1
|
Mayer DP, Nelson ME, Andriyanova D, Filler RB, Ökten A, Antao OQ, Chen JS, Scumpia PO, Weaver WM, Wilen CB, Deshayes S, Weinstein JS. A novel microporous biomaterial vaccine platform for long-lasting antibody mediated immunity against viral infection. J Control Release 2024; 370:570-582. [PMID: 38734312 PMCID: PMC11665867 DOI: 10.1016/j.jconrel.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Current antigen delivery platforms, such as alum and nanoparticles, are not readily tunable, thus may not generate optimal adaptive immune responses. We created an antigen delivery platform by loading lyophilized Microporous Annealed Particle (MAP) with aqueous solution containing target antigens. Upon administration of antigen loaded MAP (VaxMAP), the biomaterial reconstitution forms an instant antigen-loaded porous scaffold area with a sustained release profile to maximize humoral immunity. VaxMAP induced CD4+ T follicular helper (Tfh) cells and germinal center (GC) B cell responses in the lymph nodes similar to Alum. VaxMAP loaded with SARS-CoV-2 spike protein improved the magnitude, neutralization, and duration of anti-receptor binding domain antibodies compared to Alum vaccinated mice. A single injection of Influenza specific HA1-loaded-VaxMAP enhanced neutralizing antibodies and elicited greater protection against influenza virus challenge than HA1-loaded-Alum. Thus, VaxMAP is a platform that can be used to promote adaptive immune cell responses to generate more robust neutralizing antibodies, and better protection upon pathogen challenge.
Collapse
Affiliation(s)
- Daniel P. Mayer
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Mariah E. Nelson
- Tempo Therapeutics, 3030 Bunker Hill st., suite 104, San Diego, CA 92109, United States of America
| | - Daria Andriyanova
- Tempo Therapeutics, 3030 Bunker Hill st., suite 104, San Diego, CA 92109, United States of America
| | - Renata B. Filler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Arya Ökten
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, United States of America
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Olivia Q. Antao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Jennifer S. Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, United States of America
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Philip O. Scumpia
- Department of Medicine, Division of Dermatology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Dermatology, West Los Angeles Veteran Affairs Medical Center, Los Angeles, California, United States of America
| | - Westbrook M. Weaver
- Tempo Therapeutics, 3030 Bunker Hill st., suite 104, San Diego, CA 92109, United States of America
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510, United States of America
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, United States of America
| | - Stephanie Deshayes
- Tempo Therapeutics, 3030 Bunker Hill st., suite 104, San Diego, CA 92109, United States of America
| | - Jason S. Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| |
Collapse
|
2
|
Chen L, Shao Z, Zhang Z, Teng W, Mou H, Jin X, Wei S, Wang Z, Eloy Y, Zhang W, Zhou H, Yao M, Zhao S, Chai X, Wang F, Xu K, Xu J, Ye Z. An On-Demand Collaborative Innate-Adaptive Immune Response to Infection Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304774. [PMID: 37523329 DOI: 10.1002/adma.202304774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Deep tissue infection is a common clinical issue and therapeutic difficulty caused by the disruption of the host antibacterial immune function, resulting in treatment failure and infection relapse. Intracellular pathogens are refractory to elimination and can manipulate host cell biology even after appropriate treatment, resulting in a locoregional immunosuppressive state that leads to an inadequate response to conventional anti-infective therapies. Here, a novel antibacterial strategy involving autogenous immunity using a biomimetic nanoparticle (NP)-based regulating system is reported to induce in situ collaborative innate-adaptive immune responses. It is observed that a macrophage membrane coating facilitates NP enrichment at the infection site, followed by active NP accumulation in macrophages in a mannose-dependent manner. These NP-armed macrophages exhibit considerably improved innate capabilities, including more efficient intracellular ROS generation and pro-inflammatory factor secretion, M1 phenotype promotion, and effective eradication of invasive bacteria. Furthermore, the reprogrammed macrophages direct T cell activation at infectious sites, resulting in a robust adaptive antimicrobial immune response to ultimately achieve bacterial clearance and prevent infection relapse. Overall, these results provide a conceptual framework for a novel macrophage-based strategy for infection treatment via the regulation of autogenous immunity.
Collapse
Affiliation(s)
- Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zengjie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Haochen Mou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Zenan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Yinwang Eloy
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Wenkan Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Hao Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Shenzhi Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Fangqian Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, 310000, P. R. China
| |
Collapse
|
3
|
Gong C, Jin Y, Wang X, Mao J, Wang D, Yu X, Chen S, Wang Y, Ma D, Fang X, Zhang K, Shu Q. Lack of S1PR2 in Macrophage Ameliorates Sepsis-associated Lung Injury through Inducing IL-33-mediated Type 2 Immunity. Am J Respir Cell Mol Biol 2024; 70:215-225. [PMID: 38061028 DOI: 10.1165/rcmb.2023-0075oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/07/2023] [Indexed: 03/02/2024] Open
Abstract
The function of type 2 immunity and mechanisms underlying the initiation of type 2 immunity after sepsis-induced lung injury remain unclear. Sphingosine-1-phosphate receptor 2 (S1PR2) has been demonstrated to modulate type 2 immunity in the context of asthma and pulmonary fibrosis. Thus, this study aims to investigate the role of type 2 immunity and whether and how S1PR2 regulates type 2 immunity in sepsis. Peripheral type 2 immune responses in patients with sepsis and healthy control subjects were assessed. The impact of S1PR2 on type 2 immunity in patients with sepsis and in a murine model of sepsis was further investigated. The type 2 innate immune responses were significantly increased in the circulation of patients 24 hours after sepsis, which was positively related to clinical complications and negatively correlated with S1PR2 mRNA expression. Animal studies showed that genetic deletion or pharmacological inhibition of S1PR2 induced type 2 innate immunity accumulation in the post-septic lungs. Mechanistically, S1PR2 deficiency promoted macrophage-derived interleukin (IL)-33 increase and the associated type 2 response in the lung. Furthermore, S1PR2-regulated IL-33 from macrophages mitigated lung injury after sepsis in mice. In conclusion, a lack of S1PR2 modulates the type 2 immune response by upregulating IL-33 release from macrophages and alleviates sepsis-induced lung injury. Targeting S1PR2 may have potential therapeutic value for sepsis treatment.
