1
|
Kaufmann P, Rönn JL, Immonen E, Arnqvist G. Sex-Specific Dominance of Gene Expression in Seed Beetles. Mol Biol Evol 2024; 41:msae244. [PMID: 39692633 DOI: 10.1093/molbev/msae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
When different alleles are favored in different environments, dominance reversal where alternate alleles are dominant in the environment in which they are favored can generate net balancing selection. The sexes represent two distinct genetic environments and sexually antagonistic (SA) selection can maintain genetic variation, especially when the alleles involved show sex-specific dominance. Sexual dimorphism in gene expression is pervasive and has been suggested to result from SA selection. Yet, whether gene-regulatory variation shows sex-specific dominance is poorly understood. We tested for sex-specific dominance in gene expression using three crosses between homozygous lines derived from a population of a seed beetle, where a previous study documented a signal of dominance reversal for fitness between the sexes. Overall, we found that the dominance effects of variants affecting gene expression were positively correlated between the sexes (r = 0.33 to 0.44). Yet, 586 transcripts showed significant differences in dominance between the sexes. Sex-specific dominance was significantly more common in transcripts with more sex-biased expression, in two of three of our crosses. Among transcripts showing sex-specific dominance, lesser sexual dimorphism in gene expression among heterozygotes was somewhat more common than greater. Gene ontology enrichment analyses showed that functional categories associated with known SA phenotypes in Callosobruchus maculatus were overrepresented among transcripts with sex-specific dominance, including genes involved in metabolic processes and the target-of-rapamycin pathway. Our results support the suggestion that sex-specific dominance of regulatory variants contributes to the maintenance of genetic variation in fitness mediated by SA selection in this species.
Collapse
Affiliation(s)
- Philipp Kaufmann
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75234 Uppsala, Sweden
| | | | - Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, 75234 Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 75234 Uppsala, Sweden
| |
Collapse
|
2
|
Simmons LW, Lovegrove M. Interacting phenotypic plasticities: do male and female responses to the sociosexual environment interact to determine fitness? Evolution 2024; 78:1969-1979. [PMID: 39290090 DOI: 10.1093/evolut/qpae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Socially induced plasticity in reproductive effort is a widely documented phenomenon. However, few empirical studies have examined how male and female plastic responses to the social environment might interact in determining fitness outcomes. In field crickets, Teleogryllus oceanicus, males respond to rival songs by increasing expenditure on seminal fluid proteins that enhance competitive fertilization success at the cost of reduced embryo survival. It remains unknown whether plastic responses in females could moderate the effects of male competitiveness on offspring performance. Here, we used a fully factorial design to explore the interacting effects on fitness of male and female plasticity to the sociosexual environment. We found that female crickets exposed to male songs increased the number of eggs produced during early life reproduction, which came at the cost of reduced offspring size. There was evidence, albeit weak, that interacting effects of male and female sociosexual environments contributed to variation in the hatching success of eggs laid by females. Lifetime offspring production was unaffected by the sociosexual environments to which upstream male and female plastic responses were made. Our data offer a rare test of the theoretical expectation that male and female plasticities should interact in their effects on female fitness.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA, Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
3
|
Castano-Sanz V, Gomez-Mestre I, Rodriguez-Exposito E, Garcia-Gonzalez F. Pesticide exposure triggers sex-specific inter- and transgenerational effects conditioned by past sexual selection. Proc Biol Sci 2024; 291:20241037. [PMID: 39014998 PMCID: PMC11252676 DOI: 10.1098/rspb.2024.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Environmental variation often induces plastic responses in organisms that can trigger changes in subsequent generations through non-genetic inheritance mechanisms. Such transgenerational plasticity thus consists of environmentally induced non-random phenotypic modifications that are transmitted through generations. Transgenerational effects may vary according to the sex of the organism experiencing the environmental perturbation, the sex of their descendants or both, but whether they are affected by past sexual selection is unknown. Here, we use experimental evolution on an insect model system to conduct a first test of the involvement of sexual selection history in shaping transgenerational plasticity in the face of rapid environmental change (exposure to pesticide). We manipulated evolutionary history in terms of the intensity of sexual selection for over 80 generations before exposing individuals to the toxicant. We found that sexual selection history constrained adaptation under rapid environmental change. We also detected inter- and transgenerational effects of pesticide exposure in the form of increased fitness and longevity. These cross-generational influences of toxicants were sex dependent (they affected only male descendants), and intergenerational, but not transgenerational, plasticity was modulated by sexual selection history. Our results highlight the complexity of intra-, inter- and transgenerational influences of past selection and environmental stress on phenotypic expression.
