1
|
Morard R, Darling KF, Weiner AKM, Hassenrück C, Vanni C, Cordier T, Henry N, Greco M, Vollmar NM, Milivojevic T, Rahman SN, Siccha M, Meilland J, Jonkers L, Quillévéré F, Escarguel G, Douady CJ, de Garidel-Thoron T, de Vargas C, Kucera M. The global genetic diversity of planktonic foraminifera reveals the structure of cryptic speciation in plankton. Biol Rev Camb Philos Soc 2024; 99:1218-1241. [PMID: 38351434 DOI: 10.1111/brv.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 07/06/2024]
Abstract
The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.
Collapse
Affiliation(s)
- Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Kate F Darling
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3JW, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Agnes K M Weiner
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Christiane Hassenrück
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, Warnemünde, 18119, Germany
| | - Chiara Vanni
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Tristan Cordier
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, Paris, 75016, France
| | - Mattia Greco
- Institut de Ciències del Mar, Passeig Marítim de la Barceloneta, Barcelona, 37-49, Spain
| | - Nele M Vollmar
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, Bergen, 5007, Norway
| | - Tamara Milivojevic
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shirin Nurshan Rahman
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Julie Meilland
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Lukas Jonkers
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| | - Frédéric Quillévéré
- Univ Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR CNRS 5276 LGL-TPE, Villeurbanne, F-69622, France
| | - Gilles Escarguel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, F-69622, France
- Institut Universitaire de France, Paris, France
| | | | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, Roscoff, 29680, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, Roscoff, 29680, France
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, Bremen, 28359, Germany
| |
Collapse
|
2
|
Jonkers L, Mix A, Voelker A, Risebrobakken B, Smart CW, Ivanova E, Arellano-Torres E, Eynaud F, Naoufel H, Max L, Rossignol L, Simon MH, Martins MVA, Petró S, Caley T, Dokken T, Howard W, Kucera M. ForCenS-LGM: a dataset of planktonic foraminifera species assemblage composition for the Last Glacial Maximum. Sci Data 2024; 11:361. [PMID: 38600091 PMCID: PMC11006933 DOI: 10.1038/s41597-024-03166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state. This period is therefore a key target to investigate climate and biodiversity under different conditions than today. Studying LGM climate and ecosystems indeed has a long history, yet the most recent global synthesis of planktonic foraminifera assemblage composition is now nearly two decades old. Here we present the ForCenS-LGM dataset with 2,365 species assemblage samples collected using standardised methods and with harmonised taxonomy. The data originate from marine sediments from 664 sites and present a more than 50% increase in coverage compared to previous work. The taxonomy is compatible with the most recent global core top dataset, enabling direct investigation of temporal changes in foraminifera biogeography and facilitating seawater temperature reconstructions.
Collapse
Affiliation(s)
- Lukas Jonkers
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany.
| | - Alan Mix
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, 97331-5503, USA
| | - Antje Voelker
- Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Geologia e Georecursos Marinhos. Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Alges, Portugal
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Bjørg Risebrobakken
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Change, Jahnebakken 5. NO-5007, Bergen, Norway
| | - Christopher W Smart
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Elena Ivanova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Elsa Arellano-Torres
- Escuela Nacional de Ciencias de la Tierra (ENCiT), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Frédérique Eynaud
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Haddam Naoufel
- GEOPS Géosciences Paris-Sud, CNRS, Université de Paris Sud Paris Saclay, Orsay, Cedex, France
- LSCE/IPSL Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Orme des Merisiers, Saint-Aubin, France
| | - Lars Max
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | - Linda Rossignol
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Margit H Simon
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Change, Jahnebakken 5. NO-5007, Bergen, Norway
| | - Maria Virgínia Alves Martins
- Universidade do Estado do Rio de Janeiro, UERJ, Faculdade de Geologia, Av. São Francisco Xavier 24, Lab. 4037F, Maracanã, 20550-013, Rio de Janeiro, Brazil
- Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Sandro Petró
- itt OCEANEON - Instituto Tecnológico de Paleoceanografia e Mudanças Climáticas, UNISINOS - Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
