1
|
Hu X, Yu Chen G, Luan Y, Tang T, Liang Y, Ren B, Chen L, Zhao Y, Zhang Q, Huang D, Sun X, Cheng YF, Ou JZ. Flexoelectricity Modulated Electron Transport of 2D Indium Oxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404272. [PMID: 38953411 PMCID: PMC11434226 DOI: 10.1002/advs.202404272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Indexed: 07/04/2024]
Abstract
The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In2O3 crystals is modulated via flexoelectricity. By subjecting cubic In2O3 (c-In2O3) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100 nN, the output voltage and power values reach their maximum, e.g. 2.2 mV and 0.2 pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In2O3 are determined as ≈0.49 nC m-1 and 0.4 V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In2O3 flexoelectric effect reaches 20 nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In2O3, significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.
Collapse
Affiliation(s)
- Xinyi Hu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Guan Yu Chen
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yange Luan
- School of EngineeringRMIT UniversityMelbourne3000Australia
| | - Tao Tang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yi Liang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Baiyu Ren
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Liguo Chen
- School of Mechanical and Electric Engineering Jiangsu Provincial Key Laboratory of Advanced RoboticsSoochow UniversitySuzhou215123China
| | - Yulong Zhao
- State Key Laboratory for Manufacturing Systems EngineeringSchool of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Qi Zhang
- State Key Laboratory for Manufacturing Systems EngineeringSchool of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Dong Huang
- Department of PhysicsThe University of Hong KongHong Kong999077China
| | - Xiao Sun
- Inorganic ChemistryUniversity of KoblenzUniversitätsstraße 156070KoblenzGermany
| | - Yin Fen Cheng
- Institute of Advanced StudyChengdu UniversityChengdu610106China
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
- School of EngineeringRMIT UniversityMelbourne3000Australia
| |
Collapse
|
2
|
Cottam ND, Dewes BT, Shiffa M, Cheng TS, Novikov SV, Mellor CJ, Makarovsky O, Gonzalez D, Ben T, Patanè A. Thin Ga 2O 3 Layers by Thermal Oxidation of van der Waals GaSe Nanostructures for Ultraviolet Photon Sensing. ACS APPLIED NANO MATERIALS 2024; 7:17553-17560. [PMID: 39144400 PMCID: PMC11320379 DOI: 10.1021/acsanm.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Two-dimensional semiconductors (2DSEM) based on van der Waals crystals offer important avenues for nanotechnologies beyond the constraints of Moore's law and traditional semiconductors, such as silicon (Si). However, their application necessitates precise engineering of material properties and scalable manufacturing processes. The ability to oxidize Si to form silicon dioxide (SiO2) was crucial for the adoption of Si in modern technologies. Here, we report on the thermal oxidation of the 2DSEM gallium selenide (GaSe). The nanometer-thick layers are grown by molecular beam epitaxy on transparent sapphire (Al2O3) and feature a centro-symmetric polymorph of GaSe. Thermal annealing of the layers in an oxygen-rich environment promotes the chemical transformation and full conversion of GaSe into a thin layer of crystalline Ga2O3, paralleled by the formation of coherent Ga2O3/Al2O3 interfaces. Versatile functionalities are demonstrated in photon sensors based on GaSe and Ga2O3, ranging from electrical insulation to unfiltered deep ultraviolet optoelectronics, unlocking the technological potential of GaSe nanostructures and their amorphous and crystalline oxides.
Collapse
Affiliation(s)
- Nathan D. Cottam
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Benjamin T. Dewes
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Mustaqeem Shiffa
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Tin S. Cheng
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Sergei V. Novikov
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Christopher J. Mellor
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Oleg Makarovsky
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - David Gonzalez
- University
Research Institute on Electron Microscopy and Materials, IMEYMAT, Universidad de Cadiz, 11510 Cadiz, Spain
| | - Teresa Ben
- University
Research Institute on Electron Microscopy and Materials, IMEYMAT, Universidad de Cadiz, 11510 Cadiz, Spain
| | - Amalia Patanè
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| |
Collapse
|
3
|
Zeng D, Zhang Z, Xue Z, Zhang M, Chu PK, Mei Y, Tian Z, Di Z. Single-crystalline metal-oxide dielectrics for top-gate 2D transistors. Nature 2024; 632:788-794. [PMID: 39112708 PMCID: PMC11338823 DOI: 10.1038/s41586-024-07786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Two-dimensional (2D) structures composed of atomically thin materials with high carrier mobility have been studied as candidates for future transistors1-4. However, owing to the unavailability of suitable high-quality dielectrics, 2D field-effect transistors (FETs) cannot attain the full theoretical potential and advantages despite their superior physical and electrical properties3,5,6. Here we demonstrate the fabrication of atomically thin single-crystalline Al2O3 (c-Al2O3) as a high-quality top-gate dielectric in 2D FETs. By using intercalative oxidation techniques, a stable, stoichiometric and atomically thin c-Al2O3 layer with a thickness of 1.25 nm is formed on the single-crystalline Al surface at room temperature. Owing to the favourable crystalline structure and well-defined interfaces, the gate leakage current, interface state density and dielectric strength of c-Al2O3 meet the International Roadmap for Devices and Systems requirements3,5,7. Through a one-step transfer process consisting of the source, drain, dielectric materials and gate, we achieve top-gate MoS2 FETs characterized by a steep subthreshold swing of 61 mV dec-1, high on/off current ratio of 108 and very small hysteresis of 10 mV. This technique and material demonstrate the possibility of producing high-quality single-crystalline oxides suitable for integration into fully scalable advanced 2D FETs, including negative capacitance transistors and spin transistors.
Collapse
Affiliation(s)
- Daobing Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyang Zhang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhongying Xue
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Miao Zhang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, China
| | - Ziao Tian
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Zengfeng Di
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Zhang J, Luan Y, Ma Q, Hu Y, Ou R, Szydzik C, Yang Y, Trinh V, Ha N, Zhang Z, Ren G, Jia HJ, Zhang BY, Ou JZ. Large-area grown ultrathin molybdenum oxides for label-free sensitive biomarker detection. NANOSCALE 2024; 16:13061-13070. [PMID: 38887082 DOI: 10.1039/d4nr01275e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The rise of two-dimensional (2D) materials has provided a confined geometry and yielded methods for guiding electrons at the nanoscale level. 2D material-enabled electronic devices can interact and transduce the subtle charge perturbation and permit significant advancement in molecule discrimination technology with high accuracy, sensitivity, and specificity, leaving a significant impact on disease diagnosis and health monitoring. However, high-performance biosensors with scalable fabrication ability and simple protocols have yet to be fully realized due to the challenges in wafer-scale 2D film synthesis and integration with electronics. Here, we propose a molybdenum oxide (MoOx)-interdigitated electrode (IDE)-based label-free biosensing chip, which stands out for its wafer-scale dimension, tunability, ease of integration and compatibility with the complementary metal-oxide-semiconductor (CMOS) fabrication. The device surface is biofunctionalized with monoclonal anti-carcinoembryonic antigen antibodies (anti-CEA) via the linkage agent (3-aminopropyl)triethoxysilane (APTES) for carcinoembryonic antigen (CEA) detection and is characterized step-by-step to reveal the working mechanism. A wide range and real-time response of the CEA concentration from 0.1 to 100 ng mL-1 and a low limit of detection (LOD) of 0.015 ng mL-1 were achieved, meeting the clinical requirements for cancer diagnosis and prognosis in serum. The MoOx-IDE biosensor also demonstrates strong surface affinity towards molecules and high selectivity using L-cysteine (L-Cys), glycine (Gly), glucose (Glu), bovine serum albumin (BSA), and immunoglobulin G (IgG). This study showcases a simple, scalable, and low-cost strategy to create a nanoelectronic biosensing platform to achieve high-performance cancer biomarker discrimination capabilities.
