1
|
Groussman RD, Coesel SN, Durham BP, Schatz MJ, Armbrust EV. The North Pacific Eukaryotic Gene Catalog of metatranscriptome assemblies and annotations. Sci Data 2024; 11:1161. [PMID: 39438508 PMCID: PMC11496615 DOI: 10.1038/s41597-024-04005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Marine microbial eukaryotes (protists) perform essential metabolic functions in oceanic ecosystems. The diversity of protist functions remains poorly understood as few species have been isolated in laboratory settings. Metatranscriptomes provide an invaluable tool for exploring protist diversity and genetic capacities within their natural habitats. Here, we introduce the North Pacific Eukaryotic Gene Catalog, a compilation of metatranscriptome data derived from a total of 261 metatranscriptomes: 169 metatranscriptomes were derived from samples collected on three meridional surface transects along 158°W, each spanning ~20 degrees of latitude from the North Pacific Subtropical Gyre (NPSG) to the North Pacific Transition Zone (NPTZ); 92 metatranscriptomes were derived from two diel-resolved field studies, one in the NPSG at 157°W, 23°N, one in the NPTZ at 158°W, 41°N. The metatranscriptome sequences were de novo assembled into 175 assemblies and pooled into five datasets each containing between 22 M and 49 M contigs clustered at 99% protein identity. Assemblies were annotated by taxonomy and function, and enumerated by short read alignment. All data are available in the Zenodo repository, with underlying code available on github.
Collapse
Affiliation(s)
- R D Groussman
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - S N Coesel
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA.
| | - B P Durham
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - M J Schatz
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
2
|
Chen Y, Chu R, Ma K, Jiang L, Yang Q, Li Z, Hu M, Guo Q, Lu F, Wei Y, Zhang Y, Tong Y. Study of sulfoglycolysis in Enterococcus gilvus reveals a widespread bifurcated pathway for dihydroxypropanesulfonate degradation. iScience 2024; 27:111010. [PMID: 39429772 PMCID: PMC11489063 DOI: 10.1016/j.isci.2024.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Sulfoquinovose (SQ), the polar head group of sulfolipids essential for photosynthesis, is naturally abundant. Anaerobic Firmicutes degrade SQ through a transaldolase-dependent (sulfo-TAL) pathway, producing dihydroxypropanesulfonate (DHPS). Some bacteria extend this pathway by the sequential action of HpfG and HpfD converting DHPS to 3-hydroxypropanesulfonate (3-HPS) via 3-sulfopropionaldehyde (3-SPA). Here, we report a variant sulfo-TAL pathway in Enterococcus gilvus, involving additional enzymes, a NAD+-dependent 3-SPA dehydrogenase HpfX, and a 3-sulfopropionyl-CoA synthetase HpfYZ, which oxidize 3-SPA to 3-sulfopropionate (3-SP) coupled with ATP formation. E. gilvus grown on SQ or DHPS produced a mixture of 3-HPS and 3-SP, indicating the bifurcated pathway. Similar genes are found in various Firmicutes, including gut bacteria. Importantly, 3-SP, but not 3-HPS, can serve as a respiratory terminal electron acceptor for Bilophila wadsworthia, a common intestinal pathobiont, resulting in the production of toxic H2S. This research expands our understanding of sulfonate metabolism and reveals cross-feeding in the anaerobic microbiome.
Collapse
Affiliation(s)
- Yiwei Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoxing Chu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kailiang Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Li Jiang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiaoyu Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhi Li
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiuyi Guo
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore 138669, Singapore
| | - Yan Zhang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yang Tong
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Clifton BE, Alcolombri U, Uechi GI, Jackson CJ, Laurino P. The ultra-high affinity transport proteins of ubiquitous marine bacteria. Nature 2024; 634:721-728. [PMID: 39261732 PMCID: PMC11485210 DOI: 10.1038/s41586-024-07924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
SAR11 bacteria are the most abundant microorganisms in the surface ocean1 and have global biogeochemical importance2-4. To thrive in their competitive oligotrophic environment, these bacteria rely heavily on solute-binding proteins that facilitate uptake of specific substrates via membrane transporters5,6. The functions and properties of these transport proteins are key factors in the assimilation of dissolved organic matter and biogeochemical cycling of nutrients in the ocean, but they have remained largely inaccessible to experimental investigation. Here we performed genome-wide experimental characterization of all solute-binding proteins in a prototypical SAR11 bacterium, revealing specific functions and general trends in their properties that contribute to the success of SAR11 bacteria in oligotrophic environments. We found that the solute-binding proteins of SAR11 bacteria have extremely high binding affinity (dissociation constant >20 pM) and high binding specificity, revealing molecular mechanisms of oligotrophic adaptation. Our functional data have uncovered new carbon sources for SAR11 bacteria and enable accurate biogeographical analysis of SAR11 substrate uptake capabilities throughout the ocean. This study provides a comprehensive view of the substrate uptake capabilities of ubiquitous marine bacteria, providing a necessary foundation for understanding their contribution to assimilation of dissolved organic matter in marine ecosystems.
