1
|
Harrison JJ, Nguyen W, Morgan MS, Tang B, Habarugira G, de Malmanche H, Freney ME, Modhiran N, Watterson D, Cox AL, Yan K, Yuen NKY, Bowman DH, Kirkland PD, Bielefeldt-Ohmann H, Suhrbier A, Hall RA, Rawle DJ, Hobson-Peters J. A chimeric vaccine derived from Australian genotype IV Japanese encephalitis virus protects mice from lethal challenge. NPJ Vaccines 2024; 9:134. [PMID: 39085247 PMCID: PMC11291493 DOI: 10.1038/s41541-024-00903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
In 2022, a genotype IV (GIV) strain of Japanese encephalitis virus (JEV) caused an unprecedented and widespread outbreak of disease in pigs and humans in Australia. As no veterinary vaccines against JEV are approved in Australia and all current approved human and veterinary vaccines are derived from genotype (G) III JEV strains, we used the recently described insect-specific Binjari virus (BinJV) chimeric flavivirus vaccine technology to produce a JEV GIV vaccine candidate. Herein we describe the production of a chimeric virus displaying the structural prM and E proteins of a JEV GIV isolate obtained from a stillborn piglet (JEVNSW/22) in the genomic backbone of BinJV (BinJ/JEVNSW/22-prME). BinJ/JEVNSW/22-prME was shown to be antigenically indistinguishable from the JEVNSW/22 parental virus by KD analysis and a panel of JEV-reactive monoclonal antibodies in ELISA. BinJ/JEVNSW/22-prME replicated efficiently in C6/36 cells, reaching titres of >107 infectious units/mL - an important attribute for vaccine manufacture. As expected, BinJ/JEVNSW/22-prME failed to replicate in a variety of vertebrate cells lines. When used to immunise mice, the vaccine induced a potent virus neutralising response against JEVNSW/22 and to GII and GIII JEV strains. The BinJ/JEVNSW/22-prME vaccine provided complete protection against lethal challenge with JEVNSW/22, whilst also providing partial protection against viraemia and disease for the related Murray Valley encephalitis virus. Our results demonstrate that BinJ/JEVNSW/22-prME is a promising vaccine candidate against JEV.
Collapse
Affiliation(s)
- Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Mahali S Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Gervais Habarugira
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Henry de Malmanche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
| | - Nicholas K Y Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Dylan H Bowman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| | - Peter D Kirkland
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, 4029, Australia.
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
- Australian Infectious Disease Research Centre, Brisbane, 4072, 4029, Australia.
| |
Collapse
|
2
|
Sun CQ, Fu YQ, Ma X, Shen JR, Hu B, Zhang Q, Wang LK, Hu R, Chen JJ. Trends in temporal and spatial changes of Japanese encephalitis in Chinese mainland, 2004-2019: A population-based surveillance study. Travel Med Infect Dis 2024; 60:102724. [PMID: 38692338 DOI: 10.1016/j.tmaid.2024.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/23/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Japanese encephalitis (JE) is a serious health concern in China, with approximately 80 % of global infections occurring in China. To develop effective prevention and control strategies, this study explored the epidemiological characteristics of JE in China based on spatiotemporal data, to understand the patterns and trends of JE incidence in different regions and time periods. METHOD The incidence and mortality rates of JE were extracted from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2019. Joinpoint regression was applied to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the JE. RESULTS From 2004 to 2019, a total of 43,569 cases of JE were diagnosed, including 2081 deaths. The annual incidence rate of JE decreased from 0.4171/100,000 in 2004 to 0.0298/100,000 in 2019, with an annual percentage change (APC) of -13.5 % (P < 0.001). The annual mortality rate of JE showed three stages of change, with inflection points in 2006 and 2014. The incidence and mortality rates of JE have declined in all provinces of China, and more cases were reported in 0-14 years of age, accounting for nearly 80 % of all patients. CONCLUSIONS The morbidity and mortality rates of JE in China are generally on a downward trend, and emphasis should be placed on strengthening disease surveillance in special areas and populations, popularizing vaccination, and increasing publicity.
Collapse
Affiliation(s)
- Chang-Qing Sun
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China; School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| | - Yun-Qiang Fu
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| | - Xuan Ma
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Jun-Ru Shen
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Bo Hu
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Lian-Ke Wang
- School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Rui Hu
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China
| | - Jia-Jun Chen
- Department of College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, PR China.
| |
Collapse
|
3
|
Li XH, Chen J, Ou YD, Zhong X, Hu JH, Sun RC, Lv YJ, Wei JC, Go YY, Zhou B. m 6A modification associated with YTHDF1 is involved in Japanese encephalitis virus infection. Vet Microbiol 2023; 287:109887. [PMID: 37925877 DOI: 10.1016/j.vetmic.2023.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
N6-methyladenosine (m6A), the most common modification in mammalian mRNA and viral RNA, regulates mRNA structure, stability, translation, and nuclear export. The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus causing severe neurologic disease in humans. To date, the role of m6A modification in JEV infection remains unclear. Herein, we aimed to determine the impact of m6A methylation modification on JEV replication in vitro and in vivo. Our results demonstrated that the overexpression of the m6A reader protein YTHDF1 in vitro significantly inhibits JEV proliferation. Additionally, YTHDF1 negatively regulates JEV proliferation in YTHDF1 knockdown cells and YTHDF1 knockout mice. MeRIP-seq analysis indicated that YTHDF1 interacts with several interferon-stimulated genes (ISGs), especially in IFIT3. Overall, our data showed that YTHDF1 played a vital role in inhibiting JEV replication. These findings bring novel insights into the specific mechanisms involved in the innate immune response to infection with JEV. They can be used in the development of novel therapeutics for controlling JEV infection.