Collapse
Affiliation(s)
- Veronica Castano-Sanz
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | - Ivan Gomez-Mestre
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | | | - Francisco Garcia-Gonzalez
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
4
|
Baur J, Koppik M, Savković U, Đorđević M, Stojkovic B, Berger D. Coevolution of longevity and female germline maintenance. Proc Biol Sci 2024; 291:20240532. [PMID: 38864321 PMCID: PMC11338575 DOI: 10.1098/rspb.2024.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
An often-overlooked aspect of life-history optimization is the allocation of resources to protect the germline and secure safe transmission of genetic information. While failure to do so renders significant fitness consequences in future generations, germline maintenance comes with substantial costs. Thus, germline allocation should trade off with other life-history decisions and be optimized in accordance with an organism's reproductive schedule. Here, we tested this hypothesis by studying germline maintenance in lines of seed beetle, selected for early (E) or late (L) reproduction for 350 and 240 generations, respectively. Female animals provide maintenance and screening of male gametes in their reproductive tract and oocytes. Here, we reveal the ability of young and aged E- and L-females to provide this form of germline maintenance by mating them to males with ejaculates with artificially elevated levels of protein and DNA damage. We find that germline maintenance in E-females peaks at young age and then declines, while the opposite is true for L-females, in accordance with the age of reproduction in the respective regime. These findings identify the central role of allocation to secure germline integrity in life-history evolution and highlight how females can play a crucial role in mitigating the effects of male germline decisions on mutation rate and offspring quality.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade11000, Serbia
| | - Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade11000, Serbia
| | - Biljana Stojkovic
- Institute of Zoology, Chair of Genetics and Evolution, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
| | - David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Garaud L, Nusbaumer D, Marques da Cunha L, de Guttry C, Ançay L, Atherton A, Lasne E, Wedekind C. Parental kinship coefficient but not paternal coloration predicts early offspring growth in lake char. Heredity (Edinb) 2024; 132:247-256. [PMID: 38480957 PMCID: PMC11074127 DOI: 10.1038/s41437-024-00678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/08/2024] Open
Abstract
The 'good genes' hypotheses of sexual selection predict that females prefer males with strong ornaments because they are in good health and vigor and can afford the costs of the ornaments. A key assumption of this concept is that male health and vigor are useful predictors of genetic quality and hence offspring performance. We tested this prediction in wild-caught lake char (Salvelinus umbla) whose breeding coloration is known to reveal aspects of male health. We first reanalyzed results from sperm competition trials in which embryos of known parenthood had been raised singly in either a stress- or non-stress environment. Paternal coloration did not correlate with any measures of offspring performance. However, offspring growth was reduced with higher kinship coefficients between the parents. To test the robustness of these first observations, we collected a new sample of wild males and females, used their gametes in a full-factorial in vitro breeding experiment, and singly raised about 3000 embryos in either a stress- or non-stress environment (stress induced by microbes). Again, paternal coloration did not predict offspring performance, while offspring growth was reduced with higher kinship between the parents. We conclude that, in lake char, the genetic benefits of mate choice would be strongest if females could recognize and avoid genetically related males, while male breeding colors may be more relevant in intra-sexual selection.