Collapse
Affiliation(s)
- Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gen-Ichiro Uechi
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
4
|
Nef C, Pierella Karlusich JJ, Bowler C. From nets to networks: tools for deciphering phytoplankton metabolic interactions within communities and their global significance. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230172. [PMID: 39034691 PMCID: PMC11293860 DOI: 10.1098/rstb.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
Our oceans are populated with a wide diversity of planktonic organisms that form complex dynamic communities at the base of marine trophic networks. Within such communities are phytoplankton, unicellular photosynthetic taxa that provide an estimated half of global primary production and support biogeochemical cycles, along with other essential ecosystem services. One of the major challenges for microbial ecologists has been to try to make sense of this complexity. While phytoplankton distributions can be well explained by abiotic factors such as temperature and nutrient availability, there is increasing evidence that their ecological roles are tightly linked to their metabolic interactions with other plankton members through complex mechanisms (e.g. competition and symbiosis). Therefore, unravelling phytoplankton metabolic interactions is the key for inferring their dependency on, or antagonism with, other taxa and better integrating them into the context of carbon and nutrient fluxes in marine trophic networks. In this review, we attempt to summarize the current knowledge brought by ecophysiology, organismal imaging, in silico predictions and co-occurrence networks using 'omics data, highlighting successful combinations of approaches that may be helpful for future investigations of phytoplankton metabolic interactions within their complex communities.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| | | | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| |
Collapse
|
5
|
West NJ, Landa M, Obernosterer I. Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean. Microbiologyopen 2024; 13:e1428. [PMID: 39119822 PMCID: PMC11310772 DOI: 10.1002/mbo3.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Nyree J. West
- CNRS FR3724, Observatoire Océanologique de Banyuls (OOB)Sorbonne UniversitéBanyuls sur merFrance
| | - Marine Landa
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| |
Collapse
|
6
|
An Z, Chen F, Hou L, Chen Q, Liu M, Zheng Y. Microplastics promote methane emission in estuarine and coastal wetlands. WATER RESEARCH 2024; 259:121853. [PMID: 38843628 DOI: 10.1016/j.watres.2024.121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
Increasing microplastic (MP) pollution poses significant threats to estuarine and coastal ecosystems. However, the effects of MPs on the emission of methane (CH4), a potent greenhouse gas, within these ecosystems and the underlying regulatory mechanisms have not been elucidated. Here, a combination of 13C stable isotope-based method and molecular techniques was applied to investigate how conventional petroleum-based MPs [polyethylene (PE) and polyvinyl chloride (PVC)] and biodegradable MPs [polylactic acid (PLA) and polyadipate/butylene terephthalate (PBAT)] regulate CH4 production and consumption and thus affect CH4 emission dynamics in estuarine and coastal wetlands. Results indicated that both conventional and biodegradable MPs enhanced the emission of CH4 (P < 0.05), with the promoting effect being more significant for biodegradable MPs. However, the mechanisms by which conventional and biodegradable MPs promote CH4 emissions were different. Specifically, conventional MPs stimulated the emission of CH4 by inhibiting the processes of CH4 consumption, but had no significant effect on CH4 production rate. Nevertheless, biodegradable MPs promoted CH4 emissions via accelerating the activities the methanogens while inhibiting the oxidation of CH4, thus resulting in a higher degree of promoting effect on CH4 emissions than conventional MPs. Consistently, quantitative PCR further revealed a significant increase in the abundance of methyl-coenzyme M reductase gene (mcrA) of methanogens under the exposure of biodegradable MPs (P < 0.05), but not conventional MPs. Furthermore, the relative abundance of most genes involved in CH4 oxidation exhibited varying degrees of reduction after exposure to all types of MPs, based on metagenomics data. This study reveals the effects of MPs on CH4 emissions in estuarine and coastal ecosystems and their underlying mechanisms, highlighting that the emerging biodegradable MPs exhibited a greater impact than conventional MPs on promoting CH4 emissions in these globally important ecosystems, thereby accelerating global climate change.
Collapse
Affiliation(s)
- Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment, Shanghai 200125, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Wu H, Gao T, Dini-Andreote F, Xiao N, Zhang L, Kimirei IA, Wang J. Biotic and abiotic factors interplay in structuring the dynamics of microbial co-occurrence patterns in tropical mountainsides. ENVIRONMENTAL RESEARCH 2024; 250:118517. [PMID: 38401680 DOI: 10.1016/j.envres.2024.118517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Ecological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence. We found that fungal and bacterial richness were more convergent at higher elevations, while their community structures became significantly more divergent. Inferred network complexity and stability significantly decreased with increasing elevation for fungi, while an opposite trend was observed for bacteria. Further quantitative analyses showed that network structures of bacteria and fungi were more divergent as elevation increased. This pattern was strongly associated with shifts in abiotic factors, such as mean annual temperatures, water PO43--P, and stream width. By constructing bipartite networks, we showed the fungal-bacterial network to be less redundant, more clustering, and unstable with increasing elevation. Abiotic factors (e.g., temperatures and stream width) and microbial community properties (i.e., structure and composition) significantly explained the dynamic changes in fungal-bacterial network properties. Taken together, this study provides evidence for the interplay of biotic and abiotic factors structuring potential microbial interactions in stream biofilms along a mountainside elevational gradient.
Collapse
Affiliation(s)
- Hao Wu
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Gao
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nengwen Xiao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ismael Aaron Kimirei
- Tanzania Fisheries Research Institute, Headquarter, Dar Es Salaam, P.O. Box 9750, Tanzania
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
8
|
Liu C, Ma K, Jiang L, Liu X, Tong Y, Yang S, Jin X, Wei Y, Zhang Y. Bacterial cysteate dissimilatory pathway involves a racemase and d-cysteate sulfo-lyase. J Biol Chem 2024; 300:107371. [PMID: 38750791 PMCID: PMC11193023 DOI: 10.1016/j.jbc.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
The sulfite-reducing bacterium Bilophila wadsworthia, a common human intestinal pathobiont, is unique in its ability to metabolize a wide variety of sulfonates to generate sulfite as a terminal electron acceptor (TEA). The resulting formation of H2S is implicated in inflammation and colon cancer. l-cysteate, an oxidation product of l-cysteine, is among the sulfonates metabolized by B. wadsworthia, although the enzymes involved remain unknown. Here we report a pathway for l-cysteate dissimilation in B. wadsworthia RZATAU, involving isomerization of l-cysteate to d-cysteate by a cysteate racemase (BwCuyB), followed by cleavage into pyruvate, ammonia and sulfite by a d-cysteate sulfo-lyase (BwCuyA). The strong selectivity of BwCuyA for d-cysteate over l-cysteate was rationalized by protein structural modeling. A homolog of BwCuyA in the marine bacterium Silicibacter pomeroyi (SpCuyA) was previously reported to be a l-cysteate sulfo-lyase, but our experiments confirm that SpCuyA too displays a strong selectivity for d-cysteate. Growth of B. wadsworthia with cysteate as the electron acceptor is accompanied by production of H2S and induction of BwCuyA. Close homologs of BwCuyA and BwCuyB are present in diverse bacteria, including many sulfate- and sulfite-reducing bacteria, suggesting their involvement in cysteate degradation in different biological environments.
Collapse
Affiliation(s)
- Chunxiu Liu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Kailiang Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Li Jiang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xumei Liu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yang Tong
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Sen Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xinghua Jin
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| | - Yan Zhang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
He C, Li G, Zou S, Zheng P, Song Q, Li G, Yu Q, Yu Y, Zhang Q, Zhang X, Shen Z, Gong J. Spatial and diel variations of bacterioplankton and pico-nanoeukaryote communities and potential biotic interactions during macroalgal blooms. MARINE POLLUTION BULLETIN 2024; 202:116409. [PMID: 38663343 DOI: 10.1016/j.marpolbul.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
We investigated spatial heterogeneity and diel variations in bacterioplankton and pico-nanoeukaryote communities, and potential biotic interactions at the extinction stage of the Ulva prolifera bloom in the Jiaozhou Bay, Yellow Sea. It was found that the presence of Ulva canopies significantly promoted the cell abundance of heterotrophic bacteria, raised evenness, and altered the community structure of bacterioplankton. A diel pattern was solely significant for pico-nanoeukaryote community structure. >50 % of variation in the heterotrophic bacterial abundance was accounted for by the ratio of Bacteroidota to Firmicutes, and dissolved organic nitrogen effectively explained the variations in cell abundances of phytoplankton populations. The factors representing biotic interactions frequently contributed substantially more than environmental factors in explaining the variations in diversity and community structure of both bacterioplankton and pico-nanoeukaryotes. There were higher proportions of eukaryotic pathogens compared to other marine systems, suggesting a higher ecological risk associated with the Ulva blooms.
