse
|
37
|
Dubeux MJM, Nascimento FACD, Lima LR, Magalhães FDM, Silva IRSD, Gonçalves U, Almeida JPF, Correia LL, Garda AA, Mesquita DO, Rossa-Feres DDC, Mott T. Morphological characterization and taxonomic key of tadpoles (Amphibia: Anura) from the northern region of the Atlantic Forest. BIOTA NEOTROPICA 2020. [DOI: 10.1590/1676-0611-bn-2018-0718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Although anuran tadpoles are widely distributed and abundant in tropical aquatic habitats, there is a lack of taxonomic keys for the Atlantic Forest. Herein, we developed a dichotomous key for identifying the tadpoles for all species with known larval phase and already recorded in the Atlantic Forest north of the São Francisco River. We analyzed discrete characteristics of 1,042 tadpoles encompassing 63 species of 28 genera from 32 localities. The user-friendly key includes illustration and pictures, and it is a significant step towards improving our knowledge of tadpoles of the Atlantic Forest.
Collapse
Affiliation(s)
- Marcos Jorge Matias Dubeux
- Universidade Federal de Pernambuco, Brasil; Universidade Federal de Alagoas, Brasil; Universidade Federal de Alagoas, Brasil
| | | | - Luana Rodrigues Lima
- Universidade Federal de Alagoas, Brasil; Universidade Federal de Alagoas, Brasil
| | | | | | - Ubiratan Gonçalves
- Universidade Federal de Alagoas, Brasil; Universidade Federal de Alagoas, Brasil
| | | | - Larissa Lima Correia
- Universidade Federal de Alagoas, Brasil; Universidade Federal de Alagoas, Brasil
| | - Adrian Antonio Garda
- Universidade Federal da Paraíba, Brasil; Universidade Federal do Rio Grande do Norte, Brasil
| | | | | | - Tamí Mott
- Universidade Federal de Alagoas, Brasil; Universidade Federal de Alagoas, Brasil
| |
Collapse
|
38
|
Friedman NR, Remeš V, Economo EP. A Morphological Integration Perspective on the Evolution of Dimorphism among Sexes and Social Insect Castes. Integr Comp Biol 2019; 59:410-419. [PMID: 31120505 DOI: 10.1093/icb/icz053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many species have evolved alternate phenotypes, thus enabling individuals to conditionally produce phenotypes that are favorable for reproductive success. Examples of this phenomenon include sexual dimorphism, alternative reproductive strategies, and social insect castes. While the evolutionary functions and developmental mechanisms of dimorphic phenotypes have been studied extensively, little attention has focused on the evolutionary covariance between each phenotype. We extend the conceptual framework and methods of morphological integration to hypothesize that dimorphic traits tend to be less integrated between sexes or social castes. In the case of social insects, we describe results from our recent study of an ant genus in which workers have major and minor worker castes that perform different behavioral repertoires in and around the nest. In the case of birds, we describe a new analysis of a family of songbirds that exhibits plumage coloration that can differ greatly between males and females, with apparently independent changes in each sex. Ant head shape, which is highly specialized in each worker caste, was weakly integrated between worker castes, whereas thorax shape, which is more monomorphic, was tightly integrated. Similarly, in birds, we found a negative association between dimorphism and the degree of integration between sexes. We also found that integration decreased in fairy wrens (Malurus) for many feather patches that evolved greater dichromatism. Together, this suggests that the process of evolving increased dimorphism results in a decrease in integration between sexes and social castes. We speculate that once a mechanism for dimorphism evolves, that mechanism can create independent variation in one sex or caste upon which selection may act.
Collapse
Affiliation(s)
- Nicholas R Friedman
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa Japan
| | - Vladimír Remeš
- Department of Zoology & Laboratory of Ornithology, Faculty of Science, Palacký University, Tř. 17 Listopadu 50, Olomouc, Czech Republic
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa Japan
| |
Collapse
|
39
|
Medina I, Vega-Trejo R, Wallenius T, Symonds MRE, Stuart-Fox D. From cryptic to colorful: Evolutionary decoupling of larval and adult color in butterflies. Evol Lett 2019; 4:34-43. [PMID: 32055409 PMCID: PMC7006464 DOI: 10.1002/evl3.149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/15/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Many animals undergo complete metamorphosis, where larval forms change abruptly in adulthood. Color change during ontogeny is common, but there is little understanding of evolutionary patterns in these changes. Here, we use data on larval and adult color for 246 butterfly species (61% of all species in Australia) to test whether the evolution of color is coupled between life stages. We show that adults are more variable in color across species than caterpillars and that male adult color has lower phylogenetic signal. These results suggest that sexual selection is driving color diversity in male adult butterflies at a broad scale. Moreover, color similarities between species at the larval stage do not predict color similarities at the adult stage, indicating that color evolution is decoupled between young and adult forms. Most species transition from cryptic coloration as caterpillars to conspicuous coloration as adults, but even species with conspicuous caterpillars change to different conspicuous colors as adults. The use of high‐contrast coloration is correlated with body size in caterpillars but not adults. Taken together, our results suggest a change in the relative importance of different selective pressures at different life stages, resulting in the evolutionary decoupling of coloration through ontogeny.