Collapse
Affiliation(s)
| | - Yue Jin
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Jiali Mao
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Xiangyang Yu
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Shiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Yang Wang
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; and
| | - Daqing Ma
- Perioperative and Systems Medicine Laboratory, Children's Hospital, National Clinical Research Center for Child Health
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Xiangming Fang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, and
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery
| |
Collapse
|
4
|
Hallab NJ, Hallab SR, Alexander A, Pourzal R. Characterization of residual debris on packaged hip arthroplasty stems demonstrates the dominance of less than 10 μm sized particulate: Updated USP788 guidelines for orthopedic implants. J Biomed Mater Res B Appl Biomater 2024; 112:e35387. [PMID: 38340016 DOI: 10.1002/jbm.b.35387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/19/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Past evaluation of particle contamination on packaged implants has typically been conducted using US Pharmacopeia (USP) 788, a 1970s pharmaceutical guideline created to evaluate contaminant particles in injectable fluids and syringes. Our objective was to reestablish relevant acceptance criteria for residual orthopedic and other implant debris, including smaller particles (i.e., <10 μm in diameter). Packaged total hip arthroplasty (THA) titanium (Ti6Al4V)-alloy femoral stems were used (hydroxyapatite [HA]-coated and non-coated stems). Short-term ultrasonication and longer-term 24-hour soak/agitation methods were used to elute surface-bound contaminant particles, and released particles were analyzed via scanning electron microscopy, energy-dispersive x-ray analysis, image analysis, and particle characterization. For HA-coated THA-stems, >99% of eluted particles were calcium phosphate. For plain non-coated THA-stems, >99% of eluted particles were titanium-alloy-based. The number-based median size of particles in both groups was approximately 1.5 μm in diameter despite being composed of different materials. The total volume of particulate removed from HA-coated stems was 0.037 mm3 (671 × 103 particles total), which was approximately >50-fold more volume than that on plain non-coated stems at 0.0006 mm3 (89 × 103 particles total). Only non-coated THA stems passed reestablished USP788 acceptance criteria, compared by using equivalent total volumes of contaminant particulate within new and legacy guideline ranges of >10 and >25 μm ECD, that is, <1.0 × 107 particles for <1 μm diameter in size, <600,000 for <1-10 μm, <6000 for 10-25 μm and <600 for >25 μm. These results fill a knowledge gap on how much residual debris can be expected to exist on packaged implants and can be used as a basis for updating acceptance criteria (i.e., termed USP788-Implant [USP788-I]). Residual implant particulate assessment is critical given the increasing implant complexity and new manufacturing techniques (e.g., additive manufacturing).
Collapse
Affiliation(s)
- Nadim J Hallab
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Salem R Hallab
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Anastasia Alexander
- Department of Biomedical Engineering, Bioengineering Solutions Inc, Chicago, Illinois, USA
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
5
|
Mayer DP, Neslon ME, Andriyanova D, Antao OQ, Chen JS, Scumpia PO, Weaver WM, Deshayes S, Weinstein JS. A novel microporous biomaterial vaccine platform for long-lasting antibody mediated immunity against viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578038. [PMID: 38352398 PMCID: PMC10862793 DOI: 10.1101/2024.01.30.578038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Current antigen delivery platforms, such as alum and nanoparticles, are not readily tunable, thus may not generate optimal adaptive immune responses. We created an antigen delivery platform by loading lyophilized Microporous Annealed Particle (MAP) with aqueous solution containing target antigens. Upon administration of antigen loaded MAP (VaxMAP), the biomaterial reconstitution forms an instant antigen-loaded porous scaffold area with a sustained release profile to maximize humoral immunity. VaxMAP induced CD4+ T follicular helper (Tfh) cells and germinal center (GC) B cell responses in the lymph nodes similar to Alum. VaxMAP loaded with SARS-CoV-2 spike protein improved the magnitude and duration of anti-receptor binding domain antibodies compared to Alum and mRNA-vaccinated mice. A single injection of Influenza specific HA1-loaded-VaxMAP enhanced neutralizing antibodies and elicited greater protection against influenza virus challenge than HA1-loaded-Alum. Thus, VaxMAP is a platform that can be used to promote adaptive immune cell responses to generate more robust neutralizing antibodies, and better protection upon pathogen challenge.
Collapse
|
6
|
Li M, Wu J, Geng W, Gao P, Yang Y, Li X, Xu K, Liao Q, Cai K. Interaction pathways of implant metal localized corrosion and macrophage inflammatory reactions. Bioact Mater 2024; 31:355-367. [PMID: 37663618 PMCID: PMC10474585 DOI: 10.1016/j.bioactmat.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
Macrophages play a central role in immunological responses to metallic species associated with the localized corrosion of metallic implants, and mediating in peri-implant inflammations. Herein, the pathways of localized corrosion-macrophage interactions were systematically investigated on 316L stainless steel (SS) implant metals. Electrochemical monitoring under macrophage-mediated inflammatory conditions showed a decreased pitting corrosion resistance of 316L SSs in the presence of RAW264.7 cells as the cells would disrupt biomolecule adsorbed layer on the metal surface. The pitting potentials were furtherly decreased when the RAW264.7 cells were induced to the M1 pro-inflammatory phenotype by the addition of lipopolysaccharide (LPS), and pitting corrosion preferentially initiated at the peripheries of macrophages. The overproduction of aggressive ROS under inflammatory conditions would accelerate the localized corrosion of 316L SS around macrophages. Under pitting corrosion condition, the viability and pro-inflammatory polarization of RAW264.7 cells were region-dependent, lower viability and more remarkable morphology transformation of macrophages in the pitting corrosion region than the pitting-free region. The pitting corrosion of 316L SS induced high expression of CD86, TNF-α, IL-6 and high level of intracellular ROS in macrophages. Uneven release of metallic species (Fe2+, Cr3+, Ni2+, etc) and uneven distribution of surface overpotential stimulated macrophage inflammatory responses near the corrosion pits. A synergetic effect of localized corrosion and macrophages was revealed, which could furtherly promote localized corrosion of 316L SS and macrophage inflammatory reactions. Our results provided direct evidence of corrosion-macrophage interaction in metallic implants and disclosed the pathways of this mutual stimulation effect.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, School of Energy and Power Engineering, Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
7
|
