1
|
Inoue S, Masaki Y, Nakagawa S, Yokoi S. An evolutionarily distinct Hmgn2 variant influences shape recognition in Medaka Fish. Commun Biol 2024; 7:973. [PMID: 39179658 PMCID: PMC11344144 DOI: 10.1038/s42003-024-06667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Protein sequence diversification significantly impacts physiological traits. In this study, using medaka fish (Oryzias latipes), we identify a novel protein variant affecting shape preference behavior. Re-analysis of sequencing data reveals that LOC101156433 encodes a unique Hmgn2 variant with unusual subnuclear localization, clustered separately from the Hmgn2 clades of other species. Medaka mutants with this variant showed reduce telencephalic regions and altered shape preference, suggesting a link between protein sequence variation and behavioral changes. Additionally, this Hmgn2 variant is common in Acanthopterygii fishes, which are adapted to a variety of environments, indicating its potential evolutionary significance. Our findings highlight the relationship between amino acid sequence variation and the development of new molecular and behavioral adaptations, providing insights into the visual shape perception system in fish.
Collapse
Affiliation(s)
- Shuntaro Inoue
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yume Masaki
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
2
|
Fishman B, Tauber E. Epigenetics and seasonal timing in animals: a concise review. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:565-574. [PMID: 37695537 PMCID: PMC11226475 DOI: 10.1007/s00359-023-01673-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Seasonal adaptation in animals is a complex process that involves genetic, epigenetic, and environmental factors. The present review explores recent studies on epigenetic mechanisms implicated in seasonal adaptation in animals. The review is divided into three main sections, each focusing on a different epigenetic mechanism: DNA methylation, histone modifications, and non-coding RNA. Additionally, the review delves into the current understanding of how these epigenetic factors contribute to the regulation of circadian and seasonal cycles. Understanding these molecular mechanisms provides the first step in deciphering the complex interplay between genetics, epigenetics, and the environment in driving seasonal adaptation in animals. By exploring these mechanisms, a better understanding of how animals adapt to changing environmental conditions can be achieved.
Collapse
Affiliation(s)
- Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. Noncoding RNAs: Emerging regulators of behavioral complexity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1847. [PMID: 38702948 DOI: 10.1002/wrna.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/06/2024]
Abstract
The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sanovar Dayal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Chaubey
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dheeraj Chandra Joshi
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samruddhi Ranmale
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Cao L, Zhou J, Ma W, Zhang H, Pan H, Xu M, Wang Y, Wang P, Xiang X, Liu Y, Qiu X, Zhou X, Wang X. Identification of lncRNA-based regulatory mechanisms of Takifugu rubripes growth traits in fast and slow-growing family lines. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101164. [PMID: 37976965 DOI: 10.1016/j.cbd.2023.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Family selection is an important method in fish aquaculture because growth is the most important economic trait. Fast-and slow-growing families of tiger puffer fish (Takifugu rubripes) have been established through family selection. The development of teleost fish is primarily controlled by the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis that includes the hypothalamus-pituitary-liver. In this study, the molecular mechanisms underlying T. rubripes growth were analyzed by comparing transcriptomes from fast- and slow-growing families. The expressions of 214 lncRNAs were upregulated, and those of 226 were downregulated in the brain tissues of the fast-growing T. rubripes family compared to those of the slow-growing family. Differentially expressed lncRNAs centrally regulate mitogen-activated protein kinase (MAPK) and forkhead box O (FoxO) signaling pathways. Based on the results of lncRNA-gene network construction, we found that lncRNA3133.13, lncRNA23169.1, lncRNA23145.1, and lncRNA23141.3 regulated all four genes (igf1, mdm2, flt3, and cwf19l1). In addition, lncRNA7184.10 may be a negative regulator of rasgrp2 and a positive regulator of gadd45ga, foxo3b, and dusp5. These target genes are associated with the growth and development of organisms through the PI3K/AKT and MAPK/ERK pathways. Overall, transcriptomic analyses of fast- and slow-growing families of T. rubripes provided insights into the molecular mechanisms of teleost fish growth rates. Further, these analyses provide evidence for key genes related to growth regulation and the lncRNA expression regulatory network that will provide a framework for improving puffer fish germplasm resources.
