1
|
Desmarquet-Trin Dinh C, Manceau M. Structure, function and formation of the amniote skin pattern. Dev Biol 2024; 517:203-216. [PMID: 39326486 DOI: 10.1016/j.ydbio.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
From feather and hair dotted arrays to pigmented stripes and spots, the spatial distribution of skin appendages and colouration often forms visible ornaments crucial for fitness in the coat of birds and mammals. These geometrical motifs are extremely diverse in nature. Yet, phenotypic surveys evidenced common themes in variation: the orientation, appendage-specificity or pigmentation of a given region may be conserved across groups or species. Here, we review naturalist observations of natural variation in the anatomy and ecological function of the skin pattern in amniotes. We then describe several decades of genetics, mathematical modelling and experimental embryology work aiming at understanding the molecular and morphogenetic mechanisms responsible for pattern formation. We discuss how these studies provided evidence that the morphological trends and differences representative of the phenotypic landscape of skin patterns in wild amniote species is rooted in the mechanisms controlling the production of distinct compartments in the embryonic skin.
Collapse
Affiliation(s)
| | - Marie Manceau
- Centre for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, France.
| |
Collapse
|
2
|
Knief U, Müller IA, Stryjewski KF, Metzler D, Sorenson MD, Wolf JBW. Evolution of Chromosomal Inversions across an Avian Radiation. Mol Biol Evol 2024; 41:msae092. [PMID: 38743589 PMCID: PMC11152452 DOI: 10.1093/molbev/msae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression, but can also be due to incomplete lineage sorting. Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions cosegregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial incomplete lineage sorting characterizing this young radiation. Instead, the maintenance of all three autosomal inversions (chr1, chr5, and chr6) is best explained by selection acting along ecogeographic clines not observed for the collinear parts of the genome. In addition, the sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.
Collapse
Affiliation(s)
- Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo A Müller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 11418 Stockholm, Sweden
- Division of Systematics and Evolution, Department of Zoology, Stockholm University, 11418 Stockholm, Sweden
| | | | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Rancilhac L, Enbody ED, Harris R, Saitoh T, Irestedt M, Liu Y, Lei F, Andersson L, Alström P. Introgression Underlies Phylogenetic Uncertainty But Not Parallel Plumage Evolution in a Recent Songbird Radiation. Syst Biol 2024; 73:12-25. [PMID: 37801684 PMCID: PMC11129591 DOI: 10.1093/sysbio/syad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023] Open
Abstract
Instances of parallel phenotypic evolution offer great opportunities to understand the evolutionary processes underlying phenotypic changes. However, confirming parallel phenotypic evolution and studying its causes requires a robust phylogenetic framework. One such example is the "black-and-white wagtails," a group of 5 species in the songbird genus Motacilla: 1 species, Motacilla alba, shows wide intra-specific plumage variation, while the 4r others form 2 pairs of very similar-looking species (M. aguimp + M. samveasnae and M. grandis + M. maderaspatensis, respectively). However, the 2 species in each of these pairs were not recovered as sisters in previous phylogenetic inferences. Their relationships varied depending on the markers used, suggesting that gene tree heterogeneity might have hampered accurate phylogenetic inference. Here, we use whole genome resequencing data to explore the phylogenetic relationships within this group, with a special emphasis on characterizing the extent of gene tree heterogeneity and its underlying causes. We first used multispecies coalescent methods to generate a "complete evidence" phylogenetic hypothesis based on genome-wide variants, while accounting for incomplete lineage sorting (ILS) and introgression. We then investigated the variation in phylogenetic signal across the genome to quantify the extent of discordance across genomic regions and test its underlying causes. We found that wagtail genomes are mosaics of regions supporting variable genealogies, because of ILS and inter-specific introgression. The most common topology across the genome, supporting M. alba and M. aguimp as sister species, appears to be influenced by ancient introgression. Additionally, we inferred another ancient introgression event, between M. alba and M. grandis. By combining results from multiple analyses, we propose a phylogenetic network for the black-and-white wagtails that confirms that similar phenotypes evolved in non-sister lineages, supporting parallel plumage evolution. Furthermore, the inferred reticulations do not connect species with similar plumage coloration, suggesting that introgression does not underlie parallel plumage evolution in this group. Our results demonstrate the importance of investing genome-wide patterns of gene tree heterogeneity to help understand the mechanisms underlying phenotypic evolution. [Gene tree heterogeneity; incomplete lineage sorting; introgression; parallel evolution; phylogenomics; plumage evolution; wagtails.].
Collapse
Affiliation(s)
- Loïs Rancilhac
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Biomolecular Engineering, University of California, 95064 Santa Cruz, CA, USA
| | - Rebecca Harris
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Takema Saitoh
- Yamashina Institute for Ornithology, 115 Konoyama, Abiko, Chiba 270-1145, Japan
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm, Sweden
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen 518107, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
4
|
Coulmance F, Akkaynak D, Le Poul Y, Höppner MP, McMillan WO, Puebla O. Phenotypic and genomic dissection of colour pattern variation in a reef fish radiation. Mol Ecol 2024; 33:e17047. [PMID: 37337919 DOI: 10.1111/mec.17047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Coral reefs rank among the most diverse species assemblages on Earth. A particularly striking aspect of coral reef communities is the variety of colour patterns displayed by reef fishes. Colour pattern is known to play a central role in the ecology and evolution of reef fishes through, for example, signalling or camouflage. Nevertheless, colour pattern is a complex trait in reef fishes-actually a collection of traits-that is difficult to analyse in a quantitative and standardized way. This is the challenge that we address in this study using the hamlets (Hypoplectrus spp., Serranidae) as a model system. Our approach involves a custom underwater camera system to take orientation- and size-standardized photographs in situ, colour correction, alignment of the fish images with a combination of landmarks and Bézier curves, and principal component analysis on the colour value of each pixel of each aligned fish. This approach identifies the major colour pattern elements that contribute to phenotypic variation in the group. Furthermore, we complement the image analysis with whole-genome sequencing to run a multivariate genome-wide association study for colour pattern variation. This second layer of analysis reveals sharp association peaks along the hamlet genome for each colour pattern element and allows to characterize the phenotypic effect of the single nucleotide polymorphisms that are most strongly associated with colour pattern variation at each association peak. Our results suggest that the diversity of colour patterns displayed by the hamlets is generated by a modular genomic and phenotypic architecture.
Collapse
Affiliation(s)
- Floriane Coulmance
- Leibniz Center for Tropical Marine Research, Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| | - Derya Akkaynak
- Hatter Department of Marine Technologies, University of Haifa, Haifa, Israel
- Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Yann Le Poul
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc P Höppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - W Owen McMillan
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| | - Oscar Puebla
- Leibniz Center for Tropical Marine Research, Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Oldenburg, Germany
- Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama
| |
Collapse
|
5
|
Kimball RT, Braun EL, Liu Y, Zhou L, Goodale E, Zhou W, Robinson SK. Can convergence in mixed-species flocks lead to evolutionary divergence? Evidence for and methods to test this hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220112. [PMID: 37066651 PMCID: PMC10107229 DOI: 10.1098/rstb.2022.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/31/2023] [Indexed: 04/18/2023] Open
Abstract
One of the most fundamental goals of modern biology is to achieve a deep understanding of the origin and maintenance of biodiversity. It has been observed that in some mixed-species animal societies, there appears to be a drive towards some degree of phenotypic trait matching, such as similar coloration or patterning. Here we build on these observations and hypothesize that selection in mixed-species animal societies, such as mixed-species bird flocks, may drive diversification, potentially leading to speciation. We review evidence for possible convergent evolution and even outright mimicry in flocks from southwestern China, where we have observed several cases in which species and subspecies differ from their closest relatives in traits that match particular flock types. However, understanding whether this is phenotypic matching driven by convergence, and whether this divergence has promoted biodiversity, requires testing multiple facets of this hypothesis. We propose a series of steps that can be used to tease apart alternative hypotheses to build our understanding of the potential role of convergence in diversification in participants of mixed-species societies. Even if our social convergence/divergence hypothesis is not supported, the testing at each step should help highlight alternative processes that may affect mixed-species flocks, trait evolution and possible convergence. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Liping Zhou
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
| | - Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wenyi Zhou
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Scott K. Robinson
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Alaei Kakhki N, Schweizer M, Lutgen D, Bowie RCK, Shirihai H, Suh A, Schielzeth H, Burri R. A Phylogenomic Assessment of Processes Underpinning Convergent Evolution in Open-Habitat Chats. Mol Biol Evol 2023; 40:6964684. [PMID: 36578177 PMCID: PMC10161543 DOI: 10.1093/molbev/msac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/01/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Insights into the processes underpinning convergent evolution advance our understanding of the contributions of ancestral, introgressed, and novel genetic variation to phenotypic evolution. Phylogenomic analyses characterizing genome-wide gene tree heterogeneity can provide first clues about the extent of ILS and of introgression and thereby into the potential of these processes or (in their absence) the need to invoke novel mutations to underpin convergent evolution. Here, we were interested in understanding the processes involved in convergent evolution in open-habitat chats (wheatears of the genus Oenanthe and their relatives). To this end, based on whole-genome resequencing data from 50 taxa of 44 species, we established the species tree, characterized gene tree heterogeneity, and investigated the footprints of ILS and introgression within the latter. The species tree corroborates the pattern of abundant convergent evolution, especially in wheatears. The high levels of gene tree heterogeneity in wheatears are explained by ILS alone only for 30% of internal branches. For multiple branches with high gene tree heterogeneity, D-statistics and phylogenetic networks identified footprints of introgression. Finally, long branches without extensive ILS between clades sporting similar phenotypes provide suggestive evidence for the role of novel mutations in the evolution of these phenotypes. Together, our results suggest that convergent evolution in open-habitat chats involved diverse processes and highlight that phenotypic diversification is often complex and best depicted as a network of interacting lineages.