Li M, Wu J, Geng W, Yang Y, Li X, Xu K, Li K, Li Y, Duan Q, Gao P, Cai K. Regulation of localized corrosion of 316L stainless steel on osteogenic differentiation of bone morrow derived mesenchymal stem cells. Biomaterials 2023; 301:122262. [PMID: 37542857 DOI: 10.1016/j.biomaterials.2023.122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Localized corrosion has become a concerning issue in orthopedic implants as it is associated with peri-implant adverse tissue reactions and implant failure. Here, the pitting corrosion of 316 L stainless steels (316 L SSs) was initiated by electrochemical polarization to simulate the in vivo localized corrosion of orthopedic implants. The effect of localized corrosion on osteogenic differentiation of bone marrow derived mesenchymal stem cells (BMSCs) was systematically studied. The results suggest that pitting corrosion of 316 L SS reduced the viability, adhesion, proliferation, and osteogenic differentiation abilities of BMSCs, especially for the cells around the corrosion pits. The relatively high concentrations of metallic ions such as Cr3+ and Ni2+ released by pitting corrosion could cause cytotoxicity to the BMSCs. The inhomogeneous electrochemical environment resulted from localized corrosion could promote reactive oxygen species (ROS) generation around the corrosion pits and cause oxidative stress of BMSCs. In addition, localized corrosion could also electrochemically interact with the cells and lead to cell membrane depolarization. The depolarized cell membranes and relatively high levels of ROS mediated the degradation of the osteogenic capacity of BMSCs. This work provides new insights into corrosion-mediated cell function degeneration as well as the material-cell interactions.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Qiaojian Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
8
|
Ben Amara H, Martinez DC, Shah FA, Loo AJ, Emanuelsson L, Norlindh B, Willumeit-Römer R, Plocinski T, Swieszkowski W, Palmquist A, Omar O, Thomsen P. Magnesium implant degradation provides immunomodulatory and proangiogenic effects and attenuates peri-implant fibrosis in soft tissues. Bioact Mater 2023; 26:353-369. [PMID: 36942009 PMCID: PMC10024189 DOI: 10.1016/j.bioactmat.2023.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Implants made of magnesium (Mg) are increasingly employed in patients to achieve osteosynthesis while degrading in situ. Since Mg implants and Mg2+ have been suggested to possess anti-inflammatory properties, the clinically observed soft tissue inflammation around Mg implants is enigmatic. Here, using a rat soft tissue model and a 1-28 d observation period, we determined the temporo-spatial cell distribution and behavior in relation to sequential changes of pure Mg implant surface properties and Mg2+ release. Compared to nondegradable titanium (Ti) implants, Mg degradation exacerbated initial inflammation. Release of Mg degradation products at the tissue-implant interface, culminating at 3 d, actively initiated chemotaxis and upregulated mRNA and protein immunomodulatory markers, particularly inducible nitric oxide synthase and toll-like receptor-4 up to 6 d, yet without a cytotoxic effect. Increased vascularization was demonstrated morphologically, preceded by high expression of vascular endothelial growth factor. The transition to appropriate tissue repair coincided with implant surface enrichment of Ca and P and reduced peri-implant Mg2+ concentration. Mg implants revealed a thinner fibrous encapsulation compared with Ti. The detailed understanding of the relationship between Mg material properties and the spatial and time-resolved cellular processes provides a basis for the interpretation of clinical observations and future tailoring of Mg implants.
Collapse
Affiliation(s)
- Heithem Ben Amara
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana C. Martinez
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Furqan A. Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson Loo
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Tomasz Plocinski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Corresponding author. Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Box 412, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
9
|
Maduka CV, Habeeb OM, Kuhnert MM, Hakun M, Goodman SB, Contag CH. Glycolytic reprogramming underlies immune cell activation by polyethylene wear particles. BIOMATERIALS ADVANCES 2023; 152:213495. [PMID: 37301057 DOI: 10.1016/j.bioadv.2023.213495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Primary total joint arthroplasties (TJAs) are widely and successfully applied reconstructive procedures to treat end-stage arthritis. Nearly 50 % of TJAs are now performed in young patients, posing a new challenge: performing TJAs which last a lifetime. The urgency is justified because subsequent TJAs are costlier and fraught with higher complication rates, not to mention the toll taken on patients and their families. Polyethylene particles, generated by wear at joint articulations, drive aseptic loosening by inciting insidious inflammation associated with surrounding bone loss. Down modulating polyethylene particle-induced inflammation enhances integration of implants to bone (osseointegration), preventing loosening. A promising immunomodulation strategy could leverage immune cell metabolism, however, the role of immunometabolism in polyethylene particle-induced inflammation is unknown. Our findings reveal that immune cells exposed to sterile or contaminated polyethylene particles show fundamentally altered metabolism, resulting in glycolytic reprogramming. Inhibiting glycolysis controlled inflammation, inducing a pro-regenerative phenotype that could enhance osseointegration.
Collapse
Affiliation(s)
- Chima V Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Oluwatosin M Habeeb
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maxwell M Kuhnert
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maxwell Hakun
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, CA 94063, USA; Department of Bioengineering, Stanford University, CA 94305, USA
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48864, USA.
| |
Collapse
|
10
|
Kopp EB, Agaronyan K, Licona-Limón I, Nish SA, Medzhitov R. Modes of type 2 immune response initiation. Immunity 2023; 56:687-694. [PMID: 37044059 DOI: 10.1016/j.immuni.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity defends against macro-parasites and can cause allergic diseases. Our understanding of the mechanisms governing the initiation of type 2 immunity is limited, whereas we know more about type 1 immune responses. Type 2 immunity can be triggered by a wide array of inducers that do not share common features and via diverse pathways and mechanisms. To address the complexity of the type 2 initiation pathways, we suggest a framework that conceptualizes different modes of induction of type 2 immunity. We discuss categories of type 2 inducers and their immunogenicity, types of tissue perturbations that are caused by these inducers, sensing strategies for the initiation of Th2 immune responses, and categorization of the signals that are produced in response to type 2 challenges. We describe tissue-specific examples of functional disruption that could lead to type 2 inflammation and propose that different sensing strategies that operate at the tissue level converge on the initiation of type 2 immune responses.