Collapse
Affiliation(s)
- Iliana Medina
- School of BioSciences University of Melbourne Melbourne Victoria 3010 Australia
| | - Regina Vega-Trejo
- Division of Ecology and Evolution Australian National University Acton Australian Capital Territory 0200 Australia.,Department of Zoology Stockholm University Stockholm Sweden
| | - Thomas Wallenius
- Division of Ecology and Evolution Australian National University Acton Australian Capital Territory 0200 Australia
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Burwood Victoria 3125 Australia
| | - Devi Stuart-Fox
- School of BioSciences University of Melbourne Melbourne Victoria 3010 Australia
| |
Collapse
|
40
|
Alarcón-Ríos L, Nicieza AG, Kaliontzopoulou A, Buckley D, Velo-Antón G. Evolutionary History and Not Heterochronic Modifications Associated with Viviparity Drive Head Shape Differentiation in a Reproductive Polymorphic Species, Salamandra salamandra. Evol Biol 2019. [DOI: 10.1007/s11692-019-09489-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Fabrezi M, Lozano VL, Cruz JC. Differences in responsiveness and sensitivity to exogenous disruptors of the thyroid gland in three anuran species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:279-293. [PMID: 31613429 DOI: 10.1002/jez.b.22908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/28/2019] [Accepted: 09/14/2019] [Indexed: 01/31/2023]
Abstract
Anuran larval development comprises tissues/organs/systems that are: exclusively of larvae, able to be remodelled, and those of postmetamorphic stages. Also, the anuran larval development is characterized by inter-related parameters: time, size and shape forming part of growth and differentiation. The anuran metamorphosis starts when growth and differentiation achieve a threshold that differs among species since it is regulated by a number of external (environmental) and internal (hormonal) processes. Here we explore the consequences of exogenous disruptors on the thyroid gland (e.g., methimazole and thyroxine as T4) of three species by immersing premetamorphic tadpoles in predetermined concentrations of the disruptors for short periods (10 or 16 days). The species were Pleurodema borellii, Leptodactylus chaquensis, and Dermatonotus muelleri, which all breed in small temporary ponds during the summer, but differ in their ecomorphology. The experiments were conducted to evaluate the effects of these substances on larval development (based in Gosner larval stages), morphometric variation in body parameters (snout-vent and total length by larval stages), and thyroid gland histopathology at the end of the assays. In P. borelli and L. chaquensis, methimazole produces significant increment of size measurements (nonparametric Kruskal-Wallis, p < .05) during stages of digit differentiation and induced thyroid gland hypertrophy. In the three species, T4 exposure accelerated limb development and caused atrophy of thyroid gland. Prolonged T4 exposure in L. chaquensis and D. muelleri triggered metamorphic transformation in the gut and skull cartilages. Discussion about interspecific differences in responsiveness and sensitivity elucidates the importance of hormonal signals to morphological evolution.
Collapse
Affiliation(s)
- Marissa Fabrezi
- Instituto de Bio y Geociencias del NOA, CCT CONICET Salta-Jujuy, Salta, República Argentina
| | - Verónica Laura Lozano
- Instituto de Bio y Geociencias del NOA, CCT CONICET Salta-Jujuy, Salta, República Argentina.,Depto. Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julio César Cruz
- Instituto de Bio y Geociencias del NOA, CCT CONICET Salta-Jujuy, Salta, República Argentina
| |
Collapse
|
42
|
Moore MP, Martin RA. On the evolution of carry-over effects. J Anim Ecol 2019; 88:1832-1844. [PMID: 31402447 DOI: 10.1111/1365-2656.13081] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023]
Abstract
The environment experienced early in life often affects the traits that are developed after an individual has transitioned into new life stages and environments. Because the phenotypes induced by earlier environments are then screened by later ones, these 'carry-over effects' influence fitness outcomes across the entire life cycle. While the last two decades have witnessed an explosion of studies documenting the occurrence of carry-over effects, little attention has been given to how they adapt and diversify. To aid future research in this area, we present a framework for the evolution of carry-over effects. Carry-over effects can evolve in two ways. First, the expression of traits later in life may become more or less dependent on the developmental processes of earlier stages (e.g., 'adaptive decoupling'). Genetic correlations between life stages then either strengthen or weaken. Alternatively, those influential developmental processes that begin early in life may become more or less sensitive to that earlier environment. Here, plasticity changes in all the traits that share those developmental pathways across the whole life cycle. Adaptive evolution of a carry-over effect is governed by selection on the induced phenotypes in the later stage, and also by selection on any developmentally linked traits in the earlier life stage. When these selective pressures conflict, the evolution of the carry-over effect will be biased towards maximizing performance in the life stage with stronger selection. Because life stages often contribute unequally to total fitness, the strength of selection in any one stage depends on: (a) the relationship between the traits and the stage-specific fitness components (e.g., juvenile survival, adult mating success), and (b) the reproductive value of the life stage. Considering the evolution of carry-over effects reveals several intriguing features of the evolution of life histories and phenotypic plasticity more generally. For instance, carry-over effects that manifest as maladaptive plasticity in one life stage may represent an adaptive strategy for maximizing fitness in stages with stronger selection. Additionally, adaptation to novel environments encountered early in the life cycle may be faster in the presence of carry-over effects that influence sexually selected traits.
