1
|
Cheung CS, Goodwin ZAH, Han Y, Lu J, Mostofi AA, Lischner J. Coexisting Charge Density Waves in Twisted Bilayer NbSe 2. NANO LETTERS 2024; 24:12088-12094. [PMID: 39297477 PMCID: PMC11450987 DOI: 10.1021/acs.nanolett.4c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Twisted bilayers of 2D materials have emerged as a tunable platform for studying broken symmetry phases. While most interest has been focused toward emergent states in systems whose constituent monolayers do not feature broken symmetry states, assembling monolayers that exhibit ordered states into twisted bilayers can also give rise to interesting phenomena. Here, we use first-principles density-functional theory calculations to study the atomic structure of twisted bilayer NbSe2 whose constituent monolayers feature a charge density wave. We find that different charge density wave states coexist in the ground state of the twisted bilayer: monolayer-like 3 × 3 triangular and hexagonal charge density waves are observed in low-energy stacking regions, while stripe charge density waves are found in the domain walls surrounding the low-energy stacking regions. These predictions, which can be tested by scanning tunneling microscopy experiments, highlight the potential to create complex charge density wave ground states in twisted bilayer systems.
Collapse
Affiliation(s)
- Christopher
T. S. Cheung
- Departments
of Physics and Materials and the Thomas Young Center for Theory and
Simulation of Materials, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Zachary A. H. Goodwin
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yixuan Han
- Institute
for Functional Intelligent Materials, National
University of Singapore, Singapore 117544, Singapore
| | - Jiong Lu
- Institute
for Functional Intelligent Materials, National
University of Singapore, Singapore 117544, Singapore
| | - Arash A. Mostofi
- Departments
of Physics and Materials and the Thomas Young Center for Theory and
Simulation of Materials, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Johannes Lischner
- Departments
of Physics and Materials and the Thomas Young Center for Theory and
Simulation of Materials, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
2
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Wang X, Wang D, Zou Y, Wang T, Li Y, Niu X, Song G, Wang B, Liu Y. Quantum States Induced by Strong Interface Coupling in a 2D VSe 2/Bi 2Se 3 Heterostructure. ACS NANO 2024; 18:24812-24818. [PMID: 39185922 DOI: 10.1021/acsnano.4c03139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
We have successfully fabricated single-layer (SL) 1T-VSe2/Bi2Se3 heterostructures using molecular beam epitaxy (MBE), which exhibits uniform moiré patterns on the heterostructure surface. Scanning tunneling microscopy/spectroscopy (STM/STS) reveals a notable quantum state near the Fermi energy, robust across the entire moiré lattice. This quantum state peak shifts slightly across different domain ranges, suggesting an elastic strain dependence in SL VSe2, confirmed by geometric phase analysis (GPA) simulations. Density functional theory (DFT) calculations indicate that the enhanced quantum state results from charge redistribution between the substrate and the epifilm with the orbitals of Se atoms in the deformed VSe2 playing a dominant role.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Donghui Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Yuxiao Zou
- Kunming Institute of Physics, Kunming 650223, PR China
| | - Tao Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yunliang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaobin Niu
- School of materials and Energy, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Guofeng Song
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, PR China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bin Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
4
|
Wang S, Han Y, Sun S, Wang S, An C, Chen C, Zhang L, Zhou Y, Zhou J, Yang Z. Pressure Induced Nonmonotonic Evolution of Superconductivity in 6R-TaS_{2} with a Natural Bulk Van der Waals Heterostructure. PHYSICAL REVIEW LETTERS 2024; 133:056001. [PMID: 39159112 DOI: 10.1103/physrevlett.133.056001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/01/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024]
Abstract
The natural bulk Van der Waals heterostructure compound 6R-TaS_{2} consists of alternate stacking 1T- and 1H-TaS_{2} monolayers, creating a unique system that incorporates charge-density-wave (CDW) order and superconductivity (SC) in distinct monolayers. Here, after confirming that the 2D nature of the lattice is preserved up to 8 GPa in 6R-TaS_{2}, we documented an unusual evolution of CDW and SC by conducting high-pressure electronic transport measurements. Upon compression, we observe a gradual suppression of CDW within the 1T layers, while the SC exhibits a dome-shaped behavior that terminates at a critical pressure P_{c} around 2.9 GPa. By taking account of the fact that the substantial suppression of SC is concomitant with the complete collapse of CDW order at P_{c}, we argue that the 6R-TaS_{2} behaves like a stack of Josephson junctions and thus the suppressed superconductivity can be attributed to the weakening of Josephson coupling associated with the presence of CDW fluctuations in the 1T layers. Furthermore, the SC reversely enhances above P_{c}, implying the development of emergent superconductivity in the 1T layers after the melting of T-layer CDW orders. These results show that the 6R-TaS_{2} not only provides a promising platform to explore emergent phenomena but also serves as a model system to study the complex interactions between competing electronic states.
