1
|
Cao X, Sun Y, Wang Y, Wang Y, Cheng X, Zhang W, Zong J, Wang R. Coastal erosion and flooding risk assessment based on grid scale: A case study of six coastal metropolitan areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174393. [PMID: 38960161 DOI: 10.1016/j.scitotenv.2024.174393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Coastal areas, situated at the critical juncture of sea-land interaction, are confronted with significant challenges from coastal erosion and flooding. It is imperative to evaluate these risks and offer scientific guidance to foster regional sustainable development. This article developed a coastal risk assessment model based on grid scale, integrating both coastal exposure and socio-ecological environment. Fourteen indicators were selected, aiming to offer a systematic approach for estimating and comparing disaster risks in coastal areas. This risk assessment model was applied to Shanghai, New York, Sydney, San Francisco, Randstad, and Tokyo metropolitan areas. The results indicate: (1) Accounting for the protective role of habitat types like mangroves and the distance attenuation effect offered a more precise representation of hazard situation; (2) The integration of the Game Theory weighting method with both subjective Analytic Hierarchy Process and objective CRITIC weighting enhanced the scientific validity and rationality of the results by minimizing deviations between subjective and objective weights; (3) Shanghai exhibited the highest average hazard and vulnerability, San Francisco had the lowest average hazard and Sydney had the lowest average vulnerability; In terms of comprehensive risk, Shanghai possessed the highest average risk, while Sydney presented the lowest. The proposed model framework is designed to swiftly identify high-risk zones, providing detailed information references for local governments to devise efficacious risk management and prevention strategies.
Collapse
Affiliation(s)
- Xuyue Cao
- Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; State Key Laboratory of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China; Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
| | - Yonghua Sun
- Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; State Key Laboratory of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China; Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China.
| | - Yanzhao Wang
- Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; State Key Laboratory of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China; Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
| | - Yihan Wang
- Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; State Key Laboratory of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China; Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
| | - Xinglu Cheng
- Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; State Key Laboratory of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China; Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
| | - Wangkuan Zhang
- Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; State Key Laboratory of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China; Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
| | - JinKun Zong
- Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; State Key Laboratory of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China; Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
| | - Ruozeng Wang
- Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; State Key Laboratory of Urban Environmental Processes and Digital Simulation, Capital Normal University, Beijing 100048, China; Key Laboratory of 3D Information Acquisition and Application, Ministry of Education, Beijing 100048, China
| |
Collapse
|
2
|
Villarreal-Rosas J, Brown CJ, Andradi-Brown DA, Domínguez R, Jacobo P, Martínez A, Mascote C, Najera E, Paiz Y, Vázquez Moran VH, Villarreal J, Adame MF. Integrating socioeconomic and ecological data into restoration practice. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14286. [PMID: 38708866 DOI: 10.1111/cobi.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 05/07/2024]
Abstract
Driven by the United Nations Decade on Restoration and international funding initiatives, such as the Mangrove Breakthrough, investment in mangrove restoration is expected to increase. Yet, mangrove restoration efforts frequently fail, usually because of ad hoc site-selection processes that do not consider mangrove ecology and the socioeconomic context. Using decision analysis, we developed an approach that accounts for socioeconomic and ecological data to identify sites with the highest likelihood of mangrove restoration success. We applied our approach in the Biosphere Reserve Marismas Nacionales Nayarit, Mexico, an area that recently received funding for implementing mangrove restoration actions. We identified 468 potential restoration sites, assessed their restorability potential based on socioeconomic and ecological metrics, and ranked sites for implementation with spatial optimization. The metrics we used included favorable conditions for propagules to establish and survive under sea-level rise, provision of ecosystem services, and community dynamics. Sites that were selected based on socioeconomic or ecological metrics alone had lower likelihood of mangrove restoration success than sites that were selected based on integrated socioeconomic and ecological metrics. For example, selecting sites based on only socioeconomic metrics captured 16% of the maximum attainable value of functioning mangroves able to provide propagules to potential restoration sites, whereas selecting sites based on ecological and socioeconomic metrics captured 46% of functioning mangroves. Our approach was developed as part of a collaboration between nongovernmental organizations, local government, and academics under rapid delivery time lines given preexisting mangrove restoration implementation commitments. The systematic decision process we used integrated socioeconomic and ecological considerations even under short delivery deadlines, and our approach can be adapted to help mangrove restoration site-selection decisions elsewhere.
