1
|
Kim T, Kim BJ, Bonacchini GE, Ostrovsky-Snider NA, Omenetto FG. Silk fibroin as a surfactant for water-based nanofabrication. NATURE NANOTECHNOLOGY 2024; 19:1514-1520. [PMID: 39075291 DOI: 10.1038/s41565-024-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/11/2024] [Indexed: 07/31/2024]
Abstract
Water-based processing plays a crucial role in high technology, especially in electronics, material sciences and life sciences, with important implications in the development of high-quality reliable devices, fabrication efficiency, safety and sustainability. At the micro- and nanoscale, water is uniquely enabling as a bridge between biological and technological systems. However, new approaches are needed to overcome fundamental challenges that arise from the high surface tension of water, which hinders wetting and, thus, fabrication at the bio-nano interface. Here we report the use of silk fibroin as a surfactant to enable water-based processing of nanoscale devices. Even in minute quantities (for example, 0.01 w/v%), silk fibroin considerably enhances surface coverage and outperforms commercial surfactants in precisely controlling interfacial energy between water-based solutions and hydrophobic surfaces. This effect is ascribed to the amphiphilic nature of the silk molecule and its adaptive adsorption onto substrates with diverse surface energy, facilitating intermolecular interactions between unlikely pairs of materials. The approach's versatility is highlighted by manufacturing water-processed nanodevices, ranging from transistors to photovoltaic cells. Its performance is found to be equivalent to analogous vacuum-processed devices, underscoring the utility and versatility of this approach for water-based nanofabrication.
Collapse
Affiliation(s)
- Taehoon Kim
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Beom Joon Kim
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | | | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
- Department of Physics, Tufts University, Medford, MA, USA.
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
2
|
Ruan H, Guo J, Zhang S, Gao Y, Shang W, Liu Y, Su M, Liu Y, Wang H, Xie T, Cheng G, Du Z. In Situ Local Band Engineering of Monolayer Graphene Using Triboelectric Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309318. [PMID: 38174636 DOI: 10.1002/smll.202309318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Graphene, a promising material with excellent properties, suffers from a major limitation in electronics due to its zero bandgap. The gas molecules adsorption has proven to be an effective approach for band regulation, which usually requires a harsh environment. Here, O2 - ions produced with triboelectric plasma are used for in situ regulation of graphene, and the switching ratio can reach 1010. The O2 - ions physical adsorption will reduce the Fermi-level (EF) of graphene. As the EF of graphene is lower than the lowest unoccupied molecular orbital (LUMO) level of O2-, the adsorption of O2 - changes from uniform physical adsorption to local chemical adsorption, thereby realizing the semiconductor properties of graphene. The local graphene bandgap is calculated to be 83.4 meV by the variable-temperature experiment. Furthermore, annealing treatment can restore to 1/10 of the initial conductance. The C─O bond formed by O2 - adsorption has low bond energy and is easy to desorb, while the C═O bond formed by adsorption on defects and edges has higher bond energy and is difficult to desorb. The study proposes a simple in situ method to investigate the microscopic process of O2 - adsorption on the graphene surface, demonstrating a new perspective for local energy band engineering of graphene.
Collapse
Affiliation(s)
- Haoran Ruan
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Junmeng Guo
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Song Zhang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Yanyuan Gao
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Wanyu Shang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Yang Liu
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Meiying Su
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Yabing Liu
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Heng Wang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Tianen Xie
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Gang Cheng
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| |
Collapse
|
3
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shayan Angizi
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Sayed Ali Ahmad Alem
- Chair in
Chemistry of Polymeric Materials, Montanuniversität
Leoben, Leoben 8700, Austria
| | - Reyhaneh Goodarzi
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | | | - Hajar Ghanbari
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Robert Szoszkiewicz
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering and Institute for Nanoscience
and Nanotechnology, Sharif University of
Technology, 14588-89694 Tehran, Iran
- Center for
Nanoscience and Nanotechnology, Institute for Convergence Science
& Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Peter Kruse
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
4
|
Yu M, Hu Z, Zhou J, Lu Y, Guo W, Zhang Z. Retrieving Grain Boundaries in 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205593. [PMID: 36461686 DOI: 10.1002/smll.202205593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The coalescence of randomly distributed grains with different crystallographic orientations can result in pervasive grain boundaries (GBs) in 2D materials during their chemical synthesis. GBs not only are the inherent structural imperfection that causes influential impacts on structures and properties of 2D materials, but also have emerged as a platform for exploring unusual physics and functionalities stemming from dramatic changes in local atomic organization and even chemical makeup. Here, recent advances in studying the formation mechanism, atomic structures, and functional properties of GBs in a range of 2D materials are reviewed. By analyzing the growth mechanism and the competition between far-field strain and local chemical energies of dislocation cores, a complete understanding of the rich GB morphologies as well as their dependence on lattice misorientations and chemical compositions is presented. Mechanical, electronic, and chemical properties tied to GBs in different materials are then discussed, towards raising the concept of using GBs as a robust atomic-scale scaffold for realizing tailored functionalities, such as magnetism, luminescence, and catalysis. Finally, the future opportunities in retrieving GBs for making functional devices and the major challenges in the controlled formation of GB structures for designed applications are commented.