Collapse
Affiliation(s)
| | | | - Sutao Sun
- National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | - Jian Zhou
- National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zhaorong Yang
- Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
5
|
Yan L, Bu K, Li Z, Zhang Z, Xia W, Li M, Li N, Guan J, Liu X, Ning J, Zhang D, Guo Y, Wang X, Yang W. Double Superconducting Dome of Quasi Two-Dimensional TaS 2 in Non-Centrosymmetric van der Waals Heterostructure. NANO LETTERS 2024; 24:6002-6009. [PMID: 38739273 DOI: 10.1021/acs.nanolett.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Two-dimensional van der Waals heterostructures (2D-vdWHs) based on transition metal dichalcogenides (TMDs) provide unparalleled control over electronic properties. However, the interlayer coupling is challenged by the interfacial misalignment and defects, which hinders a comprehensive understanding of the intertwined electronic orders, especially superconductivity and charge density wave (CDW). Here, by using pressure to regulate the interlayer coupling of non-centrosymmetric 6R-TaS2 vdWHs, we observe an unprecedented phase diagram in TMDs. This phase diagram encompasses successive suppression of the original CDW states from alternating H-layer and T-layer configurations, the emergence and disappearance of a new CDW-like state, and a double superconducting dome induced by different interlayer coupling effects. These results not only illuminate the crucial role of interlayer coupling in shaping the complex phase diagram of TMD systems but also pave a new avenue for the creation of a novel family of bulk heterostructures with customized 2D properties.
Collapse
Affiliation(s)
- Limin Yan
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
- School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Zhongyang Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Zihan Zhang
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wei Xia
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Mingtao Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Nana Li
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Jiayi Guan
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xuqiang Liu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Jiahao Ning
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Dongzhou Zhang
- GSECARS, University of Chicago, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Yanfeng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| |
Collapse
|
6
|
Su S, Zhao J, Ly TH. Scanning Probe Microscopies for Characterizations of 2D Materials. SMALL METHODS 2024:e2400211. [PMID: 38766949 DOI: 10.1002/smtd.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
2D materials are intriguing due to their remarkably thin and flat structure. This unique configuration allows the majority of their constituent atoms to be accessible on the surface, facilitating easier electron tunneling while generating weak surface forces. To decipher the subtle signals inherent in these materials, the application of techniques that offer atomic resolution (horizontal) and sub-Angstrom (z-height vertical) sensitivity is crucial. Scanning probe microscopy (SPM) emerges as the quintessential tool in this regard, owing to its atomic-level spatial precision, ability to detect unitary charges, responsiveness to pico-newton-scale forces, and capability to discern pico-ampere currents. Furthermore, the versatility of SPM to operate under varying environmental conditions, such as different temperatures and in the presence of various gases or liquids, opens up the possibility of studying the stability and reactivity of 2D materials in situ. The characteristic flatness, surface accessibility, ultra-thinness, and weak signal strengths of 2D materials align perfectly with the capabilities of SPM technologies, enabling researchers to uncover the nuanced behaviors and properties of these advanced materials at the nanoscale and even the atomic scale.