Collapse
Affiliation(s)
| | - Christopher J Brown
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | | | | | - Pilar Jacobo
- World Wildlife Fund, México, Mexico City, México
| | | | | | | | - Yves Paiz
- The Nature Conservancy, México, Merida, Mexico
| | | | | | - María F Adame
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
3
|
Cunha J, Cabecinha E, Villasante S, Gonçalves JA, Balbi S, Elliott M, Ramos S. Quantifying the role of saltmarsh as a vulnerable carbon sink: A case study from Northern Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171443. [PMID: 38447727 DOI: 10.1016/j.scitotenv.2024.171443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Saltmarshes play a crucial role in carbon sequestration and storage, although they are increasingly threatened by climate change-induced sea level rise (SLR). This study assessed the potential variation in Blue Carbon stocks across regional and local scales, and estimated their economic value and potential habitat loss due to SLR based on the IPCC AR6 scenarios for 2050 and 2100 in three estuarine saltmarshes in northern Portugal, the saltmarshes of the Minho, Lima and Cávado estuaries. The combined carbon stock of these saltmarshes was 38,798 ± 2880 t of organic carbon, valued at 3.96 ± 0.38 M€. Local and regional differences in carbon stocks were observed between common species, with the cordgrass Spartina patens and the reed Phragmites australis consistently showing higher values in the Lima saltmarsh in some of the parameters. Overall, the Lima saltmarsh had the highest total carbon per species cover, with S. patens showing the highest values among common species. Bolboschoenus maritimus had the highest values in the Minho saltmarsh, while the other species presented a similar carbon storage capacity. Potential habitat loss due to SLR was most evident in the Cávado saltmarsh over shorter timescales, with a significant risk of inundation even for median values of SLR, while the Lima saltmarsh was shown to be more resistant and resilient. If habitat loss directly equates to carbon loss within these saltmarshes, projected CO2 emissions may range from 22,000 to 43,449 t by 2050 and 33,000 to 130,000 t by 2100 (under the IPCC SSP5-8.5 scenario). The study shows the importance of Blue Carbon site-specific estimates, acknowledging the potential future repercussions from habitat loss due to SLR. It emphasizes the need to consider local and regional variability in Blue Carbon stocks assessments and highlights the critical importance of preserving and rehabilitating these ecosystems to ensure their continued efficacy as vital carbon sinks, thereby contributing to climate change mitigation efforts.
Collapse
Affiliation(s)
- Jacinto Cunha
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal; CITAB/Inov4Agro - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| | - Edna Cabecinha
- CITAB/Inov4Agro - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Sebastian Villasante
- EqualSea Lab - CRETUS, Department of Applied Economics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José A Gonçalves
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal; Department of Geosciences Environment and Spatial Planning, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Stefano Balbi
- Basque Centre for Climate Change (BC3), Sede Building, Campus EHU/UPV, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Michael Elliott
- School of Environmental Sciences, University of Hull, HU6 7RX, UK; International Estuarine & Coastal Specialists (IECS) Ltd, Leven HU17 5LQ, UK
| | - Sandra Ramos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| |
Collapse
|
4
|
Sheehy J, Porter J, Bell M, Kerr S. Redefining blue carbon with adaptive valuation for global policy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168253. [PMID: 37926265 DOI: 10.1016/j.scitotenv.2023.168253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Blue carbon has multiple definitions but is mostly defined, by criteria, as specific habitats or species: seagrass, saltmarsh, and mangrove. These qualifying criteria include significant capacity of carbon, long-term storage of carbon, feasibility of conservation to support carbon sequestration, and other criteria depending on the definition used. If 'blue carbon' habitats and species may change given new data, however, blue carbon will never fit a constant definition. As such, this approach underpins uncertainty in the blue carbon definition and impedes policy integration; policy frameworks require clear and unambiguous definitions. Global policy considers blue carbon for climate change mitigation through carbon trading. As such, the requirements for blue carbon inclusion in policy mechanisms are functionally determined by carbon trading verification agencies - Standard Setting Organisations (SSOs). In practice then, accreditation criteria override and make redundant the conditions used in criteria-based definitions of blue carbon. The definition of blue carbon would therefore be more effective in policy if simply aligned to the SSO's five criteria: an established baseline, additionality, permanence, leakage, and co-benefits. This paper presents a redefinition of blue carbon that is better aligned to policy application, accreditation criteria, and research agendas: This may include sedimentary stocks in addition to carbon stored in living biomass, which may be essential to protecting or maintaining sedimentary stocks of carbon, and with potential to be increased through protection and/or restoration. Alongside other recommendations, including a novel approach for adaptive accreditation and valuation, this paper explores how this redefinition of blue carbon would work in practice to support climate change mitigation, climate change adaptation, and biodiversity conservation.