Collapse
Affiliation(s)
- Laura Garaud
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - David Nusbaumer
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Christian de Guttry
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Environmental Bioinformatic Group, Lausanne, Switzerland
| | - Laurie Ançay
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Audrey Atherton
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emilien Lasne
- Université Savoie Mont Blanc, INRAE, UMR CARRTEL, Station d'Hydrobiologie Lacustre, Thonon Cedex, France
- UMR DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Claus Wedekind
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Baur J, Zwoinska M, Koppik M, Snook RR, Berger D. Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evol Lett 2024; 8:101-113. [PMID: 38370539 PMCID: PMC10872150 DOI: 10.1093/evlett/qrad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 02/20/2024] Open
Abstract
Climates are changing rapidly, demanding equally rapid adaptation of natural populations. Whether sexual selection can aid such adaptation is under debate; while sexual selection should promote adaptation when individuals with high mating success are also best adapted to their local surroundings, the expression of sexually selected traits can incur costs. Here we asked what the demographic consequences of such costs may be once climates change to become harsher and the strength of natural selection increases. We first adopted a classic life history theory framework, incorporating a trade-off between reproduction and maintenance, and applied it to the male germline to generate formalized predictions for how an evolutionary history of strong postcopulatory sexual selection (sperm competition) may affect male fertility under acute adult heat stress. We then tested these predictions by assessing the thermal sensitivity of fertility (TSF) in replicated lineages of seed beetles maintained for 68 generations under three alternative mating regimes manipulating the opportunity for sexual and natural selection. In line with the theoretical predictions, we find that males evolving under strong sexual selection suffer from increased TSF. Interestingly, females from the regime under strong sexual selection, who experienced relaxed selection on their own reproductive effort, had high fertility in benign settings but suffered increased TSF, like their brothers. This implies that female fertility and TSF evolved through genetic correlation with reproductive traits sexually selected in males. Paternal but not maternal heat stress reduced offspring fertility with no evidence for adaptive transgenerational plasticity among heat-exposed offspring, indicating that the observed effects may compound over generations. Our results suggest that trade-offs between fertility and traits increasing success in postcopulatory sexual selection can be revealed in harsh environments. This can put polyandrous species under immediate risk during extreme heat waves expected under future climate change.
Collapse
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martyna Zwoinska
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Berger
- Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Birch G, Meniri M, Cant MA, Blount JD. Defence against the intergenerational cost of reproduction in males: oxidative shielding of the germline. Biol Rev Camb Philos Soc 2024; 99:70-84. [PMID: 37698166 DOI: 10.1111/brv.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Reproduction is expected to carry an oxidative cost, yet in many species breeders appear to sustain lower levels of oxidative damage compared to non-breeders. This paradox may be explained by considering the intergenerational costs of reproduction. Specifically, a reduction in oxidative damage upon transitioning to a reproductive state may represent a pre-emptive shielding strategy to protect the next generation from intergenerational oxidative damage (IOD) - known as the oxidative shielding hypothesis. Males may be particularly likely to transmit IOD, because sperm are highly susceptible to oxidative damage. Yet, the possibility of male-mediated IOD remains largely uninvestigated. Here, we present a conceptual and methodological framework to assess intergenerational costs of reproduction and oxidative shielding of the germline in males. We discuss variance in reproductive costs and expected payoffs of oxidative shielding according to species' life histories, and the expected impact on offspring fitness. Oxidative shielding presents an opportunity to incorporate intergenerational effects into the advancing field of life-history evolution.