| | - Thibaut Caley
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - Trond Dokken
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Change, Jahnebakken 5. NO-5007, Bergen, Norway
| | - Will Howard
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
3
|
Wood PL, Wood MD, Kunigelis SC. Pilot Lipidomics Study of Copepods: Investigation of Potential Lipid-Based Biomarkers for the Early Detection and Quantification of the Biological Effects of Climate Change on the Oceanic Food Chain. Life (Basel) 2023; 13:2335. [PMID: 38137936 PMCID: PMC10744631 DOI: 10.3390/life13122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Maintenance of the health of our oceans is critical for the survival of the oceanic food chain upon which humanity is dependent. Zooplanktonic copepods are among the most numerous multicellular organisms on earth. As the base of the primary consumer food web, they constitute a major biomass in oceans, being an important food source for fish and functioning in the carbon cycle. The potential impact of climate change on copepod populations is an area of intense study. Omics technologies offer the potential to detect early metabolic alterations induced by the stresses of climate change. One such omics approach is lipidomics, which can accurately quantify changes in lipid pools serving structural, signal transduction, and energy roles. We utilized high-resolution mass spectrometry (≤2 ppm mass error) to characterize the lipidome of three different species of copepods in an effort to identify lipid-based biomarkers of copepod health and viability which are more sensitive than observational tools. With the establishment of such a lipid database, we will have an analytical platform useful for prospectively monitoring the lipidome of copepods in a planned long-term five-year ecological study of climate change on this oceanic sentinel species. The copepods examined in this pilot study included a North Atlantic species (Calanus finmarchicus) and two species from the Gulf of Mexico, one a filter feeder (Acartia tonsa) and one a hunter (Labidocerca aestiva). Our findings clearly indicate that the lipidomes of copepod species can vary greatly, supporting the need to obtain a broad snapshot of each unique lipidome in a long-term multigeneration prospective study of climate change. This is critical, since there may well be species-specific responses to the stressors of climate change and co-stressors such as pollution. While lipid nomenclature and biochemistry are extremely complex, it is not essential for all readers interested in climate change to understand all of the various lipid classes presented in this study. The clear message from this research is that we can monitor key copepod lipid families with high accuracy, and therefore potentially monitor lipid families that respond to environmental perturbations evoked by climate change.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Michael D. Wood
- Child and Adolescent Psychiatry, BC Children’s and Women’s Hospital & Provincial Health Services Authority, Vancouver, BC V5Z 4H4, Canada;
| | - Stan C. Kunigelis
- Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
4
|
WestgÅrd A, Ezat MM, Chalk TB, Chierici M, Foster GL, Meilland J. Large-scale culturing of Neogloboquadrina pachyderma, its growth in, and tolerance of, variable environmental conditions. JOURNAL OF PLANKTON RESEARCH 2023; 45:732-745. [PMID: 37779673 PMCID: PMC10539212 DOI: 10.1093/plankt/fbad034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 10/03/2023]
Abstract
The planktic foraminifera Neogloboquadrina pachyderma is a calcifying marine protist and the dominant planktic foraminifera species in the polar oceans, making it a key species in marine polar ecosystems. The calcium carbonate shells of foraminifera are widely used in palaeoclimate studies because their chemical composition reflects the seawater conditions in which they grow. This species provides unique proxy data for past surface ocean hydrography, which can provide valuable insight to future climate scenarios. However, little is known about the response of N. pachyderma to variable and changing environmental conditions. Here, we present observations from large-scale culturing experiments where temperature, salinity and carbonate chemistry were altered independently. We observed overall low mortality, calcification of new chambers and addition of secondary calcite crust in all our treatments. In-culture asexual reproduction events also allowed us to monitor the variable growth of N. pachyderma's offspring. Several specimens had extended periods of dormancy or inactivity after which they recovered. These observations suggest that N. pachyderma can tolerate, adapt to and calcify within a wide range of environmental conditions. This has implications for the species-level response to ocean warming and acidification, for future studies aiming to culture N. pachyderma and use in palaeoenvironmental reconstruction.