Collapse
Affiliation(s)
- Niloofar Alaei Kakhki
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany
| | - Manuel Schweizer
- Natural History Museum Bern, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Dave Lutgen
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Ornithological Institute, Sempach, Switzerland
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.,Department of Organismal Biology - Systematic Biology (EBC), Science for Life Laboratory, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Holger Schielzeth
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Ornithological Institute, Sempach, Switzerland
| |
Collapse
|
7
|
Ma Y, Mao X, Wang J, Zhang L, Jiang Y, Geng Y, Ma T, Cai L, Huang S, Hollingsworth P, Mao K, Kang M, Li Y, Yang W, Wu H, Chen Y, Davis CC, Shrestha N, Ree RH, Xi Z, Hu Q, Milne RI, Liu J. Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China. Natl Sci Rev 2022; 9:nwac276. [PMID: 36687562 PMCID: PMC9844246 DOI: 10.1093/nsr/nwac276] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Radiations are especially important for generating species biodiversity in mountainous ecosystems. The contribution of hybridization to such radiations has rarely been examined. Here, we use extensive genomic data to test whether hybridization was involved in evolutionary radiation within Rhododendron subgenus Hymenanthes, whose members show strong geographic isolation in the mountains of southwest China. We sequenced genomes for 143 species of this subgenus and 93 species of four other subgenera, and found that Hymenanthes was monophyletic and radiated during the late Oligocene to middle Miocene. Widespread hybridization events were inferred within and between the identified clades and subclades. This suggests that hybridization occurred both early and late during diversification of subgenus Hymenanthes, although the extent to which hybridization, speciation through mixing-isolation-mixing or hybrid speciation, accelerated the diversification needs further exploration. Cycles of isolation and contact in such and other montane ecosystems may have together promoted species radiation through hybridization between diverging populations and species. Similar radiation processes may apply to other montane floras in this region and elsewhere.
Collapse
Affiliation(s)
| | | | | | - Lei Zhang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuying Geng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tao Ma
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Liming Cai
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | | | - Kangshan Mao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minghui Kang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiling Li
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenlu Yang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haolin Wu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Richard H Ree
- Negaunee Integrative Research Center, Field Museum, Chicago, IL 60605, USA
| | - Zhenxiang Xi
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | | | | | | |
Collapse
|
8
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Wu MY, Lau CJ, Ng EYX, Baveja P, Gwee CY, Sadanandan K, Ferasyi TR, Haminuddin, Ramadhan R, Menner JK, Rheindt FE. Genomes From Historic DNA Unveil Massive Hidden Extinction and Terminal Endangerment in a Tropical Asian Songbird Radiation. Mol Biol Evol 2022; 39:6692815. [PMID: 36124912 PMCID: PMC9486911 DOI: 10.1093/molbev/msac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantifying the magnitude of the global extinction crisis is important but remains challenging, as many extinction events pass unnoticed owing to our limited taxonomic knowledge of the world's organisms. The increasing rarity of many taxa renders comprehensive sampling difficult, further compounding the problem. Vertebrate lineages such as birds, which are thought to be taxonomically well understood, are therefore used as indicator groups for mapping and quantifying global extinction. To test whether extinction patterns are adequately gauged in well-studied groups, we implemented ancient-DNA protocols and retrieved whole genomes from the historic DNA of museum specimens in a widely known songbird radiation of shamas (genus Copsychus) that is assumed to be of least conservation concern. We uncovered cryptic diversity and an unexpected degree of hidden extinction and terminal endangerment. Our analyses reveal that >40% of the phylogenetic diversity of this radiation is already either extinct in the wild or nearly so, including the two genomically most distinct members of this group (omissus and nigricauda), which have so far flown under the conservation radar as they have previously been considered subspecies. Comparing the genomes of modern samples with those from roughly a century ago, we also found a significant decrease in genetic diversity and a concomitant increase in homozygosity affecting various taxa, including small-island endemics that are extinct in the wild as well as subspecies that remain widespread across the continental scale. Our application of modern genomic approaches demonstrates elevated levels of allelic and taxonomic diversity loss in a songbird clade that has not been listed as globally threatened, highlighting the importance of ongoing reassessments of extinction incidence even across well-studied animal groups. Key words: extinction, introgression, white-rumped shama, conservation.
Collapse
Affiliation(s)
- Meng Yue Wu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Clara Jesse Lau
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Elize Ying Xin Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Pratibha Baveja
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chyi Yin Gwee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Keren Sadanandan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Haminuddin
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Rezky Ramadhan
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | | | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Nieberding CM, Beldade P, Baumlé V, San Martin G, Arun A, Lognay G, Montagné N, Bastin-Héline L, Jacquin-Joly E, Noirot C, Klopp C, Visser B. Mosaic Evolution of Molecular Pathways for Sex Pheromone Communication in a Butterfly. Genes (Basel) 2022; 13:1372. [PMID: 36011283 PMCID: PMC9407440 DOI: 10.3390/genes13081372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Unraveling the origin of molecular pathways underlying the evolution of adaptive traits is essential for understanding how new lineages emerge, including the relative contribution of conserved ancestral traits and newly evolved derived traits. Here, we investigated the evolutionary divergence of sex pheromone communication from moths (mostly nocturnal) to butterflies (mostly diurnal) that occurred ~119 million years ago. In moths, it is the females that typically emit pheromones to attract male mates, but in butterflies males emit pheromones that are used by females for mate choice. The molecular bases of sex pheromone communication are well understood in moths, but they have remained relatively unexplored in butterflies. We used a combination of transcriptomics, real time qPCR, and phylogenetics to identify genes involved in the different steps (i.e., production, regulation, and reception) of sex pheromone communication of the butterfly Bicyclus anynana. Our results show that the biosynthesis and reception of sex pheromones relies both on moth-specific gene families (reductases) and on more ancestral insect gene families (desaturases, olfactory receptors, odorant binding proteins). Interestingly, B. anynana appears to use what was believed to be the moth-specific neuropeptide Pheromone Biosynthesis Activating Neuropeptide (PBAN) for regulating sex pheromone production. Altogether, our results suggest that a mosaic pattern best explains how sex pheromone communication evolved in butterflies, with some molecular components derived from moths, and others conserved from more ancient insect ancestors. This is the first large-scale investigation of the genetic pathways underlying sex pheromone communication in a butterfly.
Collapse
Affiliation(s)
- Caroline M. Nieberding
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Patrícia Beldade
- Center for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisboa, Portugal;
| | - Véronique Baumlé
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Gilles San Martin
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Alok Arun
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Georges Lognay
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UC Louvain, 1348 Louvain-la-Neuve, Belgium; (V.B.); (G.S.M.); (A.A.); (G.L.)
| | - Nicolas Montagné
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Lucie Bastin-Héline
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Emmanuelle Jacquin-Joly
- INRAE, CNRS, IRD, UPEC, Sorbonne Université, Institute of Ecology and Environmental Sciences of Paris, Université de Paris, 78000 Versailles, France; (N.M.); (L.B.-H.); (E.J.-J.)
| | - Céline Noirot
- Plateforme Bio-Informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, 31326 Castanet-Tolosan, France; (C.N.); (C.K.)
| | - Christophe Klopp
- Plateforme Bio-Informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, 31326 Castanet-Tolosan, France; (C.N.); (C.K.)
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| |
Collapse
|
11
|
Rubin CJ, Enbody ED, Dobreva MP, Abzhanov A, Davis BW, Lamichhaney S, Pettersson M, Sendell-Price AT, Sprehn CG, Valle CA, Vasco K, Wallerman O, Grant BR, Grant PR, Andersson L. Rapid adaptive radiation of Darwin's finches depends on ancestral genetic modules. SCIENCE ADVANCES 2022; 8:eabm5982. [PMID: 35857449 PMCID: PMC9269886 DOI: 10.1126/sciadv.abm5982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/25/2022] [Indexed: 05/21/2023]
Abstract
Recent adaptive radiations are models for investigating mechanisms contributing to the evolution of biodiversity. An unresolved question is the relative importance of new mutations, ancestral variants, and introgressive hybridization for phenotypic evolution and speciation. Here, we address this issue using Darwin's finches and investigate the genomic architecture underlying their phenotypic diversity. Admixture mapping for beak and body size in the small, medium, and large ground finches revealed 28 loci showing strong genetic differentiation. These loci represent ancestral haplotype blocks with origins predating speciation events during the Darwin's finch radiation. Genes expressed in the developing beak are overrepresented in these genomic regions. Ancestral haplotypes constitute genetic modules for selection and act as key determinants of the unusual phenotypic diversity of Darwin's finches. Such ancestral haplotype blocks can be critical for how species adapt to environmental variability and change.