Collapse
Affiliation(s)
- Jiaru Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yange Luan
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Qijie Ma
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yihong Hu
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Rui Ou
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Crispin Szydzik
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Yunyi Yang
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Vien Trinh
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Nam Ha
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Zhenyue Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| | - Hu Jun Jia
- College of Microelectronics, Xidian University, Xi'an, Shaanxi, 710000, China
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria, 3800 Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne 3000, Australia.
| |
Collapse
|
5
|
Yang M, Kasbe P, Bu J, Xu W. Scalable solid-state synthesis of 2D transition metal oxide/graphene hybrid materials and their utilization for microsupercapacitors. NANOSCALE 2024; 16:8390-8400. [PMID: 38602122 DOI: 10.1039/d4nr00587b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Two-dimensional metal oxide (MO) nanostructures have unique properties compared with their bulk or 0D and 1D (nanoparticle and nanowire) counterparts. Their abundant surface area and atomically thin 2D structure are advantageous for their applications in catalysis and energy, as well as integration with 2D layered materials such as graphene and reduced graphene oxide (rGO). However, fast and scalable synthesis of 2D MOs and their nanocomposites remains challenging. Here, we developed a microwave-assisted solid-state synthesis method for the scalable generation of 2D MOs and 2D MO/rGO nanocomposites with tunable structure and composition. The structures and properties of 2D Fe2O3 and 2D ZnO as well as their nanocomposites with rGO were systematically investigated. The excellent electrochemical properties of such 2D MO/rGO nanocomposites also enable us to use them as electrode materials to fabricate microsupercapacitors. This work provides new insights into the scalable and solid-state synthesis of 2D nanocomposites and their potential applications in catalysis, energy conversion and storage.
Collapse
Affiliation(s)
- Muxuan Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Pratik Kasbe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Jinyu Bu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
6
|
Barnowsky T, Curtarolo S, Krasheninnikov AV, Heine T, Friedrich R. Magnetic State Control of Non-van der Waals 2D Materials by Hydrogenation. NANO LETTERS 2024; 24:3874-3881. [PMID: 38446590 PMCID: PMC10996018 DOI: 10.1021/acs.nanolett.3c04777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Controlling the magnetic state of two-dimensional (2D) materials is crucial for spintronics. By employing data-mining and autonomous density functional theory calculations, we demonstrate the switching of magnetic properties of 2D non-van der Waals materials upon hydrogen passivation. The magnetic configurations are tuned to states with flipped and enhanced moments. For 2D CdTiO3─a diamagnetic compound in the pristine case─we observe an onset of ferromagnetism upon hydrogenation. Further investigation of the magnetization density of the pristine and passivated systems provides a detailed analysis of modified local spin symmetries and the emergence of ferromagnetism. Our results indicate that selective surface passivation is a powerful tool for tailoring magnetic properties of nanomaterials, such as non-vdW 2D compounds.
Collapse
Affiliation(s)
- Tom Barnowsky
- Theoretical
Chemistry, Technische Universität
Dresden, Dresden 01062, Germany
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Stefano Curtarolo
- Center
for Extreme Materials, Duke University, Durham, North Carolina 27708, United States
- Materials
Science, Electrical Engineering, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Arkady V. Krasheninnikov
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Thomas Heine
- Theoretical
Chemistry, Technische Universität
Dresden, Dresden 01062, Germany
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf, Görlitz 02826, Germany
| | - Rico Friedrich
- Theoretical
Chemistry, Technische Universität
Dresden, Dresden 01062, Germany
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
- Center
for Extreme Materials, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Su J, Huang X, Shao Q. Emerging two dimensional metastable-phase oxides: insights and prospects in synthesis and catalysis. Angew Chem Int Ed Engl 2024; 63:e202318028. [PMID: 38179810 DOI: 10.1002/anie.202318028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Since the discovery of graphene, the development of new two-dimensional (2D) materials has received considerable interest. Recently, as a newly emerging member of the 2D family, 2D metastable-phase oxides that combine the unique advantages of metal oxides, 2D structures, and metastable-phase materials have shown enormous potential in various catalytic reactions. In this review, the potential of various 2D materials to form a metastable-phase is predicted. The advantages of 2D metastable-phase oxides for advanced applications, reliable methods of synthesizing 2D metastable-phase oxides, and the application of these oxides in different catalytic reactions are presented. Finally, the challenges associated with 2D metastable-phase oxides and future perspectives are discussed.
Collapse
Affiliation(s)
- Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
8
|
Hoat DM, Van On V, Van Huan P, Guerrero-Sanchez J. Realizing new 2D spintronic materials from the non-magnetic 1T-PdO 2 monolayer through vacancy defects and doping. RSC Adv 2024; 14:7241-7250. [PMID: 38419674 PMCID: PMC10901215 DOI: 10.1039/d3ra08866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
In this work, vacancy- and doping-based magnetism engineering in a non-magnetic 1T-PdO2 monolayer is explored in order to realize new two-dimensional (2D) spintronic materials. The pristine monolayer is an indirect gap semiconductor with a band gap of 1.45 (3.20) eV obtained using the PBE (HSE06) functional. Half-metallicity with a total magnetic moment of 3.95 μB is induced by creating a single Pd vacancy, where the magnetic properties are produced mainly by O atoms around the vacancy site. In contrast, the non-magnetic nature is preserved under the effects of a single O vacancy, however a band gap reduction in the order of 37.93% is achieved. Further doping with transition metals (TMs = V, Cr, Mn, and Fe) in the Pd sublattice and with non-metals (B, C, N, and F) in the O sublattice is investigated. TM impurities lead to the emergence of a diluted magnetic semiconductor nature, where total magnetic moments of 1.00, 2.00, and 3.00 μB are obtained in the V-, Cr(Fe)-, and Mn-doped systems, respectively. In these cases, the TMs' 3d electrons mainly originate the system's magnetism. Significant magnetization of the PdO2 monolayer is also achieved by doping with B, N, and F atoms, where either half-metallic or diluted magnetic semiconductor natures are induced. Herein, electronic and magnetic properties are regulated mainly by the interactions between the 2p orbital of the dopant, 4d orbital of the first neighbor Pd atoms, and 2p orbital of the second neighbor O atoms. Meanwhile, C impurity induces no magnetism in the PdO2 monolayer because of the strong electronic hybridization with their neighbor atoms. Results presented herein may introduce efficient approaches to engineer magnetism in a non-magnetic PdO2 monolayer, such that the functionalized systems are further recommended for prospective spintronic applications.