Collapse
Affiliation(s)
- Maolin Yu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhili Hu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
5
|
Su S, Liu Y, Li M, Huang H, Xue J. Long-Term Evolution of Vacancies in Large-Area Graphene. ACS OMEGA 2022; 7:36379-36386. [PMID: 36278062 PMCID: PMC9583090 DOI: 10.1021/acsomega.2c04121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Devices based on two-dimensional (2D) materials such as graphene and molybdenum disulfide have shown extraordinary potential in physics, nanotechnology, and electronics. The performances of these applications are heavily affected by defects in utilized materials. Although great efforts have been spent in studying the formation and property of various defects in 2D materials, the long-term evolution of vacancies is still unclear. Here, using a designed program based on the kinetic Monte Carlo method, we systematically investigate the vacancy evolution in monolayer graphene on a long-time and large spatial scale, focusing on the variation of the distribution of different vacancy types. In most cases, the vacancy distribution remains nearly unchanged during the whole evolution, and most of the evolution events are vacancy migrations with a few being coalescences, while it is extremely difficult for multiple vacancies to dissolve. The probabilities of different categories of vacancy evolutions are determined by their reaction rates, which, in turn, depend on corresponding energy barriers. We further study the influences of different factors such as the energy barrier for vacancy migration, coalescence, and dissociation on the evolution, and the coalescence energy barrier is found to be dominant. These findings indicate that vacancies (also subnanopores) in graphene are thermodynamically stable for a long period of time, conducive to subsequent characterizations or applications. Besides, this work provides hints to tune the ultimate vacancy distribution by changing related factors and suggests ways to study the evolution of other defects in various 2D materials.
Collapse
Affiliation(s)
- Shihao Su
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| | - Yong Liu
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| | - Man Li
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| | - Huaqing Huang
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| | - Jianming Xue
- State
Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing100871, P. R. China
- CAPT,
HEDPS and IFSA, College of Engineering, Peking University, Beijing100871, P. R. China
| |
Collapse
|
6
|
Yu H, Chen C, Sun J, Zhang H, Feng Y, Qin M, Feng W. Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity. NANO-MICRO LETTERS 2022; 14:135. [PMID: 35704244 PMCID: PMC9200911 DOI: 10.1007/s40820-022-00882-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects. However, in view of the complexity of composite structure and composition, its self-heal is facing challenges. In this article, supramolecular effect is proposed to repair the multistage structure, mechanical and thermal properties of composite materials. A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester (PBA)-polydimethylsiloxane (PDMS) were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization. Then, by introducing the copolymer into a folded graphene film (FGf), a highly thermally conductive composite of PBA-PDMS/FGf with self-healing capacity was fabricated. The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA-PDMS could completely self-heal at room temperature in 10 min. Additionally, PBA-PDMS/FGf exhibits a high tensile strength of 2.23 ± 0.15 MPa at break and high thermal conductivity of 13 ± 0.2 W m-1 K-1; of which the self-healing efficiencies were 100% and 98.65% at room temperature for tensile strength and thermal conductivity, respectively. The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules, as well as polymer molecule and graphene. This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future.
Collapse
Affiliation(s)
- Huitao Yu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Can Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Jinxu Sun
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Heng Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Yiyu Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Mengmeng Qin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
7
|
Mazaheri L, Jelken J, Avilés MO, Legge S, Lagugné-Labarthet F. Investigating the Performances of Wide-Field Raman Microscopy with Stochastic Optical Reconstruction Post-Processing. APPLIED SPECTROSCOPY 2022; 76:340-351. [PMID: 35128956 PMCID: PMC8915227 DOI: 10.1177/00037028211056975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 05/25/2023]
Abstract
Super-resolution fluorescence microscopy based on localization algorithms has tremendously impacted the field of imaging by improving the spatial resolution of optical measurements with specific blinking fluorophores and concomitant reduction of acquisition time. In vibrational spectroscopy and imaging, various methods have been developed to surpass the diffraction limit including near-field scattering methods, such as in tip-enhanced Raman and infrared spectroscopies. Although these scanning-probe techniques can provide exquisite spatial resolution, they often require long acquisition times and tedious fabrication of nano-scale scanning probes. Herein, stochastic optical reconstruction microscopy (STORM) protocol is applied on Raman measurements acquired using a wide-field home-built microscopy setup. We explore how the fluctuations of the Raman signal acquired over a series of time-lapse images at specific spectral ranges can be exploited with STORM processing, possibly revealing details with improved spatial resolution, under lower irradiance and with faster acquisition speed that cannot be achieved in point scanning mode over the same field of view. Samples studied here include patterned silicon, polystyrene microspheres on a silicon wafer, and graphene on a silicon/silicon dioxide substrate. The outcome presents an effective way to collect Raman images at selected spectral ranges with spatial resolutions of ∼200 nm over a large field of view under 532 nm excitation together with an acquisition speed improved by two orders of magnitude and under a significantly reduced irradiance compared to confocal laser scanning acquisition.