Collapse
Affiliation(s)
- Cui He
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Guihao Li
- Zhuhai Doumen Agricultural Technology Extension, Zhuhai, Guangdong, China
| | - Songbao Zou
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Pengfei Zheng
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536007, China
| | - Qinqin Song
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536007, China
| | - Guanzhe Li
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Qin Yu
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yunjun Yu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoli Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhuo Shen
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jun Gong
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China.
| |
Collapse
|
10
|
Liu J, Wang J, Zhang M, Wang X, Guo P, Li Q, Ren J, Wei Y, Wu T, Chai B. Protists play important roles in the assembly and stability of denitrifying bacterial communities in copper-tailings drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170386. [PMID: 38280613 DOI: 10.1016/j.scitotenv.2024.170386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Unraveling the drivers controlling the assembly and stability of functional communities is a central issue in ecology. Despite extensive research and data, relatively little attention has been paid on the importance of biotic factors and, in particular, on the trophic interaction for explaining the assembly of microbial community. Here, we examined the diversity, assembly, and stability of nirS-, nirK-, and nosZ-type denitrifying bacterial communities in copper-tailings drainages of the Shibahe tailings reservoir in Zhongtiao Mountain, China's. We found that components of nirS-, nirK-, and nosZ-type denitrifying bacterial community diversity, such as taxon relative abundance, richness, and copy number, were strongly correlated with protist community composition and diversity. Assembly of the nirK-type denitrifying bacterial community was governed by dispersal limitation, whereas those of nirS- and nosZ-type communities were controlled by homogeneous selection. The relative importance of protist diversity in the assembly of nirK- and nosZ-type denitrifying bacterial communities was greater than that in nirS-type assembly. In addition, protists reduced the stability of the co-occurrence network of the nosZ-type denitrifying bacterial community. Compared with eukaryotic algae, protozoa had a greater impact on the stability of denitrifying bacterial community co-occurrence networks. Generally, protists affected the assembly and community stability of denitrifying bacteria in copper-tailings drainages. Our findings thus emphasize the importance of protists on affecting the assembly and community stability of denitrifying bacteria in copper-tailings drainages and may be useful for predicting changes in the ecological functions of microorganisms.
Collapse
Affiliation(s)
- Jinxian Liu
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China
| | - Jiayi Wang
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China
| | - Meiting Zhang
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China
| | - Xue Wang
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China
| | - Ping Guo
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China
| | - Qianru Li
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China
| | - Jiali Ren
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China
| | - Yuqi Wei
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China
| | - Tiehang Wu
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA
| | - Baofeng Chai
- Institute of Loess Plateau, Shanxi University, Shanxi Key Laboratory of Ecological Restoration for Loess Plateau, Taiyuan 030006, China.
| |
Collapse
|
11
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Liu L, Gao X, Dong C, Wang H, Chen X, Ma X, Liu S, Chen Q, Lin D, Jiao N, Tang K. Enantioselective transformation of phytoplankton-derived dihydroxypropanesulfonate by marine bacteria. THE ISME JOURNAL 2024; 18:wrae084. [PMID: 38709871 PMCID: PMC11131964 DOI: 10.1093/ismejo/wrae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Chirality, a fundamental property of matter, is often overlooked in the studies of marine organic matter cycles. Dihydroxypropanesulfonate (DHPS), a globally abundant organosulfur compound, serves as an ecologically important currency for nutrient and energy transfer from phytoplankton to bacteria in the ocean. However, the chirality of DHPS in nature and its transformation remain unclear. Here, we developed a novel approach using chiral phosphorus-reagent labeling to separate DHPS enantiomers. Our findings demonstrated that at least one enantiomer of DHPS is present in marine diatoms and coccolithophores, and that both enantiomers are widespread in marine environments. A novel chiral-selective DHPS catabolic pathway was identified in marine Roseobacteraceae strains, where HpsO and HpsP dehydrogenases at the gateway to DHPS catabolism act specifically on R-DHPS and S-DHPS, respectively. R-DHPS is also a substrate for the dehydrogenase HpsN. All three dehydrogenases generate stable hydrogen bonds between the chirality-center hydroxyls of DHPS and highly conserved residues, and HpsP also form coordinate-covalent bonds between the chirality-center hydroxyls and Zn2+, which determines the mechanistic basis of strict stereoselectivity. We further illustrated the role of enzymatic promiscuity in the evolution of DHPS metabolism in Roseobacteraceae and SAR11. This study provides the first evidence of chirality's involvement in phytoplankton-bacteria metabolic currencies, opening a new avenue for understanding the ocean organosulfur cycle.
Collapse
Affiliation(s)
- Le Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Xiang Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Huanyu Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Xiaofeng Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361001, China
| | - Xiaoyi Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Shujing Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China
| |
Collapse
|
13
|
Li W, Baliu-Rodriguez D, Premathilaka SH, Thenuwara SI, Kimbrel JA, Samo TJ, Ramon C, Kiledal EA, Rivera SR, Kharbush J, Isailovic D, Weber PK, Dick GJ, Mayali X. Microbiome processing of organic nitrogen input supports growth and cyanotoxin production of Microcystis aeruginosa cultures. THE ISME JOURNAL 2024; 18:wrae082. [PMID: 38718148 PMCID: PMC11126159 DOI: 10.1093/ismejo/wrae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Nutrient-induced blooms of the globally abundant freshwater toxic cyanobacterium Microcystis cause worldwide public and ecosystem health concerns. The response of Microcystis growth and toxin production to new and recycled nitrogen (N) inputs and the impact of heterotrophic bacteria in the Microcystis phycosphere on these processes are not well understood. Here, using microbiome transplant experiments, cyanotoxin analysis, and nanometer-scale stable isotope probing to measure N incorporation and exchange at single cell resolution, we monitored the growth, cyanotoxin production, and microbiome community structure of several Microcystis strains grown on amino acids or proteins as the sole N source. We demonstrate that the type of organic N available shaped the microbial community associated with Microcystis, and external organic N input led to decreased bacterial colonization of Microcystis colonies. Our data also suggest that certain Microcystis strains could directly uptake amino acids, but with lower rates than heterotrophic bacteria. Toxin analysis showed that biomass-specific microcystin production was not impacted by N source (i.e. nitrate, amino acids, or protein) but rather by total N availability. Single-cell isotope incorporation revealed that some bacterial communities competed with Microcystis for organic N, but other communities promoted increased N uptake by Microcystis, likely through ammonification or organic N modification. Our laboratory culture data suggest that organic N input could support Microcystis blooms and toxin production in nature, and Microcystis-associated microbial communities likely play critical roles in this process by influencing cyanobacterial succession through either decreasing (via competition) or increasing (via biotransformation) N availability, especially under inorganic N scarcity.