Collapse
Affiliation(s)
- D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University Ha Noi 100000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Vo Van On
- Center for Forecasting Study, Institute of Southeast Vietnamese Studies, Thu Dau Mot University Binh Duong Province Vietnam
| | - Phan Van Huan
- Faculty of Basic Science, Binh Duong University, Binh Duong Province Vietnam
| | - J Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología Apartado Postal 14 Ensenada Baja California Código Postal 22800 Mexico
| |
Collapse
|
9
|
Feng X, Cheng R, Yin L, Wen Y, Jiang J, He J. Two-Dimensional Oxide Crystals for Device Applications: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304708. [PMID: 37452605 DOI: 10.1002/adma.202304708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Atomically thin two-dimensional (2D) oxide crystals have garnered considerable attention because of their remarkable physical properties and potential for versatile applications. In recent years, significant advancements have been made in the design, preparation, and application of ultrathin 2D oxides, providing many opportunities for new-generation advanced technologies. This review focuses on the controllable preparation of 2D oxide crystals and their applications in electronic and optoelectronic devices. Based on their bonding nature, the various types of 2D oxide crystals are first summarized, including both layered and nonlayered crystals, as well as their current top-down and bottom-up synthetic approaches. Subsequently, in terms of the unique physical and electrical properties of 2D oxides, recent advances in device applications are emphasized, including photodetectors, field-effect transistors, dielectric layers, magnetic and ferroelectric devices, memories, and gas sensors. Finally, conclusions and future prospects of 2D oxide crystals are presented. It is hoped that this review will provide comprehensive and insightful guidance for the development of 2D oxide crystals and their device applications.
Collapse
Affiliation(s)
- Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
10
|
Cheng Y, Li Z, Cheng L, Yuan Y, Xie E, Cao X, Xin Z, Liu Y, Tang T, Hu X, Xu K, Manh Hung C, Jannat A, Li YX, Chen H, Ou JZ. Thickness-Dependent Room-Temperature Optoelectronic Gas Sensing Performances of 2D Nonlayered Indium Oxide Crystals from a Liquid Metal Printing Process. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38015181 DOI: 10.1021/acsami.3c12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Due to excellent gas sensing performances, such as high responsivity, good selectivity, and long-term stability, two-dimensional (2D) nonlayered metal oxide semiconductors have attracted wide attention. However, their thickness-dependent gas sensing behaviors are rarely investigated, which is critical in the development of practical 2D sensors. In this work, 2D In2O3 crystals with a range of thicknesses are realized by extracting the self-limited oxide layer from the liquid indium droplets in a controlled environment. A strong thickness-dependent optoelectronic NO2 sensing behavior at room temperature is observed. While full reversibility and excellent selectivity toward NO2 are shown despite the thicknesses of 2D In2O3, the 1.9 nm thick In2O3 exhibits a maximum response amplitude (ΔI/Ig = 1300) for 10 ppm of NO2 at room temperature with 365 nm light irradiation, which is about 18, 58, and 810 times larger than those of its 3.1 nm thick, 4.5 nm thick, and 6.2 nm thick counterparts, respectively. The shortest response and recovery times (i.e., 40 s/48 s) are demonstrated for the 1.88 nm thick In2O3 as well. We correlate such a phenomenon with the change in the In2O3 band structure, which is influenced by the thickness of 2D crystals. This work provides in-depth knowledge of the thickness-dependent gas-sensing performances of emerging 2D nonlayered metal oxide crystals, as well as the opportunities to develop next-generation high-performing room-temperature gas sensors.
Collapse
Affiliation(s)
- Yinfen Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
| | - Liang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuxiao Yuan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - En Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaolong Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhenqing Xin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yaoyang Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xinyi Hu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Chu Manh Hung
- International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi 10000, Viet Nam
| | - Azmira Jannat
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Yong Xiang Li
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Hui Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
11
|
Fu JH, Min J, Chang CK, Tseng CC, Wang Q, Sugisaki H, Li C, Chang YM, Alnami I, Syong WR, Lin C, Fang F, Zhao L, Lo TH, Lai CS, Chiu WS, Jian ZS, Chang WH, Lu YJ, Shih K, Li LJ, Wan Y, Shi Y, Tung V. Oriented lateral growth of two-dimensional materials on c-plane sapphire. NATURE NANOTECHNOLOGY 2023; 18:1289-1294. [PMID: 37474684 DOI: 10.1038/s41565-023-01445-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) represent the ultimate thickness for scaling down channel materials. They provide a tantalizing solution to push the limit of semiconductor technology nodes in the sub-1 nm range. One key challenge with 2D semiconducting TMD channel materials is to achieve large-scale batch growth on insulating substrates of single crystals with spatial homogeneity and compelling electrical properties. Recent studies have claimed the epitaxy growth of wafer-scale, single-crystal 2D TMDs on a c-plane sapphire substrate with deliberately engineered off-cut angles. It has been postulated that exposed step edges break the energy degeneracy of nucleation and thus drive the seamless stitching of mono-oriented flakes. Here we show that a more dominant factor should be considered: in particular, the interaction of 2D TMD grains with the exposed oxygen-aluminium atomic plane establishes an energy-minimized 2D TMD-sapphire configuration. Reconstructing the surfaces of c-plane sapphire substrates to only a single type of atomic plane (plane symmetry) already guarantees the single-crystal epitaxy of monolayer TMDs without the aid of step edges. Electrical results evidence the structural uniformity of the monolayers. Our findings elucidate a long-standing question that curbs the wafer-scale batch epitaxy of 2D TMD single crystals-an important step towards using 2D materials for future electronics. Experiments extended to perovskite materials also support the argument that the interaction with sapphire atomic surfaces is more dominant than step-edge docking.