Collapse
Affiliation(s)
- Elizabeth B Kopp
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Karen Agaronyan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA
| | - Ileana Licona-Limón
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Simone A Nish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA; Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
McDaniel MM, Lara HI, von Moltke J. Initiation of type 2 immunity at barrier surfaces. Mucosal Immunol 2023; 16:86-97. [PMID: 36642383 DOI: 10.1016/j.mucimm.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
Although seemingly unrelated, parasitic worms, venoms, and allergens all induce a type 2 immune response. The effector functions and clinical features of type 2 immunity are well-defined, but fundamental questions about the initiation of type 2 immunity remain unresolved. How are these enormously diverse type 2 stimuli first detected? How are type 2 helper T cells primed and regulated? And how do mechanisms of type 2 initiation vary across tissues? Here, we review the common themes governing type 2 immune sensing and explore aspects of T cell priming and effector reactivation that make type 2 helper T cells a unique T helper lineage. Throughout the review, we emphasize the importance of non-hematopoietic cells and highlight how the unique anatomy and physiology of each barrier tissue shape mechanisms of type 2 immune initiation.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, USA.
| | - Heber I Lara
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, USA
| |
Collapse
|
12
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
13
|
Maternal IL-33 critically regulates tissue remodeling and type 2 immune responses in the uterus during early pregnancy in mice. Proc Natl Acad Sci U S A 2022; 119:e2123267119. [PMID: 35994660 PMCID: PMC9436313 DOI: 10.1073/pnas.2123267119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The pregnant uterus is an immunologically rich organ, with dynamic changes in the inflammatory milieu and immune cell function underlying key stages of pregnancy. Recent studies have implicated dysregulated expression of the interleukin-1 (IL-1) family cytokine, IL-33, and its receptor, ST2, in poor pregnancy outcomes in women, including recurrent pregnancy loss, preeclampsia, and preterm labor. How IL-33 supports pregnancy progression in vivo is not well understood. Here, we demonstrate that maternal IL-33 signaling critically regulates uterine tissue remodeling and immune cell function during early pregnancy in mice. IL-33-deficient dams exhibit defects in implantation chamber formation and decidualization, and abnormal vascular remodeling during early pregnancy. These defects coincide with delays in early embryogenesis, increased resorptions, and impaired fetal and placental growth by late pregnancy. At a cellular level, myometrial fibroblasts, and decidual endothelial and stromal cells, are the main IL-33+ cell types in the uterus during decidualization and early placentation, whereas ST2 is expressed by uterine immune populations associated with type 2 immune responses, including ILC2s, Tregs, CD4+ T cells, M2- and cDC2-like myeloid cells, and mast cells. Early pregnancy defects in IL-33-deficient dams are associated with impaired type 2 cytokine responses by uterine lymphocytes and fewer Arginase-1+ macrophages in the uterine microenvironment. Collectively, our data highlight a regulatory network, involving crosstalk between IL-33-producing nonimmune cells and ST2+ immune cells at the maternal-fetal interface, that critically supports pregnancy progression in mice. This work has the potential to advance our understanding of how IL-33 signaling may support optimal pregnancy outcomes in women.
Collapse
|
14
|
El-Naccache DW, Chen F, Palma MJ, Lemenze A, Fischer MA, Wu W, Mishra PK, Eltzschig HK, Robson SC, Di Virgilio F, Yap GS, Edelblum KL, Haskó G, Gause WC. Adenosine metabolized from extracellular ATP promotes type 2 immunity through triggering A 2BAR signaling in intestinal epithelial cells. Cell Rep 2022; 40:111150. [PMID: 35926464 PMCID: PMC9402265 DOI: 10.1016/j.celrep.2022.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal nematode parasites can cross the epithelial barrier, causing tissue damage and release of danger-associated molecular patterns (DAMPs) that may promote host protective type 2 immunity. We investigate whether adenosine binding to the A2B adenosine receptor (A2BAR) on intestinal epithelial cells (IECs) plays an important role. Specific blockade of IEC A2BAR inhibits the host protective memory response to the enteric helminth, Heligmosomoides polygyrus bakeri (Hpb), including disruption of granuloma development at the host-parasite interface. Memory T cell development is blocked during the primary response, and transcriptional analyses reveal profound impairment of IEC activation. Extracellular ATP is visualized 24 h after inoculation and is shown in CD39-deficient mice to be critical for the adenosine production mediating the initiation of type 2 immunity. Our studies indicate a potent adenosine-mediated IEC pathway that, along with the tuft cell circuit, is critical for the activation of type 2 immunity.
Collapse
Affiliation(s)
- Darine W El-Naccache
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - Fei Chen
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - Mark J Palma
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - Matthew A Fischer
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - Wenhui Wu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - Pankaj K Mishra
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Texas at Houston Medical School, Houston, TX 77030, USA
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | - George S Yap
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - Karen L Edelblum
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| | - William C Gause
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ 07101, USA.
| |
Collapse
|
15
|
Martin KE, Kalelkar PP, Coronel MM, Theriault HS, Schneider RS, García AJ. Host type 2 immune response to xenogeneic serum components impairs biomaterial-directed osteo-regenerative therapies. Biomaterials 2022; 286:121601. [PMID: 35660823 PMCID: PMC11458135 DOI: 10.1016/j.biomaterials.2022.121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
Abstract
The transformative potential of cells as therapeutic agents is being realized in a wide range of applications, from regenerative medicine to cancer therapy to autoimmune disorders. The majority of these therapies require ex vivo expansion of the cellular product, often utilizing fetal bovine serum (FBS) in the culture media. However, the impact of residual FBS on immune responses to cell therapies and the resulting cell therapy outcomes remains unclear. Here, we show that hydrogel-delivered FBS elicits a robust type 2 immune response characterized by infiltration of eosinophils and CD4+ T cells. Host secretion of cytokines associated with type 2 immunity, including IL-4, IL-5, and IL-13, is also increased in FBS-containing hydrogels. We demonstrate that the immune response to xenogeneic serum components dominates the local environment and masks the immunomodulatory effects of biomaterial-delivered mesenchymal stromal/stem cells. Importantly, delivery of relatively small amounts of FBS (3.2% by volume) within BMP-2-containing biomaterial constructs dramatically reduces the ability of these constructs to promote de novo bone formation in a radial defect model in immunocompetent mice. These results urge caution when interpreting the immunological and tissue repair outcomes in immunocompetent pre-clinical models from cells and biomaterial constructs that have come in contact with xenogeneic serum components.