Collapse
Affiliation(s)
- Adele WestgÅrd
- CAGE—Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT, The Arctic University of Norway, Dramsveien 201, Tromso 9010, Norway
| | - Mohamed M Ezat
- CAGE—Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT, The Arctic University of Norway, Dramsveien 201, Tromso 9010, Norway
- Department of Geology, Faculty of Science, Beni-Suef University, 24V5+2GF, New Bani Suef City, New Beni Suef City, Beni Suef Governorate 2730401, Egypt
| | - Thomas B Chalk
- CAGE—Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT, The Arctic University of Norway, Dramsveien 201, Tromso 9010, Norway
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom
- Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Technopole Environnement Arbois-Méditerranée BP 80 13545 Aix-en-Provence, cedex 04 - France
| | - Melissa Chierici
- Institute of Marine Research, Oceanography and Climate Research Group, Fram Centre, Hjalmar Johansens gate 14, 9007 Tromsø, Norway
| | - Gavin L Foster
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom
| | - Julie Meilland
- MARUM—Center for Marine Environmental Sciences, University of Bremen, Leoberner Str. 8, Bremen 28359, Germany
| |
Collapse
|
5
|
Chaabane S, de Garidel-Thoron T, Giraud X, Schiebel R, Beaugrand G, Brummer GJ, Casajus N, Greco M, Grigoratou M, Howa H, Jonkers L, Kucera M, Kuroyanagi A, Meilland J, Monteiro F, Mortyn G, Almogi-Labin A, Asahi H, Avnaim-Katav S, Bassinot F, Davis CV, Field DB, Hernández-Almeida I, Herut B, Hosie G, Howard W, Jentzen A, Johns DG, Keigwin L, Kitchener J, Kohfeld KE, Lessa DVO, Manno C, Marchant M, Ofstad S, Ortiz JD, Post A, Rigual-Hernandez A, Rillo MC, Robinson K, Sagawa T, Sierro F, Takahashi KT, Torfstein A, Venancio I, Yamasaki M, Ziveri P. The FORCIS database: A global census of planktonic Foraminifera from ocean waters. Sci Data 2023; 10:354. [PMID: 37270659 PMCID: PMC10239448 DOI: 10.1038/s41597-023-02264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
Planktonic Foraminifera are unique paleo-environmental indicators through their excellent fossil record in ocean sediments. Their distribution and diversity are affected by different environmental factors including anthropogenically forced ocean and climate change. Until now, historical changes in their distribution have not been fully assessed at the global scale. Here we present the FORCIS (Foraminifera Response to Climatic Stress) database on foraminiferal species diversity and distribution in the global ocean from 1910 until 2018 including published and unpublished data. The FORCIS database includes data collected using plankton tows, continuous plankton recorder, sediment traps and plankton pump, and contains ~22,000, ~157,000, ~9,000, ~400 subsamples, respectively (one single plankton aliquot collected within a depth range, time interval, size fraction range, at a single location) from each category. Our database provides a perspective of the distribution patterns of planktonic Foraminifera in the global ocean on large spatial (regional to basin scale, and at the vertical scale), and temporal (seasonal to interdecadal) scales over the past century.
Collapse
Affiliation(s)
- Sonia Chaabane
- Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France.
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany.
- Fondation pour la recherche sur la biodiversité (FRB-CESAB), Montpellier, France.
| | | | - Xavier Giraud
- Aix-Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
| | - Ralf Schiebel
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gregory Beaugrand
- Université Littoral Côte d'Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France
| | - Geert-Jan Brummer
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Ocean Systems, Texel, The Netherlands
| | - Nicolas Casajus
- Fondation pour la recherche sur la biodiversité (FRB-CESAB), Montpellier, France
| | - Mattia Greco
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | | | - Hélène Howa
- LPG-BIAF, UMR-CNRS 6112, University of Angers, Angers, France
| | - Lukas Jonkers
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Michal Kucera
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | | - Julie Meilland
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Fanny Monteiro
- BRIDGE, School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Graham Mortyn
- Universitat Autonoma de Barcelona, ICTA and Dept. of Geography, Barcelona, Spain
| | | | - Hirofumi Asahi
- Fukui Prefectural Satoyama-Satoumi Research Institute, 22-12-1, Torihama, Wakasa, Mikatakaminaka, Fukui, 919-1331, Japan
| | | | - Franck Bassinot
- Laboratoire des Sciences Du Climat et de L'Environnement, Domaine Du CNRS, Gif-sur-Yvette, 91198, France
| | - Catherine V Davis
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| | - David B Field
- Department of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | | | - Barak Herut
- Israel Oceanographic & Limnological Research, Haifa, 31080, Israel
| | - Graham Hosie