Collapse
Affiliation(s)
- Graham Birch
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Magali Meniri
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Michael A Cant
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Jonathan D Blount
- Centre for Ecology & Conservation, Faculty of Environment, Science & Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| |
Collapse
|
8
|
Berger D, Liljestrand-Rönn J. Environmental complexity mitigates the demographic impact of sexual selection. Ecol Lett 2024; 27:e14355. [PMID: 38225825 DOI: 10.1111/ele.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Sexual selection and the evolution of costly mating strategies can negatively impact population viability and adaptive potential. While laboratory studies have documented outcomes stemming from these processes, recent observations suggest that the demographic impact of sexual selection is contingent on the environment and therefore may have been overestimated in simple laboratory settings. Here we find support for this claim. We exposed copies of beetle populations, previously evolved with or without sexual selection, to a 10-generation heatwave while maintaining half of them in a simple environment and the other half in a complex environment. Populations with an evolutionary history of sexual selection maintained larger sizes and more stable growth rates in complex (relative to simple) environments, an effect not seen in populations evolved without sexual selection. These results have implications for evolutionary forecasting and suggest that the negative demographic impact of sexually selected mating strategies might be low in natural populations.
Collapse
Affiliation(s)
- David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
9
|
Koppik M, Baur J, Berger D. Increased male investment in sperm competition results in reduced maintenance of gametes. PLoS Biol 2023; 21:e3002049. [PMID: 37014875 PMCID: PMC10072457 DOI: 10.1371/journal.pbio.3002049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023] Open
Abstract
Male animals often show higher mutation rates than their female conspecifics. A hypothesis for this male bias is that competition over fertilization of female gametes leads to increased male investment into reproduction at the expense of maintenance and repair, resulting in a trade-off between male success in sperm competition and offspring quality. Here, we provide evidence for this hypothesis by harnessing the power of experimental evolution to study effects of sexual selection on the male germline in the seed beetle Callosobruchus maculatus. We first show that 50 generations of evolution under strong sexual selection, coupled with experimental removal of natural selection, resulted in males that are more successful in sperm competition. We then show that these males produce progeny of lower quality if engaging in sociosexual interactions prior to being challenged to surveil and repair experimentally induced damage in their germline and that the presence of male competitors alone can be enough to elicit this response. We identify 18 candidate genes that showed differential expression in response to the induced germline damage, with several of these previously implicated in processes associated with DNA repair and cellular maintenance. These genes also showed significant expression changes across sociosexual treatments of fathers and predicted the reduction in quality of their offspring, with expression of one gene also being strongly correlated to male sperm competition success. Sex differences in expression of the same 18 genes indicate a substantially higher female investment in germline maintenance. While more work is needed to detail the exact molecular underpinnings of our results, our findings provide rare experimental evidence for a trade-off between male success in sperm competition and germline maintenance. This suggests that sex differences in the relative strengths of sexual and natural selection are causally linked to male mutation bias. The tenet advocated here, that the allocation decisions of an individual can affect plasticity of its germline and the resulting genetic quality of subsequent generations, has several interesting implications for mate choice processes.
Collapse
Affiliation(s)
- Mareike Koppik
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julian Baur
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Lindsay WR, Bererhi B, Ljungström G, Wapstra E, Olsson M. Quantitative genetics of breeding coloration in sand lizards; genic capture unlikely to maintain additive genetic variance. Heredity (Edinb) 2023; 130:329-334. [PMID: 36941410 PMCID: PMC10162981 DOI: 10.1038/s41437-023-00607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Sexual selection on fitness-determining traits should theoretically erode genetic variance and lead to low heritability. However, many sexually selected traits maintain significant phenotypic and additive genetic variance, with explanations for this "lek paradox" including genic capture due to condition-dependence, and breaks on directional selection due to environmental sources of variance including maternal effects. Here we investigate genetic and environmental sources of variance in the intrasexually selected green badge of the sand lizard (Lacerta agilis). The badge functions as a cue to male fighting ability in this species, and male-male interactions determine mate acquisition. Using animal models on a pedigree including three generations of males measured over an extensive 9-year field study, we partition phenotypic variance in both badge size and body condition into additive genetic, maternal, and permanent environmental effects experienced by an individual over its lifespan. Heritability of badge size was 0.33 with a significant estimate of underlying additive genetic variance. Body condition was strongly environmentally determined in this species and did not show either significant additive genetic variance or heritability. Neither badge size nor body condition was responsive to maternal effects. We propose that the lack of additive genetic variance and heritability of body condition makes it unlikely that genic capture mechanisms maintain additive genetic variance for badge size. That said, genic capture was originally proposed for male traits under female choice, not agonistic selection. If developmental pathways generating variance in body condition, and/or the covarying secondary sex trait, differ between inter- and intrasexual selection, or the rate at which their additive genetic variance or covariance is depleted, future work may show whether genic capture is largely restricted to intersexual selection processes.