Collapse
Affiliation(s)
- Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pranav P Kalelkar
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - María M Coronel
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hannah S Theriault
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca S Schneider
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
16
|
Goodman SB, Gibon E, Gallo J, Takagi M. Macrophage Polarization and the Osteoimmunology of Periprosthetic Osteolysis. Curr Osteoporos Rep 2022; 20:43-52. [PMID: 35133558 DOI: 10.1007/s11914-022-00720-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Joint replacement has revolutionized the treatment of end-stage arthritis. We highlight the key role of macrophages in the innate immune system in helping to ensure that the prosthesis-host interface remains biologically robust. RECENT FINDINGS Osteoimmunology is of great interest to researchers investigating the fundamental biological and material aspects of joint replacement. Constant communication between cells of the monocyte/macrophage/osteoclast lineage and the mesenchymal stem cell-osteoblast lineage determines whether a durable prosthesis-implant interface is obtained, or whether implant loosening occurs. Tissue and circulating monocytes/macrophages provide local surveillance of stimuli such as the presence of byproducts of wear and can quickly polarize to pro- and anti-inflammatory phenotypes to re-establish tissue homeostasis. When these mechanisms fail, periprosthetic osteolysis results in progressive bone loss and painful failure of mechanical fixation. Immune modulation of the periprosthetic microenvironment is a potential intervention to facilitate long-term durability of prosthetic interfaces.
Collapse
Affiliation(s)
- Stuart B Goodman
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, Stanford, CA, USA.
| | - Emmanuel Gibon
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University, University Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
17
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
18
|
Abstract
The dogma that immunological memory is an exclusive trait of adaptive immunity has been recently challenged by studies showing that priming of innate cells can also result in modified long-term responsiveness to secondary stimuli, once the cells have returned to a non-activated state. This phenomenon is known as 'innate immune memory', 'trained immunity' or 'innate training'. While the main known triggers of trained immunity are microbial-derived molecules such as β-glucan, endogenous particles such as oxidized low-density lipoprotein and monosodium urate crystals can also induce trained phenotypes in innate cells. Whether exogenous particles can induce trained immunity has been overlooked. Our exposure to particulates has dramatically increased in recent decades as a result of the broad medical use of particle-based drug carriers, theragnostics, adjuvants, prosthetics and an increase in environmental pollution. We recently showed that pristine graphene can induce trained immunity in macrophages, enhancing their inflammatory response to TLR agonists, proving that exogenous nanomaterials can affect the long-term response of innate cells. The consequences of trained immunity can be beneficial, for instance, enhancing protection against unrelated pathogens; however, they can also be deleterious if they enhance inflammatory disorders. Therefore, studying the ability of particulates and biomaterials to induce innate trained phenotypes in cells is warranted. Here we analyse the mechanisms whereby particles can induce trained immunity and discuss how physicochemical characteristics of particulates could influence the induction of innate memory. We review the implications of trained immunity in the context of particulate adjuvants, nanocarriers and nanovaccines and their potential applications in medicine. Finally, we reflect on the unanswered questions and the future of the field.
Collapse
|
19
|
Rezaei M, Barati S, Babamahmoodi A, Dastan F, Marjani M. The Possible Role of Bruton Tyrosine Kinase Inhibitors in the Treatment of COVID-19: A Review. CURRENT THERAPEUTIC RESEARCH 2021; 96:100658. [PMID: 34931090 PMCID: PMC8673731 DOI: 10.1016/j.curtheres.2021.100658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), an acute, sometimes severe respiratory illness caused by a novel coronavirus has led to a vast pandemic with an astonishing spread rate. Its treatment is unknown, its mortality is significant, and its socioeconomic complications are uncontrollable. Although there is still little known about the pathogenesis of the disease, severe cases of COVID-19 are usually associated with cytokine release syndrome and high serum levels of inflammatory cytokines, which are believed to be a major cause of mortality in these patients. Different pathways cause inflammation and the release of cytokines. One of these pathways is the Bruton tyrosine kinase (BTK) pathway, which is essential for the production of several anti-inflammatory cytokines. Theoretically, the inhibition of BTK signaling can reduce cytokine levels and subsequent anti-inflammatory effects. OBJECTIVE This review aims to investigate the role of the BTK pathway in the pathogenesis of COVID-19 and the possible effects of its inhibition in the treatment of this disease. METHODS This narrative review provides information regarding the use of BTK inhibitors in patients with COVID-19 and discusses whether clinicians should consider these medications while managing their patients based on the literature. Data were gathered using the PubMed, Scopus, and Web of Science databases. RESULTS Some data support the use of BTK inhibitors for treating COVID-19. CONCLUSIONS It is recommended that patients continue their medications in this class if they develop COVID-19 and were receiving these agents before the disease developed. The use of BTK inhibitors might enable patients to experience less severe immune responses to the COVID-19. Well-designed studies are needed to evaluate the effectiveness of BTKis in the management of COVID-19. (Curr Ther Res Clin Exp. 2022; 82:XXX-XXX) © 2022 Elsevier HS Journals.