Collapse
Affiliation(s)
- Xiao-Han Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu-da Ou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Huan Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui-Cong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying-Jun Lv
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jian-Chao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yun Young Go
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
5
|
Liang Z, Pan J, Xie S, Yang X, Cao R. Interaction between hTIM-1 and Envelope Protein Is Important for JEV Infection. Viruses 2023; 15:1589. [PMID: 37515282 PMCID: PMC10383738 DOI: 10.3390/v15071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic virus, is one of the most important causes of human viral encephalitis. JEV relies on various attachment or entry co-factors to enter host cells. Among these co-factors, hTIM-1 has been identified as an attachment factor to promote JEV infection through interacting with phosphatidylserine (PS) on the viral envelope. However, the reasons why JEV prefers to use hTIM-1 over other PS binding receptors are unknown. Here, we demonstrated that hTIM-1 can directly interact with JEV E protein. The interaction between hTIM-1 and JEV relies on specific binding sites, respectively, ND114115 in the hTIM-1 IgV domain and K38 of the E protein. Furthermore, during the early stage of infection, hTIM-1 and JEV are co-internalized into cells and transported into early and late endosomes. Additionally, we found that the hTIM-1 soluble ectodomain protein effectively inhibits JEV infection in vitro. Moreover, hTIM-1-specific antibodies have been shown to downregulate JEV infectivity in cells. Taken together, these findings suggested that hTIM-1 protein directly interacts with JEV E protein and mediates JEV infection, in addition to the PS-TIM-1 interaction.
Collapse
Affiliation(s)
- Zhenjie Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhui Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Zhao Z, Cao L, Sun Z, Liu W, Li X, Fang K, Shang X, Hu J, Chen H, Lou Z, Qian P. A Structure-Guided Genetic Modification Strategy: Developing Seneca Valley Virus Therapy against Nonsensitive Nonsmall Cell Lung Carcinoma. J Virol 2023; 97:e0045923. [PMID: 37097154 PMCID: PMC10231241 DOI: 10.1128/jvi.00459-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Numerous studies have illustrated that the Seneca Valley virus (SVV) shows sufficient oncolytic efficacy targeting small cell lung cancer (SCLC). However, the therapeutics of nonsmall cell lung carcinoma (NSCLC, accounts for 85% of lung cancer cases) using oncolytic virus have been resisting due to the filtration of neutralizing antibody and limited reproduction capacity. Here, we employed structural biology and reverse genetics to optimize novel oncolytic SVV mutants (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related variant SVV-S177A/P60S) with increased infectivity and lower immunogenicity. The results of the NSCLC-bearing athymic mouse model demonstrated that wild-type (wt) SVV-HB extended the median overall survival (mOS) from 11 days in the PBS group to 19 days. Notably, the newly discovered mutations significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort. Taken together, we present a structure-guided genetic modification strategy for oncolytic SVV optimization and provide a candidate for developing oncolytic viral therapy against nonsensitive NSCLC. IMPORTANCE Nonsmall cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases (more than 1.85 million cases with 1.48 million deaths in 2020). In the present study, two novel oncolytic SVV mutants modified based on structural biology and reverse genetics (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related mutant SVV-S177A/P60S) with increased infectivity or lower immunogenicity significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort in the NSCLC-bearing athymic mouse model, which may provide the direction for modifying SVV to improve the effect of oncolysis.
Collapse
Affiliation(s)
- Zekai Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lin Cao
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology Nankai University, Tianjin, China
| | - Zixian Sun
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, China
| | - Wenqiang Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kui Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianfei Shang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junjie Hu
- Hubei Colorectal Cancer Clinical Research Center, Hubei Cancer Hospital, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiyong Lou
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
8
|
Srivastava KS, Jeswani V, Pal N, Bohra B, Vishwakarma V, Bapat AA, Patnaik YP, Khanna N, Shukla R. Japanese Encephalitis Virus: An Update on the Potential Antivirals and Vaccines. Vaccines (Basel) 2023; 11:vaccines11040742. [PMID: 37112654 PMCID: PMC10146181 DOI: 10.3390/vaccines11040742] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Japanese encephalitis virus (JEV) is the causal agent behind Japanese encephalitis (JE), a potentially severe brain infection that spreads through mosquito bites. JE is predominant over the Asia-Pacific Region and has the potential to spread globally with a higher rate of morbidity and mortality. Efforts have been made to identify and select various target molecules essential in JEV’s progression, but until now, no licensed anti-JEV drug has been available. From a prophylactic point of view, a few licensed JE vaccines are available, but various factors, viz., the high cost and different side effects imposed by them, has narrowed their global use. With an average occurrence of >67,000 cases of JE annually, there is an urgent need to find a suitable antiviral drug to treat patients at the acute phase, as presently only supportive care is available to mitigate infection. This systematic review highlights the current status of efforts put in to develop antivirals against JE and the available vaccines, along with their effectiveness. It also summarizes epidemiology, structure, pathogenesis, and potential drug targets that can be explored to develop a new range of anti-JEV drugs to combat JEV infection globally.
Collapse
|
9
|
Biner DW, Grosch JS, Ortoleva PJ. B-cell epitope discovery: The first protein flexibility-based algorithm-Zika virus conserved epitope demonstration. PLoS One 2023; 18:e0262321. [PMID: 36920995 PMCID: PMC10016673 DOI: 10.1371/journal.pone.0262321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/22/2021] [Indexed: 03/16/2023] Open
Abstract
Antibody-antigen interaction-at antigenic local environments called B-cell epitopes-is a prominent mechanism for neutralization of infection. Effective mimicry, and display, of B-cell epitopes is key to vaccine design. Here, a physical approach is evaluated for the discovery of epitopes which evolve slowly over closely related pathogens (conserved epitopes). The approach is 1) protein flexibility-based and 2) demonstrated with clinically relevant enveloped viruses, simulated via molecular dynamics. The approach is validated against 1) seven structurally characterized enveloped virus epitopes which evolved the least (out of thirty-nine enveloped virus-antibody structures), 2) two structurally characterized non-enveloped virus epitopes which evolved slowly (out of eight non-enveloped virus-antibody structures), and 3) eight preexisting epitope and peptide discovery algorithms. Rationale for a new benchmarking scheme is presented. A data-driven epitope clustering algorithm is introduced. The prediction of five Zika virus epitopes (for future exploration on recombinant vaccine technologies) is demonstrated. For the first time, protein flexibility is shown to outperform solvent accessible surface area as an epitope discovery metric.