Collapse
Affiliation(s)
- Wei Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - David Baliu-Rodriguez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Sharmila I Thenuwara
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Ty J Samo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Christina Ramon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Erik Anders Kiledal
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Sara R Rivera
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Jenan Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI 48104, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| |
Collapse
|
14
|
Kaur A, Pickles IB, Sharma M, Madeido Soler N, Scott NE, Pidot SJ, Goddard-Borger ED, Davies GJ, Williams SJ. Widespread Family of NAD +-Dependent Sulfoquinovosidases at the Gateway to Sulfoquinovose Catabolism. J Am Chem Soc 2023; 145:28216-28223. [PMID: 38100472 PMCID: PMC10755693 DOI: 10.1021/jacs.3c11126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The sulfosugar sulfoquinovose (SQ) is produced by photosynthetic plants, algae, and cyanobacteria on a scale of 10 billion tons per annum. Its degradation, which is essential to allow cycling of its constituent carbon and sulfur, involves specialized glycosidases termed sulfoquinovosidases (SQases), which release SQ from sulfolipid glycoconjugates, so SQ can enter catabolism pathways. However, many SQ catabolic gene clusters lack a gene encoding a classical SQase. Here, we report the discovery of a new family of SQases that use an atypical oxidoreductive mechanism involving NAD+ as a catalytic cofactor. Three-dimensional X-ray structures of complexes with SQ and NAD+ provide insight into the catalytic mechanism, which involves transient oxidation at C3. Bioinformatic survey reveals this new family of NAD+-dependent SQases occurs within sulfoglycolytic and sulfolytic gene clusters that lack classical SQases and is distributed widely including within Roseobacter clade bacteria, suggesting an important contribution to marine sulfur cycling.
Collapse
Affiliation(s)
- Arashdeep Kaur
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Isabelle B. Pickles
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Mahima Sharma
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Niccolay Madeido Soler
- ACRF
Chemical Biology Division, The Walter and
Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nichollas E. Scott
- Department
of Microbiology and Immunology, University
of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sacha J. Pidot
- Department
of Microbiology and Immunology, University
of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Ethan D. Goddard-Borger
- ACRF
Chemical Biology Division, The Walter and
Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, U.K.
| | - Spencer J. Williams
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Dawson HM, Connors E, Erazo NG, Sacks JS, Mierzejewski V, Rundell SM, Carlson LT, Deming JW, Ingalls AE, Bowman JS, Young JN. Microbial metabolomic responses to changes in temperature and salinity along the western Antarctic Peninsula. THE ISME JOURNAL 2023; 17:2035-2046. [PMID: 37709939 PMCID: PMC10579395 DOI: 10.1038/s41396-023-01475-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 09/16/2023]
Abstract
Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions. Bacterial and algal community structures were tightly coupled to each other and distinct across sea-ice, seawater, and sea-ice-meltwater field samples, with unique metabolite profiles in each habitat. During short-term (approximately 10-day) incubations of seawater microbial communities under different temperature and salinity conditions, community compositions changed minimally while metabolite pools shifted greatly, strongly accumulating compatible solutes like proline and glycine betaine under cold and salty conditions. Lower salinities reduced total metabolite concentrations in particulate matter, which may indicate a release of metabolites into the labile dissolved organic matter pool. Low salinity also increased acylcarnitine concentrations in particulate matter, suggesting a potential for fatty acid degradation and reduced nutritional value at the base of the food web during freshening. Our findings have consequences for food web dynamics, microbial interactions, and carbon cycling as polar regions undergo rapid climate change.
Collapse
Affiliation(s)
- H M Dawson
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA.
| | - E Connors
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - N G Erazo
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
- Center for Marine Biodiversity and Conservation, UC San Diego, La Jolla, CA, 92037, USA
| | - J S Sacks
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - V Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - S M Rundell
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - L T Carlson
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - J W Deming
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - A E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - J S Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
- Center for Marine Biodiversity and Conservation, UC San Diego, La Jolla, CA, 92037, USA
- Center for Microbiome Innovation, UC San Diego, La Jolla, CA, 92037, USA
| | - J N Young
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
16
|
Kujawinski EB, Braakman R, Longnecker K, Becker JW, Chisholm SW, Dooley K, Kido Soule MC, Swarr GJ, Halloran K. Metabolite diversity among representatives of divergent Prochlorococcus ecotypes. mSystems 2023; 8:e0126122. [PMID: 37815355 PMCID: PMC10654061 DOI: 10.1128/msystems.01261-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/31/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Approximately half of the annual carbon fixation on Earth occurs in the surface ocean through the photosynthetic activities of phytoplankton such as the ubiquitous picocyanobacterium Prochlorococcus. Ecologically distinct subpopulations (or ecotypes) of Prochlorococcus are central conduits of organic substrates into the ocean microbiome, thus playing important roles in surface ocean production. We measured the chemical profile of three cultured ecotype strains, observing striking differences among them that have implications for the likely chemical impact of Prochlorococcus subpopulations on their surroundings in the wild. Subpopulations differ in abundance along gradients of temperature, light, and nutrient concentrations, suggesting that these chemical differences could affect carbon cycling in different ocean strata and should be considered in models of Prochlorococcus physiology and marine carbon dynamics.
Collapse
Affiliation(s)
- Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Rogier Braakman
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Krista Longnecker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Jamie W. Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Science Department, Alvernia University, Reading, Pennsylvania, USA
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Keven Dooley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Melissa C. Kido Soule
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Gretchen J. Swarr
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Kathryn Halloran
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- MIT/WHOI Joint Program in Oceanography/Applied Ocean Sciences and Engineering, Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
17
|
Chen X, Hu C, Wei W, Yang Y, Weinbauer MG, Li H, Ren S, Ma R, Huang Y, Luo T, Jiao N, Zhang R. Virus-Host Interactions Drive Contrasting Bacterial Diel Dynamics in the Ocean. RESEARCH (WASHINGTON, D.C.) 2023; 6:0213. [PMID: 37614364 PMCID: PMC10443526 DOI: 10.34133/research.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023]
Abstract
Marine organisms perform a sea of diel rhythmicity. Planktonic diel dynamics have been shown to be driven by light, energy resources, circadian rhythms, and the coordinated coupling of photoautotrophs and heterotrophic bacterioplankton. Here, we explore the diel fluctuation of viral production and decay and their impact on the total and active bacterial community in the coastal and open seawaters of the South China Sea. The results showed that the night-production diel pattern of lytic viral production was concurrent with the lower viral decay at night, contributing to the accumulation of the viral population size during the night for surface waters. The diel variations in bacterial activity, community composition, and diversity were found highly affected by viral dynamics. This was revealed by the finding that bacterial community diversity was positively correlated to lytic viral production in the euphotic zone of the open ocean but was negatively related to lysogenic viral production in the coastal ocean. Such distinct but contrasting correlations suggest that viral life strategies can not only contribute to diversifying bacterial community but also potentially piggyback their host to dominate bacterial community, suggesting the tightly synchronized depth-dependent and habitat-specific diel patterns of virus-host interactions. It further implies that viruses serve as an ecologically important driver of bacterial diel dynamics across the ocean, highlighting the viral roles in bacterial ecological and biogeochemical processes in the ocean.