Collapse
Affiliation(s)
- Willow R Lindsay
- Department of Biological and Environmental Sciences, Göteborg University, Göteborg, Sweden
| | - Badreddine Bererhi
- Department of Biological and Environmental Sciences, Göteborg University, Göteborg, Sweden
| | | | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mats Olsson
- Department of Biological and Environmental Sciences, Göteborg University, Göteborg, Sweden.
| |
Collapse
|
11
|
Sexual selection for males with beneficial mutations. Sci Rep 2022; 12:12613. [PMID: 35871224 PMCID: PMC9308816 DOI: 10.1038/s41598-022-16002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Sexual selection is the process by which traits providing a mating advantage are favoured. Theoretical treatments of the evolution of sex by sexual selection propose that it operates by reducing the load of deleterious mutations. Here, we postulate instead that sexual selection primarily acts through females preferentially mating with males carrying beneficial mutations. We used simulation and analytical modelling to investigate the evolutionary dynamics of beneficial mutations in the presence of sexual selection. We found that female choice for males with beneficial mutations had a much greater impact on genetic quality than choice for males with low mutational load. We also relaxed the typical assumption of a fixed mutation rate. For deleterious mutations, mutation rate should always be minimized, but when rare beneficial mutations can occur, female choice for males with those rare beneficial mutations could overcome a decline in average fitness and allow an increase in mutation rate. We propose that sexual selection for beneficial mutations could overcome the ‘two-fold cost of sex’ much more readily than choice for males with low mutational load and may therefore be a more powerful explanation for the prevalence of sexual reproduction than the existing theory. If sexual selection results in higher fitness at higher mutation rates, and if the variability produced by mutation itself promotes sexual selection, then a feedback loop between these two factors could have had a decisive role in driving adaptation.
Collapse
|
12
|
Multivariate selection and the making and breaking of mutational pleiotropy. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe role of mutations have been subject to many controversies since the formation of the Modern Synthesis of evolution in the early 1940ties. Geneticists in the early half of the twentieth century tended to view mutations as a limiting factor in evolutionary change. In contrast, natural selection was largely viewed as a “sieve” whose main role was to sort out the unfit but which could not create anything novel alone. This view gradually changed with the development of mathematical population genetics theory, increased appreciation of standing genetic variation and the discovery of more complex forms of selection, including balancing selection. Short-term evolutionary responses to selection are mainly influenced by standing genetic variation, and are predictable to some degree using information about the genetic variance–covariance matrix (G) and the strength and form of selection (e. g. the vector of selection gradients, β). However, predicting long-term evolution is more challenging, and requires information about the nature and supply of novel mutations, summarized by the mutational variance–covariance matrix (M). Recently, there has been increased attention to the role of mutations in general and M in particular. Some evolutionary biologists argue that evolution is largely mutation-driven and claim that mutation bias frequently results in mutation-biased adaptation. Strong similarities between G and M have also raised questions about the non-randomness of mutations. Moreover, novel mutations are typically not isotropic in their phenotypic effects and mutational pleiotropy is common. Here I discuss the evolutionary origin and consequences of mutational pleiotropy and how multivariate selection directly shapes G and indirectly M through changed epistatic relationships. I illustrate these ideas by reviewing recent literature and models about correlational selection, evolution of G and M, sexual selection and the fitness consequences of sexual antagonism.