Collapse
Affiliation(s)
- Jui-Han Fu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jiacheng Min
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Che-Kang Chang
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chien-Chih Tseng
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Qingxiao Wang
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hayato Sugisaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Chenyang Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Yu-Ming Chang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Ibrahim Alnami
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wei-Ren Syong
- Research Centre for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ci Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Feier Fang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Lv Zhao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Tzu-Hsuan Lo
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chao-Sung Lai
- Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Sheng Chiu
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Zih-Siang Jian
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Hao Chang
- Department of Electrophysics, National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
- Research Centre for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Jung Lu
- Research Centre for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Lain-Jong Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yi Wan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yumeng Shi
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China.
| | - Vincent Tung
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Center for Green Technology of the Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Tang L, Zou J. p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications. NANO-MICRO LETTERS 2023; 15:230. [PMID: 37848621 PMCID: PMC10582003 DOI: 10.1007/s40820-023-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023]
Abstract
Two-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the laboratory to industrialized applications, materials preparation is the first prerequisite. Compared to the n-type analogs, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits. So far, many efforts have been made in the preparation of p-type 2D semiconductors. In this review, we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top-down and bottom-up strategies. Then, we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities. In end, we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors, their controlled mass preparation, compatible engineering with silicon production line, high-κ dielectric materials, to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices. Overall, we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics.
Collapse
Affiliation(s)
- Lei Tang
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China.
| | - Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Li Q, Wu X, Mu S, He C, Ren X, Luo X, Adeli M, Han X, Ma L, Cheng C. Microenvironment Restruction of Emerging 2D Materials and their Roles in Therapeutic and Diagnostic Nano-Bio-Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207759. [PMID: 37129318 PMCID: PMC10369261 DOI: 10.1002/advs.202207759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Engineering advanced therapeutic and diagnostic nano-bio-platforms (NBPFs) have emerged as rapidly-developed pathways against a wide range of challenges in antitumor, antipathogen, tissue regeneration, bioimaging, and biosensing applications. Emerged 2D materials have attracted extensive scientific interest as fundamental building blocks or nanostructures among material scientists, chemists, biologists, and doctors due to their advantageous physicochemical and biological properties. This timely review provides a comprehensive summary of creating advanced NBPFs via emerging 2D materials (2D-NBPFs) with unique insights into the corresponding molecularly restructured microenvironments and biofunctionalities. First, it is focused on an up-to-date overview of the synthetic strategies for designing 2D-NBPFs with a cross-comparison of their advantages and disadvantages. After that, the recent key achievements are summarized in tuning the biofunctionalities of 2D-NBPFs via molecularly programmed microenvironments, including physiological stability, biocompatibility, bio-adhesiveness, specific binding to pathogens, broad-spectrum pathogen inhibitors, stimuli-responsive systems, and enzyme-mimetics. Moreover, the representative therapeutic and diagnostic applications of 2D-NBPFs are also discussed with detailed disclosure of their critical design principles and parameters. Finally, current challenges and future research directions are also discussed. Overall, this review will provide cutting-edge and multidisciplinary guidance for accelerating future developments and therapeutic/diagnostic applications of 2D-NBPFs.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xizheng Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chao He
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Mohsen Adeli
- Department of Organic ChemistryFaculty of ChemistryLorestan UniversityKhorramabad68137‐17133Iran
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Xianglong Han
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lang Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
14
|
Huang CH, Weng CY, Chen KH, Chou Y, Wu TL, Chou YC. Multiple-State Nonvolatile Memory Based on Ultrathin Indium Oxide Film via Liquid Metal Printing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37202222 DOI: 10.1021/acsami.3c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, the ultrathin two-dimensional (2D) indium oxide (InOx) with a large area of more than 100 μm2 and a high degree of uniformity was automatically peeled off from indium by the liquid-metal printing technique. Raman and optical measurements revealed that 2D-InOx has a polycrystalline cubic structure. By altering the printing temperature which affects the crystallinity of 2D-InOx, the mechanism of the existence and disappearance of memristive characteristics was established. The tunable characteristics of the 2D-InOx memristor with reproducible one-order switching was manifest from the electrical measurements. Further adjustable multistate characteristics of the 2D-InOx memristor and its resistance switching mechanism were evaluated. A detailed examination of the memristive process demonstrated the Ca2+ mimic dynamic in 2D-InOx memristors as well as the fundamental principles underlying biological and artificial synapses. These surveys allow us to comprehend a 2D-InOx memristor using the liquid-metal printing technique and could be applied to future neuromorphic applications and in the field of revolutionary 2D material exploration.
Collapse
Affiliation(s)
- Chang-Hsun Huang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Yuan Weng
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kuan-Hung Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Tian-Li Wu
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Chia Chou
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
16
|
Yang S, Liu K, Xu Y, Liu L, Li H, Zhai T. Gate Dielectrics Integration for 2D Electronics: Challenges, Advances, and Outlook. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207901. [PMID: 36226584 DOI: 10.1002/adma.202207901] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Indexed: 05/05/2023]
Abstract
2D semiconductors have emerged both as an ideal platform for fundamental studies and as promising channel materials in beyond-silicon field-effect-transistors due to their outstanding electrical properties and exceptional tunability via external field. However, the lack of proper dielectrics for 2D semiconductors has become a major roadblock for their further development toward practical applications. The prominent issues between conventional 3D dielectrics and 2D semiconductors arise from the integration and interface quality, where defect states and imperfections lead to dramatic deterioration of device performance. In this review article, the root causes of such issues are briefly analyzed and recent advances on some possible solutions, including various approaches of adapting conventional dielectrics to 2D semiconductors, and the development of novel dielectrics with van der Waals surface toward high-performance 2D electronics are summarized. Then, in the perspective, the requirements of ideal dielectrics for state-of-the-art 2D devices are outlined and an outlook for their future development is provided.
Collapse
Affiliation(s)
- Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Ji D, Lee Y, Nishina Y, Kamiya K, Daiyan R, Chu D, Wen X, Yoshimura M, Kumar P, Andreeva DV, Novoselov KS, Lee GH, Joshi R, Foller T. Angstrom-Confined Electrochemical Synthesis of Sub-Unit-Cell Non-Van Der Waals 2D Metal Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301506. [PMID: 37116867 DOI: 10.1002/adma.202301506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Bottom-up electrochemical synthesis of atomically thin materials is desirable yet challenging, especially for non-vanderWaals (non-vdW) materials. Thicknesses below a few nanometers have not been reported yet, posing the question how thin can non-vdW materials be electrochemically synthesized. This is important as materials with (sub-)unit-cell thickness often show remarkably different properties compared to their bulk form or thin films of several nanometers thickness. Here, a straightforward electrochemical method utilizing the angstrom-confinement of laminar reduced graphene oxide (rGO) nanochannels is introduced to obtain a centimeter-scale network of atomically thin (<4.3 Å) 2D-transition metal oxides (2D-TMO). The angstrom-confinement provides a thickness limitation, forcing sub-unit-cell growth of 2D-TMO with oxygen and metal vacancies. It is showcased that Cr2 O3 , a material without significant catalytic activity for the oxygen evolution reaction (OER) in bulk form, can be activated as a high-performing catalyst if synthesized in the 2D sub-unit-cell form. This method displays the high activity of sub-unit-cell form while retaining the stability of bulk form, promising to yield unexplored fundamental science and applications. It is shown that while retaining the advantages of bottom-up electrochemical synthesis, like simplicity, high yield, and mild conditions, the thickness of TMO can be limited to sub-unit-cell dimensions.