Collapse
Affiliation(s)
- Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Institute of Marine Research, Nordnesgaten 50, 5005 Bergen, Norway
| | - Erik D. Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mariya P. Dobreva
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ashley T. Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - C. Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carlos A. Valle
- Colegio de Ciencias Biológicas y Ambientales, Galápagos Science Center GSC, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Karla Vasco
- Colegio de Ciencias Biológicas y Ambientales, Galápagos Science Center GSC, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - B. Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Peter R. Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Corresponding author.
| |
Collapse
|
12
|
Establishment of the Primary Avian Gonadal Somatic Cell Lines for Cytogenetic Studies. Animals (Basel) 2022; 12:ani12131724. [PMID: 35804624 PMCID: PMC9264790 DOI: 10.3390/ani12131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/01/2022] Open
Abstract
Simple Summary We developed a simple method for primary somatic cell culture establishment from the ovaries of the great tits and testes of ten Passerine species. The ovary-derived cell cultures were cultivated until the tenth passage without any noticeable decrease in their proliferative activity, while testis-derived cell cultures demonstrated a decreased proliferation potential. However, sufficient material was available from both cell cultures originating from the ovary and testis to make excellent mitotic metaphase chromosomal preparations. We demonstrated the high efficiency of electroporation for genetic modification of the ovary-derived cell line. Thus, the established ovary-derived cell line could be efficiently used in cytogenetic and genomic studies. Abstract The last decade was marked by a steep rise in avian studies at genomic and cellular levels. Cell lines are important tools for in vitro studies in cell biology and cytogenetics. We developed a simple method of primary somatic cell culture establishment from the ovaries of the great tits (Parus major) and testes of ten Passerine species, characterized the cellular composition of the ovary-derived lines using RT-PCR and immunolocalization of the tissue-specific markers and tested the efficiency of two methods of genetic transformation of the ovary-derived cell line. We found that the ovary-derived cell cultures of the great tit were composed of fibroblasts mainly, but also contained interstitial and granulosa cells. They were cultivated until the 10th passage without any noticeable decrease in their proliferative activity. The testis-derived cell cultures had lower proliferative potential. However, both ovary- and testis-derived cell cultures provided enough material for high quality mitotic metaphase chromosome preparations. The efficiency of its transduction with lentivirus containing a GFP reporter was very low, while electroporation with episomal vectors expressing GFP resulted in a high yield of GFP-positive cells. The proposed method could be used for the generation of high quality material for various cytogenetic and genomic studies.
Collapse
|
13
|
DeRaad DA, McCormack JE, Chen N, Peterson AT, Moyle RG. Combining Species Delimitation, Species Trees, and Tests for Gene Flow Clarifies Complex Speciation in Scrub-Jays. Syst Biol 2022; 71:1453-1470. [PMID: 35552760 DOI: 10.1093/sysbio/syac034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Complex speciation, involving rapid divergence and multiple bouts of post-divergence gene flow, can obfuscate phylogenetic relationships and species limits. In North America, cases of complex speciation are common, due at least in part to the cyclical Pleistocene glacial history of the continent. Scrub-jays in the genus Aphelocoma provide a useful case study in complex speciation because their range throughout North America is structured by phylogeographic barriers with multiple cases of secondary contact between divergent lineages. Here, we show that a comprehensive approach to genomic reconstruction of evolutionary history, i.e., synthesizing results from species delimitation, species tree reconstruction, demographic model testing, and tests for gene flow, is capable of clarifying evolutionary history despite complex speciation. We find concordant evidence across all statistical approaches for the distinctiveness of an endemic southern Mexico lineage (A. w. sumichrasti), culminating in support for the species status of this lineage under any commonly applied species concept. We also find novel genomic evidence for the species status of a Texas endemic lineage A. w. texana, for which equivocal species delimitation results were clarified by demographic modeling and spatially explicit models of gene flow. Finally, we find that complex signatures of both ancient and modern gene flow between the non-sister California Scrub-Jay (A. californica) and Woodhouse's Scrub-Jay (A. woodhouseii), result in discordant gene trees throughout the species' genomes despite clear support for their overall isolation and species status. In sum, we find that a multi-faceted approach to genomic analysis can increase our understanding of complex speciation histories, even in well-studied groups. Given the emerging recognition that complex speciation is relatively commonplace, the comprehensive framework that we demonstrate for interrogation of species limits and evolutionary history using genomic data can provide a necessary roadmap for disentangling the impacts of gene flow and incomplete lineage sorting to better understand the systematics of other groups with similarly complex evolutionary histories.
Collapse
Affiliation(s)
- Devon A DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| | - John E McCormack
- Moore Laboratory of Zoology,Occidental College, Los Angeles, CA, 90041, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - A Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| | - Robert G Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| |
Collapse
|
14
|
Spottiswoode CN, Tong W, Jamie GA, Stryjewski KF, DaCosta JM, Kuras ER, Green A, Hamama S, Taylor IG, Moya C, Sorenson MD. Genetic architecture facilitates then constrains adaptation in a host-parasite coevolutionary arms race. Proc Natl Acad Sci U S A 2022; 119:e2121752119. [PMID: 35412865 PMCID: PMC9170059 DOI: 10.1073/pnas.2121752119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
In coevolutionary arms races, interacting species impose selection on each other, generating reciprocal adaptations and counter adaptations. This process is typically enhanced by genetic recombination and heterozygosity, but these sources of evolutionary novelty may be secondarily lost when uniparental inheritance evolves to ensure the integrity of sex-linked adaptations. We demonstrate that host-specific egg mimicry in the African cuckoo finch Anomalospiza imberbis is maternally inherited, confirming the validity of an almost century-old hypothesis. We further show that maternal inheritance not only underpins the mimicry of different host species but also additional mimetic diversification that approximates the range of polymorphic egg “signatures” that have evolved within host species as an escalated defense against parasitism. Thus, maternal inheritance has enabled the evolution and maintenance of nested levels of mimetic specialization in a single parasitic species. However, maternal inheritance and the lack of sexual recombination likely disadvantage cuckoo finches by stifling further adaptation in the ongoing arms races with their individual hosts, which we show have retained biparental inheritance of egg phenotypes. The inability to generate novel genetic combinations likely prevents cuckoo finches from mimicking certain host phenotypes that are currently favored by selection (e.g., the olive-green colored eggs laid by some tawny-flanked prinia, Prinia subflava, females). This illustrates an important cost of coding coevolved adaptations on the nonrecombining sex chromosome, which may impede further coevolutionary change by effectively reversing the advantages of sexual reproduction in antagonistic coevolution proposed by the Red Queen hypothesis.
Collapse
Affiliation(s)
- Claire N. Spottiswoode
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- FitzPatrick Institute of African Ornithology, Department of Science and Technology–National Research Foundation Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Wenfei Tong
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Gabriel A. Jamie
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- FitzPatrick Institute of African Ornithology, Department of Science and Technology–National Research Foundation Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Jeffrey M. DaCosta
- Department of Biology, Boston University, Boston, MA 02215
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Evan R. Kuras
- Department of Biology, Boston University, Boston, MA 02215
| | - Ailsa Green
- Chenga Farm, Choma, Southern Province, Zambia
| | - Silky Hamama
- Musumanene Farm, Choma, Southern Province, Zambia
| | | | - Collins Moya
- Musumanene Farm, Choma, Southern Province, Zambia
| | | |
Collapse
|
15
|
Sotelo-Muñoz M, Poignet M, Albrecht T, Kauzál O, Dedukh D, Schlebusch SA, Janko K, Reifová R. Germline-restricted chromosome shows remarkable variation in size among closely related passerine species. Chromosoma 2022; 131:77-86. [PMID: 35389062 DOI: 10.1007/s00412-022-00771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Passerine birds have a supernumerary chromosome in their germ cells called the germline-restricted chromosome (GRC). The GRC was first discovered more than two decades ago in zebra finch but recent studies have suggested that it is likely present in all passerines, the most species rich avian order, encompassing more than half of all modern bird species. Despite its wide taxonomic distribution, studies on this chromosome are still scarce and limited to a few species. Here, we cytogenetically analyzed the GRC in five closely related estrildid finch species of the genus Lonchura. We show that the GRC varies enormously in size, ranging from a tiny micro-chromosome to one of the largest macro-chromosomes in the cell, not only among recently diverged species but also within species and sometimes even between germ cells of a single individual. In Lonchura atricapilla, we also observed variation in GRC copy number among male germ cells of a single individual. Finally, our analysis of hybrids between two Lonchura species with noticeably different GRC size directly supported maternal inheritance of the GRC. Our results reveal the extraordinarily dynamic nature of the GRC, which might be caused by frequent gains and losses of sequences on this chromosome leading to substantial differences in genetic composition of the GRC between and even within species. Such differences might theoretically contribute to reproductive isolation between species and thus accelerate the speciation rate of passerine birds compared to other bird lineages.
Collapse
Affiliation(s)
- Manuelita Sotelo-Muñoz
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.
| | - Manon Poignet
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365, Brno, Czech Republic
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 60365, Brno, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 12800, Prague, Czech Republic.
| |
Collapse
|
16
|
Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z. A myxozoan genome reveals mosaic evolution in a parasitic cnidarian. BMC Biol 2022; 20:51. [PMID: 35177085 PMCID: PMC8855578 DOI: 10.1186/s12915-022-01249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Parasite evolution has been conceptualized as a process of genetic loss and simplification. Contrary to this model, there is evidence of expansion and conservation of gene families related to essential functions of parasitism in some parasite genomes, reminiscent of widespread mosaic evolution-where subregions of a genome have different rates of evolutionary change. We found evidence of mosaic genome evolution in the cnidarian Myxobolus honghuensis, a myxozoan parasite of fish, with extremely simple morphology. RESULTS We compared M. honghuensis with other myxozoans and free-living cnidarians, and determined that it has a relatively larger myxozoan genome (206 Mb), which is less reduced and less compact due to gene retention, large introns, transposon insertion, but not polyploidy. Relative to other metazoans, the M. honghuensis genome is depleted of neural genes and has only the simplest animal immune components. Conversely, it has relatively more genes involved in stress resistance, tissue invasion, energy metabolism, and cellular processes compared to other myxozoans and free-living cnidarians. We postulate that the expansion of these gene families is the result of evolutionary adaptations to endoparasitism. M. honghuensis retains genes found in free-living Cnidaria, including a reduced nervous system, myogenic components, ANTP class Homeobox genes, and components of the Wnt and Hedgehog pathways. CONCLUSIONS Our analyses suggest that the M. honghuensis genome evolved as a mosaic of conservative, divergent, depleted, and enhanced genes and pathways. These findings illustrate that myxozoans are not as genetically simple as previously regarded, and the evolution of some myxozoans is driven by both genomic streamlining and expansion.