Collapse
|
13
|
Abstract
Charles Darwin published his second book “Sexual selection and the descent of man” in 1871 150 years ago, to try to explain, amongst other things, the evolution of the peacock’s train, something that he famously thought was problematic for his theory of evolution by natural selection. He proposed that the peacock’s train had evolved because females preferred to mate with males with more elaborate trains. This idea was very controversial at the time and it wasn’t until 1991 that a manuscript testing Darwin’s hypothesis was published. The idea that a character could arise as a result of a female preference is still controversial. Some argue that there is no need to distinguish sexual from natural selection and that natural selection can adequately explain the evolution of extravagant characteristics that are characteristic of sexually selected species. Here, I outline the reasons why I think that this is not the case and that Darwin was right to distinguish sexual selection as a distinct process. I present a simple verbal and mathematical model to expound the view that sexual selection is profoundly different from natural selection because, uniquely, it can simultaneously promote and maintain the genetic variation which fuels evolutionary change. Viewed in this way, sexual selection can help resolve other evolutionary conundrums, such as the evolution of sexual reproduction, that are characterised by having impossibly large costs and no obvious immediate benefits and which have baffled evolutionary biologists for a very long time. If sexual selection does indeed facilitate rapid adaptation to a changing environment as I have outlined, then it is very important that we understand the fundamentals of adaptive mate choice and guard against any disruption to this natural process.
Collapse
|
14
|
Baur J, Jagusch D, Michalak P, Koppik M, Berger D. The mating system affects the temperature sensitivity of male and female fertility. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Julian Baur
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Dorian Jagusch
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
- Organismal and Evolutionary Biology Research Program Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| | - Piotr Michalak
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - David Berger
- Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
15
|
Gómez-Llano M, Scott E, Svensson EI. The importance of pre- and postcopulatory sexual selection promoting adaptation to increasing temperatures. Curr Zool 2021; 67:321-327. [PMID: 34616924 PMCID: PMC8488992 DOI: 10.1093/cz/zoaa059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/27/2020] [Indexed: 11/13/2022] Open
Abstract
Global temperatures are increasing rapidly affecting species globally. Understanding if and how different species can adapt fast enough to keep up with increasing temperatures is of vital importance. One mechanism that can accelerate adaptation and promote evolutionary rescue is sexual selection. Two different mechanisms by which sexual selection can facilitate adaptation are pre- and postcopulatory sexual selection. However, the relative effects of these different forms of sexual selection in promoting adaptation are unknown. Here, we present the results from an experimental study in which we exposed fruit flies Drosophila melanogaster to either no mate choice or 1 of 2 different sexual selection regimes (pre- and postcopulatory sexual selection) for 6 generations, under different thermal regimes. Populations showed evidence of thermal adaptation under precopulatory sexual selection, but this effect was not detected in the postcopulatory sexual selection and the no choice mating regime. We further demonstrate that sexual dimorphism decreased when flies evolved under increasing temperatures, consistent with recent theory predicting more sexually concordant selection under environmental stress. Our results suggest an important role for precopulatory sexual selection in promoting thermal adaptation and evolutionary rescue.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eve Scott
- Faculty of Biology, Medicine and Health, The University of Manchester. Oxford Road, Manchester, M13 9PL, UK.,Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Erik I Svensson
- Biology Department, Lund University, Evolutionary Ecology Unit, Lund, 223 62, Sweden
| |
Collapse
|
16
|
Bagchi B, Corbel Q, Khan I, Payne E, Banerji D, Liljestrand-Rönn J, Martinossi-Allibert I, Baur J, Sayadi A, Immonen E, Arnqvist G, Söderhäll I, Berger D. Sexual conflict drives micro- and macroevolution of sexual dimorphism in immunity. BMC Biol 2021; 19:114. [PMID: 34078377 PMCID: PMC8170964 DOI: 10.1186/s12915-021-01049-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sexual dimorphism in immunity is believed to reflect sex differences in reproductive strategies and trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex differences in immunity as well as associated host-pathogen dynamics. Yet, experimental evidence linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. RESULTS We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males. This difference is accompanied by concomitant sex differences in the expression of genes in the prophenoloxidase activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (resulting in low remating rates and reduced sexual conflict relative to natural polygamy) rapidly decreases female (but not male) PO activity. Moreover, monogamous females had evolved increased tolerance to bacterial infection unrelated to mating, implying that female responses to costly mating may trade off with other aspects of immune defence, an hypothesis which broadly accords with the documented sex differences in gene expression. Finally, female (but not male) PO activity shows correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. CONCLUSIONS Our study provides insights into the links between sexual conflict and sexual dimorphism in immunity and suggests that selection pressures moulded by mating interactions can lead to a sex-specific mosaic of immune responses with important implications for host-pathogen dynamics in sexually reproducing organisms.