Collapse
Affiliation(s)
- Shaoqiang Su
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, 999077, China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
7
|
Li S, Wang F, Wang Y, Yang J, Wang X, Zhan X, He J, Wang Z. Van der Waals Ferroelectrics: Theories, Materials, and Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301472. [PMID: 37363893 DOI: 10.1002/adma.202301472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/19/2023] [Indexed: 06/28/2023]
Abstract
In recent years, an increasing number of 2D van der Waals (vdW) materials are theory-predicted or laboratory-validated to possess in-plane (IP) and/or out-of-plane (OOP) spontaneous ferroelectric polarization. Due to their dangling-bond-free surfaces, interlayer charge coupling, robust polarization, tunable energy band structures, and compatibility with silicon-based technologies, vdW ferroelectric materials exhibit great promise in ferroelectric memories, neuromorphic computing, nanogenerators, photovoltaic devices, spintronic devices, and so on. Here, the very recent advances in the field of vdW ferroelectrics (FEs) are reviewed. First, theories of ferroelectricity are briefly discussed. Then, a comprehensive summary of the non-stacking vdW ferroelectric materials is provided based on their crystal structures and the emerging sliding ferroelectrics. In addition, their potential applications in various branches/frontier fields are enumerated, with a focus on artificial intelligence. Finally, the challenges and development prospects of vdW ferroelectrics are discussed.
Collapse
Affiliation(s)
- Shuhui Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanrong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jia Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinyuan Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xueying Zhan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun He
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Hwang J, Ruan W, Chen Y, Tang S, Crommie MF, Shen ZX, Mo SK. Charge density waves in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:044502. [PMID: 38518359 DOI: 10.1088/1361-6633/ad36d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Charge density wave (CDW is one of the most ubiquitous electronic orders in quantum materials. While the essential ingredients of CDW order have been extensively studied, a comprehensive microscopic understanding is yet to be reached. Recent research efforts on the CDW phenomena in two-dimensional (2D) materials provide a new pathway toward a deeper understanding of its complexity. This review provides an overview of the CDW orders in 2D with atomically thin transition metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the electronic structure investigations on the epitaxially grown TMDC samples with angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy as complementary experimental tools. We discuss the possible origins of the 2D CDW, novel quantum states coexisting with them, and exotic types of charge orders that can only be realized in the 2D limit.
Collapse
Affiliation(s)
- Jinwoong Hwang
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wei Ruan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
| | - Shujie Tang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, CA, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA 94720, United States of America
| | - Zhi-Xun Shen
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 United States of America
| |
Collapse
|
9
|
He D, Zheng Y, Ding D, Ma H, Zhang A, Cheng Y, Zhao W, Jin C. Titanium Self-Intercalation Induced Formation of Orthogonal (1 × 1) Edge/Surface Reconstruction in 1T-TiSe 2: Atomic Scale Dynamics and Mechanistic Study. NANO LETTERS 2024; 24:3835-3841. [PMID: 38498307 DOI: 10.1021/acs.nanolett.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Edges and surfaces play indispensable roles in affecting the chemical-physical properties of materials, particularly in two-dimensional transition metal dichalcogenides (TMDCs) with reduced dimensionality. Herein, we report a novel edge/surface structure in multilayer 1T-TiSe2, i.e., the orthogonal (1 × 1) reconstruction, induced by the self-intercalation of Ti atoms into interlayer octahedral sites of the host TiSe2 at elevated temperature. Formation dynamics of the reconstructed edge/surface are captured at the atomic level by in situ scanning transmission electron microscopy (STEM) and further validated by density functional theory (DFT), which enables the proposal of the nucleation mechanism and two growth routes (zigzag and armchair). Via STEM-electron energy loss spectroscopy (STEM-EELS), a chemical shift of 0.6 eV in Ti L3,2 is observed in the reconstructed edge/surface, which is attributed to the change of the coordination number and lattice distortion. The present work provides insights to tailor the atomic/electronic structures and properties of 2D TMDC materials.
Collapse
Affiliation(s)
- Daliang He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Yonghui Zheng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Degong Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Aixinye Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Yan Cheng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580 Shandong, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| |
Collapse
|
10
|
Song YH, Muzaffar MU, Wang Q, Wang Y, Jia Y, Cui P, Zhang W, Wang XS, Zhang Z. Realization of large-area ultraflat chiral blue phosphorene. Nat Commun 2024; 15:1157. [PMID: 38326296 PMCID: PMC10850065 DOI: 10.1038/s41467-024-45263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Blue phosphorene (BlueP), a theoretically proposed phosphorous allotrope with buckled honeycomb lattice, has attracted considerable interest due to its intriguing properties. Introducing chirality into BlueP can further enrich its physical and chemical properties, expanding its potential for applications. However, the synthesis of chiral BlueP remains elusive. Here, we demonstrate the growth of large-area BlueP films on Cu(111), with lateral size limited by the wafer dimensions. Importantly, we discovered that the BlueP is characterized by an ultraflat honeycomb lattice, rather than the prevailing buckled structure, and develops highly ordered spatial chirality plausibly resulting from the rotational stacking with the substrate and interface strain release, as further confirmed by the geometric phase analysis. Moreover, spectroscopic measurements reveal its intrinsic metallic nature and different characteristic quantum oscillations in the image-potential states, which can be exploited for a range of potential applications including polarization optics, spintronics, and chiral catalysis.