Collapse
Affiliation(s)
- Mitra Rezaei
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Virology Research Center, National Research Institute for Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saghar Barati
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Babamahmoodi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dastan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Demyanets S, Stojkovic S, Huber K, Wojta J. The Paradigm Change of IL-33 in Vascular Biology. Int J Mol Sci 2021; 22:ijms222413288. [PMID: 34948083 PMCID: PMC8707059 DOI: 10.3390/ijms222413288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
In this review, we focus on the actual understanding of the role of IL-33 in vascular biology in the context of the historical development since the description of IL-33 as a member of IL-1 superfamily and the ligand for ST2 receptor in 2005. We summarize recent data on the biology, structure and signaling of this dual-function factor with both nuclear and extracellular cytokine properties. We describe cellular sources of IL-33, particularly within vascular wall, changes in its expression in different cardio-vascular conditions and mechanisms of IL-33 release. Additionally, we summarize the regulators of IL-33 expression as well as the effects of IL-33 itself in cells of the vasculature and in monocytes/macrophages in vitro combined with the consequences of IL-33 modulation in models of vascular diseases in vivo. Described in murine atherosclerosis models as well as in macrophages as an atheroprotective cytokine, extracellular IL-33 induces proinflammatory, prothrombotic and proangiogenic activation of human endothelial cells, which are processes known to be involved in the development and progression of atherosclerosis. We, therefore, discuss that IL-33 can possess both protective and harmful effects in experimental models of vascular pathologies depending on experimental conditions, type and dose of administration or method of modulation.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kurt Huber
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Clinic Ottakring, 1160 Vienna, Austria;
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73500; Fax: +43-1-40400-73586
| |
Collapse
|
21
|
Bhattacharjee O, Ayyangar U, Kurbet AS, Lakshmanan V, Palakodeti D, Ginhoux F, Raghavan S. Epithelial-Macrophage Crosstalk Initiates Sterile Inflammation in Embryonic Skin. Front Immunol 2021; 12:718005. [PMID: 34721382 PMCID: PMC8553113 DOI: 10.3389/fimmu.2021.718005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages are highly responsive to the environmental cues and are the primary responders to tissue stress and damage. While much is known about the role of macrophages during inflammatory disease progression; the initial series of events that set up the inflammation remains less understood. In this study, we use next generation sequencing (NGS) of embryonic skin macrophages and the niche cells - skin epithelia and stroma in the epidermis specific knockout of integrin beta 1 (Itgβ1) model to uncover specific roles of each cell type and identify how these cell types communicate to initiate the sterile inflammatory response. We demonstrate that while the embryonic skin fibroblasts in the Itgβ1 knockout skin are relatively inactive, the keratinocytes and macrophages are the critical responders to the sterile inflammatory cues. The epidermis expresses damage associated molecular patterns (DAMPs), stress response genes, pro-inflammatory cytokines, and chemokines that aid in eliciting the inflammatory response. The macrophages, in-turn, respond by acquiring enhanced M2-like characteristics expressing ECM remodeling and matrisome signatures that exacerbate the basement membrane disruption. Depletion of macrophages by blocking the CSF1 receptor (CSF1R) results in improved basement membrane integrity and reduced ECM remodeling activity in the KO skin. Further, blocking the skin inflammation with celecoxib reveals that the acquired fate of macrophages in the KO skin is dependent on its interaction with the epidermal compartment through COX2 dependent cytokine production. Taken together, our study highlights a critical crosstalk between the epithelia and the dermal macrophages that shapes macrophage fate and initiates sterile inflammation in the skin. The insights gained from our study can be extrapolated to other inflammatory disorders to understand the early events that set up the disease.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Uttkarsh Ayyangar
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Ambika S. Kurbet
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Vairavan Lakshmanan
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Integrative Chemical Biology, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Dasaradhi Palakodeti
- Integrative Chemical Biology, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Srikala Raghavan
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Agency for Science, Technology and Research (A*STAR) Skin Research Lab (A*SRL), Singapore, Singapore
| |
Collapse
|
22
|
Arvind V, Huang AH. Reparative and Maladaptive Inflammation in Tendon Healing. Front Bioeng Biotechnol 2021; 9:719047. [PMID: 34350166 PMCID: PMC8327090 DOI: 10.3389/fbioe.2021.719047] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Tendon injuries are common and debilitating, with non-regenerative healing often resulting in chronic disease. While there has been considerable progress in identifying the cellular and molecular regulators of tendon healing, the role of inflammation in tendon healing is less well understood. While inflammation underlies chronic tendinopathy, it also aids debris clearance and signals tissue repair. Here, we highlight recent findings in this area, focusing on the cells and cytokines involved in reparative inflammation. We also discuss findings from other model systems when research in tendon is minimal, and explore recent studies in the treatment of human tendinopathy to glean further insights into the immunobiology of tendon healing.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alice H. Huang
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
23
|
The Effects of Macrophage Phenotype on Osteogenic Differentiation of MSCs in the Presence of Polyethylene Particles. Biomedicines 2021; 9:biomedicines9050499. [PMID: 34062822 PMCID: PMC8147332 DOI: 10.3390/biomedicines9050499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Wear debris generated from the bearing surfaces of joint arthroplasties leads to acute and chronic inflammation, which is strongly associated with implant failure. Macrophages derived from monocytes recruited to the local tissues have a significant impact on bone healing and regeneration. Macrophages can adopt various functional phenotypes. While M1 macrophages are pro-inflammatory, M2 macrophages express factors important for tissue repair. Here, we established a 3D co-culture system to investigate how the immune system influences the osteogenic differentiation of mesenchymal stem cells (MSCs) in the presence of micron-sized particles. This system allowed for the simulation of an inflammatory reaction via the addition of Lipopolysaccharide-contaminated polyethylene particles (cPE) and the characterization of bone formation using micro-CT and gene and protein expression. Co-cultures of MSCs with M2 macrophages in the presence of cPE in a 3D environment resulted in the increased expression of osteogenic markers, suggesting facilitation of bone formation. In this model, the upregulation of M2 macrophage expression of immune-associated genes and cytokines contributes to enhanced bone formation by MSCs. This study elucidates how the immune system modulates bone healing in response to an inflammatory stimulus using a unique 3D culture system.
Collapse
|
24
|
Griffin DR, Archang MM, Kuan CH, Weaver WM, Weinstein JS, Feng AC, Ruccia A, Sideris E, Ragkousis V, Koh J, Plikus MV, Di Carlo D, Segura T, Scumpia PO. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. NATURE MATERIALS 2021; 20:560-569. [PMID: 33168979 PMCID: PMC8005402 DOI: 10.1038/s41563-020-00844-w] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/25/2020] [Indexed: 05/15/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are flowable, in situ crosslinked, microporous scaffolds composed of microgel building blocks and were previously shown to accelerate wound healing. To promote more extensive tissue ingrowth before scaffold degradation, we aimed to slow MAP degradation by switching the chirality of the crosslinking peptides from L- to D-amino acids. Unexpectedly, despite showing the predicted slower enzymatic degradation in vitro, D-peptide crosslinked MAP hydrogel (D-MAP) hastened material degradation in vivo and imparted significant tissue regeneration to healed cutaneous wounds, including increased tensile strength and hair neogenesis. MAP scaffolds recruit IL-33 type 2 myeloid cells, which is amplified in the presence of D-peptides. Remarkably, D-MAP elicited significant antigen-specific immunity against the D-chiral peptides, and an intact adaptive immune system was required for the hydrogel-induced skin regeneration. These findings demonstrate that the generation of an adaptive immune response from a biomaterial is sufficient to induce cutaneous regenerative healing despite faster scaffold degradation.