Collapse
Affiliation(s)
- Qingxiang Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Bin Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Yanhua Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
17
|
Ottenburghs J. Avian introgression patterns are consistent with Haldane's Rule. J Hered 2022; 113:363-370. [PMID: 35134952 PMCID: PMC9308041 DOI: 10.1093/jhered/esac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
According to Haldane’s Rule, the heterogametic sex will show the greatest fitness reduction in a hybrid cross. In birds, where sex is determined by a ZW system, female hybrids are expected to experience lower fitness compared to male hybrids. This pattern has indeed been observed in several bird groups, but it is unknown whether the generality of Haldane’s Rule also extends to the molecular level. First, given the lower fitness of female hybrids, we can expect maternally inherited loci (i.e., mitochondrial and W-linked loci) to show lower introgression rates than biparentally inherited loci (i.e., autosomal loci) in females. Second, the faster evolution of Z-linked loci compared to autosomal loci and the hemizygosity of the Z-chromosome in females might speed up the accumulation of incompatible alleles on this sex chromosome, resulting in lower introgression rates for Z-linked loci than for autosomal loci. I tested these expectations by conducting a literature review which focused on studies that directly quantified introgression rates for autosomal, sex-linked, and mitochondrial loci. Although most studies reported introgression rates in line with Haldane’s Rule, it remains important to validate these genetic patterns with estimates of hybrid fitness and supporting field observations to rule out alternative explanations. Genomic data provide exciting opportunities to obtain a more fine-grained picture of introgression rates across the genome, which can consequently be linked to ecological and behavioral observations, potentially leading to novel insights into the genetic mechanisms underpinning Haldane’s Rule.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and Conservation, Wageningen University & Research, Wageningen, The Netherlands.,Forest Ecology and Forest Management, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
18
|
Hench K, Helmkampf M, McMillan WO, Puebla O. Rapid radiation in a highly diverse marine environment. Proc Natl Acad Sci U S A 2022; 119:e2020457119. [PMID: 35042790 PMCID: PMC8794831 DOI: 10.1073/pnas.2020457119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Rapid diversification is often observed when founding species invade isolated or newly formed habitats that provide ecological opportunity for adaptive radiation. However, most of the Earth's diversity arose in diverse environments where ecological opportunities appear to be more constrained. Here, we present a striking example of a rapid radiation in a highly diverse marine habitat. The hamlets, a group of reef fishes from the wider Caribbean, have radiated into a stunning diversity of color patterns but show low divergence across other ecological axes. Although the hamlet lineage is ∼26 My old, the radiation appears to have occurred within the last 10,000 generations in a burst of diversification that ranks among the fastest in fishes. As such, the hamlets provide a compelling backdrop to uncover the genomic elements associated with phenotypic diversification and an excellent opportunity to build a broader comparative framework for understanding the drivers of adaptive radiation. The analysis of 170 genomes suggests that color pattern diversity is generated by different combinations of alleles at a few large-effect loci. Such a modular genomic architecture of diversification has been documented before in Heliconius butterflies, capuchino finches, and munia finches, three other tropical radiations that took place in highly diverse and complex environments. The hamlet radiation also occurred in a context of high effective population size, which is typical of marine populations. This allows for the accumulation of new variants through mutation and the retention of ancestral genetic variation, both of which appear to be important in this radiation.
Collapse
Affiliation(s)
- Kosmas Hench
- Ecology Department, Leibniz Centre for Tropical Marine Research, 28359 Bremen, Germany;
| | - Martin Helmkampf
- Ecology Department, Leibniz Centre for Tropical Marine Research, 28359 Bremen, Germany
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Republic of Panama
| | - Oscar Puebla
- Ecology Department, Leibniz Centre for Tropical Marine Research, 28359 Bremen, Germany;
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Republic of Panama
- Institute for Chemistry and Biology of the Marine Environment, 26111 Oldenburg, Germany
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| |
Collapse
|
19
|
Thawornwattana Y, Seixas FA, Yang Z, Mallet J. OUP accepted manuscript. Syst Biol 2022; 71:1159-1177. [PMID: 35169847 PMCID: PMC9366460 DOI: 10.1093/sysbio/syac009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Introgressive hybridization plays a key role in adaptive evolution and species diversification in many groups of species. However, frequent hybridization and gene flow between species make estimation of the species phylogeny and key population parameters challenging. Here, we show that by accounting for phasing and using full-likelihood methods, introgression histories and population parameters can be estimated reliably from whole-genome sequence data. We employ the multispecies coalescent (MSC) model with and without gene flow to infer the species phylogeny and cross-species introgression events using genomic data from six members of the erato-sara clade of Heliconius butterflies. The methods naturally accommodate random fluctuations in genealogical history across the genome due to deep coalescence. To avoid heterozygote phasing errors in haploid sequences commonly produced by genome assembly methods, we process and compile unphased diploid sequence alignments and use analytical methods to average over uncertainties in heterozygote phase resolution. There is robust evidence for introgression across the genome, both among distantly related species deep in the phylogeny and between sister species in shallow parts of the tree. We obtain chromosome-specific estimates of key population parameters such as introgression directions, times and probabilities, as well as species divergence times and population sizes for modern and ancestral species. We confirm ancestral gene flow between the sara clade and an ancestral population of Heliconius telesiphe, a likely hybrid speciation origin for Heliconius hecalesia, and gene flow between the sister species Heliconius erato and Heliconius himera. Inferred introgression among ancestral species also explains the history of two chromosomal inversions deep in the phylogeny of the group. This study illustrates how a full-likelihood approach based on the MSC makes it possible to extract rich historical information of species divergence and gene flow from genomic data. [3s; bpp; gene flow; Heliconius; hybrid speciation; introgression; inversion; multispecies coalescent]
Collapse
Affiliation(s)
- Yuttapong Thawornwattana
- Correspondence to be sent to: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; E-mail: ; (Y.T. and J.M.); Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK; E-mail: (Z.Y.)
| | - Fernando A Seixas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ziheng Yang
- Correspondence to be sent to: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; E-mail: ; (Y.T. and J.M.); Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK; E-mail: (Z.Y.)
| | - James Mallet
- Correspondence to be sent to: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; E-mail: ; (Y.T. and J.M.); Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK; E-mail: (Z.Y.)
| |
Collapse
|
20
|
Wu L, Jiao X, Zhang D, Cheng Y, Song G, Qu Y, Lei F. Comparative Genomics and Evolution of Avian Specialized Traits. Curr Genomics 2021; 22:496-511. [PMID: 35386431 PMCID: PMC8905638 DOI: 10.2174/1389202923666211227143952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
22
|
Turbek SP, Semenov GA, Enbody ED, Campagna L, Taylor SA. Variable Signatures of Selection Despite Conserved Recombination Landscapes Early in Speciation. J Hered 2021; 112:485-496. [PMID: 34499149 DOI: 10.1093/jhered/esab054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/08/2021] [Indexed: 11/14/2022] Open
Abstract
Recently diverged taxa often exhibit heterogeneous landscapes of genomic differentiation, characterized by regions of elevated differentiation on an otherwise homogeneous background. While divergence peaks are generally interpreted as regions responsible for reproductive isolation, they can also arise due to background selection, selective sweeps unrelated to speciation, and variation in recombination and mutation rates. To investigate the association between patterns of recombination and landscapes of genomic differentiation during the early stages of speciation, we generated fine-scale recombination maps for six southern capuchino seedeaters (Sporophila) and two subspecies of White Wagtail (Motacilla alba), two recent avian radiations in which divergent selection on pigmentation genes has likely generated peaks of differentiation. We compared these recombination maps to those of Collared (Ficedula albicollis) and Pied Flycatchers (Ficedula hypoleuca), non-sister taxa characterized by moderate genomic divergence and a heterogenous landscape of genomic differentiation shaped in part by background selection. Although recombination landscapes were conserved within all three systems, we documented a weaker negative correlation between recombination rate and genomic differentiation in the recent radiations. All divergence peaks between capuchinos, wagtails, and flycatchers were located in regions with lower-than-average recombination rates, and most divergence peaks in capuchinos and flycatchers fell in regions of exceptionally reduced recombination. Thus, co-adapted allelic combinations in these regions may have been protected early in divergence, facilitating rapid diversification. Despite largely conserved recombination landscapes, divergence peaks are specific to each focal comparison in capuchinos, suggesting that regions of elevated differentiation have not been generated by variation in recombination rate alone.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
23
|
Sangster G, Luksenburg JA. Sharp Increase of Problematic Mitogenomes of Birds: Causes, Consequences, and Remedies. Genome Biol Evol 2021; 13:evab210. [PMID: 34505894 PMCID: PMC8462277 DOI: 10.1093/gbe/evab210] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 02/06/2023] Open
Abstract
Authentic DNA sequences are crucial for reliable evolutionary inference. Concerns about the identification of DNA sequences have been voiced several times in the past but few quantitative studies exist. Mitogenomes play important roles in phylogenetics, phylogeography, population genetics, and DNA identification. However, the large number of mitogenomes being published routinely, often in brief data papers, has raised questions about their authenticity. In this study, we quantify problematic mitogenomes of birds and their reusage in other papers. Of 1,876 complete or partial mitogenomes of birds published until January 1, 2020, the authenticity of 1,559 could be assessed with sequences of conspecifics. Of these, 78 (5.0%) were found to be problematic, including 45 curated reference sequences. Problems were due to misidentification (33), chimeras of two or three species (23), sequencing errors/numts (18), incorrect sequence assembly (1), mislabeling at GenBank but not in the final paper (2), or vice versa (1). The number of problematic mitogenomes has increased sharply since 2012. Worryingly, these problematic sequences have been reused 436 times in other papers, including 385 times in phylogenies. No less than 53% of all mitogenomic phylogenies/networks published until January 1, 2020 included at least one problematic mitogenome. Problematic mitogenomes have resulted in incorrect phylogenetic hypotheses and proposals for unwarranted taxonomic revision, and may have compromised comparative analyses and measurements of divergence times. Our results indicate that a major upgrade of quality control measures is warranted. We propose a comprehensive set of measures that may serve as a new standard for publishing mitogenome sequences.