Collapse
Affiliation(s)
- Ye-Heng Song
- Center for Topological Functional Materials, and Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - M U Muzaffar
- International Center for Quantum Design of Functional Materials (ICQD), and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qi Wang
- Center for Topological Functional Materials, and Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China
| | - Yunhui Wang
- Center for Topological Functional Materials, and Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China
| | - Yu Jia
- Center for Topological Functional Materials, and Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China
- School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
- International Laboratory for Quantum Functional Materials of Henan, Zhengzhou University, Zhengzhou, 450003, China
| | - Ping Cui
- International Center for Quantum Design of Functional Materials (ICQD), and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Weifeng Zhang
- Center for Topological Functional Materials, and Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, China.
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China.
| | - Xue-Sen Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore.
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
11
|
Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X, Huang W. Reconfiguring nucleation for CVD growth of twisted bilayer MoS 2 with a wide range of twist angles. Nat Commun 2024; 15:562. [PMID: 38233382 PMCID: PMC10794196 DOI: 10.1038/s41467-023-44598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Twisted bilayer (TB) transition metal dichalcogenides (TMDCs) beyond TB-graphene are considered an ideal platform for investigating condensed matter physics, due to the moiré superlattices-related peculiar band structures and distinct electronic properties. The growth of large-area and high-quality TB-TMDCs with wide twist angles would be significant for exploring twist angle-dependent physics and applications, but remains challenging to implement. Here, we propose a reconfiguring nucleation chemical vapor deposition (CVD) strategy for directly synthesizing TB-MoS2 with twist angles from 0° to 120°. The twist angles-dependent Moiré periodicity can be clearly observed, and the interlayer coupling shows a strong relationship to the twist angles. Moreover, the yield of TB-MoS2 in bilayer MoS2 and density of TB-MoS2 are significantly improved to 17.2% and 28.9 pieces/mm2 by tailoring gas flow rate and molar ratio of NaCl to MoO3. The proposed reconfiguring nucleation approach opens an avenue for the precise growth of TB-TMDCs for both fundamental research and practical applications.
Collapse
Affiliation(s)
- Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jing Wang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hanxin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qianbo Lu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China.
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China.
| |
Collapse
|
12
|
Antonelli T, Rajan A, Watson MD, Soltani S, Houghton J, Siemann GR, Zivanovic A, Bigi C, Edwards B, King PDC. Controlling the Charge Density Wave Transition in Single-Layer TiTe 2xSe 2(1-x) Alloys by Band Gap Engineering. NANO LETTERS 2024; 24:215-221. [PMID: 38117702 PMCID: PMC10786161 DOI: 10.1021/acs.nanolett.3c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
Closing the band gap of a semiconductor into a semimetallic state gives a powerful potential route to tune the electronic energy gains that drive collective phases like charge density waves (CDWs) and excitonic insulator states. We explore this approach for the controversial CDW material monolayer (ML) TiSe2 by engineering its narrow band gap to the semimetallic limit of ML-TiTe2. Using molecular beam epitaxy, we demonstrate the growth of ML-TiTe2xSe2(1-x) alloys across the entire compositional range and unveil how the (2 × 2) CDW instability evolves through the normal state semiconductor-semimetal transition via in situ angle-resolved photoemission spectroscopy. Through model electronic structure calculations, we identify how this tunes the relative strength of excitonic and Peierls-like coupling, demonstrating band gap engineering as a powerful method for controlling the microscopic mechanisms underpinning the formation of collective states in two-dimensional materials.