Collapse
Affiliation(s)
- Basabi Bagchi
- Department of Biology, Ashoka University, Sonipat, India
| | - Quentin Corbel
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Imroze Khan
- Department of Biology, Ashoka University, Sonipat, India
| | - Ellen Payne
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Johanna Liljestrand-Rönn
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ivain Martinossi-Allibert
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Biochemistry, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Program of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Organismal Biology, Program of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
17
|
Bergero R, Ellis P, Haerty W, Larcombe L, Macaulay I, Mehta T, Mogensen M, Murray D, Nash W, Neale MJ, O'Connor R, Ottolini C, Peel N, Ramsey L, Skinner B, Suh A, Summers M, Sun Y, Tidy A, Rahbari R, Rathje C, Immler S. Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome. Biol Rev Camb Philos Soc 2021; 96:822-841. [PMID: 33615674 PMCID: PMC8246768 DOI: 10.1111/brv.12680] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghEH9 3JTU.K.
| | - Peter Ellis
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | | | - Lee Larcombe
- Applied Exomics LtdStevenage Bioscience CatalystStevenageSG1 2FXU.K.
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Tarang Mehta
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Mette Mogensen
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - Will Nash
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonBN1 9RHU.K.
| | | | | | - Ned Peel
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Luke Ramsey
- The James Hutton InstituteInvergowrieDundeeDD2 5DAU.K.
| | - Ben Skinner
- School of Life SciencesUniversity of EssexColchesterCO4 3SQU.K.
| | - Alexander Suh
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
- Department of Organismal BiologyUppsala UniversityNorbyvägen 18DUppsala752 36Sweden
| | - Michael Summers
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
- The Bridge Centre1 St Thomas Street, London BridgeLondonSE1 9RYU.K.
| | - Yu Sun
- Norwich Medical SchoolUniversity of East AngliaNorwich Research Park, Colney LnNorwichNR4 7UGU.K.
| | - Alison Tidy
- School of BiosciencesUniversity of Nottingham, Plant Science, Sutton Bonington CampusSutton BoningtonLE12 5RDU.K.
| | | | - Claudia Rathje
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| |
Collapse
|
18
|
Tonnabel J, David P, Janicke T, Lehner A, Mollet JC, Pannell JR, Dufay M. The Scope for Postmating Sexual Selection in Plants. Trends Ecol Evol 2021; 36:556-567. [PMID: 33775429 DOI: 10.1016/j.tree.2021.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Abstract
Sexual selection is known to shape plant traits that affect access to mates during the pollination phase, but it is less well understood to what extent it affects traits relevant to interactions between pollen and pistils after pollination. This is surprising, because both of the two key modes of sexual selection, male-male competition and female choice, could plausibly operate during pollen-pistil interactions where physical male-female contact occurs. Here, we consider how the key processes of sexual selection might affect traits involved in pollen-pistil interactions, including 'Fisherian runaway' and 'good-genes' models. We review aspects of the molecular and cellular biology of pollen-pistil interactions on which sexual selection could act and point to research that is needed to investigate them.