Collapse
Affiliation(s)
- Dali Ji
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yunah Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuhide Kamiya
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Rahman Daiyan
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xinyue Wen
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Masamichi Yoshimura
- Graduate School of Engineering, Toyota Technological Institute, Nagoya, 468-8511, Japan
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117575, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117575, Singapore
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tobias Foller
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Yang Y, Zhang Y, Zhang J, Zheng X, Gan Z, Lin H, Hong M, Jia B. Graphene Metamaterial 3D Conformal Coating for Enhanced Light Harvesting. ACS NANO 2023; 17:2611-2619. [PMID: 36533993 DOI: 10.1021/acsnano.2c10529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silicon (Si) photovoltaic devices present possible avenues for overcoming global energy and environmental challenges. The high reflection and surface recombination losses caused by the Si interface and its nanofabrication process are the main hurdles for pursuing a high energy conversion efficiency. However, recent advances have demonstrated great success in improving device performance via proper Si interface modification with the optical and electrical features of two-dimensional (2D) materials. Firmly integrating large-area 2D materials with 3D Si nanostructures with no gap in between, which is essential for optimizing device performance, has rarely been achieved by any technique due to the complex 3D morphology of the nanostructures. Here we propose the concept of a 3D conformal coating of graphene metamaterials, in which the 2D graphene layers perfectly adapt to the 3D Si curvatures, leading to a universal 20% optical reflection decrease and a 60% surface passivation improvement. In a further application of this metamaterial 3D conformal coating methodology to standard Si solar cells, an overall 23% enhancement of the solar energy conversion efficiency is achieved. The 3D conformal coating strategy could be readily extended to various optoelectronic and semiconductor device systems with peculiar performance, offering a pathway for highly efficient energy-harvesting and storage solutions.
Collapse
Affiliation(s)
- Yunyi Yang
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yinan Zhang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jie Zhang
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaorui Zheng
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Zhixing Gan
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Minghui Hong
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, La Trobe Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
19
|
Xiong Y, Xu D, Feng Y, Zhang G, Lin P, Chen X. P-Type 2D Semiconductors for Future Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206939. [PMID: 36245325 DOI: 10.1002/adma.202206939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
2D semiconductors represent one of the best candidates to extend Moore's law for their superiorities, such as keeping high carrier mobility and remarkable gate-control capability at atomic thickness. Complementary transistors and van der Waals junctions are critical in realizing 2D semiconductors-based integrated circuits suitable for future electronics. N-type 2D semiconductors have been reported predominantly for the strong electron doping caused by interfacial charge impurities and internal structural defects. By contrast, superior and reliable p-type 2D semiconductors with holes as majority carriers are still scarce. Not only that, but some critical issues have not been adequately addressed, including their controlled synthesis in wafer size and high quality, defect and carrier modulation, optimization of interface and contact, and application in high-speed and low-power integrated devices. Here the material toolkit, synthesis strategies, device basics, and digital electronics closely related to p-type 2D semiconductors are reviewed. Their opportunities, challenges, and prospects for future electronic applications are also discussed, which would be promising or even shining in the post-Moore era.
Collapse
Affiliation(s)
- Yunhai Xiong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Duo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yiping Feng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangjie Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Pei Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
20
|
Fan Z, Liao F, Ji Y, Liu Y, Huang H, Wang D, Yin K, Yang H, Ma M, Zhu W, Wang M, Kang Z, Li Y, Shao M, Hu Z, Shao Q. Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H 2-production. Nat Commun 2022; 13:5828. [PMID: 36192414 PMCID: PMC9530234 DOI: 10.1038/s41467-022-33512-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Designing well-ordered nanocrystal arrays with subnanometre distances can provide promising materials for future nanoscale applications. However, the fabrication of aligned arrays with controllable accuracy in the subnanometre range with conventional lithography, template or self-assembly strategies faces many challenges. Here, we report a two-dimensional layered metastable oxide, trigonal phase rhodium oxide (space group, P-3m1 (164)), which provides a platform from which to construct well-ordered face-centred cubic rhodium nanocrystal arrays in a hexagonal pattern with an intersurface distance of only 0.5 nm. The coupling of the well-ordered rhodium array and metastable substrate in this catalyst triggers and improves hydrogen spillover, enhancing the acidic hydrogen evolution for H2 production, which is essential for various clean energy-related devices. The catalyst achieves a low overpotential of only 9.8 mV at a current density of -10 mA cm-2, a low Tafel slope of 24.0 mV dec-1, and high stability under a high potential (vs. RHE) of -0.4 V (current density of ~750 mA cm-2). This work highlights the important role of metastable materials in the design of advanced materials to achieve high-performance catalysis.
Collapse
Affiliation(s)
- Zhenglong Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Dan Wang
- College of Energy, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Kui Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Haiwei Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Mengjie Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany.
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
21
|
Cheng R, Yin L, Wen Y, Zhai B, Guo Y, Zhang Z, Liao W, Xiong W, Wang H, Yuan S, Jiang J, Liu C, He J. Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors. Nat Commun 2022; 13:5241. [PMID: 36068242 PMCID: PMC9448765 DOI: 10.1038/s41467-022-33017-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of magnetism in ultrathin crystals opens up opportunities to explore new physics and to develop next-generation spintronic devices. Nevertheless, two-dimensional magnetic semiconductors with Curie temperatures higher than room temperature have rarely been reported. Ferrites with strongly correlated d-orbital electrons may be alternative candidates offering two-dimensional high-temperature magnetic ordering. This prospect is, however, hindered by their inherent three-dimensional bonded nature. Here, we develop a confined-van der Waals epitaxial approach to synthesizing air-stable semiconducting cobalt ferrite nanosheets with thickness down to one unit cell using a facile chemical vapor deposition process. The hard magnetic behavior and magnetic domain evolution are demonstrated by means of vibrating sample magnetometry, magnetic force microscopy and magneto-optical Kerr effect measurements, which shows high Curie temperature above 390 K and strong dimensionality effect. The addition of room-temperature magnetic semiconductors to two-dimensional material family provides possibilities for numerous novel applications in computing, sensing and information storage.
Collapse
Affiliation(s)
- Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China
| | - Zhaofu Zhang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China
| | - Weitu Liao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Wenqi Xiong
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hao Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China.
| |
Collapse
|
22
|
Hu Y, Zhang BY, Haque F, Ren G, Ou JZ. Plasmonic metal oxides and their biological applications. MATERIALS HORIZONS 2022; 9:2288-2324. [PMID: 35770972 DOI: 10.1039/d2mh00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.