Collapse
Affiliation(s)
- George Sangster
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jolanda A Luksenburg
- Institute of Environmental Sciences, Leiden University, The Netherlands
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
24
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
25
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
26
|
Zhang D, Rheindt FE, She H, Cheng Y, Song G, Jia C, Qu Y, Alström P, Lei F. Most Genomic Loci Misrepresent the Phylogeny of an Avian Radiation Because of Ancient Gene Flow. Syst Biol 2021; 70:961-975. [PMID: 33787929 PMCID: PMC8357342 DOI: 10.1093/sysbio/syab024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Phylogenetic trees based on genome-wide sequence data may not always represent the true evolutionary history for a variety of reasons. One process that can lead to incorrect reconstruction of species phylogenies is gene flow, especially if interspecific gene flow has affected large parts of the genome. We investigated phylogenetic relationships within a clade comprising eight species of passerine birds (Phylloscopidae, Phylloscopus, leaf warblers) using one de novo genome assembly and 78 resequenced genomes. On the basis of hypothesis-exclusion trials based on D-statistics, phylogenetic network analysis, and demographic inference analysis, we identified ancient gene flow affecting large parts of the genome between one species and the ancestral lineage of a sister species pair. This ancient gene flow consistently caused erroneous reconstruction of the phylogeny when using large amounts of genome-wide sequence data. In contrast, the true relationships were captured when smaller parts of the genome were analyzed, showing that the "winner-takes-all democratic majority tree" is not necessarily the true species tree. Under this condition, smaller amounts of data may sometimes avoid the effects of gene flow due to stochastic sampling, as hidden reticulation histories are more likely to emerge from the use of larger data sets, especially whole-genome data sets. In addition, we also found that genomic regions affected by ancient gene flow generally exhibited higher genomic differentiation but a lower recombination rate and nucleotide diversity. Our study highlights the importance of considering reticulation in phylogenetic reconstructions in the genomic era.[Bifurcation; introgression; recombination; reticulation; Phylloscopus.].
Collapse
Affiliation(s)
- Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala, Sweden
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
27
|
Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife 2021; 10:e69016. [PMID: 34346866 PMCID: PMC8337078 DOI: 10.7554/elife.69016] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022] Open
Abstract
In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Cheyenne Payne
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Quinn Langdon
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Daniel L Powell
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Yaniv Brandvain
- Department of Ecology, Evolution & Behavior and Plant and Microbial Biology, University of MinnesotaMinneapolisUnited States
| | - Molly Schumer
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
- Hanna H. Gray Fellow, Howard Hughes Medical InstituteStanfordUnited States
| |
Collapse
|
28
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Kozak KM, Joron M, McMillan WO, Jiggins CD. Rampant Genome-Wide Admixture across the Heliconius Radiation. Genome Biol Evol 2021; 13:evab099. [PMID: 33944917 PMCID: PMC8283734 DOI: 10.1093/gbe/evab099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
How frequent is gene flow between species? The pattern of evolution is typically portrayed as a phylogenetic tree, yet gene flow between good species may be an important mechanism in diversification, spreading adaptive traits and leading to a complex pattern of phylogenetic incongruence. This process has thus far been studied mainly among a few closely related species, or in geographically restricted areas such as islands, but not on the scale of a continental radiation. Using a genomic representation of 40 out of 47 species in the genus, we demonstrate that admixture has played a role throughout the evolution of the charismatic Neotropical butterflies Heliconius. Modeling of phylogenetic networks based on the exome uncovers up to 13 instances of interspecific gene flow. Admixture is detected among the relatives of Heliconius erato, as well as between the ancient lineages leading to modern clades. Interspecific gene flow played a role throughout the evolution of the genus, although the process has been most frequent in the clade of Heliconius melpomene and relatives. We identify Heliconius hecalesia and relatives as putative hybrids, including new evidence for introgression at the loci controlling the mimetic wing patterns. Models accounting for interspecific gene flow yield a more complete picture of the radiation as a network, which will improve our ability to study trait evolution in a realistic comparative framework.
Collapse
Affiliation(s)
- Krzysztof M Kozak
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Zoology, University of Cambridge, United Kingdom
| | - Mathieu Joron
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, France
| | | | - Chris D Jiggins
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Zoology, University of Cambridge, United Kingdom
| |
Collapse
|
30
|
Chueca LJ, Schell T, Pfenninger M. Whole-genome re-sequencing data to infer historical demography and speciation processes in land snails: the study of two Candidula sister species. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200156. [PMID: 33813898 PMCID: PMC8059500 DOI: 10.1098/rstb.2020.0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the global biodiversity of terrestrial gastropods and their ecological and economic importance, the genomic basis of ecological adaptation and speciation in land snail taxa is still largely unknown. Here, we combined whole-genome re-sequencing with population genomics to evaluate the historical demography and the speciation process of two closely related species of land snails from western Europe, Candidula unifasciata and C. rugosiuscula. Historical demographic analysis indicated fluctuations in the size of ancestral populations, probably driven by Pleistocene climatic fluctuations. Although the current population distributions of both species do not overlap, our approximate Bayesian computation model selection approach on several speciation scenarios suggested that gene flow has occurred throughout the divergence process until recently. Positively selected genes diverging early in the process were associated with intragenomic and cyto-nuclear incompatibilities, respectively, potentially fostering reproductive isolation as well as ecological divergence. Our results suggested that the speciation between species entails complex processes involving both gene flow and ecological speciation, and that further research based on whole-genome data can provide valuable understanding on species divergence. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Luis J. Chueca
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, 60325 Frankfurt am Main, Germany
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV-EHU), 01006 Vitoria-Gasteiz, Spain
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Tilman Schell
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, 60325 Frankfurt am Main, Germany
| | - Markus Pfenninger
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Nature Research Society, 60325 Frankfurt am Main, Germany
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute of Organismic and Molecular Evolution (iOME), Faculty of Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
31
|
Bougie TC, Brelsford A, Hedin M. Evolutionary impacts of introgressive hybridization in a rapidly evolving group of jumping spiders (F. Salticidae, Habronattus americanus group). Mol Phylogenet Evol 2021; 161:107165. [PMID: 33798670 DOI: 10.1016/j.ympev.2021.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Introgressive hybridization can be a powerful force impacting patterns of evolution at multiple taxonomic levels. We aimed to understand how introgression has affected speciation and diversification within a species complex of jumping spiders. The Habronattus americanus subgroup is a recently radiating group of jumping spiders, with species now in contact after hypothesized periods of isolation during glaciation cycles of the Pleistocene. Effects of introgression on genomes and morphology were investigated using phylogenomic and clustering methods using RADseq, ultraconserved elements (UCEs), and morphological data. We characterized 14 unique species/morphs using non-metric multidimensional scaling of morphological data, a majority of which were not recovered as monophyletic in our phylogenomic analyses. Morphological clusters and genetic lineages are highly incongruent, such that geographic region was a greater predictor of phylogenetic relatedness and genomic similarity than species or morph identity. STRUCTURE analyses support this pattern, revealing clusters corresponding to larger geographic regions. A history of rapid radiation in combination with frequent introgression seems to have mostly homogenized the genomes of species in this system, while selective forces maintain distinct male morphologies. GEMMA analyses support this idea by identifying SNPs correlated with distinct male morphologies. Overall, we have uncovered a system at odds with a typical bifurcating evolutionary model, instead supporting one where closely related species evolve together connected through multiple introgression events, creating a reticulate evolutionary history.
Collapse
Affiliation(s)
- T C Bougie
- Dept. of Biology, San Diego State University, San Diego, CA 92182, United States; Evolution, Ecology, and Organismal Biology Department, University of California Riverside, Riverside, CA 92521, United States.
| | - A Brelsford
- Evolution, Ecology, and Organismal Biology Department, University of California Riverside, Riverside, CA 92521, United States
| | - M Hedin
- Dept. of Biology, San Diego State University, San Diego, CA 92182, United States
| |
Collapse
|
32
|
Fortes-Lima CA, Laurent R, Thouzeau V, Toupance B, Verdu P. Complex genetic admixture histories reconstructed with Approximate Bayesian Computation. Mol Ecol Resour 2021; 21:1098-1117. [PMID: 33452723 PMCID: PMC8247995 DOI: 10.1111/1755-0998.13325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023]
Abstract
Admixture is a fundamental evolutionary process that has influenced genetic patterns in numerous species. Maximum‐likelihood approaches based on allele frequencies and linkage‐disequilibrium have been extensively used to infer admixture processes from genome‐wide data sets, mostly in human populations. Nevertheless, complex admixture histories, beyond one or two pulses of admixture, remain methodologically challenging to reconstruct. We developed an Approximate Bayesian Computation (ABC) framework to reconstruct highly complex admixture histories from independent genetic markers. We built the software package methis to simulate independent SNPs or microsatellites in a two‐way admixed population for scenarios with multiple admixture pulses, monotonically decreasing or increasing recurring admixture, or combinations of these scenarios. methis allows users to draw model‐parameter values from prior distributions set by the user, and, for each simulation, methis can calculate numerous summary statistics describing genetic diversity patterns and moments of the distribution of individual admixture fractions. We coupled methis with existing machine‐learning ABC algorithms and investigated the admixture history of admixed populations. Results showed that random forest ABC scenario‐choice could accurately distinguish among most complex admixture scenarios, and errors were mainly found in regions of the parameter space where scenarios were highly nested, and, thus, biologically similar. We focused on African American and Barbadian populations as two study‐cases. We found that neural network ABC posterior parameter estimation was accurate and reasonably conservative under complex admixture scenarios. For both admixed populations, we found that monotonically decreasing contributions over time, from Europe and Africa, explained the observed data more accurately than multiple admixture pulses. This approach will allow for reconstructing detailed admixture histories when maximum‐likelihood methods are intractable.