Collapse
Affiliation(s)
- Lirong Cao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Jinxu Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Wenchao Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Huakun Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hanbai Pan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Mingjie Xu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yusen Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Peiyang Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xuejian Xiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xuemei Qiu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xiaoxu Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
5
|
Nakayama T, Tanikawa M, Okushi Y, Itoh T, Shimmura T, Maruyama M, Yamaguchi T, Matsumiya A, Shinomiya A, Guh YJ, Chen J, Naruse K, Kudoh H, Kondo Y, Naoki H, Aoki K, Nagano AJ, Yoshimura T. A transcriptional program underlying the circannual rhythms of gonadal development in medaka. Proc Natl Acad Sci U S A 2023; 120:e2313514120. [PMID: 38109538 PMCID: PMC10756274 DOI: 10.1073/pnas.2313514120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish (Oryzias latipes). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the "histogenesis hypothesis" that postulates the involvement of tissue remodeling in circannual time-keeping.
Collapse
Affiliation(s)
- Tomoya Nakayama
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
| | - Miki Tanikawa
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Yuki Okushi
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Thoma Itoh
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
| | - Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
| | - Michiyo Maruyama
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Taiki Yamaguchi
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Akiko Matsumiya
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
| | - Ying-Jey Guh
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Junfeng Chen
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Yohei Kondo
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
| | - Honda Naoki
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima739-8511, Japan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki444-8787, Japan
| | - Atsushi J. Nagano
- Department of Life Sciences, Faculty of Agriculture, Ryukoku University, Otsu520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka997-0052, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 444-8585Okazaki, Japan
- World Premier International Research Center Initiative, Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya464-8601, Japan
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research, Nagoya University, Nagoya464-8601, Japan
| |
Collapse
|
6
|
Nakayama T, Hirano F, Okushi Y, Matsuura K, Ohashi M, Matsumiya A, Yoshimura T. Orphan nuclear receptor nr4a1 regulates winter depression-like behavior in medaka. Neurosci Lett 2023; 814:137469. [PMID: 37669713 DOI: 10.1016/j.neulet.2023.137469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
About 10% of the population suffers from depression in winter at high latitude. Although it has become a serious public health issue, its underlying mechanism remains unknown and new treatments and therapies are required. As an adaptive strategy, many animals also exhibit depression-like behavior in winter. Previously, it has been reported that celastrol, a traditional Chinese medicine, can rescue winter depression-like behavior in medaka, an excellent model of winter depression. Nuclear receptor subfamily 4 group A member 1 (nr4a1, also known as nur77) is a known target of celastrol, and the signaling pathway of nr4a1 was suggested to be inactive in medaka brain during winter, implying the association of nr4a1 and winter depression-like behavior. However, the direct evidence for its involvement in winter depression-like behavior remains unclear. The present study found that nr4a1 was suppressed in the medaka brain under winter conditions. Cytosporone B, nr4a1 chemical activator, reversed winter depression-like behavior under winter conditions. Additionally, nr4a1 mutant fish generated by CRISPR/Cas9 system showed decreased sociability under summer conditions. Therefore, our results demonstrate that the seasonal regulation of nr4a1 regulates winter depression-like behavior and offers potential therapeutic target.