Collapse
Affiliation(s)
- Daniel W. Biner
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Jason S. Grosch
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Peter J. Ortoleva
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
11
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Chan KR, Ismail AA, Thergarajan G, Raju CS, Yam HC, Rishya M, Sekaran SD. Serological cross-reactivity among common flaviviruses. Front Cell Infect Microbiol 2022; 12:975398. [PMID: 36189346 PMCID: PMC9519894 DOI: 10.3389/fcimb.2022.975398] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The Flavivirus genus is made up of viruses that are either mosquito-borne or tick-borne and other viruses transmitted by unknown vectors. Flaviviruses present a significant threat to global health and infect up to 400 million of people annually. As the climate continues to change throughout the world, these viruses have become prominent infections, with increasing number of infections being detected beyond tropical borders. These include dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Several highly conserved epitopes of flaviviruses had been identified and reported to interact with antibodies, which lead to cross-reactivity results. The major interest of this review paper is mainly focused on the serological cross-reactivity between DENV serotypes, ZIKV, WNV, and JEV. Direct and molecular techniques are required in the diagnosis of Flavivirus-associated human disease. In this review, the serological assays such as neutralization tests, enzyme-linked immunosorbent assay, hemagglutination-inhibition test, Western blot test, and immunofluorescence test will be discussed. Serological assays that have been developed are able to detect different immunoglobulin isotypes (IgM, IgG, and IgA); however, it is challenging when interpreting the serological results due to the broad antigenic cross-reactivity of antibodies to these viruses. However, the neutralization tests are still considered as the gold standard to differentiate these flaviviruses.
Collapse
Affiliation(s)
- Kai Rol Chan
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Shamala Devi Sekaran, ; Chandramathi Samudi Raju,
| | - Hock Chai Yam
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Manikam Rishya
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
- *Correspondence: Shamala Devi Sekaran, ; Chandramathi Samudi Raju,
| |
Collapse
|
13
|
Dong H, Liu P, Bai M, Wang K, Feng R, Zhu D, Sun Y, Mu S, Li H, Harmsen M, Sun S, Wang X, Guo H. Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies. Protein Cell 2022; 13:446-453. [PMID: 33599962 PMCID: PMC9095805 DOI: 10.1007/s13238-021-00828-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hu Dong
- State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Pan Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manyuan Bai
- State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Kang Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Feng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dandan Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suyu Mu
- State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haozhou Li
- State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Michiel Harmsen
- Division Virology, Wageningen Bioveterinary Research, P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
14
|
Replication is the key barrier during the dual-host adaptation of mosquito-borne flaviviruses. Proc Natl Acad Sci U S A 2022; 119:e2110491119. [PMID: 35294288 PMCID: PMC8944775 DOI: 10.1073/pnas.2110491119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most viruses have a relatively narrow host range. In contrast, vector-borne flaviviruses, such as dengue virus and Zika virus, maintain their transmission cycle between arthropods and vertebrates, belonging to different phyla. How do these viruses adapt to the distinct cellular environments of two phyla? By comparing the single-host insect--specific flavivirus and dual-host Zika virus, we identified three key molecular factors that determine MBF host tropism. This study will greatly increase the understanding of entry, replication, and cross-species evolution of mosquito-borne flaviviruses. Mosquito-borne flaviviruses (MBFs) adapt to a dual-host transmission circle between mosquitoes and vertebrates. Dual-host affiliated insect-specific flaviviruses (dISFs), discovered from mosquitoes, are phylogenetically similar to MBFs but do not infect vertebrates. Thus, dISF–MBF chimeras could be an ideal model to study the dual-host adaptation of MBFs. Using the pseudoinfectious reporter virus particle and reverse genetics systems, we found dISFs entered vertebrate cells as efficiently as the MBFs but failed to initiate replication. Exchange of the untranslational regions (UTRs) of Donggang virus (DONV), a dISF, with those from Zika virus (ZIKV) rescued DONV replication in vertebrate cells, and critical secondary RNA structures were further mapped. Essential UTR-binding host factors were screened for ZIKV replication in vertebrate cells, displaying different binding patterns. Therefore, our data demonstrate a post-entry cross-species transmission mechanism of MBFs, while UTR-host interaction is critical for dual-host adaptation.
Collapse
|
15
|
Antiviral drug research for Japanese encephalitis: an updated review. Pharmacol Rep 2022; 74:273-296. [PMID: 35182390 PMCID: PMC8964565 DOI: 10.1007/s43440-022-00355-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV) is one of Asia's most common viral encephalitis. JEV is a flavivirus, common in rural and sub-urban regions of Asian countries. Although only 1% of JEV-infected individuals develop JE, there is a 20-30% chance of death among these individuals and possible neurological sequelae post-infection. No licensed anti-JE drugs are currently available, despite extensive efforts to develop them. Literature search was performed using databases such as PubMed Central, Google Scholar, Wiley Online Library, etc. using keywords such as Japanese encephalitis virus, antiviral drugs, antiviral drug screening, antiviral drug targets, etc. From around 230 papers/abstracts and research reviews retrieved and reviewed for this study, approximately 180 most relevant and important ones have been cited. Different approaches in drug testing and various antiviral drug targets explored so far have been thoroughly searched from the literature and compiled, besides addressing the future perspectives of the antiviral drug development strategies. Although the development of effective anti-JE drugs is an urgent issue, only supportive care is currently available. Recent advancements in understanding the biology of infection and new drug targets have been promising improvements. Despite hindrances such as the unavailability of a proper drug delivery system or a treatment regimen irrespective of the stage of infection, several promising anti-JE candidate molecules are in different phases of clinical trials. Nonetheless, efficient therapy against JEV is expected to be achieved with drug combinations and a highly targeted drug delivery system soon.