Collapse
Affiliation(s)
- Cesar A Fortes-Lima
- UMR7206 Eco-anthropologie, CNRS, Muséum National d'Histoire Naturelle, Université de Paris, Paris, France.,Sub-department of Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Romain Laurent
- UMR7206 Eco-anthropologie, CNRS, Muséum National d'Histoire Naturelle, Université de Paris, Paris, France
| | - Valentin Thouzeau
- UMR7534 Centre de Recherche en Mathématiques de la Décision, CNRS, Université Paris-Dauphine, PSL University, Paris, France.,Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, ENS, PSL University, EHESS, CNRS, Paris, France
| | - Bruno Toupance
- UMR7206 Eco-anthropologie, CNRS, Muséum National d'Histoire Naturelle, Université de Paris, Paris, France
| | - Paul Verdu
- UMR7206 Eco-anthropologie, CNRS, Muséum National d'Histoire Naturelle, Université de Paris, Paris, France
| |
Collapse
|
33
|
Semenov GA, Linck E, Enbody ED, Harris RB, Khaydarov DR, Alström P, Andersson L, Taylor SA. Asymmetric introgression reveals the genetic architecture of a plumage trait. Nat Commun 2021; 12:1019. [PMID: 33589637 PMCID: PMC7884433 DOI: 10.1038/s41467-021-21340-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Genome-wide variation in introgression rates across hybrid zones offers a powerful opportunity for studying population differentiation. One poorly understood pattern of introgression is the geographic displacement of a trait implicated in lineage divergence from genome-wide population boundaries. While difficult to interpret, this pattern can facilitate the dissection of trait genetic architecture because traits become uncoupled from their ancestral genomic background. We studied an example of trait displacement generated by the introgression of head plumage coloration from personata to alba subspecies of the white wagtail. A previous study of their hybrid zone in Siberia revealed that the geographic transition in this sexual signal that mediates assortative mating was offset from other traits and genetic markers. Here we show that head plumage is associated with two small genetic regions. Despite having a simple genetic architecture, head plumage inheritance is consistent with partial dominance and epistasis, which could contribute to its asymmetric introgression. Hybrid zones are windows into the evolutionary process. Semenov et al. find that the head plumage differences between white wagtail subspecies have a simple genetic basis involving two small genetic regions, in which partially dominant and epistatic interactions help to explain how this sexual signal has become decoupled from other plumage traits.
Collapse
Affiliation(s)
- Georgy A Semenov
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| | - Ethan Linck
- UNM Biology, University of New Mexico, Albuquerque, NM, Mexico
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Scott A Taylor
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
34
|
Pigmentation Genes Show Evidence of Repeated Divergence and Multiple Bouts of Introgression in Setophaga Warblers. Curr Biol 2021; 31:643-649.e3. [DOI: 10.1016/j.cub.2020.10.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
|
35
|
Aguillon SM, Walsh J, Lovette IJ. Extensive hybridization reveals multiple coloration genes underlying a complex plumage phenotype. Proc Biol Sci 2021; 288:20201805. [PMID: 33468000 DOI: 10.1098/rspb.2020.1805] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coloration is an important target of both natural and sexual selection. Discovering the genetic basis of colour differences can help us to understand how this visually striking phenotype evolves. Hybridizing taxa with both clear colour differences and shallow genomic divergences are unusually tractable for associating coloration phenotypes with their causal genotypes. Here, we leverage the extensive admixture between two common North American woodpeckers-yellow-shafted and red-shafted flickers-to identify the genomic bases of six distinct plumage patches involving both melanin and carotenoid pigments. Comparisons between flickers across approximately 7.25 million genome-wide SNPs show that these two forms differ at only a small proportion of the genome (mean FST = 0.008). Within the few highly differentiated genomic regions, we identify 368 SNPs significantly associated with four of the six plumage patches. These SNPs are linked to multiple genes known to be involved in melanin and carotenoid pigmentation. For example, a gene (CYP2J19) known to cause yellow to red colour transitions in other birds is strongly associated with the yellow versus red differences in the wing and tail feathers of these flickers. Additionally, our analyses suggest novel links between known melanin genes and carotenoid coloration. Our finding of patch-specific control of plumage coloration adds to the growing body of literature suggesting colour diversity in animals could be created through selection acting on novel combinations of coloration genes.
Collapse
Affiliation(s)
- Stepfanie M Aguillon
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Jennifer Walsh
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| |
Collapse
|
36
|
Ou Y, Jiang W, Roellig DM, Wan Z, Li N, Guo Y, Feng Y, Xiao L. Characterizations of Enterocytozoon bieneusi at new genetic loci reveal a lack of strict host specificity among common genotypes and the existence of a canine-adapted Enterocytozoon species. Int J Parasitol 2020; 51:215-223. [PMID: 33275946 DOI: 10.1016/j.ijpara.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 10/22/2022]
Abstract
Molecular characterizations of the microsporidian pathogen Enterocytozoon bieneusi at the ribosomal internal transcribed spacer (ITS) locus have identified nearly 500 genotypes in 11 phylogenetic groups with different host ranges. Among those, one unique group of genotypes, Group 11, is commonly found in dogs. Genetic characterizations of those and many divergent E. bieneusi genotypes at other genetic loci are thus far impossible. In this study, we sequenced 151 E. bieneusi isolates from several ITS genotype groups at the 16S rRNA locus and two new semi-conservative genetic markers (casein kinase 1 (ck1) and spore wall protein 1 (swp1)). Comparison of the near full (~1,200 bp) 16S rRNA sequences showed mostly two to three nucleotide substitutions between Group 1 and Group 2 genotypes, while Group 11 isolates differed from those by 26 (2.2%) nucleotides. Sequence analyses of the ck1 and swp1 loci confirmed the genetic uniqueness of Group 11 genotypes, which produced sequences very divergent from other groups. In contrast, genotypes in Groups 1 and 2 produced similar nucleotide sequences at these genetic loci, and there was discordant placement of ITS genotypes among loci in phylogenetic analyses of sequences. These results suggest that the canine-adapted Group 11 genotypes are genetically divergent from other genotype groups of E. bieneusi, possibly representing a different Enterocytozoon sp. They also indicate that there is no clear genetic differentiation of ITS Groups 1 and 2 at other genetic loci, supporting the conclusion on the lack of strict host specificity in both groups. Data and genetic markers from the study should facilitate population genetic characterizations of E. bieneusi isolates and improve our understanding of the zoonotic potential of E. bieneusi in domestic animals.
Collapse
Affiliation(s)
- Yonglin Ou
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Wen Jiang
- State Key Laboratory of Bioreactor Engineering, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Zhuowei Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
37
|
Wang S, Rohwer S, de Zwaan DR, Toews DPL, Lovette IJ, Mackenzie J, Irwin D. Selection on a small genomic region underpins differentiation in multiple color traits between two warbler species. Evol Lett 2020; 4:502-515. [PMID: 33312686 PMCID: PMC7719548 DOI: 10.1002/evl3.198] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
Speciation is one of the most important processes in biology, yet the study of the genomic changes underlying this process is in its infancy. North American warbler species Setophaga townsendi and Setophaga occidentalis hybridize in a stable hybrid zone, following a period of geographic separation. Genomic differentiation accumulated during geographic isolation can be homogenized by introgression at secondary contact, whereas genetic regions that cause low hybrid fitness can be shielded from such introgression. Here, we examined the genomic underpinning of speciation by investigating (1) the genetic basis of divergent pigmentation traits between species, (2) variation in differentiation across the genome, and (3) the evidence for selection maintaining differentiation in the pigmentation genes. Using tens of thousands of single nucleotide polymorphisms (SNPs) genotyped in hundreds of individuals within and near the hybrid zone, genome-wide association mapping revealed a single SNP associated with cheek, crown, breast coloration, and flank streaking, reflecting pleiotropy (one gene affecting multiple traits) or close physical linkage of different genes affecting different traits. This SNP is within an intron of the RALY gene, hence we refer to it as the RALY SNP. We then examined between-species genomic differentiation, using both genotyping-by-sequencing and whole genome sequencing. We found that the RALY SNP is within one of the highest peaks of differentiation, which contains three genes known to influence pigmentation: ASIP, EIF2S2, and RALY (the ASIP-RALY gene block). Heterozygotes at this gene block are likely of reduced fitness, as the geographic cline of the RALY SNP has been narrow over two decades. Together, these results reflect at least one barrier to gene flow within this narrow (∼200 kb) genomic region that modulates plumage difference between species. Despite extensive gene flow between species across the genome, this study provides evidence that selection on a phenotype-associated genomic region maintains a stable species boundary.