Collapse
Affiliation(s)
- Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Wei Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunlan Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer 06230, France
| | - Hongbo Li
- National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, PR China
| | - Shiying Ren
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Yibin Huang
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
- NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA, USA
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China
| |
Collapse
|
18
|
Ma M, Li H, Wang C, Li T, Wang J, Yuan H, Yu L, Wang J, Li L, Lin S. A comparative study reveals the relative importance of prokaryotic and eukaryotic proton pump rhodopsins in a subtropical marginal sea. ISME COMMUNICATIONS 2023; 3:79. [PMID: 37596487 PMCID: PMC10439184 DOI: 10.1038/s43705-023-00292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Proton-pump rhodopsin (PPR) in marine microbes can convert solar energy to bioavailable chemical energy. Whereas bacterial PPR has been extensively studied, counterparts in microeukaryotes are less explored, and the relative importance of the two groups is poorly understood. Here, we sequenced whole-assemblage metatranscriptomes and investigated the diversity and expression dynamics of PPR in microbial eukaryotes and prokaryotes at a continental shelf and a slope site in the northern South China Sea. Data showed the whole PPRs transcript pool was dominated by Proteorhodopsins and Xanthorhodopsins, followed by Bacteriorhodopsin-like proteins, dominantly contributed by prokaryotes both in the number and expression levels of PPR unigenes, although at the continental slope station, microeukaryotes and prokaryotes contributed similarly in transcript abundance. Furthermore, eukaryotic PPRs are mainly contributed by dinoflagellates and showed significant correlation with nutrient concentrations. Green light-absorbing PPRs were mainly distributed in >3 μm organisms (including microeukaryotes and their associated bacteria), especially at surface layer at the shelf station, whereas blue light-absorbing PPRs dominated the <3 μm (mainly bacterial) communities at both study sites, especially at deeper layers at the slope station. Our study portrays a comparative PPR genotype and expression landscape for prokaryotes and eukaryotes in a subtropical marginal sea, suggesting PPR's role in niche differentiation and adaptation among marine microbes.
Collapse
Affiliation(s)
- Minglei Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Hongfei Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Tangcheng Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou, 515063, China
| | - Jierui Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Huatao Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
- Central Laboratory, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China.
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
19
|
Moeller FU, Herbold CW, Schintlmeister A, Mooshammer M, Motti C, Glasl B, Kitzinger K, Behnam F, Watzka M, Schweder T, Albertsen M, Richter A, Webster NS, Wagner M. Taurine as a key intermediate for host-symbiont interaction in the tropical sponge Ianthella basta. THE ISME JOURNAL 2023; 17:1208-1223. [PMID: 37188915 PMCID: PMC10356861 DOI: 10.1038/s41396-023-01420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.
Collapse
Affiliation(s)
- Florian U Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cherie Motti
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bettina Glasl
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, St Lucia, QLD, Australia
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
20
|
Tang K, Liu L. Bacteria are driving the ocean's organosulfur cycle. Trends Microbiol 2023:S0966-842X(23)00156-7. [PMID: 37280134 DOI: 10.1016/j.tim.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
Bacteria are key players in the marine sulfur cycle, from the sunlit ocean surface to the dark abyssal depths. Here, we provide a brief overview of the interlinked metabolic processes of organosulfur compounds, an elusive sulfur cycling process that exists in the dark ocean, and the current challenges that limit our understanding of this key nutrient cycle.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Hu X, Wang X, Zhao S, Cao L, Pan Y, Li F, Li F, Lu J, Li Y, Song G, Zhang H, Sun P, Bao M. Uncovering the dynamic evolution of microbes and n-alkanes: Insights from the Kuroshio Extension in the Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162418. [PMID: 36858214 DOI: 10.1016/j.scitotenv.2023.162418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers offer unique insights into the state of the environment, but little is known about how they interact with microbial communities in the open ocean. This study investigated the correlative effects between microbial communities and n-alkane distribution in surface seawater and sediments from the Kuroshio Extension in the Northwest Pacific Ocean. The n-alkanes in both surface seawater and surface sediments were mostly derived from algae and higher plants, with some minor contributions from anthropogenic and biological sources. The composition of microbial communities in surface seawater and sediments was different. In surface seawater, the dominant taxa were Vibrio, Alteromonas, Clade_Ia, Pseudoalteromonas, and Synechococcus_CC9902, while the taxa in the sediments were mostly unclassified. These variations/fluctuations of n-alkanes in three areas caused the aggregation of specialized microbial communities (Alteromonas). As the characteristic composition indexes of two typical n-alkanes, Short-chain n-alkane carbon preference index (CPI-L) and long-chain n-alkane carbon preference index (CPI-H) significantly influenced the microbial community structure in surface seawater, but not in surface sediments. Effect of CPI on microbial communities may be attributed to anthropogenic inputs or petroleum pollution. The abundance of hydrocarbon degradation genes also varied across the three different areas. Our work underscores that n-alkanes in the oceans alter the microbial community structure and enrich associated degradation genes. The functional differences in microbial communities within different areas contribute to their ecological uniqueness.
Collapse
Affiliation(s)
- Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Shanshan Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Lixin Cao
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Yaping Pan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Fujuan Li
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Jinren Lu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Guodong Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Honghai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China.
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China.
| |
Collapse
|
22
|
Mo S, Yan B, Gao T, Li J, Kashif M, Song J, Bai L, Yu D, Liao J, Jiang C. Sulfur metabolism in subtropical marine mangrove sediments fundamentally differs from other habitats as revealed by SMDB. Sci Rep 2023; 13:8126. [PMID: 37208450 DOI: 10.1038/s41598-023-34995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Shotgun metagenome sequencing provides the opportunity to recover underexplored rare populations and identify difficult-to-elucidate biochemical pathways. However, information on sulfur genes, including their sequences, is scattered in public databases. Here, we introduce SMDB ( https://smdb.gxu.edu.cn/ )-a manually curated database of sulfur genes based on an in-depth review of the scientific literature and orthology database. The SMDB contained a total of 175 genes and covered 11 sulfur metabolism processes with 395,737 representative sequences affiliated with 110 phyla and 2340 genera of bacteria/archaea. The SMDB was applied to characterize the sulfur cycle from five habitats and compared the microbial diversity of mangrove sediments with that of other habitats. The structure and composition of microorganism communities and sulfur genes were significantly different among the five habitats. Our results show that microorganism alpha diversity in mangrove sediments was significantly higher than in other habitats. Genes involved in dissimilatory sulfate reduction were abundant in subtropical marine mangroves and deep-sea sediments. The neutral community model results showed that microbial dispersal was higher in the marine mangrove ecosystem than in others habitats. The Flavilitoribacter of sulfur-metabolizing microorganism becomes a reliable biomarker in the five habitats. SMDB will assist researchers to analyze genes of sulfur cycle from the metagenomic efficiently.