- SCAR life Sciences. Formerly of the Australian Antarctic Division, Department of the Environment, 203 Channel Highwa, Kingston, Tasmania, 7050, Australia
| | - Will Howard
- Climate Change Institute, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anna Jentzen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148, Kiel, Germany
| | - David G Johns
- The Marine Biological Association,The Laboratory, Citadel Hill Plymouth, Devon, PL1 2PB, UK
| | - Lloyd Keigwin
- Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - John Kitchener
- Australian Antarctic Division, Department of Climate Change, Energy, Environment and Water, Kingston, 7050, Tasmania, Australia
| | - Karen E Kohfeld
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, Canada
- School of Environmental Science, Simon Fraser University, Vancouver, Canada
| | - Douglas V O Lessa
- Programa de Pós-Graduação em Geoquímica Ambiental, Universidade Federal Fluminense, Niterói, 24.020-141, Rio de Janiero, Brazil
| | - Clara Manno
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB30ET, UK
| | | | - Siri Ofstad
- Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Joseph D Ortiz
- College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, USA
| | - Alexandra Post
- Geoscience Australia, GPO Box 378, Canberra, ACT, 2601, Australia
| | | | - Marina C Rillo
- ICBM, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshaven, Germany
| | | | - Takuya Sagawa
- Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 9201192, Japan
| | - Francisco Sierro
- Departamento de Geología, Universidad de Salamanca, 37008, Salamanca, Spain
| | | | - Adi Torfstein
- The Fredy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel
| | - Igor Venancio
- Programa de Geociências (Geoquímica), Universidade Federal Fluminense, Niterói, Brazil
| | - Makoto Yamasaki
- Department of Earth Resource Science, Graduate school of International Resource Sciences, Akita University, 1-1 Tegata-Gakuencho, Akita, 010-8502, Japan
| | - Patrizia Ziveri
- Universitat Autonoma de Barcelona, ICTA and Dept. of Geography, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
6
|
Woodhouse A, Swain A, Fagan WF, Fraass AJ, Lowery CM. Late Cenozoic cooling restructured global marine plankton communities. Nature 2023; 614:713-718. [PMID: 36792824 DOI: 10.1038/s41586-023-05694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
The geographic ranges of marine organisms, including planktonic foraminifera1, diatoms, dinoflagellates2, copepods3 and fish4, are shifting polewards owing to anthropogenic climate change5. However, the extent to which species will move and whether these poleward range shifts represent precursor signals that lead to extinction is unclear6. Understanding the development of marine biodiversity patterns over geological time and the factors that influence them are key to contextualizing these current trends. The fossil record of the macroperforate planktonic foraminifera provides a rich and phylogenetically resolved dataset that provides unique opportunities for understanding marine biogeography dynamics and how species distributions have responded to ancient climate changes. Here we apply a bipartite network approach to quantify group diversity, latitudinal specialization and latitudinal equitability for planktonic foraminifera over the past eight million years using Triton, a recently developed high-resolution global dataset of planktonic foraminiferal occurrences7. The results depict a global, clade-wide shift towards the Equator in ecological and morphological community equitability over the past eight million years in response to temperature changes during the late Cenozoic bipolar ice sheet formation. Collectively, the Triton data indicate the presence of a latitudinal equitability gradient among planktonic foraminiferal functional groups which is coupled to the latitudinal biodiversity gradient only through the geologically recent past (the past two million years). Before this time, latitudinal equitability gradients indicate that higher latitudes promoted community equitability across ecological and morphological groups. Observed range shifts among marine planktonic microorganisms1,2,8 in the recent and geological past suggest substantial poleward expansion of marine communities even under the most conservative future global warming scenarios.
Collapse
Affiliation(s)
- Adam Woodhouse
- University of Texas Institute for Geophysics, University of Texas at Austin, Austin, TX, USA.
| | - Anshuman Swain
- Department of Biology, University of Maryland, College Park, MD, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.,Department of Paleobiology, National Museum of Natural History, Washington, DC, USA
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Andrew J Fraass
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada.,Invertebrate Paleontology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA.,School of Earth Science, University of Bristol, Bristol, UK
| | - Christopher M Lowery
- University of Texas Institute for Geophysics, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|