Collapse
Affiliation(s)
- Jeanne Tonnabel
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France.
| | - Patrice David
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Tim Janicke
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France; Applied Zoology, Technical University Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Arnaud Lehner
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), SFR 4377 NORVEGE, IRIB, Carnot I2C, 76000 Rouen, France
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mathilde Dufay
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| |
Collapse
|
19
|
Lemaître JF, Gaillard JM, Ramm SA. The hidden ageing costs of sperm competition. Ecol Lett 2020; 23:1573-1588. [PMID: 32906225 DOI: 10.1111/ele.13593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Ageing and sexual selection are intimately linked. There is by now compelling evidence from studies performed across diverse organisms that males allocating resources to mating competition incur substantial physiological costs, ultimately increasing ageing. However, although insightful, we argue here that to date these studies cover only part of the relationship linking sexual selection and ageing. Crucially, allocation to traits important in post-copulatory sexual selection, that is sperm competition, has been largely ignored. As we demonstrate, such allocation could potentially explain much diversity in male and female ageing patterns observed both within and among species. We first review how allocation to sperm competition traits such as sperm and seminal fluid production depends on the quality of resources available to males and can be associated with a wide range of deleterious effects affecting both somatic tissues and the germline, and thus modulate ageing in both survival and reproductive terms. We further hypothesise that common biological features such as plasticity, prudent sperm allocation and seasonality of ejaculate traits might have evolved as counter-adaptations to limit the ageing costs of sperm competition. Finally, we discuss the implications of these emerging ageing costs of sperm competition for current research on the evolutionary ecology of ageing.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| |
Collapse
|
20
|
Godwin JL, Lumley AJ, Michalczyk Ł, Martin OY, Gage MJG. Mating patterns influence vulnerability to the extinction vortex. GLOBAL CHANGE BIOLOGY 2020; 26:4226-4239. [PMID: 32558066 DOI: 10.1111/gcb.15186] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Earth's biodiversity is undergoing mass extinction due to anthropogenic compounding of environmental, demographic and genetic stresses. These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex, in which synergistic pressures build upon one another through time, driving down population viability. Sexual selection, the widespread evolutionary force arising from competition, choice and reproductive variance within animal mating patterns could have vital consequences for population viability and the extinction vortex: (a) if sexual selection reinforces natural selection to fix 'good genes' and purge 'bad genes', then mating patterns encouraging competition and choice may help protect populations from extinction; (b) by contrast, if mating patterns create load through evolutionary or ecological conflict, then population viability could be further reduced by sexual selection. We test between these opposing theories using replicate populations of the model insect Tribolium castaneum exposed to over 10 years of experimental evolution under monogamous versus polyandrous mating patterns. After a 95-generation history of divergence in sexual selection, we compared fitness and extinction of monogamous versus polyandrous populations through an experimental extinction vortex comprising 15 generations of cycling environmental and genetic stresses. Results showed that lineages from monogamous evolutionary backgrounds, with limited opportunities for sexual selection, showed rapid declines in fitness and complete extinction through the vortex. By contrast, fitness of populations from the history of polyandry, with stronger opportunities for sexual selection, declined slowly, with 60% of populations surviving by the study end. The three vortex stresses of (a) nutritional deprivation, (b) thermal stress and (c) genetic bottlenecking had similar impacts on fitness declines and extinction risk, with an overall sigmoid decline in survival through time. We therefore reveal sexual selection as an important force behind lineages facing extinction threats, identifying the relevance of natural mating patterns for conservation management.
Collapse
Affiliation(s)
- Joanne L Godwin
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alyson J Lumley
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Łukasz Michalczyk
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Oliver Y Martin
- Department of Biology (D-BIOL) & Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | - Matthew J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|