Collapse
Affiliation(s)
- Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Bing Yan
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536000, China
| | - Tingwei Gao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, 536000, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Muhammad Kashif
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jingjing Song
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Lirong Bai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| | - Jianping Liao
- Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Nanning Normal University, Nanning, 530299, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| | - Chengjian Jiang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
23
|
Schroer WF, Kepner HE, Uchimiya M, Mejia C, Rodriguez LT, Reisch CR, Moran MA. Functional annotation and importance of marine bacterial transporters of plankton exometabolites. ISME COMMUNICATIONS 2023; 3:37. [PMID: 37185952 PMCID: PMC10130141 DOI: 10.1038/s43705-023-00244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Metabolite exchange within marine microbial communities transfers carbon and other major elements through global cycles and forms the basis of microbial interactions. Yet lack of gene annotations and concern about the quality of existing ones remain major impediments to revealing currencies of carbon flux. We employed an arrayed mutant library of the marine bacterium Ruegeria pomeroyi DSS-3 to experimentally annotate substrates of organic compound transporter systems, using mutant growth and compound drawdown analyses to link transporters to their cognate substrates. Mutant experiments verified substrates for thirteen R. pomeroyi transporters. Four were previously hypothesized based on gene expression data (taurine, glucose/xylose, isethionate, and cadaverine/putrescine/spermidine); five were previously hypothesized based on homology to experimentally annotated transporters in other bacteria (citrate, glycerol, N-acetylglucosamine, fumarate/malate/succinate, and dimethylsulfoniopropionate); and four had no previous annotations (thymidine, carnitine, cysteate, and 3-hydroxybutyrate). These bring the total number of experimentally-verified organic carbon influx transporters to 18 of 126 in the R. pomeroyi genome. In a longitudinal study of a coastal phytoplankton bloom, expression patterns of the experimentally annotated transporters linked them to different stages of the bloom, and also led to the hypothesis that citrate and 3-hydroxybutyrate were among the most highly available bacterial substrates. Improved functional annotation of the gatekeepers of organic carbon uptake is critical for deciphering carbon flux and fate in microbial ecosystems.
Collapse
Affiliation(s)
- William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Hannah E Kepner
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Mario Uchimiya
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Catalina Mejia
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | | | - Christopher R Reisch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
24
|
Liu L, Chen X, Ye J, Ma X, Han Y, He Y, Tang K. Sulfoquinovose is a widespread organosulfur substrate for Roseobacter clade bacteria in the ocean. THE ISME JOURNAL 2023; 17:393-405. [PMID: 36593260 PMCID: PMC9938184 DOI: 10.1038/s41396-022-01353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
Sulfoquinovose (SQ) is one of the most abundant organosulfur compounds in the biosphere, and its biosynthesis and degradation can represent an important contribution to the sulfur cycle. To data, in marine environments, the microorganisms capable of metabolising SQ have remained unidentified and the sources of SQ are still uncertain. Herein, the marine Roseobacter clade bacteria (RCB) Dinoroseobacter shibae DFL 12 and Roseobacter denitrificans OCh 114 were found to grow using SQ as the sole source of carbon and energy. In the presence of SQ, we identified a set of highly up-regulated proteins encoded by gene clusters in these two organisms, of which four homologues to proteins in the SQ monooxygenase pathway of Agrobacterium fabrum C58 may confer the ability to metabolise SQ to these marine bacteria. The sulfite released from SQ desulfonation by FMN-dependent SQ monooxygenase (SmoC) may provide bacteria with reduced sulfur for assimilation, while proteins associated with sulfite production via assimilatory sulfate reduction were significantly down-regulated. Such SQ catabolic genes are restricted to a limited number of phylogenetically diverse bacterial taxa with the predominate genera belonging to the Roseobacter clade (Roseobacteraceae). Moreover, transcript analysis of Tara Oceans project and coastal Bohai Sea samples provided additional evidence for SQ metabolism by RCB. SQ was found to be widely distributed in marine phytoplankton and cyanobacteria with variable intracellular concentrations ranging from micromolar to millimolar levels, and the amounts of SQ on particulate organic matter in field samples were, on average, lower than that of dimethylsulfoniopropionate (DMSP) by one order of magnitude. Together, the phototroph-derived SQ actively metabolised by RCB represents a previously unidentified link in the marine sulfur cycle.