Collapse
|
16
|
Novel reverse genetics of genotype I and III Japanese encephalitis viruses assembled through transformation associated recombination in yeast: The reporter viruses expressing a green fluorescent protein for the antiviral screening assay. Antiviral Res 2022; 197:105233. [DOI: 10.1016/j.antiviral.2021.105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/24/2022]
|
17
|
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med 2021; 81:100994. [PMID: 34274157 DOI: 10.1016/j.mam.2021.100994] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus, spread by the bite of carrier Culex mosquitoes. The subsequent disease caused is Japanese encephalitis (JE), which is the leading global cause of virus-induced encephalitis. The disease is predominant in the entire Asia-Pacific region with the potential of global spread. JEV is highly neuroinvasive with symptoms ranging from mild fever to severe encephalitis and death. One-third of JE infections are fatal, and half of the survivors develop permanent neurological sequelae. Disease prognosis is determined by a series of complex and intertwined signaling events dictated both by the virus and the host. All flaviviruses, including JEV replicate in close association with ER derived membranes by channelizing the protein and lipid components of the ER. This leads to activation of acute stress responses in the infected cell-oxidative stress, ER stress, and autophagy. The host innate immune and inflammatory responses also enter the fray, the components of which are inextricably linked to the cellular stress responses. These are especially crucial in the periphery for dendritic cell maturation and establishment of adaptive immunity. The pathogenesis of JEV is a combination of direct virus induced neuronal cell death and an uncontrolled neuroinflammatory response. Here we provide a comprehensive review of the JEV life cycle and how the cellular stress responses dictate the pathobiology and resulting immune response. We also deliberate on how modulation of these stress pathways could be a potential strategy to develop therapeutic interventions, and define the persisting challenges.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
18
|
Hardy JM, Newton ND, Modhiran N, Scott CAP, Venugopal H, Vet LJ, Young PR, Hall RA, Hobson-Peters J, Coulibaly F, Watterson D. A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nat Commun 2021; 12:3266. [PMID: 34075032 PMCID: PMC8169900 DOI: 10.1038/s41467-021-22773-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 Å, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology. Understanding virus assembly could identify potential drug targets. Here the authors use a safe and efficient method to solve pathogenic flavivirus structures, revealing two lipid-like ligands within highly conserved pockets of the stem region of envelope protein that are important for virus maturation.
Collapse
Affiliation(s)
- Joshua M Hardy
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fasséli Coulibaly
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
Yao H, Sun Y, Deng YQ, Wang N, Tan Y, Zhang NN, Li XF, Kong C, Xu YP, Chen Q, Cao TS, Zhao H, Yan X, Cao L, Lv Z, Zhu D, Feng R, Wu N, Zhang W, Hu Y, Chen K, Zhang RR, Lv Q, Sun S, Zhou Y, Yan R, Yang G, Sun X, Liu C, Lu X, Cheng L, Qiu H, Huang XY, Weng T, Shi D, Jiang W, Shao J, Wang L, Zhang J, Jiang T, Lang G, Qin CF, Li L, Wang X. Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection. Cell Res 2021; 31:25-36. [PMID: 33262452 PMCID: PMC7705443 DOI: 10.1038/s41422-020-00444-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Structural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model. Cryo-EM studies dissected the nature of the P17 epitope, which is SARS-CoV-2 specific and distinctly different from that of H014. High-resolution structure of the SARS-CoV-2 spike in complex with H014 and P17, together with functional investigations revealed that in a two-antibody cocktail, synergistic neutralization was achieved by S1 shielding and conformational locking, thereby blocking receptor attachment and viral membrane fusion, conferring high potency as well as robustness against viral mutation escape. Furthermore, cluster analysis identified a hypothetical 3rd antibody partner for further reinforcing the cocktail as pan-SARS-CoVs therapeutics.
Collapse
Affiliation(s)
- Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases/National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Nan Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongcong Tan
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Na-Na Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Chao Kong
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Yan-Peng Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Tian-Shu Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xintian Yan
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Lei Cao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhe Lv
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dandan Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Feng
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases/National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Wenhai Zhang
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Yuhao Hu
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Yunhua Zhou
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Run Yan
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xinglu Sun
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Chanjuan Liu
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases/National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases/National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Hongying Qiu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Tianhao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases/National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases/National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Weidong Jiang
- Shanghai Henlius Biotech, Inc, Shanghai, 200233, China
| | - Junbin Shao
- Shanghai ZJ Bio-Tech Co., Ltd., Shanghai, 201114, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Zhang
- Shanghai ZJ Bio-Tech Co., Ltd., Shanghai, 201114, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Guojun Lang
- Sanyou Biopharmaceuticals (Shanghai) Co., Ltd., Shanghai, 201114, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases/National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong, 510200, China.
| |
Collapse
|
20
|
Zhao H, Xu L, Bombardi R, Nargi R, Deng Z, Errico JM, Nelson CA, Dowd KA, Pierson TC, Crowe JE, Diamond MS, Fremont DH. Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge. J Exp Med 2020; 217:jem.20191792. [PMID: 31757867 PMCID: PMC7041715 DOI: 10.1084/jem.20191792] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Evaluation of the human antibody response to Zika virus has identified common germline-derived mAbs capable of cross flavivirus neutralization. Zhao et al. provide a detailed mechanistic understanding of how flavivirus infections are prevented in a strain-specific manner by a representative mAb. We previously generated a panel of human monoclonal antibodies (mAbs) against Zika virus (ZIKV) and identified one, ZIKV-116, that shares germline usage with mAbs identified in multiple donors. Here we show that ZIKV-116 interferes with ZIKV infection at a post-cellular attachment step by blocking viral fusion with host membranes. ZIKV-116 recognizes the lateral ridge of envelope protein domain III, with one critical residue varying between the Asian and African strains responsible for differential binding affinity and neutralization potency (E393D). ZIKV-116 also binds to and cross-neutralizes some dengue virus serotype 1 (DENV1) strains, with genotype-dependent inhibition explained by variation in a domain II residue (R204K) that potentially modulates exposure of the distally located, partially cryptic epitope. The V-J reverted germline configuration of ZIKV-116 preferentially binds to and neutralizes an Asian ZIKV strain, suggesting that this epitope may optimally induce related B cell clonotypes. Overall, these studies provide a structural and molecular mechanism for a cross-reactive mAb that uniquely neutralizes ZIKV and DENV1.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Lily Xu
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel Nargi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Zengqin Deng
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Christopher A Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Kimberly A Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael S Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO.,Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO.,Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
21
|
Wang K, Zhu L, Sun Y, Li M, Zhao X, Cui L, Zhang L, Gao GF, Zhai W, Zhu F, Rao Z, Wang X. Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nat Commun 2020; 11:4421. [PMID: 32887891 PMCID: PMC7474057 DOI: 10.1038/s41467-020-18251-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/12/2020] [Indexed: 01/27/2023] Open
Abstract
Receptor usage that determines cell tropism and drives viral classification closely correlates with the virus structure. Enterovirus B (EV-B) consists of several subgroups according to receptor usage, among which echovirus 30 (E30), a leading causative agent for human aseptic meningitis, utilizes FcRn as an uncoating receptor. However, receptors for many EVs remain unknown. Here we analyzed the atomic structures of E30 mature virion, empty- and A-particles, which reveals serotype-specific epitopes and striking conformational differences between the subgroups within EV-Bs. Of these, the VP1 BC loop markedly distinguishes E30 from other EV-Bs, indicative of a role as a structural marker for EV-B. By obtaining cryo-electron microscopy structures of E30 in complex with its receptor FcRn and CD55 and comparing its homologs, we deciphered the underlying molecular basis for receptor recognition. Together with experimentally derived viral receptor identifications, we developed a structure-based in silico algorithm to inform a rational prediction for EV receptor usage. Echovirus 30 (E30) belongs to the Enterovirus-B group and causes aseptic meningitis in humans. Here, the authors present the cryo-EM structures of the E30 E-particle, A-particle and the mature virion, as well as structures of E30 in complex with its receptor FcRn and CD55, and furthermore they describe a structure-based algorithm that allows the prediction of EV receptor usage.