Collapse
Affiliation(s)
- Jack Sheehy
- International Centre for Island Technology, Heriot-Watt University, Orkney Campus, Robert Rendall Building, Franklin Road, Stromness, Orkney, Scotland KW16 3AW, UK.
| | - Jo Porter
- International Centre for Island Technology, Heriot-Watt University, Orkney Campus, Robert Rendall Building, Franklin Road, Stromness, Orkney, Scotland KW16 3AW, UK
| | - Michael Bell
- International Centre for Island Technology, Heriot-Watt University, Orkney Campus, Robert Rendall Building, Franklin Road, Stromness, Orkney, Scotland KW16 3AW, UK
| | - Sandy Kerr
- International Centre for Island Technology, Heriot-Watt University, Orkney Campus, Robert Rendall Building, Franklin Road, Stromness, Orkney, Scotland KW16 3AW, UK
| |
Collapse
|
5
|
Comte A, Barreyre J, Monnier B, de Rafael R, Boudouresque CF, Pergent G, Ruitton S. Operationalizing blue carbon principles in France: Methodological developments for Posidonia oceanica seagrass meadows and institutionalization. MARINE POLLUTION BULLETIN 2024; 198:115822. [PMID: 38016206 DOI: 10.1016/j.marpolbul.2023.115822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Conservation of ecosystems is an important tool for climate change mitigation. Seagrasses, mangroves, saltmarshes and other marine ecosystems have particularly high capacities to sequester and store organic carbon (blue carbon), and are being impacted by human activities. Calls have been made to mainstream blue carbon into policies, including carbon markets. Building on the scientific literature and the French voluntary carbon standard, the 'Label Bas-Carbone', we develop the first method for the conservation of Posidonia oceanica seagrasses using carbon finance. This methodology assesses the emission reduction potential of projects that reduce physical impacts from boating and anchoring. We show how this methodology was institutionalized thanks to a tiered approach on key parameters including carbon stocks, degradation rates, and decomposition rates. We discuss future needs regarding (i) how to strengthen the robustness of the method, and (ii) the expansion of the method to restoration of seagrasses and to other blue carbon ecosystems.
Collapse
Affiliation(s)
- Adrien Comte
- IRD, Univ Brest, CNRS, Ifremer, LEMAR, 29280 Plouzané, France.
| | | | - Briac Monnier
- Université de Corse, UMR CNRS SPE 6134, Campus Grimaldi BP 52, Corte, France
| | | | - Charles-François Boudouresque
- Aix Marseille Université - Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
| | - Gérard Pergent
- Université de Corse, UMR CNRS SPE 6134, Campus Grimaldi BP 52, Corte, France
| | - Sandrine Ruitton
- Aix Marseille Université - Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
| |
Collapse
|
6
|
Dabalà A, Dahdouh-Guebas F, Dunn DC, Everett JD, Lovelock CE, Hanson JO, Buenafe KCV, Neubert S, Richardson AJ. Priority areas to protect mangroves and maximise ecosystem services. Nat Commun 2023; 14:5863. [PMID: 37735160 PMCID: PMC10514197 DOI: 10.1038/s41467-023-41333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Anthropogenic activities threaten global biodiversity and ecosystem services. Yet, area-based conservation efforts typically target biodiversity protection whilst minimising conflict with economic activities, failing to consider ecosystem services. Here we identify priority areas that maximise both the protection of mangrove biodiversity and their ecosystem services. We reveal that despite 13.5% of the mangrove distribution being currently strictly protected, all mangrove species are not adequately represented and many areas that provide disproportionally large ecosystem services are missed. Optimising the placement of future conservation efforts to protect 30% of global mangroves potentially safeguards an additional 16.3 billion USD of coastal property value, 6.1 million people, 1173.1 Tg C, and 50.7 million fisher days yr-1. Our findings suggest that there is a pressing need for including ecosystem services in protected area design and that strategic prioritisation and coordination of mangrove conservation could provide substantial benefits to human wellbeing.
Collapse
Affiliation(s)
- Alvise Dabalà
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia.
- Systems Ecology and Resource Management Research Unit (SERM), Department of Organism Biology, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium.
- Ecology & Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Pleinlaan 2, VUB-APNA-WE, 1050, Brussels, Belgium.
| | - Farid Dahdouh-Guebas
- Systems Ecology and Resource Management Research Unit (SERM), Department of Organism Biology, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium
- Ecology & Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Pleinlaan 2, VUB-APNA-WE, 1050, Brussels, Belgium
- Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), Zoological Society of London, London, UK
- Interfaculty Institute of Social-Ecological Transitions, Université Libre de Bruxelles - ULB, Av. F.D. Roosevelt 50, 1050, Brussels, Belgium
| | - Daniel C Dunn
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia
| | - Jason D Everett
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, QLD, Australia
- Centre for Marine Science and Innovation (CMSI), The University of New South Wales, Sydney, NSW, Australia
| | - Catherine E Lovelock
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Mangrove Specialist Group (MSG), Species Survival Commission (SSC), International Union for the Conservation of Nature (IUCN), Zoological Society of London, London, UK
| | | | - Kristine Camille V Buenafe
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, QLD, Australia
| | - Sandra Neubert
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia
- Institute of Computer Science, Leipzig University, Leipzig, Germany
| | - Anthony J Richardson
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, QLD, Australia
| |
Collapse
|
7
|
Lester SE. Blue carbon for climate and co-benefits. Nat Ecol Evol 2023; 7:967-968. [PMID: 37264197 DOI: 10.1038/s41559-023-02034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Sarah E Lester
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|