Collapse
Affiliation(s)
- Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaoyi Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yu Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yajie He
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
25
|
Liu H, Cai X, Luo K, Chen S, Su M, Lu J. Microbial Diversity, Community Turnover, and Putative Functions in Submarine Canyon Sediments under the Action of Sedimentary Geology. Microbiol Spectr 2023; 11:e0421022. [PMID: 36802161 PMCID: PMC10100816 DOI: 10.1128/spectrum.04210-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Sampling challenges in deep-sea ecosystems lead to a lack of knowledge about the distribution of microbes in different submarine canyons. To study microbial diversity and community turnover under different ecological processes, we performed 16S/18S rRNA gene amplicon sequencing for sediment samples from a submarine canyon in the South China Sea. Bacteria, archaea, and eukaryotes made up 57.94% (62 phyla), 41.04% (12 phyla), and 1.02% (4 phyla) of the sequences, respectively. Thaumarchaeota, Planctomycetota, Proteobacteria, Nanoarchaeota, and Patescibacteria are the five most abundant phyla. Heterogeneous community composition was mainly observed in vertical profiles rather than horizontal geographic locations, and microbial diversity in the surface layer was much lower than that in deep layers. According to the null model tests, homogeneous selection dominated community assembly within each sediment layer, whereas heterogeneous selection and dispersal limitation dominated community assembly between distant layers. Different sedimentation processes of sediments, i.e., rapid deposition caused by turbidity currents or slow sedimentation, seem to be primarily responsible for these vertical variations. Finally, functional annotation through shotgun-metagenomic sequencing found that glycosyl transferases and glycoside hydrolases are the most abundant carbohydrate-active enzyme categories. The most likely expressed sulfur cycling pathways include assimilatory sulfate reduction, the link between inorganic and organic sulfur transformation, and organic sulfur transformation, while the potentially activated methane cycling pathways include aceticlastic methanogenesis and aerobic and anaerobic oxidation of methane. Overall, our study revealed high levels of microbial diversity and putative functions in canyon sediments and the important influence of sedimentary geology on microbial community turnover between vertical sediment layers. IMPORTANCE Deep-sea microbes have received growing attention due to their contribution to biogeochemical cycles and climate change. However, related research lags due to the difficulty of collecting samples. Based on our previous study, which revealed the formation of sediments under the dual action of turbidity currents and seafloor obstacles in a submarine canyon in the South China Sea, this interdisciplinary research provides new insights into how sedimentary geology influences microbial community assembly in sediments. We proposed some uncommon or new findings, including the following: (i) microbial diversity was much lower on the surface than in deeper layers (ii) archaea and bacteria dominated the surface and deep layers, respectively; (iii) sedimentary geology played key roles in vertical community turnover; and (iv) the microbes have great potential to catalyze sulfur, carbon, and methane cycling. This study may lead to extensive discussion of the assembly and function of deep-sea microbial communities in the context of geology.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xueyu Cai
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Kunwen Luo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Sihan Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou Guangdong, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou Guangdong, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, China
| |
Collapse
|
26
|
Zheng X, Xu K, Naoum J, Lian Y, Wu B, He Z, Yan Q. Deciphering microeukaryotic-bacterial co-occurrence networks in coastal aquaculture ponds. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:44-55. [PMID: 37073331 PMCID: PMC10077187 DOI: 10.1007/s42995-022-00159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
Microeukaryotes and bacteria are key drivers of primary productivity and nutrient cycling in aquaculture ecosystems. Although their diversity and composition have been widely investigated in aquaculture systems, the co-occurrence bipartite network between microeukaryotes and bacteria remains poorly understood. This study used the bipartite network analysis of high-throughput sequencing datasets to detect the co-occurrence relationships between microeukaryotes and bacteria in water and sediment from coastal aquaculture ponds. Chlorophyta and fungi were dominant phyla in the microeukaryotic-bacterial bipartite networks in water and sediment, respectively. Chlorophyta also had overrepresented links with bacteria in water. Most microeukaryotes and bacteria were classified as generalists, and tended to have symmetric positive and negative links with bacteria in both water and sediment. However, some microeukaryotes with high density of links showed asymmetric links with bacteria in water. Modularity detection in the bipartite network indicated that four microeukaryotes and twelve uncultured bacteria might be potential keystone taxa among the module connections. Moreover, the microeukaryotic-bacterial bipartite network in sediment harbored significantly more nestedness than that in water. The loss of microeukaryotes and generalists will more likely lead to the collapse of positive co-occurrence relationships between microeukaryotes and bacteria in both water and sediment. This study unveils the topology, dominant taxa, keystone species, and robustness in the microeukaryotic-bacterial bipartite networks in coastal aquaculture ecosystems. These species herein can be applied for further management of ecological services, and such knowledge may also be very useful for the regulation of other eutrophic ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00159-6.
Collapse
Affiliation(s)
- Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315100 China
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi, 435002 China
| | - Jonathan Naoum
- Department of Biological Sciences, Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL-EcotoQ-TOXEN, Université Du Québec À Montréal, Succursale Centre-Ville, Montreal, QC Canada
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group CO., Ltd. Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510006 China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
27
|
Ferrer-González FX, Hamilton M, Smith CB, Schreier JE, Olofsson M, Moran MA. Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda. ISME COMMUNICATIONS 2023; 3:5. [PMID: 36690682 PMCID: PMC9870897 DOI: 10.1038/s43705-023-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.
Collapse
Affiliation(s)
| | - Maria Hamilton
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
28
|
Wang B, Wang X, Wang Z, Zhu K, Wu W. Comparative metagenomic analysis reveals rhizosphere microbial community composition and functions help protect grapevines against salt stress. Front Microbiol 2023; 14:1102547. [PMID: 36891384 PMCID: PMC9987714 DOI: 10.3389/fmicb.2023.1102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Soil salinization is a serious abiotic stress for grapevines. The rhizosphere microbiota of plants can help counter the negative effects caused by salt stress, but the distinction between rhizosphere microbes of salt-tolerant and salt-sensitive varieties remains unclear. Methods This study employed metagenomic sequencing to explore the rhizosphere microbial community of grapevine rootstocks 101-14 (salt tolerant) and 5BB (salt sensitive) with or without salt stress. Results and Discussion Compared to the control (treated with ddH2O), salt stress induced greater changes in the rhizosphere microbiota of 101-14 than in that of 5BB. The relative abundances of more plant growth-promoting bacteria, including Planctomycetes, Bacteroidetes, Verrucomicrobia, Cyanobacteria, Gemmatimonadetes, Chloroflexi, and Firmicutes, were increased in 101-14 under salt stress, whereas only the relative abundances of four phyla (Actinobacteria, Gemmatimonadetes, Chloroflexi, and Cyanobacteria) were increased in 5BB under salt stress while those of three phyla (Acidobacteria, Verrucomicrobia, and Firmicutes) were depleted. The differentially enriched functions (KEGG level 2) in 101-14 were mainly associated with pathways related to cell motility; folding, sorting, and degradation functions; glycan biosynthesis and metabolism; xenobiotics biodegradation and metabolism; and metabolism of cofactors and vitamins, whereas only the translation function was differentially enriched in 5BB. Under salt stress, the rhizosphere microbiota functions of 101-14 and 5BB differed greatly, especially pathways related to metabolism. Further analysis revealed that pathways associated with sulfur and glutathione metabolism as well as bacterial chemotaxis were uniquely enriched in 101-14 under salt stress and therefore might play vital roles in the mitigation of salt stress on grapevines. In addition, the abundance of various sulfur cycle-related genes, including genes involved in assimilatory sulfate reduction (cysNC, cysQ, sat, and sir), sulfur reduction (fsr), SOX systems (soxB), sulfur oxidation (sqr), organic sulfur transformation (tpa, mdh, gdh, and betC), increased significantly in 101-14 after treatment with NaCl; these genes might mitigate the harmful effects of salt on grapevine. In short, the study findings indicate that both the composition and functions of the rhizosphere microbial community contribute to the enhanced tolerance of some grapevines to salt stress.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Zhuangwei Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Kefeng Zhu
- Department of Technology Commercialization, Jiangsu Academy of Agricultural Sciences, Nanjing City, Jiangsu Province, China.,Huaian Herong Ecological Agriculture Co., Ltd, Huaian City, Jiangsu Province, China
| | - Weimin Wu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| |
Collapse
|
29
|
Azizah M, Pohnert G. Orchestrated Response of Intracellular Zwitterionic Metabolites in Stress Adaptation of the Halophilic Heterotrophic Bacterium Pelagibaca bermudensis. Mar Drugs 2022; 20:727. [PMID: 36422005 PMCID: PMC9695272 DOI: 10.3390/md20110727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023] Open
Abstract
Osmolytes are naturally occurring organic compounds that protect cells against various forms of stress. Highly polar, zwitterionic osmolytes are often used by marine algae and bacteria to counteract salinity or temperature stress. We investigated the effect of several stress conditions including different salinities, temperatures, and exposure to organic metabolites released by the alga Tetraselmis striata on the halophilic heterotrophic bacterium Pelagibaca bermudensis. Using ultra-high-performance liquid chromatography (UHPLC) on a ZIC-HILIC column and high-resolution electrospray ionization mass spectrometry, we simultaneously detected and quantified the eleven highly polar compounds dimethylsulfoxonium propionate (DMSOP), dimethylsulfoniopropionate (DMSP), gonyol, cysteinolic acid, ectoine, glycine betaine (GBT), carnitine, sarcosine, choline, proline, and 4-hydroxyproline. All compounds are newly described in P. bermudensis and potentially involved in physiological functions essential for bacterial survival under variable environmental conditions. We report that adaptation to various forms of stress is accomplished by adjusting the pattern and amount of the zwitterionic metabolites.