Collapse
Affiliation(s)
- Tommaso Antonelli
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Akhil Rajan
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Matthew D. Watson
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| | | | - Joe Houghton
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Gesa-Roxanne Siemann
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Andela Zivanovic
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Chiara Bigi
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Brendan Edwards
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Phil D. C. King
- SUPA, School of Physics and
AstronomyUniversity of St Andrews, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
13
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|
14
|
Ren M, Cheng F, Zhao Y, Gu M, Cheng Q, Yan B, Liu Q, Ma X, Xue Q, Song CL. Chiral Charge Density Wave and Backscattering-Immune Orbital Texture in Monolayer 1 T-TiTe 2. NANO LETTERS 2023; 23:10081-10088. [PMID: 37903418 DOI: 10.1021/acs.nanolett.3c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Nontrivial electronic states are attracting intense attention in low-dimensional physics. Though chirality has been identified in charge states with a scalar order parameter, its intertwining with charge density waves (CDW), film thickness, and the impact on the electronic behaviors remain less well understood. Here, using scanning tunneling microscopy, we report a 2 × 2 chiral CDW as well as a strong suppression of the Te-5p hole-band backscattering in monolayer 1T-TiTe2. These exotic characters vanish in bilayer TiTe2 in a non-CDW state. Theoretical calculations prove that chirality comes from a helical stacking of the triple-q CDW components and, therefore, can persist at the two-dimensional limit. Furthermore, the chirality renders the Te-5p bands with an unconventional orbital texture that prohibits electron backscattering. Our study establishes TiTe2 as a promising playground for manipulating the chiral ground states at the monolayer limit and provides a novel path to engineer electronic properties from an orbital degree.
Collapse
Affiliation(s)
- Mingqiang Ren
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fangjun Cheng
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yufei Zhao
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mingqiang Gu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiangjun Cheng
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xucun Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Qikun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Can-Li Song
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
15
|
Wang X, Wang H, Ma L, Zhang L, Yang Z, Dong D, Chen X, Li H, Guan Y, Zhang B, Chen Q, Shi L, Li H, Qin Z, Tu X, Zhang L, Jia X, Chen J, Kang L, Wu P. Topotactic fabrication of transition metal dichalcogenide superconducting nanocircuits. Nat Commun 2023; 14:4282. [PMID: 37463894 DOI: 10.1038/s41467-023-39997-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Superconducting nanocircuits, which are usually fabricated from superconductor films, are the core of superconducting electronic devices. While emerging transition-metal dichalcogenide superconductors (TMDSCs) with exotic properties show promise for exploiting new superconducting mechanisms and applications, their environmental instability leads to a substantial challenge for the nondestructive preparation of TMDSC nanocircuits. Here, we report a universal strategy to fabricate TMDSC nanopatterns via a topotactic conversion method using prepatterned metals as precursors. Typically, robust NbSe2 meandering nanowires can be controllably manufactured on a wafer scale, by which a superconducting nanowire circuit is principally demonstrated toward potential single photon detection. Moreover, versatile superconducting nanocircuits, e.g., periodical circle/triangle hole arrays and spiral nanowires, can be prepared with selected TMD materials (NbS2, TiSe2, or MoTe2). This work provides a generic approach for fabricating nondestructive TMDSC nanocircuits with precise control, which paves the way for the application of TMDSCs in future electronics.
Collapse
Affiliation(s)
- Xiaohan Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Liang Ma
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Zhuolin Yang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Daxing Dong
- Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xi Chen
- Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Haochen Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Yanqiu Guan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Biao Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Qi Chen
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Lili Shi
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Hui Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Zhi Qin
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Lijian Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Xiaoqing Jia
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Jian Chen
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China.
- Hefei National Laboratory, Hefei, 230088, China.