Collapse
Affiliation(s)
- Michael P Moore
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
43
|
Duport-Bru AS, Ponssa ML, Vera Candioti F. Postmetamorphic ontogenetic allometry and the evolution of skull shape in Nest-building frogs Leptodactylus (Anura: Leptodactylidae). Evol Dev 2019; 21:265-277. [PMID: 31356726 DOI: 10.1111/ede.12303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest-building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life-cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large-scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.
Collapse
Affiliation(s)
- Ana S Duport-Bru
- Unidad Ejecutora Lillo, (CONICET-Fundación Miguel Lillo), Tucumán, Argentina
| | - María L Ponssa
- Unidad Ejecutora Lillo, (CONICET-Fundación Miguel Lillo), Tucumán, Argentina
| | | |
Collapse
|
44
|
ten Brink H, de Roos AM, Dieckmann U. The Evolutionary Ecology of Metamorphosis. Am Nat 2019; 193:E116-E131. [DOI: 10.1086/701779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Dehling JM, Sinsch U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Vučić T, Sibinović M, Vukov TD, Tomašević Kolarov N, Cvijanović M, Ivanović A. Testing the evolutionary constraints of metamorphosis: The ontogeny of head shape in Triturus newts. Evolution 2019; 73:1253-1264. [PMID: 30990882 DOI: 10.1111/evo.13743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 01/22/2023]
Abstract
In vertebrates with complex, biphasic, life cycles, larvae have a distinct morphology and ecological preferences compared to metamorphosed juveniles and adults. In amphibians, abrupt and rapid metamorphic changes transform aquatic larvae to terrestrial juveniles. The main aim of this study is to test whether, relative to larval stages, metamorphosis (1) resets the pattern of variation between ontogenetic stages and species, (2) constrains intraspecific morphological variability, and (3) similar to the "hour-glass" model reduces morphological disparity. We explore postembryonic ontogenetic trajectories of head shape (from hatching to completed metamorphosis) of two well-defined, morphologically distinct Triturus newts species and their F1 hybrids. Variation in head shape is quantified and compared on two levels: dynamic (across ontogenetic stages) and static (at a particular stage). Our results show that the ontogenetic trajectories diverge early during development and continue to diverge throughout larval stages and metamorphosis. The high within-group variance and the largest disparity level (between-group variance) characterize the metamorphosed stage. Hence, our results indicate that metamorphosis does not canalize head shape variation generated during larval development and that metamorphosed phenotype is not more constrained relative to larval ones. Therefore, metamorphosis cannot be regarded as a developmental constraint, at least not for salamander head shape.
Collapse
Affiliation(s)
- Tijana Vučić
- Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, 11000, Serbia.,Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, 11060, Serbia
| | - Maša Sibinović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, 11000, Serbia
| | - Tanja D Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, 11060, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, 11060, Serbia
| | - Milena Cvijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, 11060, Serbia
| | - Ana Ivanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, 11000, Serbia
| |
Collapse
|
47
|
Ledbetter NM, Bonett RM. Terrestriality constrains salamander limb diversification: Implications for the evolution of pentadactyly. J Evol Biol 2019; 32:642-652. [PMID: 30891861 DOI: 10.1111/jeb.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 01/03/2023]
Abstract
Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.