Collapse
Affiliation(s)
- Tomoya Nakayama
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Fuka Hirano
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuki Okushi
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kosuke Matsuura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Miki Ohashi
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Akiko Matsumiya
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan; Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
7
|
Ansai S, Kitano J. Speciation and adaptation research meets genome editing. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200516. [PMID: 35634923 PMCID: PMC9149800 DOI: 10.1098/rstb.2020.0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/07/2022] [Indexed: 07/20/2023] Open
Abstract
Understanding the genetic basis of reproductive isolation and adaptive traits in natural populations is one of the fundamental goals in evolutionary biology. Genome editing technologies based on CRISPR-Cas systems and site-specific recombinases have enabled us to modify a targeted genomic region as desired and thus to conduct functional analyses of target loci, genes and mutations even in non-conventional model organisms. Here, we review the technical properties of genome editing techniques by classifying them into the following applications: targeted gene knock-out for investigating causative gene functions, targeted gene knock-in of marker genes for visualizing expression patterns and protein functions, precise gene replacement for identifying causative alleles and mutations, and targeted chromosomal rearrangement for investigating the functional roles of chromosomal structural variations. We describe examples of their application to demonstrate functional analysis of naturally occurring genetic variations and discuss how these technologies can be applied to speciation and adaptation research. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
8
|
Maruyama M, Furukawa Y, Kinoshita M, Mukaiyama A, Akiyama S, Yoshimura T. Adenylate kinase 1 overexpression increases locomotor activity in medaka fish. PLoS One 2022; 17:e0257967. [PMID: 34982774 PMCID: PMC8726475 DOI: 10.1371/journal.pone.0257967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Maintenance of the energy balance is indispensable for cell survival and function. Adenylate kinase (Ak) is a ubiquitous enzyme highly conserved among many organisms. Ak plays an essential role in energy regulation by maintaining adenine nucleotide homeostasis in cells. However, its role at the whole organism level, especially in animal behavior, remains unclear. Here, we established a model using medaka fish (Oryzias latipes) to examine the function of Ak in environmental adaptation. Medaka overexpressing the major Ak isoform Ak1 exhibited increased locomotor activity compared to that of the wild type. Interestingly, this increase was temperature dependent. Our findings suggest that cellular energy balance can modulate locomotor activity.
Collapse
Affiliation(s)
- Michiyo Maruyama
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Yuko Furukawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Atsushi Mukaiyama
- Research Center of Integrative Molecular System (CIMoS), Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, Japan
- Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular System (CIMoS), Institute for Molecular Science, National Institute of Natural Sciences, Okazaki, Japan
- Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Fujisawa K, Takami T, Shintani H, Sasai N, Matsumoto T, Yamamoto N, Sakaida I. Seasonal variations in photoperiod affect hepatic metabolism of medaka (Oryzias latipes). FEBS Open Bio 2021; 11:1029-1040. [PMID: 33475250 PMCID: PMC8016123 DOI: 10.1002/2211-5463.13095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Organisms living in temperate regions are sensitive to seasonal variations in the environment; they are known to accumulate energy as fat in their livers during the winter when days are shorter, temperatures are lower, and food is scarce. However, the effect of variations in photoperiod alone on hepatic lipid metabolism has not been well studied. Therefore, in this study, we analyzed lipid metabolism in the liver of medaka, Oryzias latipes, while varying the length of days at constant temperature. Larger amounts of fatty acids accumulated in the liver after 14 days under short‐day conditions than under long‐day conditions. Metabolome analysis showed no accumulation of long‐chain unsaturated fatty acids, but showed a significant accumulation of long‐chain saturated fatty acids. Short‐day conditions induced a reduction in the levels of succinate, fumarate, and malate in the tricarboxylic acid cycle, decreased expression of PPARα, and decreased accumulation of acylcarnitine, which suggested inhibition of lipolysis. In addition, transparent medaka fed on a high‐fat diet under short‐day conditions exhibited greater amounts of fat accumulation and developed fatty liver. The findings of our study will be useful for creating a medaka hepatic steatosis model for future studies of hepatic steatosis‐related diseases.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Department of Liver regenerative medicine, Yamaguchi University School of Medicine, Ube, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Taro Takami