Collapse
Affiliation(s)
- Silu Wang
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - Sievert Rohwer
- Department of Biology and Burke MuseumUniversity of WashingtonSeattleWashington98195
| | - Devin R. de Zwaan
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - David P. L. Toews
- Department of Biology619 Mueller LaboratoryPennsylvania State UniversityUniversity ParkPennsylvania16802
| | - Irby J. Lovette
- Fuller Evolutionary Biology ProgramCornell Lab of OrnithologyIthacaNew York14850
| | - Jacqueline Mackenzie
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| | - Darren Irwin
- Department of Zoology and Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T1Z4Canada
| |
Collapse
|
38
|
Svardal H, Salzburger W, Malinsky M. Genetic Variation and Hybridization in Evolutionary Radiations of Cichlid Fishes. Annu Rev Anim Biosci 2020; 9:55-79. [PMID: 33197206 DOI: 10.1146/annurev-animal-061220-023129] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary radiations are responsible for much of the variation in biodiversity across taxa. Cichlid fishes are well known for spectacular evolutionary radiations, as they have repeatedly evolved into large and phenotypically diverse arrays of species. Cichlid genomes carry signatures of past events and, at the same time, are the substrate for ongoing evolution. We survey genome-wide data and the available literature covering 438 cichlid populations (412 species) across multiple radiations to synthesize information about patterns and sharing of genetic variation. Nucleotide diversity within species is low in cichlids, with 92% of surveyed populations having less diversity than the median value found in other vertebrates. Divergence within radiations is also low, and a large proportion of variation is shared among species due to incomplete lineage sorting and widespread hybridization. Population genetics therefore provides a suitable conceptual framework for evolutionary genomic studies of cichlid radiations. We focus in detail on the roles of hybridization in shaping the patterns of genetic variation and in promoting cichlid diversification.
Collapse
Affiliation(s)
- Hannes Svardal
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium; .,Naturalis Biodiversity Center, 2333 Leiden, The Netherlands
| | - Walter Salzburger
- Zoological Institute, University of Basel, 4051 Basel, Switzerland; ,
| | - Milan Malinsky
- Zoological Institute, University of Basel, 4051 Basel, Switzerland; ,
| |
Collapse
|
39
|
Sadanandan KR, Low GW, Sridharan S, Gwee CY, Ng EYX, Yuda P, Prawiradilaga DM, Lee JGH, Tritto A, Rheindt FE. The conservation value of admixed phenotypes in a critically endangered species complex. Sci Rep 2020; 10:15549. [PMID: 32968132 PMCID: PMC7511927 DOI: 10.1038/s41598-020-72428-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022] Open
Abstract
In today's environmental crisis, conservationists are increasingly confronted with terminally endangered species whose last few surviving populations may be affected by allelic introgression from closely related species. Yet there is a worrying lack of evidence-based recommendations and solutions for this emerging problem. We analyzed genome-wide DNA markers and plumage variability in a critically endangered insular songbird, the Black-winged Myna (BWM, Acridotheres melanopterus). This species is highly threatened by the illegal wildlife trade, with its wild population numbering in the low hundreds, and its continued survival urgently depending on ex-situ breeding. Its three subspecies occur along a geographic gradient of melanism and are variably interpreted as three species. However, our integrative approach revealed that melanism poorly reflects the pattern of limited genomic differentiation across BWM subspecies. We also uncovered allelic introgression into the most melanistic subspecies, tertius, from the all-black congeneric Javan Myna (A. javanicus), which is native to the same islands. Based on our results, we recommend the establishment of three separate breeding programs to maintain subspecific traits that may confer local adaptation, but with the option of occasional cross-breeding between insurance populations in order to boost genetic diversity and increase overall viability prospects of each breeding program. Our results underscore the importance of evidence-based integrative approaches when determining appropriate conservation units. Given the rapid increase of terminally endangered organisms in need of ex-situ conservation, this study provides an important blueprint for similar programs dealing with phenotypically variable species.
Collapse
Affiliation(s)
- Keren R Sadanandan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
- Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| | - Gabriel W Low
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Sheeraja Sridharan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
- Department of Biological Sciences, University of Alberta, 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Chyi Yin Gwee
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Elize Y X Ng
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Pramana Yuda
- Universitas Atma Jaya, Jl. Babarsari 44, Janti, Caturtunggal, Kec. Depok, Kabupaten Sleman, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Dewi M Prawiradilaga
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jalan Raya Jakarta Bogor KM 46, Cibinong Science Center, Cibinong, 16911, Indonesia
| | - Jessica G H Lee
- Wildlife Reserves Singapore, 80 Mandai Lake Road, Singapore, 729826, Singapore
| | - Anaïs Tritto
- Wildlife Reserves Singapore, 80 Mandai Lake Road, Singapore, 729826, Singapore
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
40
|
Ewart KM, Lo N, Ogden R, Joseph L, Ho SYW, Frankham GJ, Eldridge MDB, Schodde R, Johnson RN. Phylogeography of the iconic Australian red-tailed black-cockatoo (Calyptorhynchus banksii) and implications for its conservation. Heredity (Edinb) 2020; 125:85-100. [PMID: 32398870 PMCID: PMC7426920 DOI: 10.1038/s41437-020-0315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/31/2023] Open
Abstract
Advances in sequencing technologies have revolutionized wildlife conservation genetics. Analysis of genomic data sets can provide high-resolution estimates of genetic structure, genetic diversity, gene flow, and evolutionary history. These data can be used to characterize conservation units and to effectively manage the genetic health of species in a broad evolutionary context. Here we utilize thousands of genome-wide single-nucleotide polymorphisms (SNPs) and mitochondrial DNA to provide the first genetic assessment of the Australian red-tailed black-cockatoo (Calyptorhynchus banksii), a widespread bird species comprising populations of varying conservation concern. We identified five evolutionarily significant units, which are estimated to have diverged during the Pleistocene. These units are only partially congruent with the existing morphology-based subspecies taxonomy. Genetic clusters inferred from mitochondrial DNA differed from those based on SNPs and were less resolved. Our study has a range of conservation and taxonomic implications for this species. In particular, we provide advice on the potential genetic rescue of the Endangered and restricted-range subspecies C. b. graptogyne, and propose that the western C. b. samueli population is diagnosable as a separate subspecies. The results of our study highlight the utility of considering the phylogeographic relationships inferred from genome-wide SNPs when characterizing conservation units and management priorities, which is particularly relevant as genomic data sets become increasingly accessible.
Collapse
Affiliation(s)
- Kyle M Ewart
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
- Australian Centre for Wildlife Genomics, Australian Museum Research Institute, Sydney, NSW, Australia.
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO, Canberra, ACT, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Greta J Frankham
- Australian Centre for Wildlife Genomics, Australian Museum Research Institute, Sydney, NSW, Australia
| | - Mark D B Eldridge
- Australian Centre for Wildlife Genomics, Australian Museum Research Institute, Sydney, NSW, Australia
| | - Richard Schodde
- Australian National Wildlife Collection, CSIRO, Canberra, ACT, Australia
| | - Rebecca N Johnson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Australian Centre for Wildlife Genomics, Australian Museum Research Institute, Sydney, NSW, Australia
| |
Collapse
|
41
|
Svardal H, Quah FX, Malinsky M, Ngatunga BP, Miska EA, Salzburger W, Genner MJ, Turner GF, Durbin R. Ancestral Hybridization Facilitated Species Diversification in the Lake Malawi Cichlid Fish Adaptive Radiation. Mol Biol Evol 2020; 37:1100-1113. [PMID: 31821500 PMCID: PMC7086168 DOI: 10.1093/molbev/msz294] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The adaptive radiation of cichlid fishes in East African Lake Malawi encompasses over 500 species that are believed to have evolved within the last 800,000 years from a common founder population. It has been proposed that hybridization between ancestral lineages can provide the genetic raw material to fuel such exceptionally high diversification rates, and evidence for this has recently been presented for the Lake Victoria region cichlid superflock. Here, we report that Lake Malawi cichlid genomes also show evidence of hybridization between two lineages that split 3-4 Ma, today represented by Lake Victoria cichlids and the riverine Astatotilapia sp. "ruaha blue." The two ancestries in Malawi cichlid genomes are present in large blocks of several kilobases, but there is little variation in this pattern between Malawi cichlid species, suggesting that the large-scale mosaic structure of the genomes was largely established prior to the radiation. Nevertheless, tens of thousands of polymorphic variants apparently derived from the hybridization are interspersed in the genomes. These loci show a striking excess of differentiation across ecological subgroups in the Lake Malawi cichlid assemblage, and parental alleles sort differentially into benthic and pelagic Malawi cichlid lineages, consistent with strong differential selection on these loci during species divergence. Furthermore, these loci are enriched for genes involved in immune response and vision, including opsin genes previously identified as important for speciation. Our results reinforce the role of ancestral hybridization in explosive diversification by demonstrating its significance in one of the largest recent vertebrate adaptive radiations.
Collapse
Affiliation(s)
- Hannes Svardal
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Milan Malinsky
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Eric A Miska
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - George F Turner
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
42
|
Abstract
Introgressive hybridization can affect the evolution of populations in several important ways. It may retard or reverse divergence of species, enable the development of novel traits, enhance the potential for future evolution by elevating levels of standing variation, create new species, and alleviate inbreeding depression in small populations. Most of what is known of contemporary hybridization in nature comes from the study of pairs of species, either coexisting in the same habitat or distributed parapatrically and separated by a hybrid zone. More rarely, three species form an interbreeding complex (triad), reported in vertebrates, insects, and plants. Often, one species acts as a genetic link or conduit for the passage of genes (alleles) between two others that rarely, if ever, hybridize. Demographic and genetic consequences are unknown. Here we report results of a long-term study of interbreeding Darwin's finches on Daphne Major island, Galápagos. Geospiza fortis acted as a conduit for the passage of genes between two others that have never been observed to interbreed on Daphne: Geospiza fuliginosa, a rare immigrant, and Geospiza scandens, a resident. Microsatellite gene flow from G. fortis into G. scandens increased in frequency during 30 y of favorable ecological conditions, resulting in genetic and morphological convergence. G. fortis, G. scandens, and the derived dihybrids and trihybrids experienced approximately equal fitness. Especially relevant to young adaptive radiations, where species differ principally in ecology and behavior, these findings illustrate how new combinations of genes created by hybridization among three species can enhance the potential for evolutionary change.