| |
Collapse
|
16
|
Li Y, Yuan Q, Guo D, Lou C, Cui X, Mei G, Petek H, Cao L, Ji W, Feng M. 1D Electronic Flat Bands in Untwisted Moiré Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300572. [PMID: 37057612 DOI: 10.1002/adma.202300572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/03/2023] [Indexed: 06/16/2023]
Abstract
After the preparation of 2D electronic flat band (EFB) in van der Waals (vdW) superlattices, recent measurements suggest the existence of 1D electronic flat bands (1D-EFBs) in twisted vdW bilayers. However, the realization of 1D-EFBs is experimentally elusive in untwisted 2D layers, which is desired considering their fabrication and scalability. Herein, the discovery of 1D-EFBs is reported in an untwisted in situ-grown two atomic-layer Bi(110) superlattice self-aligned on an SnSe(001) substrate using scanning probe microscopy measurements and density functional theory calculations. While the Bi-Bi dimers of Bi zigzag (ZZ) chains are buckled, the epitaxial lattice mismatch between the Bi and SnSe layers induces two 1D buckling reversal regions (BRRs) extending along the ZZ direction in each Bi(110)-11 × 11 supercell. A series of 1D-EFBs arises spatially following BRRs that isolate electronic states along the armchair (AC) direction and localize electrons in 1D extended states along ZZ due to quantum interference at a topological node. This work provides a generalized strategy for engineering 1D-EFBs in utilizing lattice mismatch between untwisted rectangular vdW layers.
Collapse
Affiliation(s)
- Yafei Li
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Qing Yuan
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Deping Guo
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, P. R. China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin Universiry of China, Beijing, 100872, P. R. China
| | - Cancan Lou
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Xingxia Cui
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Guangqiang Mei
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Hrvoje Petek
- Department of Physics and Astronomy and the IQ Initiative, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Limin Cao
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing, 100872, P. R. China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin Universiry of China, Beijing, 100872, P. R. China
| | - Min Feng
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan, 430072, P. R. China
- Institute for Advanced Study, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
17
|
Rodríguez Á, Varillas J, Haider G, Kalbáč M, Frank O. Complex Strain Scapes in Reconstructed Transition-Metal Dichalcogenide Moiré Superlattices. ACS NANO 2023; 17:7787-7796. [PMID: 37022987 PMCID: PMC10134736 DOI: 10.1021/acsnano.3c00609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
We investigate the intrinsic strain associated with the coupling of twisted MoS2/MoSe2 heterobilayers by combining experiments and molecular dynamics simulations. Our study reveals that small twist angles (between 0 and 2°) give rise to considerable atomic reconstructions, large moiré periodicities, and high levels of local strain (with an average value of ∼1%). Moreover, the formation of moiré superlattices is assisted by specific reconstructions of stacking domains. This process leads to a complex strain distribution characterized by a combined deformation state of uniaxial, biaxial, and shear components. Lattice reconstruction is hindered with larger twist angles (>10°) that produce moiré patterns of small periodicity and negligible strains. Polarization-dependent Raman experiments also evidence the presence of an intricate strain distribution in heterobilayers with near-0° twist angles through the splitting of the E2g1 mode of the top (MoS2) layer due to atomic reconstruction. Detailed analyses of moiré patterns measured by AFM unveil varying degrees of anisotropy in the moiré superlattices due to the heterostrain induced during the stacking of monolayers.
Collapse
Affiliation(s)
- Álvaro Rodríguez
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Materials
Science Factory, Instituto de Ciencia de
Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Javier Varillas
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Institute
of Thermomechanics, Czech Academy of Sciences, Dolejškova 1402/5, 182 00 Prague 8, Czech Republic
| | - Golam Haider
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Martin Kalbáč
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Otakar Frank
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| |
Collapse
|
18
|
Weng X, David P, Guisset V, Martinelli L, Geaymond O, Coraux J, Renaud G. Superstructures, Commensurations, and Rotation of Single-Layer TaS 2 on Au(111) Induced by Cs Intercalation/Deintercalation. ACS NANO 2023; 17:5459-5471. [PMID: 36912862 DOI: 10.1021/acsnano.2c10655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We use in situ synchrotron grazing incidence X-ray diffraction and X-ray reflectivity to investigate with high resolution the structure of a two-dimensional single layer of tantalum sulfide grown on a Au(111) surface and its evolution during intercalation by Cs atoms and deintercalation, which decouples and recouples the two materials, respectively. The grown single layer consists of a mixture of TaS2 and its S-depleted version, TaS, both aligned with gold, and forming moirés where 7 (respectively 13) lattice constants of the 2D layer almost perfectly match 8 (respectively 15) substrate lattice constants. Intercalation fully decouples the system by lifting the single layer by ∼370 pm and induces an increase of its lattice parameter by 1-2 picometers. The system gradually evolves, during cycles of intercalation/deintercalation assisted by an H2S atmosphere, toward a final coupled state consisting of the fully stoichiometric TaS2 dichalcogenide whose moiré is found very close to the 7/8 commensurability. The reactive H2S atmosphere appears necessary to achieve full deintercalation, presumably by preventing S depletion and the concomitant strong bonding with the intercalant. The structural quality of the layer improves during the cyclic treatment. In parallel, because they are decoupled from the substrate by the intercalation of cesium, some of the TaS2 flakes rotate by 30°. These produce two additional superlattices with characteristic diffraction patterns of different origins. The first is aligned with gold's high symmetry crystallographic directions and is a commensurate moiré ((6 × 6)-Au(111) coinciding with (3√3 × 3√3)R30°-TaS2). The second is incommensurate and corresponds to a near coincidence of (6 × 6) unit cells of 30°-rotated TaS2 with (4√3 × 4√3)Au(111) surface ones. This structure, which is less coupled to gold, might be related to the ∼(3× 3) charge density wave previously reported even at room temperature in TaS2 grown on noninteracting substrates. A (3 × 3) superstructure of 30°-rotated TaS2 islands is indeed revealed by complementary scanning tunneling microscopy.