- Department of Liver regenerative medicine, Yamaguchi University School of Medicine, Ube, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Haruko Shintani
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Nanami Sasai
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Yamaguchi University Health Administration Center, Japan
| | - Isao Sakaida
- Department of Liver regenerative medicine, Yamaguchi University School of Medicine, Ube, Japan.,Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
10
|
Fontinha BM, Zekoll T, Al-Rawi M, Gallach M, Reithofer F, Barker AJ, Hofbauer M, Fischer RM, von Haeseler A, Baier H, Tessmar-Raible K. TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. PLoS Biol 2021; 19:e3001012. [PMID: 33411725 PMCID: PMC7837489 DOI: 10.1371/journal.pbio.3001012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/26/2021] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Vertebrate behavior is strongly influenced by light. Light receptors, encoded by functional opsin proteins, are present inside the vertebrate brain and peripheral tissues. This expression feature is present from fishes to human and appears to be particularly prominent in diurnal vertebrates. Despite their conserved widespread occurrence, the nonvisual functions of opsins are still largely enigmatic. This is even more apparent when considering the high number of opsins. Teleosts possess around 40 opsin genes, present from young developmental stages to adulthood. Many of these opsins have been shown to function as light receptors. This raises the question of whether this large number might mainly reflect functional redundancy or rather maximally enables teleosts to optimally use the complex light information present under water. We focus on tmt-opsin1b and tmt-opsin2, c-opsins with ancestral-type sequence features, conserved across several vertebrate phyla, expressed with partly similar expression in non-rod, non-cone, non-retinal-ganglion-cell brain tissues and with a similar spectral sensitivity. The characterization of the single mutants revealed age- and light-dependent behavioral changes, as well as an impact on the levels of the preprohormone sst1b and the voltage-gated sodium channel subunit scn12aa. The amount of daytime rest is affected independently of the eyes, pineal organ, and circadian clock in tmt-opsin1b mutants. We further focused on daytime behavior and the molecular changes in tmt-opsin1b/2 double mutants, and found that-despite their similar expression and spectral features-these opsins interact in part nonadditively. Specifically, double mutants complement molecular and behavioral phenotypes observed in single mutants in a partly age-dependent fashion. Our work provides a starting point to disentangle the highly complex interactions of vertebrate nonvisual opsins, suggesting that tmt-opsin-expressing cells together with other visual and nonvisual opsins provide detailed light information to the organism for behavioral fine-tuning. This work also provides a stepping stone to unravel how vertebrate species with conserved opsins, but living in different ecological niches, respond to similar light cues and how human-generated artificial light might impact on behavioral processes in natural environments.
Collapse
Affiliation(s)
- Bruno M. Fontinha
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Theresa Zekoll
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Mariam Al-Rawi
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Miguel Gallach
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Florian Reithofer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | | | - Maximilian Hofbauer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- loopbio, Vienna, Austria
| | - Ruth M. Fischer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- FENS-Kavli Network of Excellence, Brussels, Belgium
| |
Collapse
|
11
|
Chen J, Okimura K, Yoshimura T. Light and Hormones in Seasonal Regulation of Reproduction and Mood. Endocrinology 2020; 161:5879749. [PMID: 32738138 PMCID: PMC7442225 DOI: 10.1210/endocr/bqaa130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Organisms that inhabit the temperate zone exhibit various seasonal adaptive behaviors, including reproduction, hibernation, molting, and migration. Day length, known as photoperiod, is the most noise-free and widely used environmental cue that enables animals to anticipate the oncoming seasons and adapt their physiologies accordingly. Although less clear, some human traits also exhibit seasonality, such as birthrate, mood, cognitive brain responses, and various diseases. However, the molecular basis for human seasonality is poorly understood. Herein, we first review the underlying mechanisms of seasonal adaptive strategies of animals, including seasonal reproduction and stress responses during the breeding season. We then briefly summarize our recent discovery of signaling pathways involved in the winter depression-like phenotype in medaka fish. We believe that exploring the regulation of seasonal traits in animal models will provide insight into human seasonality and aid in the understanding of human diseases such as seasonal affective disorder (SAD).