Collapse
Affiliation(s)
- Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
23
|
Pesquera D, Fernández A, Khestanova E, Martin LW. Freestanding complex-oxide membranes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:383001. [PMID: 35779514 DOI: 10.1088/1361-648x/ac7dd5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Complex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.g. free of mechanical/thermal interaction with substrates) as well as expanding the range of tools for tweaking their order parameters (i.e. (anti-)ferromagnetic, (anti-)ferroelectric, ferroelastic), and increasing the possibility of achieving novel heterointegration approaches (including interfacing dissimilar materials) by avoiding the chemical, structural, or thermal constraints in synthesis processes. Here, we review the recent developments in the fabrication and characterization of complex-oxide membranes and discuss their potential for unraveling novel physicochemical phenomena at the nanoscale and for further exploiting their functionalities in technologically relevant devices.
Collapse
Affiliation(s)
- David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Abel Fernández
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
| | | | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|
24
|
Lv J, Lu X, Li X, Xu M, Zhong J, Zheng X, Shi Y, Zhang X, Zhang Q. Epitaxial Growth of Lead-Free 2D Cs 3 Cu 2 I 5 Perovskites for High-Performance UV Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201715. [PMID: 35638459 DOI: 10.1002/smll.202201715] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The all-inorganic lead-free Cu-based halide perovskites represented by the Cs-Cu-I system, have sparked extensive interest recently due to their impressive photophysical characteristics. However, successive works on their potential application in light emission diodes and photodetectors rely on tiny polycrystals, in which the grain boundaries and defects may lead to the performance degradation of their embodied devices. Here, 2D all-inorganic perovskite Cs3 Cu2 I5 single crystals are epitaxially grown on mica substrates, with a thickness down to 10 nm. The strong blue emission of the Cs3 Cu2 I5 flakes may originate from the radiative transition of self-trapped excitons associated with a large Stocks shift and long (microsecond) decay time. Ultravioelt (UV) photodetectors based on individual Cs3 Cu2 I5 nanosheets are fabricated via a swift and etching-free dry transfer approach, which reveal a high responsivity of 3.78 A W-1 (270 nm, 5 V bias), as well as a fast response speed (τrise ≈163 ms, τdecay ≈203 ms), outperforming congeneric UV sensors based on other 2D metal halide perovskites. This work therefore sheds light on the fabrication of green optoelectronic devices based on lead-free 2D perovskites, vital for the sustainable development of photoelectric technology.
Collapse
Affiliation(s)
- Jianan Lv
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| | - Xinyue Lu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| | - Jiasong Zhong
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| | - Xin Zheng
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| | - Xuefeng Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou, 310018, P. R. China
| |
Collapse
|
25
|
Hu X, Liu K, Cai Y, Zang SQ, Zhai T. 2D Oxides for Electronics and Optoelectronics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xiaozong Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Taipa 999078 Macau P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
26
|
Abstract
Layered van der Waals (vdW) materials have attracted significant attention due to their materials properties that can enhance diverse applications including next-generation computing, biomedical devices, and energy conversion and storage technologies. This class of materials is typically studied in the two-dimensional (2D) limit by growing them directly on bulk substrates or exfoliating them from parent layered crystals to obtain single or few layers that preserve the original bonding. However, these vdW materials can also function as a platform for obtaining additional phases of matter at the nanoscale. Here, we introduce and review a synthesis paradigm, morphotaxy, where low-dimensional materials are realized by using the shape of an initial nanoscale precursor to template growth or chemical conversion. Using morphotaxy, diverse non-vdW materials such as HfO2 or InF3 can be synthesized in ultrathin form by changing the composition but preserving the shape of the original 2D layered material. Morphotaxy can also enable diverse atomically precise heterojunctions and other exotic structures such as Janus materials. Using this morphotaxial approach, the family of low-dimensional materials can be substantially expanded, thus creating vast possibilities for future fundamental studies and applied technologies.
Collapse
Affiliation(s)
- David Lam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitry Lebedev
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Chen H, Zhao J, Wang X, Chen X, Zhang Z, Hua M. Two-dimensional ferroelectric MoS 2/Ga 2O 3 heterogeneous bilayers with highly tunable photocatalytic and electrical properties. NANOSCALE 2022; 14:5551-5560. [PMID: 35343531 DOI: 10.1039/d2nr00466f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional van der Waals heterostructures with strong intrinsic ferroelectrics are highly promising for novel devices with designed electronic properties. The polarization reversal transition of the 2D ferroelectric Ga2O3 monolayer offers a new approach to tune the photocatalytic and electrical properties of MoS2/Ga2O3 heterogeneous bilayers. In this work, we study MoS2/Ga2O3 heterogeneous bilayers with different intrinsic polarization using hybrid-functional calculations. We closely investigate the structural, electronic and optical properties of two stable stacking configurations with opposite polarization. The results reveal a distinct switch from type-I to type-II heterostructures owing to polarization reversal transition of the 2D ferroelectric Ga2O3 monolayer. Biaxial strain engineering leads to type-I-to-II and type-II-to-III transitions in the two polarized models, respectively. Intriguingly, one of the MoS2/Ga2O3 heterolayers has a larger spatial separation of the valence and conduction band edges and excellent optical absorption ranging from infrared to ultraviolet region under biaxial strain, thus ensuring promising novel applications such as flexible electrical and optical devices. Based on the highly tunable physical properties of the bilayer heterostructures, we further explore their potential applications, such as photocatalytic water splitting and field-controlled switch channel in MOSFET devices.
Collapse
Affiliation(s)
- Haohao Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Junlei Zhao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xinyu Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaolong Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhaofu Zhang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
| | - Mengyuan Hua
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
28
|
Yu W, Gong K, Li Y, Ding B, Li L, Xu Y, Wang R, Li L, Zhang G, Lin S. Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105383. [PMID: 35048521 DOI: 10.1002/smll.202105383] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/30/2021] [Indexed: 06/14/2023]
Abstract
2D materials are now at the forefront of state-of-the-art nanotechnologies due to their fascinating properties and unique structures. As expected, low-cost, high-volume, and high-quality 2D materials play an important role in the applications of flexible devices. Although considerable progress has been achieved in the integration of a series of novel 2D materials beyond graphene into flexible devices, a lot remains to be known. At this stage of their development, the key issues concern how to make further improvements to high-performance and scalable-production. Herein, recent progress in the quest to improve the current state of the art for 2D materials beyond graphene is reviewed. Namely, the properties and synthesis techniques of 2D materials are first introduced. Then, both the advantages and challenges of these 2D materials for flexible devices are also highlighted. Finally, important directions for future advancements toward efficient, low-cost, and stable flexible devices are outlined.