Collapse
Affiliation(s)
| | | | | | | | - François Lagugné-Labarthet
- François Lagugné-Labarthet, Department of Chemistry, The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario (Western University), 1151 Richmond St., London, ON N6A 5B7, Canada.
| |
Collapse
|
8
|
Kim H, Kim YD, Wu T, Cao Q, Herman IP, Hone J, Guo J, Shepard KL. Electroluminescence of atoms in a graphene nanogap. SCIENCE ADVANCES 2022; 8:eabj1742. [PMID: 35061537 PMCID: PMC8782453 DOI: 10.1126/sciadv.abj1742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/29/2021] [Indexed: 06/01/2023]
Abstract
Here, we report light emission from single atoms bridging a graphene nanogap that emit bright visible light based on fluorescence of ionized atoms. Oxygen atoms in the gap shows a peak emission wavelength of 569 nm with a full width at half maximum (FWHM) of 208 nm. The energy states produced by these ionized oxygen atoms bridging carbon atoms in the gap also produce a large negative differential resistance (NDR) in the transport across the gap with the highest peak-to-valley current ratio (PVR = 45) and highest peak current density (~90 kA/cm2) ever reported in a solid-state tunneling device. While tunneling transport has been previously observed in graphene nanogaps, the bridging of ionized oxygen observed here shows a low excess current, leading to the observed PVR. On the basis of the highly reproducible light emission and NDR from these structures, we demonstrate a 65,536-pixel light-emitting nanogap array.
Collapse
Affiliation(s)
- Hyungsik Kim
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Young Duck Kim
- Department of Physics, Kyung Hee University, Seoul, Republic of Korea
- Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tong Wu
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Qingrui Cao
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Irving P. Herman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Jing Guo
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Kretschmer S, Ghaderzadeh S, Facsko S, Krasheninnikov AV. Threshold Ion Energies for Creating Defects in 2D Materials from First-Principles Calculations: Chemical Interactions Are Important. J Phys Chem Lett 2022; 13:514-519. [PMID: 35005978 DOI: 10.1021/acs.jpclett.1c03995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The characteristics of two-dimensional (2D) materials can be tuned by low-energy ion irradiation provided that the ion energy is correctly chosen. The optimum ion energy is related to Ethion, the minimum kinetic energy the ion should have to displace an atom from the material. Ethion can be assessed using the binary collision approximation (BCA) when the displacement threshold of the atom is known. However, for some ions the experimental data contradict the BCA results. Using density functional theory molecular dynamics (DFT-MD), we study the collisions of low-energy ions with graphene and hexagonal boron nitride and demonstrate that the BCA can strongly overestimate Ethion because energy transfer takes a finite time, and therefore, chemical interactions of the ion with the target are important. Finally, for all projectiles from H up to Ar, we calculate the values of Ethion required to displace an atom from graphene and h-BN, the archetypal 2D materials.
Collapse
Affiliation(s)
- Silvan Kretschmer
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Sadegh Ghaderzadeh
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Stefan Facsko
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
10
|
Salehi M, Bastani P, Jamilpanah L, Madani A, Mohseni SM, Shokri B. Low defect and high electrical conductivity of graphene through plasma graphene healing treatment monitored with in situ optical emission spectroscopy. Sci Rep 2021; 11:20334. [PMID: 34645871 PMCID: PMC8514466 DOI: 10.1038/s41598-021-99421-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022] Open
Abstract
Fundamental studies on graphene (Gr) and its real device applications have been affected by unavoidable defects and impurities which are usually present in synthesized Gr. Therefore, post treatment methods on Gr have been an important subject of research followed by the community. Here, we demonstrate a post-treatment of cm-sized CVD-grown graphene in a Radio Frequency-generated low-pressure plasma of methane and hydrogen to remove oxygen functional groups and heal the structural defects. The optimum plasma treatment parameters, such as pressure, plasma power, and the ratio of the gases, are optimized using in-situ optical emission spectroscopy. This way we present an optimal healing condition monitored with in situ OES. A twofold increase in the conductivity of plasma-treated Gr samples was obtained. Plasma treatment conditions give insights into the possible underlying mechanisms, and the method presents an effective way to obtain improved Gr quality.