Collapse
Affiliation(s)
- Kang Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minhao Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lunbiao Cui
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Li Zhang
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fengcai Zhu
- NHC Key Laboratories of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Zihe Rao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy and Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
22
|
Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nat Commun 2020; 11:4419. [PMID: 32887892 PMCID: PMC7474084 DOI: 10.1038/s41467-020-18250-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/12/2020] [Indexed: 11/23/2022] Open
Abstract
Echovirus 30 (E30), a serotype of Enterovirus B (EV-B), recently emerged as a major causative agent of aseptic meningitis worldwide. E30 is particularly devastating in the neonatal population and currently no vaccine or antiviral therapy is available. Here we characterize two highly potent E30-specific monoclonal antibodies, 6C5 and 4B10, which efficiently block binding of the virus to its attachment receptor CD55 and uncoating receptor FcRn. Combinations of 6C5 and 4B10 augment the sum of their individual anti-viral activities. High-resolution structures of E30-6C5-Fab and E30-4B10-Fab define the location and nature of epitopes targeted by the antibodies. 6C5 and 4B10 engage the capsid loci at the north rim of the canyon and in-canyon, respectively. Notably, these regions exhibit antigenic variability across EV-Bs, highlighting challenges in development of broad-spectrum antibodies. Our structures of these neutralizing antibodies of E30 are instructive for development of vaccines and therapeutics against EV-B infections. So far no vaccine or antiviral therapy is available for Echovirus 30 (E30) that causes aseptic meningitis. Here, the authors generate and characterise two E30-specific monoclonal antibodies that block binding of the virus to its attachment receptor CD55 and uncoating receptor FcRn, and determine the cryo-EM structures of E30 with the bound neutralizing antibodies.
Collapse
|
23
|
Kölsch A, Radon C, Golub M, Baumert A, Bürger J, Mielke T, Lisdat F, Feoktystov A, Pieper J, Zouni A, Wendler P. Current limits of structural biology: The transient interaction between cytochrome c 6 and photosystem I. Curr Res Struct Biol 2020; 2:171-179. [PMID: 34235477 PMCID: PMC8244401 DOI: 10.1016/j.crstbi.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Trimeric photosystem I from the cyanobacterium Thermosynechococcus elongatus (TePSI) is an intrinsic membrane protein, which converts solar energy into electrical energy by oxidizing the soluble redox mediator cytochrome c 6 (Cyt c 6 ) and reducing ferredoxin. Here, we use cryo-electron microscopy and small angle neutron scattering (SANS) to characterize the transient binding of Cyt c 6 to TePSI. The structure of TePSI cross-linked to Cyt c 6 was solved at a resolution of 2.9 Å and shows additional cofactors as well as side chain density for 84% of the peptide chain of subunit PsaK, revealing a hydrophobic, membrane intrinsic loop that enables binding of associated proteins. Due to the poor binding specificity, Cyt c 6 could not be localized with certainty in our cryo-EM analysis. SANS measurements confirm that Cyt c 6 does not bind to TePSI at protein concentrations comparable to those for cross-linking. However, SANS data indicate a complex formation between TePSI and the non-native mitochondrial cytochrome from horse heart (Cyt c HH ). Our study pinpoints the difficulty of identifying very small binding partners (less than 5% of the overall size) in EM structures when binding affinities are poor. We relate our results to well resolved co-structures with known binding affinities and recommend confirmatory methods for complexes with K M values higher than 20 μM.
Collapse
Affiliation(s)
- A. Kölsch
- Department of Biology, Humboldt–Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - C. Radon
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - M. Golub
- Institute of Physics, University of Tartu, Wilhelm Ostwaldi 1, 50411, Tartu, Estonia
| | - A. Baumert
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - J. Bürger
- Max-Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
- Charité, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117, Berlin, Germany
| | - T. Mielke
- Max-Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| | - F. Lisdat
- Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745, Wildau, Germany
| | - A. Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstr. 1, 85748, Garching, Germany
| | - J. Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwaldi 1, 50411, Tartu, Estonia
| | - A. Zouni
- Department of Biology, Humboldt–Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - P. Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
24
|
Mapping the diverse structural landscape of the flavivirus antibody repertoire. Curr Opin Virol 2020; 45:51-64. [PMID: 32801077 DOI: 10.1016/j.coviro.2020.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Flaviviruses are emerging arthropod-borne RNA viruses, causing a broad spectrum of life-threatening disease symptoms such as encephalitis and hemorrhagic fever. Successful vaccines exist against yellow fever virus, Japanese encephalitis virus and tick-borne encephalitis virus. However, vaccine development against other flaviviruses like dengue virus is not straightforward. This is partly because of the high sequence conservation and immunological cross-reactivity among flavivirus envelope glycoproteins leading to antibody mediated enhancement of disease. A comprehensive analyses of the structural landscape of humoral immune response against flaviviruses is crucial for antigen design. Here, we compare the available structural data of several flavivirus antibody complexes with a major focus on Zika virus and dengue virus and discuss the mapped epitopes, the stoichiometry of antibody binding and mechanisms of neutralization.