Collapse
Affiliation(s)
| | - Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
48
|
Bodensteiner BL, Warner DA, Iverson JB, Milne‐Zelman CL, Mitchell TS, Refsnider JM, Janzen FJ. Geographic variation in thermal sensitivity of early life traits in a widespread reptile. Ecol Evol 2019; 9:2791-2802. [PMID: 30891217 PMCID: PMC6405489 DOI: 10.1002/ece3.4956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 01/19/2023] Open
Abstract
Taxa with large geographic distributions generally encompass diverse macroclimatic conditions, potentially requiring local adaptation and/or phenotypic plasticity to match their phenotypes to differing environments. These eco-evolutionary processes are of particular interest in organisms with traits that are directly affected by temperature, such as embryonic development in oviparous ectotherms. Here we examine the spatial distribution of fitness-related early life phenotypes across the range of a widespread vertebrate, the painted turtle (Chrysemys picta). We quantified embryonic and hatchling traits from seven locations (in Idaho, Minnesota, Oregon, Illinois, Nebraska, Kansas, and New Mexico) after incubating eggs under constant conditions across a series of environmentally relevant temperatures. Thermal reaction norms for incubation duration and hatchling mass varied among locations under this common-garden experiment, indicating genetic differentiation or pre-ovulatory maternal effects. However, latitude, a commonly used proxy for geographic variation, was not a strong predictor of these geographic differences. Our findings suggest that this macroclimatic proxy may be an unreliable surrogate for microclimatic conditions experienced locally in nests. Instead, complex interactions between abiotic and biotic factors likely drive among-population phenotypic variation in this system. Understanding spatial variation in key life-history traits provides an important perspective on adaptation to contemporary and future climatic conditions.
Collapse
Affiliation(s)
- Brooke L. Bodensteiner
- Department of Ecology Evolution and Organismal BiologyIowa State UniversityAmesIowa
- Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginia
| | | | | | | | - Timothy S. Mitchell
- Department of Ecology Evolution and BehaviorUniversity of MinnesotaSaint PaulMinnesota
| | | | - Fredric J. Janzen
- Department of Ecology Evolution and Organismal BiologyIowa State UniversityAmesIowa
| |
Collapse
|
49
|
Kolker M, Meiri S, Holzman R. Prepared for the future: A strong signal of evolution toward the adult benthic niche during the pelagic stage in Labrid fishes. Evolution 2019; 73:803-816. [PMID: 30720219 DOI: 10.1111/evo.13694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 11/29/2022]
Abstract
The morphology of organisms reflects a balance between their evolutionary history, functional demands, and biomechanical constraints imposed by the immediate environment. In many fish species, a marked shift in the selection regime is evident when pelagic larvae, which swim and feed in the open ocean, settle in their adult benthic habitat. This shift is particularly dramatic in coral-reef fishes, where the adult habitat is immensely complex. However, whether the adult trophic ecotype affects the morphology of early-life stages is unclear. We measured a suite of 26 functional-morphological traits in the head and body of larvae from an ontogenetic series of 16 labrid species. Using phylogenetic comparative methods, we reconstructed the location of adaptive peaks of larvae whose adults are associated with different trophic ecotypes. We found that the morphospace occupation in these larvae is largely driven by divergent adaptations to the adult benthic habitats. The disparity between adaptive peaks is achieved early and does not monotonically increase with size. Our findings thus refute the notion that larvae rapidly acquire the trophic-specific traits during a metamorphic period immediately prior to settlement. This early specialization might be due to the highly complex musculoskeletal system of the head that cannot be rapidly modified.
Collapse
Affiliation(s)
- Michaela Kolker
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shai Meiri
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Roi Holzman
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.,The Inter-University Institute for Marine Sciences, POB 469, Eilat, 88103, Israel
| |
Collapse
|
50
|
Bonett RM, Phillips JG, Ledbetter NM, Martin SD, Lehman L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc Biol Sci 2019; 285:rspb.2017.2304. [PMID: 29343600 DOI: 10.1098/rspb.2017.2304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023] Open
Abstract
Life cycle strategies have evolved extensively throughout the history of metazoans. The expression of disparate life stages within a single ontogeny can present conflicts to trait evolution, and therefore may have played a major role in shaping metazoan forms. However, few studies have examined the consequences of adding or subtracting life stages on patterns of trait evolution. By analysing trait evolution in a clade of closely related salamander lineages we show that shifts in the number of life cycle stages are associated with rapid phenotypic evolution. Specifically, salamanders with an aquatic-only (paedomorphic) life cycle have frequently added vertebrae to their trunk skeleton compared with closely related lineages with a complex aquatic-to-terrestrial (biphasic) life cycle. The rate of vertebral column evolution is also substantially lower in biphasic lineages, which may reflect the functional compromise of a complex cycle. This study demonstrates that the consequences of life cycle evolution can be detected at very fine scales of divergence. Rapid evolutionary responses can result from shifts in selective regimes following changes in life cycle complexity.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - John G Phillips
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | | | - Samuel D Martin
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Luke Lehman
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|