Collapse
Affiliation(s)
- Xiaorong Weng
- Université Grenoble Alpes, CEA, IRIG/MEM/NRS, 38000 Grenoble, France
| | - Philippe David
- Université Grenoble Alpes, CNRS, Institut NEEL, 38000 Grenoble, France
| | - Valérie Guisset
- Université Grenoble Alpes, CNRS, Institut NEEL, 38000 Grenoble, France
| | - Lucio Martinelli
- Université Grenoble Alpes, CNRS, Institut NEEL, 38000 Grenoble, France
| | - Olivier Geaymond
- Université Grenoble Alpes, CNRS, Institut NEEL, 38000 Grenoble, France
| | - Johann Coraux
- Université Grenoble Alpes, CNRS, Institut NEEL, 38000 Grenoble, France
| | - Gilles Renaud
- Université Grenoble Alpes, CEA, IRIG/MEM/NRS, 38000 Grenoble, France
| |
Collapse
|
19
|
Yan L, Ding C, Li M, Tang R, Chen W, Liu B, Bu K, Huang T, Dai D, Jin X, Yang X, Cheng E, Li N, Zhang Q, Liu F, Liu X, Zhang D, Ma S, Tao Q, Zhu P, Li S, Lü X, Sun J, Wang X, Yang W. Modulating Charge-Density Wave Order and Superconductivity from Two Alternative Stacked Monolayers in a Bulk 4 Hb-TaSe 2 Heterostructure via Pressure. NANO LETTERS 2023; 23:2121-2128. [PMID: 36877932 DOI: 10.1021/acs.nanolett.2c04385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) van der Waals heterostructures (VDWHs) containing a charge-density wave (CDW) and superconductivity (SC) have revealed rich tunability in their properties, which provide a new route for optimizing their novel exotic states. The interaction between SC and CDW is critical to its properties; however, understanding this interaction within VDWHs is very limited. A comprehensive in situ study and theoretical calculation on bulk 4Hb-TaSe2 VDWHs consisting of alternately stacking 1T-TaSe2 and 1H-TaSe2 monolayers are investigated under high pressure. Surprisingly, the superconductivity competes with the intralayer and adjacent-layer CDW order in 4Hb-TaSe2, which results in substantially and continually boosted superconductivity under compression. Upon total suppression of the CDW, the superconductivity in the individual layers responds differently to the charge transfer. Our results provide an excellent method to efficiently tune the interplay between SC and CDW in VDWHs and a new avenue for designing materials with tailored properties.