Collapse
Affiliation(s)
- Donald R Griffin
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA, USA
- Departments of Biomedical Engineering and Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Maani M Archang
- Bioengineering Department, University of California, Los Angeles, CA, USA
| | - Chen-Hsiang Kuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Westbrook M Weaver
- Bioengineering Department, University of California, Los Angeles, CA, USA
- Tempo Therapeutics, San Diego, CA, USA
| | - Jason S Weinstein
- Department of Medicine and Center for Immunity & Inflammation, Rutgers -New Jersey Medical School, Newark, NJ, USA
| | - An Chieh Feng
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Amber Ruccia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elias Sideris
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA, USA
| | - Vasileios Ragkousis
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jaekyung Koh
- Bioengineering Department, University of California, Los Angeles, CA, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, CA, USA
| | - Dino Di Carlo
- Bioengineering Department, University of California, Los Angeles, CA, USA
| | - Tatiana Segura
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA, USA.
- Departments of Biomedical Engineering, Neurology, Dermatology, Duke University, Durham, NC, USA.
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Dermatology, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
25
|
El-Naccache DW, Haskó G, Gause WC. Early Events Triggering the Initiation of a Type 2 Immune Response. Trends Immunol 2021; 42:151-164. [PMID: 33386241 PMCID: PMC9813923 DOI: 10.1016/j.it.2020.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/11/2023]
Abstract
Type 2 immune responses are typically associated with protection against helminth infections and also with harmful inflammation in response to allergens. Recent advances have revealed that type 2 immunity also contributes to sterile inflammation, cancer, and microbial infections. However, the early events that initiate type 2 immune responses remain poorly defined. New insights reveal major contributions from danger-associated molecular patterns (DAMPs) in the initiation of type 2 immune responses. In this review, we examine the molecules released by the host and pathogens and the role they play in mediating the initiation of mammalian innate type 2 immune responses under a variety of conditions.
Collapse
Affiliation(s)
- Darine W El-Naccache
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - William C Gause
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
26
|
Chen T, Liu S, Zheng M, Li Y, He L. The effect of geniposide on chronic unpredictable mild stress‐induced depressive mice through
BTK
/
TLR4
/
NF‐κB
and
BDNF
/
TrkB
signaling pathways. Phytother Res 2020; 35:932-945. [DOI: 10.1002/ptr.6846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Tong Chen
- Department of Pharmacology China Pharmaceutical University Nanjing China
| | - Shengnan Liu
- Department of Pharmacology China Pharmaceutical University Nanjing China
| | - Menglin Zheng
- Department of Pharmacology China Pharmaceutical University Nanjing China
| | - Yixuan Li
- Department of Pharmacology China Pharmaceutical University Nanjing China
| | - Ling He
- Department of Pharmacology China Pharmaceutical University Nanjing China
| |
Collapse
|
27
|
Heterogeneity in the initiation, development and function of type 2 immunity. Nat Rev Immunol 2020; 20:603-614. [PMID: 32367051 PMCID: PMC9773851 DOI: 10.1038/s41577-020-0301-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Type 2 immune responses operate under varying conditions in distinct tissue environments and are crucial for protection against helminth infections and for the maintenance of tissue homeostasis. Here we explore how different layers of heterogeneity influence type 2 immunity. Distinct insults, such as allergens or infections, can induce type 2 immune responses through diverse mechanisms, and this can have heterogeneous consequences, ranging from acute or chronic inflammation to deficits in immune regulation and tissue repair. Technological advances have provided new insights into the molecular heterogeneity of different developmental lineages of type 2 immune cells. Genetic and environmental heterogeneity also contributes to the varying magnitude and quality of the type 2 immune response during infection, which is an important determinant of the balance between pathology and disease resolution. Hence, understanding the mechanisms underlying the heterogeneity of type 2 immune responses between individuals and between different tissues will be crucial for treating diseases in which type 2 immunity is an important component.
Collapse
|
28
|
Kondo M, Tezuka T, Ogawa H, Koyama K, Bando H, Azuma M, Nishioka Y. Lysophosphatidic Acid Regulates the Differentiation of Th2 Cells and Its Antagonist Suppresses Allergic Airway Inflammation. Int Arch Allergy Immunol 2020; 182:1-13. [PMID: 32846422 DOI: 10.1159/000509804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/30/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA), a prototypic member of a large family of lysophospholipids, has been recently shown to play a role in immune responses to respiratory diseases. The involvement of LPA in allergic airway inflammation has been reported, but the mechanism remains unclear. OBJECT We analyzed the biological activity of LPA in vitro and in vivo and investigated its role in allergic inflammation in mice using an LPA receptor 2 (LPA2) antagonist. METHODS We used a murine model with acute allergic inflammation, in which mice are sensitized and challenged with house dust mite, and analyzed airway hyperresponsiveness (AHR), pathological findings, Th2 cytokines, and IL-33 in bronchoalveolar lavage fluid (BALF) and lung homogenates. The effect of LPA on Th2 differentiation and cytokine production was examined in vitro using naive CD4+ T cells isolated from splenocytes. We also investigated in vivo the effects of LPA on intranasal administration in mice. RESULTS The LPA2 antagonist suppressed the increase of AHR, the number of total cells, and eosinophils in BALF and lung tissue. It also decreased the production of IL-13 in BALF and IL-33 and CCL2 in the lung. LPA promoted Th2 cell differentiation and IL-13 production by Th2 cells in vitro. Nasal administration of LPA significantly increased the number of total cells and IL-13 in BALF via regulating the production of IL-33 and CCL-2-derived infiltrating macrophages. CONCLUSION These findings suggest that LPA plays an important role in allergic airway inflammation and that the blockade of LPA2 might have therapeutic potential for bronchial asthma.