Collapse
|
43
|
Terekhanova NV, Barmintseva AE, Kondrashov AS, Bazykin GA, Mugue NS. Architecture of Parallel Adaptation in Ten Lacustrine Threespine Stickleback Populations from the White Sea Area. Genome Biol Evol 2020; 11:2605-2618. [PMID: 31406984 PMCID: PMC6761963 DOI: 10.1093/gbe/evz175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 12/20/2022] Open
Abstract
Adaptation of threespine stickleback to freshwater involves parallel recruitment of freshwater alleles in clusters of closely linked sites, or divergence islands (DIs). However, it remains unclear to what extent the DIs and the alleles that constitute them coincide between populations that underwent adaptation to freshwater independently. We examine threespine sticklebacks from ten freshwater lakes that emerged 500–1500 years ago in the White Sea basin, with the emphasis on repeatability of genomic patterns of adaptation among the lake populations and the role of local recombination rate in the distribution and structure of DIs. The 65 detected DIs are clustered in the genome, forming 12 aggregations, and this clustering cannot be explained by the variation of the recombination rate. Only 21 of the DIs are present in all the freshwater populations, likely being indispensable for successful colonization of freshwater environment by the ancestral marine population. Within most DIs, the same set of single nucleotide polymorphisms (SNPs) distinguish marine and freshwater haplotypes in all the lake populations; however, in some DIs, freshwater alleles differ between populations, suggesting that they could have been established by recruitment of different haplotypes in different populations.
Collapse
Affiliation(s)
- Nadezhda V Terekhanova
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Anna E Barmintseva
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Alexey S Kondrashov
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan.,M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgii A Bazykin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Nikolai S Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia.,N. K. Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
44
|
Olsson U, Alström P. A comprehensive phylogeny and taxonomic evaluation of the waxbills (Aves: Estrildidae). Mol Phylogenet Evol 2020; 146:106757. [PMID: 32028027 DOI: 10.1016/j.ympev.2020.106757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/23/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022]
Abstract
We present a revised taxonomy of Estrildidae based on the first time-calibrated phylogeny of the family Estrildidae estimated from a data set including the majority of the species, and all genera except the monospecific Paludipasser, using two mitochondrial and five nuclear markers. We find that most differences in current taxonomy reflect alternative opinions among authors regarding inclusiveness of genera, which are usually not in conflict with the phylogeny. The most notable exception is the current circumscriptions of the genera Neochmia, Nesocharis and Taeniopygia, which are incompatible with the phylogeny. Estrildidae is subdivided into six well supported subclades, which we propose be recognized as the subfamilies Amandavinae, Erythrurinae, Estrildinae, Lagonostictinae, Lonchurinae and Poephilinae.
Collapse
Affiliation(s)
- Urban Olsson
- Department of Biology and Environmental Science, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Kirschel ANG, Nwankwo EC, Seal N, Grether GF. Time spent together and time spent apart affect song, feather colour and range overlap in tinkerbirds. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blz191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Most studies on the processes driving evolutionary diversification highlight the importance of genetic drift in geographical isolation and natural selection across ecological gradients. Direct interactions among related species have received much less attention, but they can lead to character displacement, with recent research identifying patterns of displacement attributed to either ecological or reproductive processes. Together, these processes could explain complex, trait-specific patterns of diversification. Few studies, however, have examined the possible effects of these processes together or compared the divergence in multiple traits between interacting species among contact zones. Here, we show how traits of two Pogoniulus tinkerbird species vary among regions across sub-Saharan Africa. However, in addition to variation between regions consistent with divergence in refugial isolation, both song and morphology diverge between the species where they coexist. In West Africa, where the species are more similar in plumage, there is possible competitive or reproductive exclusion. In Central and East Africa, patterns of variation are consistent with agonistic character displacement. Molecular analyses support the hypothesis that differences in the age of interaction among regions can explain why species have evolved phenotypic differences and coexist in some regions but not others. Our findings suggest that competitive interactions between species and the time spent interacting, in addition to the time spent in refugial isolation, play important roles in explaining patterns of species diversification.
Collapse
Affiliation(s)
- Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Emmanuel C Nwankwo
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nadya Seal
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Eldridge MDB, Pearson DJ, Potter S. Identification of a novel hybrid zone within the black-footed rock-wallaby (Petrogale lateralis) in Western Australia. AUST J ZOOL 2020. [DOI: 10.1071/zo20052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is increasingly recognised that intertaxon hybridisation is more common in vertebrates than previously thought. However, recent hybridisation has rarely been reported from wild marsupials, with only three instances of first generation (F1) hybrids reported, all in macropodids. In the 1990s a chromosomally anomalous population of black-footed rock-wallaby (Petrogale lateralis) was identified in the Townsend Ridges in central eastern Western Australia. Individuals from this population had chromosomes characteristic of two P. lateralis subspecies (P. l. centralis and P. l. kimberleyensis). This unusual mixture is suggestive of a novel hybrid zone between subspecies, but it could also represent a P. l. centralis population in which a 9–10 chromosome fusion has independently arisen. To test between these hypotheses, we compared mitochondrial DNA Control Region (CR) sequence data from Townsend Ridges individuals to published data for all P. lateralis subspecies. Two divergent lineages of CR haplotypes were identified at Townsend Ridges, suggesting that it represents a novel rock-wallaby hybrid zone, the third reported in the genus. While one CR haplotype clustered with those typical of P. l. centralis, the other Townsend Ridges haplotypes clustered with those from three different P. lateralis subspecies but not with P. l. kimberleyensis. Additional studies with multiple nuclear genes will be necessary to fully understand the nature of this novel hybrid zone.
Collapse
|
47
|
Hybridization increases population variation during adaptive radiation. Proc Natl Acad Sci U S A 2019; 116:23216-23224. [PMID: 31659024 DOI: 10.1073/pnas.1913534116] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adaptive radiations are prominent components of the world's biodiversity. They comprise many species derived from one or a small number of ancestral species in a geologically short time that have diversified into a variety of ecological niches. Several authors have proposed that introgressive hybridization has been important in the generation of new morphologies and even new species, but how that happens throughout evolutionary history is not known. Interspecific gene exchange is expected to have greatest impact on variation if it occurs after species have diverged genetically and phenotypically but before genetic incompatibilities arise. We use a dated phylogeny to infer that populations of Darwin's finches in the Galápagos became more variable in morphological traits through time, consistent with the hybridization hypothesis, and then declined in variation after reaching a peak. Some species vary substantially more than others. Phylogenetic inferences of hybridization are supported by field observations of contemporary hybridization. Morphological effects of hybridization have been investigated on the small island of Daphne Major by documenting changes in hybridizing populations of Geospiza fortis and Geospiza scandens over a 30-y period. G. scandens showed more evidence of admixture than G. fortis Beaks of G. scandens became progressively blunter, and while variation in length increased, variation in depth decreased. These changes imply independent effects of introgression on 2, genetically correlated, beak dimensions. Our study shows how introgressive hybridization can alter ecologically important traits, increase morphological variation as a radiation proceeds, and enhance the potential for future evolution in changing environments.
Collapse
|
48
|
Genome-wide evidence supports mitochondrial relationships and pervasive parallel phenotypic evolution in open-habitat chats. Mol Phylogenet Evol 2019; 139:106568. [DOI: 10.1016/j.ympev.2019.106568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022]
|
49
|
Ma Y, Wang J, Hu Q, Li J, Sun Y, Zhang L, Abbott RJ, Liu J, Mao K. Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex. Commun Biol 2019; 2:213. [PMID: 31240251 PMCID: PMC6581913 DOI: 10.1038/s42003-019-0445-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/29/2019] [Indexed: 11/11/2022] Open
Abstract
Introgression may act as an important source of new genetic variation to facilitate the adaptation of organisms to new environments, yet how introgression might enable tree species to adapt to higher latitudes and elevations remains unclear. Applying whole-transcriptome sequencing and population genetic analyses, we present an example of ancient introgression from a cypress species (Cupressus gigantea) that occurs at higher latitude and elevation on the Qinghai-Tibet Plateau into a related species (C. duclouxiana), which has likely aided the latter species to extend its range by colonizing cooler and drier mountain habitats during postglacial periods. We show that 16 introgressed candidate adaptive loci could have played pivotal roles in response to diverse stresses experienced in a high-elevation environment. Our findings provide new insights into the evolutionary history of Qinghai-Tibet Plateau plants and the importance of introgression in the adaptation of species to climate change.
Collapse
Affiliation(s)
- Yazhen Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Ji Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Yongshuai Sun
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, P. R. China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Richard J. Abbott
- School of Biology, Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TH UK
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610065 Chengdu, Sichuan P. R. China
| |
Collapse
|
50
|
Marques DA, Meier JI, Seehausen O. A Combinatorial View on Speciation and Adaptive Radiation. Trends Ecol Evol 2019; 34:531-544. [DOI: 10.1016/j.tree.2019.02.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 01/28/2023]
|