Collapse
Affiliation(s)
- Mohammad Salehi
- Laser and Plasma Research Institute, Shahid Beheshti University, 19839, Tehran, Iran
| | - Parnia Bastani
- Department of Physics, Shahid Beheshti University, 19839, Tehran, Iran
| | | | - Abbas Madani
- AMO GmbH (Advanced Microelectronic Center), Aachen, Germany
- Department of Engineering, The University of Cambridge, Cambridge, UK
| | | | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, 19839, Tehran, Iran.
- Department of Physics, Shahid Beheshti University, 19839, Tehran, Iran.
| |
Collapse
|
11
|
Chen X, Zhang S, Hou D, Duan H, Deng B, Zeng Z, Liu B, Sun L, Song R, Du J, Gao P, Peng H, Liu Z, Wang L. Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29926-29935. [PMID: 34133124 DOI: 10.1021/acsami.1c06243] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes are key components in chemical purification, biological separation, and water desalination. Traditional polymeric membranes are subjected to a ubiquitous trade-off between permeance and selectivity, which significantly hinders the separation performance. Nanoporous atomically thin membranes (NATMs), such as graphene NATMs, have the potential to break this trade-off. Owing to their uniqueness of two-dimensional structure and potential nanopore structure controllability, NATMs are expected to have outstanding selectivity through molecular sieving while achieving ultimate permeance at the same time. However, a drastic selectivity discrepancy exists between the proof-of-concept demonstrations and scalable separation applications in graphene membranes. In this paper, we offer a possible solution to narrow this discrepancy by tuning the pore density and pore size separately with two successive plasma treatments. We demonstrate that by narrowing the pore size distribution, the selectivity of graphene membranes can be greatly increased. Low-energy argon plasma is first applied to nucleate high density of defects in graphene. Controlled oxygen plasma is then utilized to selectively enlarge the defects into nanopores with desired sizes. This method is scalable, and the fabricated 1 cm2 graphene NATMs with sub-nanometer pores can separate KCl and Allura Red with a selectivity of 104 and a permeance of 1.1 × 10-6 m s-1. The pores in NATMs can be further tuned from gas-selective sub-nanometer pores to a few nanometer size. The fabricated NATMs show a selectivity of 35 between CO2 and N2. With longer enlargement time, a selectivity of 21.2 between a lysozyme and bovine serum albumin can also be achieved with roughly four times higher permeance than that of a commercial dialysis membrane. This research offers a solution to realize NATMs of tunable pore size with a narrow pore size distribution for different separation processes from sub-nanometer in gas separation or desalination to a few nanometers in dialysis.
Collapse
Affiliation(s)
- Xiaobo Chen
- Institute of Microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Shengping Zhang
- Institute of Microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dandan Hou
- Institute of Microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Hongwei Duan
- Institute of Microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Bing Deng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiyang Zeng
- Institute of Microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Bingyao Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luzhao Sun
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruiyang Song
- Institute of Microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Jinlong Du
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Luda Wang
- Institute of Microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Huang H, Cai B, Li H, Yuan X, Jin Y. Atomistic simulation of energetic displacement cascades near an Ni–graphene interface. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Robert Bigras G, Martel R, Stafford L. Incorporation-limiting mechanisms during nitrogenation of monolayer graphene films in nitrogen flowing afterglows. NANOSCALE 2021; 13:2891-2901. [PMID: 33533789 DOI: 10.1039/d0nr07827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monolayer graphene films are exposed to the flowing afterglow of a low-pressure microwave nitrogen plasma, characterized by the absence of ion irradiation and significant populations of N atoms and N2(A) metastables. Hyperspectral Raman imaging of graphene domains reveals damage generation with a progressive rise of the D/G and D/2D band ratios following subsequent plasma treatments. Plasma-induced damage is mostly zero-dimensional and the graphene state remains in the pre-amorphous regime. Over the range of experimental conditions investigated, damage formation increases with the fluence of energy provided by heterogenous surface recombination of N atoms and deexcitation of N2(A) metastable species. In such conditions, X-ray photoelectron spectroscopy reveals that the nitrogen incorporation (either as pyridine, pyrrole, or quaternary moieties) does not simply increase with the fluence of plasma-generated N atoms but is also linked to the damage generation. Based on these findings, a surface reaction model for monolayer graphene nitrogenation is proposed. It is shown that the nitrogen incorporation is first limited by the plasma-induced formation of defect sites at low damage and then by the adsorption of nitrogen atoms at high damage.
Collapse
Affiliation(s)
- G Robert Bigras
- Département de Physique, Université de Montréal, Montréal, Québec, Canada.
| | | | | |
Collapse
|