Collapse
Affiliation(s)
- Mayo Kondo
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshifumi Tezuka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuya Koyama
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Bando
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Medical Education, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan,
| |
Collapse
|
29
|
Hobza M, Milde D, Slobodova Z, Gallo J. The number of lymphocytes increases in the periprosthetic tissues with increasing time of implant service in non-metal-on-metal total joint arthroplasties: A role of metallic byproducts? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 165:416-427. [PMID: 32435063 DOI: 10.5507/bp.2020.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The objective of the study was to determine the association between periprosthetic concentrations of selected metals and changes induced in periprosthetic tissues (PT). METHODS PT from 24 patients with metal-on-polyethylene or ceramic-on-polyethylene total joint replacements (TJRs) were examined. Samples underwent histological examination including quantification of cellular populations. Determination of metals was performed according to the published methodology. Results were processed using correlation analysis and Principal Component Analysis (PCA), respectively. RESULTS Growing concentration of metals in the PT was found as a function of length of exposure (LoE). Differences in Ti, Co, Cr and V concentrations (per α = 0.05) depended on the type of alloy the implants were made from. On the contrary, the implant composition did not reflect in the different numbers of immune cells per 1 high power field, not even in distribution of the membrane type according to the Krenn classification. PCA revealed several clusters in dependence on the LoE, type of the membrane and presence of immune cells. High representation of lymphocytes in the PT was typical for clusters with the longest LoE while a higher representation of neutrophils was typical for a shorter time to reoperation. CONCLUSIONS Correlation between the LoE and concentrations of metals in its surroundings was demonstrated. However, the tissue image analysis cannot differentiate finer, potentially metal-induced tissue changes. Importantly, the tissues become more similar with an increasing LoE. We draw a conclusion about predominantly non-specific stimulation of the PT jointly by metal and polyethylene particles in non-metal-on-metal TJRs.
Collapse
Affiliation(s)
- Martin Hobza
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Zuzana Slobodova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, Czech Republic
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
| |
Collapse
|
30
|
Therapeutic treatment with Ibrutinib attenuates imiquimod-induced psoriasis-like inflammation in mice through downregulation of oxidative and inflammatory mediators in neutrophils and dendritic cells. Eur J Pharmacol 2020; 877:173088. [PMID: 32234429 DOI: 10.1016/j.ejphar.2020.173088] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/28/2022]
Abstract
Psoriasis is clinically characterized by well-demarcated silvery plaques which may appear on the extremities, scalp, and sacral area. The multidimensional interactions among innate immune cells [neutrophils and dendritic cells (DCs)], adaptive immune cells and skin resident cells result in characteristic features of psoriatic inflammation such as acanthosis, hyperkeratosis, and parakeratosis. Tec family kinases are involved in the pathogenesis of several inflammatory diseases. One of them is Bruton's tyrosine kinase (BTK) which is reported to carry out inflammatory and oxidative signaling in neutrophils and DCs. Effect of BTK inhibitor with regard to psoriatic inflammation has not been explored previously especially in a therapeutic setting. In the current investigation, effect of BTK inhibitor, Ibrutinib on oxidative/inflammatory signaling in dermal/splenic neutrophils [phosphorylated BTK (p-BTK), inducible nitric oxide synthase (iNOS), nitrotyrosine], CD11c + DCs (p-BTK, iNOS, nitrotyrosine, MCP-1, TNF-α) and enzymatic antioxidants [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR)] in imiquimod (IMQ)-induced psoriatic inflammation was evaluated using therapeutic mode. Our results show that IMQ treatment led to induction of p-BTK expression along with concomitant increase in oxidative stress in neutrophils, and CD11c + DCs in skin/periphery. Therapeutic treatment with Ibrutinib caused attenuation of IMQ-induced oxidative stress in CD11c + DCs and neutrophils. Further there were dysregulations in antioxidants enzymes (SOD/GPx/GR) in the skin of IMQ-treated mice, which were corrected by Ibrutinib. In short, our study reveals that BTK signaling in neutrophils and CD11c + DCs upregulates oxidative stress which is concomitant with psoriatic inflammation in mice. Ibrutinib attenuates psoriasis inflammation through downregulation of oxidative stress in these innate immune cells.
Collapse
|
31
|
Egholm C, Heeb LEM, Impellizzieri D, Boyman O. The Regulatory Effects of Interleukin-4 Receptor Signaling on Neutrophils in Type 2 Immune Responses. Front Immunol 2019; 10:2507. [PMID: 31708926 PMCID: PMC6821784 DOI: 10.3389/fimmu.2019.02507] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin-4 (IL-4) receptor (IL-4R) signaling plays a pivotal role in type 2 immune responses. Type 2 immunity ensures several host-protective processes such as defense against helminth parasites and wound repair, however, type 2 immune responses also drive the pathogenesis of allergic diseases. Neutrophil granulocytes (neutrophils) have not traditionally been considered a part of type 2 immunity. While neutrophils might be beneficial in initiating a type 2 immune response, their involvement and activation is rather unwanted at later stages. This is evidenced by examples of type 2 immune responses where increased neutrophil responses are able to enhance immunity, however, at the cost of increased tissue damage. Recent studies have linked the type 2 cytokines IL-4 and IL-13 and their signaling via type I and type II IL-4Rs on neutrophils to inhibition of several neutrophil effector functions. This mechanism directly curtails neutrophil chemotaxis toward potent intermediary chemoattractants, inhibits the formation of neutrophil extracellular traps, and antagonizes the effects of granulocyte colony-stimulating factor on neutrophils. These effects are observed in both mouse and human neutrophils. Thus, we propose for type 2 immune responses that neutrophils are, as in other immune responses, the first non-resident cells to arrive at a site of inflammation or infection, thereby guiding and attracting other innate and adaptive immune cells; however, as soon as the type 2 cytokines IL-4 and IL-13 predominate, neutrophil recruitment, chemotaxis, and effector functions are rapidly shut off by IL-4/IL-13-mediated IL-4R signaling in neutrophils to prevent them from damaging healthy tissues. Insight into this neutrophil checkpoint pathway will help understand regulation of neutrophilic type 2 inflammation and guide the design of targeted therapeutic approaches for modulating neutrophils during inflammation and neutropenia.
Collapse
Affiliation(s)
- Cecilie Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Lukas E M Heeb
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
de Kouchkovsky DA, Ghosh S, Rothlin CV. Induction of sterile type 2 inflammation. NATURE MATERIALS 2019; 18:193-194. [PMID: 30783225 PMCID: PMC7081377 DOI: 10.1038/s41563-019-0300-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microparticle debris from prosthetic implants has been shown to induce a type 2 inflammatory response through a Burton’s tyrosine kinase-dependent signaling pathway.
Collapse
Affiliation(s)
| | - Sourav Ghosh
- Department of Pharmacology, Yale University, New Haven, CT, USA.
- Department of Neurology, Yale University, New Haven, CT, USA.
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|