Collapse
Affiliation(s)
- Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kousuke Okimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Bertucci EM, Mason MW, Camus AC, Rhodes OE, Parrott BB. Chronic low dose irradiation alters hepatic transcriptional profiles, but not global DNA methylation in medaka (Oryzias latipes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138680. [PMID: 32361431 DOI: 10.1016/j.scitotenv.2020.138680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Ionizing radiation (IR) resulting from both natural and anthropogenic sources is ubiquitous throughout the environment. Historically, studies on the biological impacts of radiation primarily focused on responses to acute doses of radiation, with little advancement in our understanding of environmentally relevant exposures. Epigenetic mechanisms are capable of mediating organismal responses to environmental stressors and DNA methylation plays important roles in gene regulation and promoting chromosomal stability. Here, we assess broad-scale transcriptional and epigenetic variation resulting from chronic exposure to low doses of ionizing radiation (LDIR; 5.78, 53.76, or 520.23 mGy/day) using Japanese medaka fish (Oryzias latipes) in a replicated mesocosm design. We observed significant changes to the hepatic transcriptome induced by a 3-month chronic exposure to IR, whereas global DNA methylation appeared largely unaffected. Our findings reveal a set of genes, including those involved in immune function, responding to environmentally relevant IR exposures, which do not appear to be mediated by a systemic global shift in DNA methylation.
Collapse
Affiliation(s)
- Emily M Bertucci
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Marilyn W Mason
- Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Alvin C Camus
- College of Veterinary Medicine Department of Pathology, University of Georgia, 501 D.W. Brooks Drive, Athens 30602, GA, USA.
| | - Olin E Rhodes
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| | - Benjamin B Parrott
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens 30602, GA, USA; Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken 29802, SC, USA.
| |
Collapse
|
13
|
Li Y, Liu Y, Yang H, Zhang T, Naruse K, Tu Q. Dynamic transcriptional and chromatin accessibility landscape of medaka embryogenesis. Genome Res 2020; 30:924-937. [PMID: 32591361 PMCID: PMC7370878 DOI: 10.1101/gr.258871.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Medaka (Oryzias latipes) has become an important vertebrate model widely used in genetics, developmental biology, environmental sciences, and many other fields. A high-quality genome sequence and a variety of genetic tools are available for this model organism. However, existing genome annotation is still rudimentary, as it was mainly based on computational prediction and short-read RNA-seq data. Here we report a dynamic transcriptome landscape of medaka embryogenesis profiled by long-read RNA-seq, short-read RNA-seq, and ATAC-seq. By integrating these data sets, we constructed a much-improved gene model set including about 17,000 novel isoforms and identified 1600 transcription factors, 1100 long noncoding RNAs, and 150,000 potential cis-regulatory elements as well. Time-series data sets provided another dimension of information. With the expression dynamics of genes and accessibility dynamics of cis-regulatory elements, we investigated isoform switching, as well as regulatory logic between accessible elements and genes, during embryogenesis. We built a user-friendly medaka omics data portal to present these data sets. This resource provides the first comprehensive omics data sets of medaka embryogenesis. Ultimately, we term these three assays as the minimum ENCODE toolbox and propose the use of it as the initial and essential profiling genomic assays for model organisms that have limited data available. This work will be of great value for the research community using medaka as the model organism and many others as well.
Collapse
Affiliation(s)
- Yingshu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Lee H, Zhang Z, Krause HM. Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners? Trends Genet 2019; 35:892-902. [PMID: 31662190 DOI: 10.1016/j.tig.2019.09.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
Abstract
Our recent ability to sequence entire genomes, along with all of their transcribed RNAs, has led to the surprising finding that only ∼1% of the human genome is used to encode proteins. This finding has led to vigorous debate over the functional importance of the transcribed but untranslated portions of the genome. Currently, scientists tend to assume coding genes are functional until proven not to be, while the opposite is true for noncoding genes. This review takes a new look at the evidence for and against widespread noncoding gene functionality. We focus in particular on long noncoding RNA (noncoding RNAs longer than 200 nucleotides) genes and their 'junk' associates, transposable elements, and satellite repeats. Taken together, the suggestion put forward is that more of this junk DNA may be functional than nonfunctional and that noncoding RNAs and transposable elements act symbiotically to drive evolution.
Collapse
Affiliation(s)
- Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Henry M Krause
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|