Collapse
|
25
|
Qi Y, Han L, Qi Y, Jin X, Zhang B, Niu J, Zhong J, Xu Y. Anti-flavivirus activity of polyoxometalate. Antiviral Res 2020; 179:104813. [PMID: 32376449 DOI: 10.1016/j.antiviral.2020.104813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Viruses in the Flaviviridae family such as Zika virus (ZIKV), dengue virus (DENV), and Japanese encephalitis virus (JEV) are major public health concerns. The development of antiviral agents against these viruses is urgently needed. We have previously discovered that the Keggin structured polyoxometalate POM-12 has potent inhibitory activity against hepatitis C virus, another member of the Flaviviridae family. In this study, we tested its antiviral activity of DENV, JEV and ZIKV, and found that POM-12 dramatically inhibited their infection with IC50 value of 1.16 μM, 1.9 μM and 0.64 μM, respectively. Mechanistic studies indicated that POM-12 directly disrupted the integrity of these virions. Moreover, POM-12 also targeted the post-entry steps of viral replication of JEV, but having no similar activities on ZIKV and DENV. The differential actions of POM-12 on these viruses suggest that surface topology and charge of virion may have influence on its drug effect, and thus POM-12 may be modified to more efficiently inhibit these and other similar viruses.
Collapse
Affiliation(s)
- Yue Qi
- Department of Hepatology, First Hospital, Jilin University, Changchun, Jilin, 130021, China.
| | - Lin Han
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; Shanghai Tech University, Shanghai, 201210, China
| | - Yanfei Qi
- Department of Hepatology, First Hospital, Jilin University, Changchun, Jilin, 130021, China; School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; Shanghai Tech University, Shanghai, 201210, China
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
26
|
Choi JW, Eom HJ, Kim HY. Non-structural protein 1 from Japanese encephalitis virus expressed in E. coli retains its molecular weight and immunogenicity. Protein Expr Purif 2020; 169:105548. [DOI: 10.1016/j.pep.2019.105548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
|
27
|
Wang L, Wang R, Wang L, Ben H, Yu L, Gao F, Shi X, Yin C, Zhang F, Xiang Y, Zhang L. Structural Basis for Neutralization and Protection by a Zika Virus-Specific Human Antibody. Cell Rep 2020; 26:3360-3368.e5. [PMID: 30893607 DOI: 10.1016/j.celrep.2019.02.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
We previously reported a human monoclonal antibody, ZK2B10, capable of protection against Zika virus (ZIKV) infection and microcephaly in developing mouse embryos. Here, we report the structural features and mechanism of action of ZK2B10. The crystal structure at a resolution of 2.32 Å revealed that the epitope is located on the lateral ridge of DIII of the envelope glycoprotein. Cryo-EM structure with mature ZIKV showed that the antibody binds to DIIIs around the icosahedral 2-fold, 3-fold, and 5-fold axes, a distinct feature compared to those reported for DIII-specific antibodies. The binding of ZK2B10 to ZIKV has no detectable effect on viral attachment to target cells or on conformational changes of the E glycoprotein in the acidic environment, suggesting that ZK2B10 functions at steps between the formation of the fusion intermediate and membrane fusion. These results provide structural and mechanistic insights into how ZK2B10 mediates protection against ZIKV infection.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruoke Wang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haijing Ben
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chibiao Yin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Center for Global Health and Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Young CL, Lyons AC, Hsu WW, Vanlandingham DL, Park SL, Bilyeu AN, Ayers VB, Hettenbach SM, Zelenka AM, Cool KR, Peterson GJ, Higgs S, Huang YJS. Protection of swine by potent neutralizing anti-Japanese encephalitis virus monoclonal antibodies derived from vaccination. Antiviral Res 2019; 174:104675. [PMID: 31825852 DOI: 10.1016/j.antiviral.2019.104675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus endemic in the Asia Pacific region. Despite use of several highly effective vaccines, it is estimated that up to 44,000 new cases of Japanese encephalitis (JE) occur every year including 14,000 deaths and 24,000 survivors with permanent sequelae. Humoral immunity induced by vaccination is critical for effective protection. Potently neutralizing antibodies reactive with the JEV envelope (E) protein are important since protective immune responses induced by both live-attenuated and inactivated JE vaccines target the E protein. Our understanding of how vaccine-induced humoral immunity protects vaccinees from morbidity and mortality is, however, limited and largely obtained from in vitro studies. With the exception of neurovirulence mouse models, very few platforms are available for evaluating the protective efficacy of neutralizing antibodies against JEV in vivo. Swine are a major amplifying host in the natural JEV transmission cycle and develop multiple pathological outcomes similar to humans infected with JEV. In this study, prophylactic passive immunization was performed in a miniature swine model, using two vaccination-induced monoclonal antibodies (mAb), JEV-31 and JEV-169. These were selected as representatives for antibodies reactive with the major antigenic structures in the E protein of JEV and related flaviviruses. JEV-31 recognizes the lateral ridge of E protein domain III (EDIII) whilst JEV-169 has a broad footprint of binding involving residues throughout domains I (EDI) and II (EDII) of the E protein. Detection of neutralizing antibodies in the serum of immunized animals mimics the presence of neutralizing antibodies in vaccinated individuals. Passive immunization with both mAbs significantly reduced the severity of diseases that resemble the symptoms of human JE including fever, viremia, viral shedding, systemic infection, and neuroinvasion. In contrast to the uniformed decrease of viral loads in lymphoid and central nervous systems, distinct kinetics in the onset of fever and viremia between animals receiving JEV-31 and JEV-169 suggest potential differences in immune protection mechanisms between anti-EDI and anti-EDIII neutralizing antibodies elicited by vaccination. Our data demonstrate the feasibility of using swine models in characterizing the protective humoral immunity against JEV and increase our understanding of how clonal populations of anti-E mAbs derived from JE vaccination protect against infection in vivo.