Collapse
Affiliation(s)
- Limin Yan
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Chi Ding
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Mingtao Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Ruilian Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Wan Chen
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Bingyan Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Tianheng Huang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Dongzhe Dai
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University Shanghai 200438, People's Republic of China
| | - Xiaobo Jin
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University Shanghai 200438, People's Republic of China
| | - Xiaofan Yang
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University Shanghai 200438, People's Republic of China
| | - Erjian Cheng
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University Shanghai 200438, People's Republic of China
| | - Nana Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Qian Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Fengliang Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Xuqiang Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics & Planetology, University of Hawaii Manoa, Honolulu, Hawaii 96822, United States
| | - Shuailing Ma
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Qiang Tao
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Pinwen Zhu
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Shiyan Li
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University Shanghai 200438, People's Republic of China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| |
Collapse
|
20
|
Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat Commun 2022; 13:7826. [PMID: 36535920 PMCID: PMC9763474 DOI: 10.1038/s41467-022-35477-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Twisted 2D materials form complex moiré structures that spontaneously reduce symmetry through picoscale deformation within a mesoscale lattice. We show twisted 2D materials contain a torsional displacement field comprised of three transverse periodic lattice distortions (PLD). The torsional PLD amplitude provides a single order parameter that concisely describes the structural complexity of twisted bilayer moirés. Moreover, the structure and amplitude of a torsional periodic lattice distortion is quantifiable using rudimentary electron diffraction methods sensitive to reciprocal space. In twisted bilayer graphene, the torsional PLD begins to form at angles below 3.89° and the amplitude reaches 8 pm around the magic angle of 1. 1°. At extremely low twist angles (e.g. below 0.25°) the amplitude increases and additional PLD harmonics arise to expand Bernal stacked domains separated by well defined solitonic boundaries. The torsional distortion field in twisted bilayer graphene is analytically described and has an upper bound of 22.6 pm. Similar torsional distortions are observed in twisted WS2, CrI3, and WSe2/MoSe2.
Collapse
|
21
|
Guo H, Zhang X, Lu G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose-Einstein condensation. SCIENCE ADVANCES 2022; 8:eabp9757. [PMID: 36206334 PMCID: PMC9544320 DOI: 10.1126/sciadv.abp9757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Using first-principles calculations, we predict that moiré excitons in twisted Janus heterobilayers could realize tunable and high-temperature Bose-Einstein condensation (BEC). The electric dipole in the Janus heterobilayers leads to charge-transfer interlayer and intralayer moiré excitons with exceptionally long lifetimes, in the absence of spacer layers. The electric dipole is also expected to enhance exciton-exciton repulsions at high exciton densities and can modulate moiré potentials that trap excitons for their condensation. The key parameters for exciton condensation, including exciton Bohr radius, binding energy, effective mass, and critical Mott density, are examined as a function of the twist angle. Last, exciton phase diagrams for the Janus heterobilayers are constructed from which one can estimate the BEC (>100 K) and superfluid (~30 K) transition temperatures. In addition to indirect interlayer excitons, we find that direct intralayer excitons can also condense at high temperatures, consistent with experiments.
Collapse
|
22
|
Zhang Z, Hu J, Yang P, Pan S, Quan W, Li N, Zhu L, Zhang Y. Modulating the periods and electronic properties of striped moiré superstructures for monolayer WSe 2 on Au(100) by varied interface coupling. NANOSCALE 2022; 14:7720-7728. [PMID: 35579051 DOI: 10.1039/d2nr01442d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Moiré superlattices formed by the stacking of two-dimensional (2D) transition metal dichalcogenide lattices on substrate lattices have been reported to imply a crucial effect on the electronic properties of 2D materials (e.g., band gap, doping level) and their physical properties. Herein, we report the direct observation of various striped moiré superstructures for monolayer WSe2 on the Au(100) facet, due to the lattice symmetry difference and relative rotation. The periodicities or the inter-stripe distances for striped superstructures fall in a range of 0-15 nm or 0-3 nm after relatively low or high temperature annealing processes, respectively. The diverse striped moiré superstructures then served as perfect platforms for examining the electronic band gap tunability for monolayer WSe2/Au(100) by using scanning tunneling microscopy/spectroscopy (STM/STS), which increases from ∼1.59 eV to ∼1.90 eV with increasing moiré periods from ∼1.62 to ∼11.58 nm. The coupling strength of monolayer WSe2/Au(100) with various striped patterns is thus proposed to be modulated by the different relative orientations. This work should hereby provide some fundamental references for the domain orientation control, interface coupling strength, and application explorations of two-dimensional layered materials in future electronics and optoelectronics.
Collapse
Affiliation(s)
- Zehui Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Pengfei Yang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Shuangyuan Pan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Wenzhi Quan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Ning Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Lijie Zhu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|