Collapse
Affiliation(s)
- Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Kaiwen Gong
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Yanyong Li
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Binbin Ding
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Lei Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Yongkang Xu
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Rong Wang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Lianbi Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
29
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
30
|
Bai Z, Wang S, Tian J, Gao S, Zhang R, Liu X. Aluminum-based layered metal oxides activating peroxymonosulfate for bisphenol A degradation via surface-bound sulfate radicals and singlet oxygen. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127515. [PMID: 34879515 DOI: 10.1016/j.jhazmat.2021.127515] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, a series of aluminum-based layered metal oxide with various divalent metals (M2+Al-LMOs) were prepared and employed in activation of peroxymonosulfate (PMS) for bisphenol A (BPA) degradation. The BPA removal rates of M2+Al-LMOs were ordered as: CoAl(100%) > MnAl(75.6%) > CuAl(63.2%) > NiAl(9.0%) > MgAl = ZnAl-LMO(0%). CoAl-LMO showed the highest kinetic constant (k = 1.329 µmol-1gcat-1s-1), which was 3.95 times of MnAl-LMO, 5.36 times of CuAl-LMO, 88.6 times of NiAl-LMO and 443 times of MgAl-LMO and ZnAl-LMO, respectively, and also exhibited the highest TOC removal rate (83.3%). The surface-bound sulfate radical (SO4·-) and singlet oxygen (1O2) were elucidated as the dominant reactive oxygen species (ROS) for BPA degradation. The M2+Al-LMOs/PMS system not only displayed wide applicability in different pH and inorganic anions environments, but also had excellent stability and reusability. This work provides a novel family of M2+Al-LMOs to activate PMS for water treatment.
Collapse
Affiliation(s)
- Zhaoyu Bai
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Songxue Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ruijun Zhang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiwen Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
31
|
Zhang BY, Yin P, Hu Y, Szydzik C, Khan MW, Xu K, Thurgood P, Mahmood N, Dekiwadia C, Afrin S, Yang Y, Ma Q, McConville CF, Khoshmanesh K, Mitchell A, Hu B, Baratchi S, Ou JZ. Highly accurate and label-free discrimination of single cancer cell using a plasmonic oxide-based nanoprobe. Biosens Bioelectron 2022; 198:113814. [PMID: 34823964 DOI: 10.1016/j.bios.2021.113814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
The detection of cancer cells at the single-cell level enables many novel functionalities such as next-generation cancer prognosis and accurate cellular analysis. While surface-enhanced Raman spectroscopy (SERS) has been widely considered as an effective tool in a low-cost and label-free manner, however, it is challenging to discriminate single cancer cells with an accuracy above 90% mainly due to the poor biocompatibility of the noble-metal-based SERS agents. Here, we report a dual-functional nanoprobe based on dopant-driven plasmonic oxides, demonstrating a maximum accuracy above 90% in distinguishing single THP-1 cell from peripheral blood mononuclear cell (PBMC) and human embryonic kidney (HEK) 293 from human macrophage cell line U937 based on their SERS patterns. Furthermore, this nanoprobe can be triggered by the bio-redox response from individual cells towards stimuli, empowering another complementary colorimetric cell detection, approximately achieving the unity discrimination accuracy at a single-cell level. Our strategy could potentially enable the future accurate and low-cost detection of cancer cells from mixed cell samples.
Collapse
Affiliation(s)
- Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Pengju Yin
- School of Mathematics and Physics, Hebei University of Engineering, Handan, 056038, China; School of Life Science and Technology, Xidian University, Xi'an, 710126, China
| | - Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Crispin Szydzik
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, 3004, Australia
| | - Muhammad Waqas Khan
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nasir Mahmood
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, 3001, Australia
| | - Sanjida Afrin
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yunyi Yang
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122 Australia
| | - Qijie Ma
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chris F McConville
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC, 3216, Australia
| | | | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Bo Hu
- School of Life Science and Technology, Xidian University, Xi'an, 710126, China
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083 Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
32
|
Friedrich R, Ghorbani-Asl M, Curtarolo S, Krasheninnikov AV. Data-Driven Quest for Two-Dimensional Non-van der Waals Materials. NANO LETTERS 2022; 22:989-997. [PMID: 35051335 DOI: 10.1021/acs.nanolett.1c03841] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two-dimensional (2D) materials are frequently associated with the sheets forming bulk layered compounds bonded by van der Waals (vdW) forces. The anisotropy and weak interaction between the sheets have also been the main criteria in the computational search for new 2D systems, predicting ∼2000 exfoliable compounds. However, some representatives of a new type of non-vdW 2D systems, without layered 3D analogues, were recently manufactured. For this novel materials class, data-driven design principles are still missing. Here, we outline a set of 8 binary and 20 ternary candidates by filtering the AFLOW-ICSD database according to structural prototypes. The oxidation state of the surface cations regulates the exfoliation energy with low oxidation numbers leading to weak bonding─a useful descriptor to obtain novel 2D materials also providing clear guidelines for experiments. A vast range of appealing electronic, optical, and magnetic properties make the candidates attractive for various applications and particularly spintronics.
Collapse
Affiliation(s)
- Rico Friedrich
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Center for Autonomous Materials Design, Duke University, Durham, North Carolina 27708, United States
| | - Mahdi Ghorbani-Asl
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Stefano Curtarolo
- Center for Autonomous Materials Design, Duke University, Durham, North Carolina 27708, United States
- Materials Science, Electrical Engineering, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Department of Applied Physics, Aalto University, Aalto 00076, Finland
| |
Collapse
|
33
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
34
|
Xie H, Li Z, Cheng L, Haidry AA, Tao J, Xu Y, Xu K, Ou JZ. Recent advances in the fabrication of 2D metal oxides. iScience 2022; 25:103598. [PMID: 35005545 PMCID: PMC8717458 DOI: 10.1016/j.isci.2021.103598] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.