Collapse
Affiliation(s)
- Christian L Young
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA; National Bio- and Agro-Defense Facility Scientist Training Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, USA
| | - Amy C Lyons
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Wei-Wen Hsu
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - So Lee Park
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Ashley N Bilyeu
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Victoria B Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA; National Bio- and Agro-Defense Facility Scientist Training Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, USA
| | - Susan M Hettenbach
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Ashley M Zelenka
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Konner R Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Gregory J Peterson
- University Research Compliance Office, Kansas State University, Manhattan, KS, USA
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
29
|
Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res 2019; 274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
|
30
|
Review of Emerging Japanese Encephalitis Virus: New Aspects and Concepts about Entry into the Brain and Inter-Cellular Spreading. Pathogens 2019; 8:pathogens8030111. [PMID: 31357540 PMCID: PMC6789543 DOI: 10.3390/pathogens8030111] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Japanese encephalitis virus (JEV) is an emerging flavivirus of the Asia-Pacific region. More than two billion people live in endemic or epidemic areas and are at risk of infection. Recently, the first autochthonous human case was recorded in Africa, and infected birds have been found in Europe. JEV may spread even further to other continents. The first section of this review covers established and new information about the epidemiology of JEV. The subsequent sections focus on the impact of JEV on humans, including the natural course and immunity. Furthermore, new concepts are discussed about JEV’s entry into the brain. Finally, interactions of JEV and host cells are covered, as well as how JEV may spread in the body through latently infected immune cells and cell-to-cell transmission of virions or via other infectious material, including JEV genomic RNA.
Collapse
|
31
|
Ye C, Bian P, Zhang J, Xiao H, Zhang L, Ye W, Dong Y, Zhou Y, Jia Z, Lei Y. Structure-based discovery of antiviral inhibitors targeting the E dimer interface of Japanese encephalitis virus. Biochem Biophys Res Commun 2019; 515:366-371. [PMID: 31155294 DOI: 10.1016/j.bbrc.2019.05.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
Flaviviruses are emerging arthropod-borne viruses posing a great threat to human beings worldwide. The E dimer configuration of the flavivirus was prominent during viral assembly, maturation and entry. Neutralization antibodies targeting E dimer played the important role in controlling the flavivirus infection. Previously, the ideal drug target of small molecular inhibitors of JEV was viral proteases and polymerases. The crystal structure of JEV E protein showed a conserved pocket in it is important at membrane fusion step. Recently, a set of anti-virus drugs has been found by virtual screening. Here, we show that the fusion-loop pocket of JEV E protein was a conservative region and an ideal drug target. ChemDiv-3 from virtual screening as the lead compound was found to show a relatively modest inhibition effect for JEV in vitro and in vivo test and could interfere with the formation of JEV sE dimer. ChemDiv-3 interacts with the amino acid residues ASN 313, PRO 314, ALA 315, and VAL 323 in E protein via hydrogen bonds for occupation of the fusion-loop pocket. The key binding sites LYS 312, ALA 513 and THR 317 forming the fusion-loop pocket are the same and other auxiliary sites are similar among the flavivirus. Taken together, the fusion-loop pocket of the flavivirus could be one promising target for drug discovery.
Collapse
Affiliation(s)
- Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peiyu Bian
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Han Xiao
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Li Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Ye
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Yangchao Dong
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhansheng Jia
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Yingfeng Lei
- Department of Microbiology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
32
|
Cao L, Liu P, Yang P, Gao Q, Li H, Sun Y, Zhu L, Lin J, Su D, Rao Z, Wang X. Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors. PLoS Biol 2019; 17:e3000229. [PMID: 31039149 PMCID: PMC6493668 DOI: 10.1371/journal.pbio.3000229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatitis A virus (HAV), an enigmatic and ancient pathogen, is a major causative
agent of acute viral hepatitis worldwide. Although there are effective vaccines,
antivirals against HAV infection are still required, especially during fulminant
hepatitis outbreaks. A more in-depth understanding of the antigenic
characteristics of HAV and the mechanisms of neutralization could aid in the
development of rationally designed antiviral drugs targeting HAV. In this paper,
4 new antibodies—F4, F6, F7, and F9—are reported that potently neutralize HAV at
50% neutralizing concentration values (neut50) ranging from 0.1 nM to
0.85 nM. High-resolution cryo-electron microscopy (cryo-EM) structures of HAV
bound to F4, F6, F7, and F9, together with results of our previous studies on
R10 fragment of antigen binding (Fab)-HAV complex, shed light on the locations
and nature of the epitopes recognized by the 5 neutralizing monoclonal
antibodies (NAbs). All the epitopes locate within the same patch and are highly
conserved. The key structure-activity correlates based on the antigenic sites
have been established. Based on the structural data of the single conserved
antigenic site and key structure-activity correlates, one promising drug
candidate named golvatinib was identified by in silico docking studies.
Cell-based antiviral assays confirmed that golvatinib is capable of blocking HAV
infection effectively with a 50% inhibitory concentration (IC50) of
approximately 1 μM. These results suggest that the single conserved antigenic
site from complete HAV capsid is a good antiviral target and that golvatinib
could function as a lead compound for anti-HAV drug development. Structures of hepatitis A virus in complex with five neutralizing antibodies
reveal a single conserved antigenic site and pinpoint key structure-activity
correlates, allowing in silico screening to identify a potent candidate
inhibitor drug, golvatinib. Hepatitis A virus (HAV) is a unique, hepatotropic human picornavirus that infects
approximately 1.5 million people annually and continues to cause mortality
despite a successful vaccine. There are no licensed therapeutic drugs to date.
Better knowledge of HAV antigenic features and neutralizing mechanisms will
facilitate the development of HAV-targeting antiviral drugs. In this study, we
report 4 potent HAV-specific neutralizing monoclonal antibodies (NAbs), together
with our previous reported R10, that efficiently inhibit HAV infection by
blocking attachment to the host cell. All 5 epitopes are located within the same
patch and are highly conserved across 6 genotypes of human HAV, which suggests a
single antigenic site for HAV, highlighting a prime target for structure-based
drug design. Analysis of complexes with the 5 NAbs with varying neutralizing
activities pinpointed key structure-activity correlates. By using a robust in
silico docking method, one promising inhibitor named golvatinib was successfully
identified from the DrugBank Database. In vitro assays confirmed its ability to
block viral infection and revealed its neutralizing mechanism. Our approach
could be useful in the design of effective drugs for picornavirus
infections.
Collapse
Affiliation(s)
- Lei Cao
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan
University, Collaborative Innovation Center for Biotherapy, Chengdu,
China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin, China
| | - Pan Yang
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd., Beijing, China
| | - Hong Li
- Tianjin International Biomedical Joint Research Institute, Tianjin,
China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
| | - Jianping Lin
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin, China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan
University, Collaborative Innovation Center for Biotherapy, Chengdu,
China
- * E-mail:
(XW); (ZR); (DS)
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
- Tianjin International Biomedical Joint Research Institute, Tianjin,
China
- Laboratory of Structural Biology, School of Medicine, Tsinghua
University, Beijing, China
- * E-mail:
(XW); (ZR); (DS)
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Centre for Excellence
in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese
Academy of Sciences, Beijing, China
- * E-mail:
(XW); (ZR); (DS)
| |
Collapse
|
33
|
Chen Z, Ye F, Lin S, Yang F, Cheng Y, Cao Y, Chen Z, Lu G. Crystal structure of Usutu virus envelope protein in the pre-fusion state. Virol J 2018; 15:183. [PMID: 30477514 PMCID: PMC6260896 DOI: 10.1186/s12985-018-1092-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Usutu virus (USUV) is a mosquito-born flavivirus that can infect multiple avian and mammalian species. The viral surface envelope (E) protein functions to initiate the viral infection by recognizing cellular receptors and mediating the subsequent membrane fusion, and is therefore a key virulence factor involved in the pathogenesis of USUV. The structural features of USUV-E, however, remains un-investigated thus far. FINDINGS Using the crystallographic method, we determined the structure of USUV-E in the pre-fusion state at 2.0 angstrom. As expected, the overall fold of USUV-E, with three β-barrel domains (DI, DII, and DIII), resembles those of other flaviviral E proteins. In comparison to other pre-fusion E structures, however, USUV-E exhibits an apparently enlarged inter-domain angle between DI and DII, leading to a more extended conformation. Using our structure and other reported pre-fusion E structures, the DI-DII domain-angle difference was analyzed in a pairwise manner. The result shows a much higher degree of variations for USUV-E, indicating the potential for remarkable DI-DII domain angle plasticity among flaviviruses. CONCLUSION We report the crystal structure of USUV-E and show that its pre-fusion structure has an enlarged DI-DII domain-angle which has not been observed in other reported flaviviral E-structures.
Collapse
Affiliation(s)
- Zimin Chen
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Fei Ye
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Sheng Lin
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Fanli Yang
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Yanwei Cheng
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Yu Cao
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,0000 0001 0807 1581grid.13291.38Disaster Medicine Center, Sichuan University, Chengdu, 610041 Sichuan China
| | - Zhujun Chen
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| | - Guangwen Lu
- 0000 0004 1770 1022grid.412901.fWest China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| |
Collapse
|
34
|
Abstract
Arthropod-borne flaviviruses are important human pathogens that cause a diverse range of clinical conditions, including severe hemorrhagic syndromes, neurological complications and congenital malformations. Consequently, there is an urgent need to develop safe and effective vaccines, a process requiring better understanding of the immunological mechanisms involved during infection. Decades of research suggest a paradoxical role of the immune response against flaviviruses: although the immune response is crucial for the control, clearance and prevention of infection, poor clinical outcomes are commonly associated with virus-specific immunity and immunopathogenesis. This relationship is further complicated by the high homology among viruses and the implication of cross-reactive immune responses in protection and pathogenesis. This Review examines the dual role of the adaptive immune response against flaviviruses, particularly emphasizing the most recent findings regarding cross-reactive T cell and antibody responses, and the effects that these concepts have on vaccine-development endeavors.
Collapse
|
35
|
Abendroth J, Sankaran B, Myler PJ, Lorimer DD, Edwards TE. Ab initio structure solution of a proteolytic fragment using ARCIMBOLDO. Acta Crystallogr F Struct Biol Commun 2018; 74:530-535. [PMID: 30198884 PMCID: PMC6130419 DOI: 10.1107/s2053230x18010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 11/10/2022] Open
Abstract
Crystal structure determination requires solving the phase problem. This can be accomplished using ab initio direct methods for small molecules and macromolecules at resolutions higher than 1.2 Å, whereas macromolecular structure determination at lower resolution requires either molecular replacement using a homologous structure or experimental phases using a derivative such as covalent labeling (for example selenomethionine or mercury derivatization) or heavy-atom soaking (for example iodide ions). Here, a case is presented in which crystals were obtained from a 30.8 kDa protein sample and yielded a 1.6 Å resolution data set with a unit cell that could accommodate approximately 8 kDa of protein. Thus, it was unclear what had been crystallized. Molecular replacement with pieces of homologous proteins and attempts at iodide ion soaking failed to yield a solution. The crystals could not be reproduced. Sequence-independent molecular replacement using the structures available in the Protein Data Bank also failed to yield a solution. Ultimately, ab initio structure solution proved successful using the program ARCIMBOLDO, which identified two α-helical elements and yielded interpretable maps. The structure was the C-terminal dimerization domain of the intended target from Mycobacterium smegmatis. This structure is presented as a user-friendly test case in which an unknown protein fragment could be determined using ARCIMBOLDO.
Collapse
Affiliation(s)
- Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Donald D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Beryllium Discovery Corporation, Bainbridge Island, WA 98110, USA
| |
Collapse
|
36
|
Barzon L, Palù G. Recent developments in vaccines and biological therapies against Japanese encephalitis virus. Expert Opin Biol Ther 2018; 18:851-864. [DOI: 10.1080/14712598.2018.1499721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|