Collapse
Affiliation(s)
- Huaguang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yi Xu
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
35
|
Li H, Chen L, Li X, Sun D, Zhang H. Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. NANO-MICRO LETTERS 2022; 14:45. [PMID: 35038075 PMCID: PMC8764017 DOI: 10.1007/s40820-021-00789-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 05/15/2023]
Abstract
HIGHLIGHTS The synthetic strategies and fundamental mechanisms of various asymmetric carbon- and silica-based nanomaterials were systematically summarized. The advantages of asymmetric structure on their related applications were clarified by some representative applications of asymmetric carbon- and silica-based nanomaterials. The future development prospects and challenges of asymmetric carbon- and silica-based nanomaterials were proposed. ABSTRACT Carbon- and silica-based nanomaterials possess a set of merits including large surface area, good structural stability, diversified morphology, adjustable structure, and biocompatibility. These outstanding features make them widely applied in different fields. However, limited by the surface free energy effect, the current studies mainly focus on the symmetric structures, such as nanospheres, nanoflowers, nanowires, nanosheets, and core–shell structured composites. By comparison, the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites, but also enables each component to work independently or corporately to harness their own merits, thus showing the unusual performances in some specific applications. The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon- and silica-based nanomaterials, and their applications in energy storage, catalysis, and biomedicine. Particularly, we provide some deep insights into their unique advantages in related fields from the perspective of materials’ structure–performance relationship. Furthermore, the challenges and development prospects on the synthesis and applications of asymmetric carbon- and silica-based nanomaterials are also presented and highlighted. [Image: see text]
Collapse
Affiliation(s)
- Haitao Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Chen
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Nanomaterials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Nanomaterials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Nanomaterials (2011-iChEM), Fudan University, Shanghai, 200433, People's Republic of China
| | - Daoguang Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
36
|
Alkathiri T, Xu K, Zhang BY, Khan MW, Jannat A, Syed N, Almutairi AFM, Ha N, Alsaif MMYA, Pillai N, Li Z, Daeneke T, Ou JZ. 2D Palladium Sulphate for Visible‐Light‐Driven Optoelectronic Reversible Gas Sensing at Room Temperature. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Turki Alkathiri
- School of Engineering RMIT University Melbourne 3001 Australia
- School of Engineering Albaha University Albaha 65779 Saudi Arabia
| | - Kai Xu
- School of Engineering RMIT University Melbourne 3001 Australia
| | - Bao Yue Zhang
- School of Engineering RMIT University Melbourne 3001 Australia
| | | | - Azmira Jannat
- School of Engineering RMIT University Melbourne 3001 Australia
| | - Nitu Syed
- School of Engineering RMIT University Melbourne 3001 Australia
| | | | - Nam Ha
- School of Engineering RMIT University Melbourne 3001 Australia
| | - Manal M. Y. A. Alsaif
- School of Engineering RMIT University Melbourne 3001 Australia
- Department of Electrical Engineering Kuwait University Safat 13060 Kuwait
| | - Naresha Pillai
- School of Engineering RMIT University Melbourne 3001 Australia
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Torben Daeneke
- School of Engineering RMIT University Melbourne 3001 Australia
| | - Jian Zhen Ou
- School of Engineering RMIT University Melbourne 3001 Australia
| |
Collapse
|
37
|
Sharifi Malvajerdi S, Abrari M, Karimi V, Shafiee M, Ghollamhosseini S, Taheri Ghahrizjani R, Ahmadi M, Wang D, Sun H, Soltanmohammadi M, Imani A, Ghanaatshoar M, Mohseni SM, Taghavinia N. High-Voltage, High-Current Electrical Switching Discharge Synthesis of ZnO Nanorods: A New Method toward Rapid and Highly Tunable Synthesis of Oxide Semiconductors in Open Air and Water for Optoelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46951-46966. [PMID: 34547200 DOI: 10.1021/acsami.1c08207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel method of oxide semiconductor nanoparticle synthesis is proposed based on high-voltage, high-current electrical switching discharge (HVHC-ESD). Through a subsecond discharge in the HVHC-ESD method, we successfully synthesized zinc oxide (ZnO) nanorods. Crystallography and optical and electrical analyses approve the high crystal-quality and outstanding optoelectronic characteristics of our synthesized ZnO. The HVHC-ESD method enables the synthesis of ZnO nanorods with ultraviolet (UV) and visible emissions. To demonstrate the effectiveness of our prepared materials, we also fabricated two UV photodetectors based on the ZnO nanorods synthesized using the subsecond HVHC-ESD method. The UV-photodetector test under dark and UV light irradiation also had a promising result with a linear ohmic current-voltage output. In addition to the HVHC-ESD method's excellent tunability for ZnO properties, this method enables the rapid synthesis of ZnO nanorods in open air and water. The results demonstrate the preparation, highlight the synthesis of fine hexagonal-shaped nanorods under a second with controlled oxygen vacancies, and point defects for a wide range of applications in less than a second.
Collapse
Affiliation(s)
| | - Masoud Abrari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Vahid Karimi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mojtaba Shafiee
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Saeb Ghollamhosseini
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | | | - Morteza Ahmadi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Danhao Wang
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mina Soltanmohammadi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Aref Imani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Majid Ghanaatshoar
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | | | - Nima Taghavinia
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
38
|
Haq TU, Haik Y. S doped Cu2O-CuO nanoneedles array: Free standing oxygen evolution electrode with high efficiency and corrosion resistance for seawater splitting. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Topological Phase and Quantum Anomalous Hall Effect in Ferromagnetic Transition-Metal Dichalcogenides Monolayer 1T-VSe2. NANOMATERIALS 2021; 11:nano11081998. [PMID: 34443830 PMCID: PMC8401610 DOI: 10.3390/nano11081998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022]
Abstract
Magnetic two-dimensional (2D) van der Waals materials have attracted tremendous attention because of their high potential in spintronics. In particular, the quantum anomalous Hall (QAH) effect in magnetic 2D layers shows a very promising prospect for hosting Majorana zero modes at the topologically protected edge states in proximity to superconductors. However, the QAH effect has not yet been experimentally realized in monolayer systems to date. In this work, we study the electronic structures and topological properties of the 2D ferromagnetic transition-metal dichalcogenides (TMD) monolayer 1T−VSe2 by first-principles calculations with the Heyd–Scuseria–Ernzerhof (HSE) functional. We find that the spin-orbit coupling (SOC) opens a continuous band gap at the magnetic Weyl-like crossing point hosting the quantum anomalous Hall effect with Chern number C=2. Moreover, we demonstrate the topologically protected edge states and intrinsic (spin) Hall conductivity in this magnetic 2D TMD system. Our results indicate that 1T−VSe2 monolayer serves as a stoichiometric quantum anomalous Hall material.
Collapse
|
40
|
|
41
|
Li M, Li L, Fan Y, Huang L, Geng D, Yang W. Controlled growth of 2D ultrathin Ga 2O 3 crystals on liquid metal. NANOSCALE ADVANCES 2021; 3:4411-4415. [PMID: 36133481 PMCID: PMC9419326 DOI: 10.1039/d1na00375e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
2D metal oxides (2DMOs) have drawn intensive interest in the past few years owing to their rich surface chemistry and unique electronic structures. Striving for large-scale and high-quality novel 2DMOs is of great significance for developing future nano-enabled technologies. In this work, we demonstrate for the first time controllable growth of highly crystalline 2D ultrathin Ga2O3 single crystals on liquid Ga by the chemical vapor deposition approach. With the introduction of oxygen into the growth process, large-area hexagonal α-Ga2O3 crystals with a uniform size distribution have been produced. At high temperature, fast diffusion of oxygen atoms onto the liquid surface facilitates reaction with Ga and thus leads to in situ formation of 2D ultrathin crystals. By precisely controlling the amount of oxygen, the vertical growth of the Ga2O3 single crystal has been realized. Furthermore, phase engineering can be achieved and thus 2D β-Ga2O3 crystals were also prepared by precisely tuning the growth temperature. The controlled growth of 2D Ga2O3 crystals offers an applicable avenue for fabrication of other 2D metal oxides and can further open up possibilities for future electronics.
Collapse
Affiliation(s)
- Menghan Li
- Institute of Molecular Plus, Tianjin University Tianjin 300072 China
| | - Lin Li
- Institute of Molecular Plus, Tianjin University Tianjin 300072 China
| | - Yixuan Fan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Le Huang
- School of Materials and Energy, Guangdong University of Technology Guangzhou Guangdong 510006 China
| | - Dechao Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 China
| |
Collapse
|