Collapse
Affiliation(s)
- Muhaiminatul Azizah
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany
- MPG Fellow Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
30
|
Jackson R, Gabric A. Climate Change Impacts on the Marine Cycling of Biogenic Sulfur: A Review. Microorganisms 2022; 10:1581. [PMID: 36013999 PMCID: PMC9412504 DOI: 10.3390/microorganisms10081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
A key component of the marine sulfur cycle is the climate-active gas dimethylsulfide (DMS), which is synthesized by a range of organisms from phytoplankton to corals, and accounts for up to 80% of global biogenic sulfur emissions. The DMS cycle starts with the intracellular synthesis of the non-gaseous precursor dimethylsulfoniopropionate (DMSP), which is released to the water column by various food web processes such as zooplankton grazing. This dissolved DMSP pool is rapidly turned over by microbially mediated conversion using two known pathways: demethylation (releasing methanethiol) and cleavage (producing DMS). Some of the formed DMS is ventilated to the atmosphere, where it undergoes rapid oxidation and contributes to the formation of sulfate aerosols, with the potential to affect cloud microphysics, and thus the regional climate. The marine phase cycling of DMS is complex, however, as heterotrophs also contribute to the consumption of the newly formed dissolved DMS. Interestingly, due to microbial consumption and other water column sinks such as photolysis, the amount of DMS that enters the atmosphere is currently thought to be a relatively minor fraction of the total amount cycled through the marine food web-less than 10%. These microbial processes are mediated by water column temperature, but the response of marine microbial assemblages to ocean warming is poorly characterized, although bacterial degradation appears to increase with an increase in temperature. This review will focus on the potential impact of climate change on the key microbially mediated processes in the marine cycling of DMS. It is likely that the impact will vary across different biogeographical regions from polar to tropical. For example, in the rapidly warming polar oceans, microbial communities associated with the DMS cycle will likely change dramatically during the 21st century with the decline in sea ice. At lower latitudes, where corals form an important source of DMS (P), shifts in the microbiome composition have been observed during thermal stress with the potential to alter the DMS cycle.
Collapse
Affiliation(s)
- Rebecca Jackson
- Coasts and Ocean Research, Oceans and Atmosphere, CSIRO, Canberra, ACT 2601, Australia
| | - Albert Gabric
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
31
|
Metabolic Phenotyping of Marine Heterotrophs on Refactored Media Reveals Diverse Metabolic Adaptations and Lifestyle Strategies. mSystems 2022; 7:e0007022. [PMID: 35856685 PMCID: PMC9426600 DOI: 10.1128/msystems.00070-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial communities, through their metabolism, drive carbon cycling in marine environments. These complex communities are composed of many different microorganisms including heterotrophic bacteria, each with its own nutritional needs and metabolic capabilities. Yet, models of ecosystem processes typically treat heterotrophic bacteria as a “black box,” which does not resolve metabolic heterogeneity nor address ecologically important processes such as the successive modification of different types of organic matter. Here we directly address the heterogeneity of metabolism by characterizing the carbon source utilization preferences of 63 heterotrophic bacteria representative of several major marine clades. By systematically growing these bacteria on 10 media containing specific subsets of carbon sources found in marine biomass, we obtained a phenotypic fingerprint that we used to explore the relationship between metabolic preferences and phylogenetic or genomic features. At the class level, these bacteria display broadly conserved patterns of preference for different carbon sources. Despite these broad taxonomic trends, growth profiles correlate poorly with phylogenetic distance or genome-wide gene content. However, metabolic preferences are strongly predicted by a handful of key enzymes that preferentially belong to a few enriched metabolic pathways, such as those involved in glyoxylate metabolism and biofilm formation. We find that enriched pathways point to enzymes directly involved in the metabolism of the corresponding carbon source and suggest potential associations between metabolic preferences and other ecologically relevant traits. The availability of systematic phenotypes across multiple synthetic media constitutes a valuable resource for future quantitative modeling efforts and systematic studies of interspecies interactions. IMPORTANCE Half of the Earth’s annual primary production is carried out by phytoplankton in the surface ocean. However, this metabolic activity is heavily impacted by heterotrophic bacteria, which dominate the transformation of organic matter released from phytoplankton. Here, we characterize the diversity of metabolic preferences across many representative heterotrophs by systematically growing them on different fractions of dissolved organic carbon. Our analysis suggests that different clades of bacteria have substantially distinct preferences for specific carbon sources, in a way that cannot be simply mapped onto phylogeny. These preferences are associated with the presence of specific genes and pathways, reflecting an association between metabolic capabilities and ecological lifestyles. In addition to helping understand the importance of heterotrophs under different conditions, the phenotypic fingerprint we obtained can help build higher resolution quantitative models of global microbial activity and biogeochemical cycles in the oceans.
Collapse
|
32
|
Zhu Y, Han Y, Liu G, Bian Z, Yan X, Li Y, Long H, Yu G, Wang Y. Novel indole-mediated potassium ion import system confers a survival advantage to the Xanthomonadaceae family. THE ISME JOURNAL 2022; 16:1717-1729. [PMID: 35319020 PMCID: PMC9213462 DOI: 10.1038/s41396-022-01219-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022]
Abstract
Interspecific and intraspecific communication systems of microorganisms are involved in the regulation of various stress responses in microbial communities. Although the significance of signaling molecules in the ubiquitous family Xanthomonadaceae has been reported, the role bacterial communications play and their internal mechanisms are largely unknown. Here, we use Lysobacter enzymogenes, a member of Xanthomonadaceae, to identify a novel potassium ion import system, LeKdpXFABC. This import system participates in the indole-mediated interspecies signaling pathway and matters in environmental adaptation. Compared with the previously reported kdpFABC of Escherichia coli, LekdpXFABC contains a novel indispensable gene LekdpX and is directly regulated by the indole-related two-component system QseC/B. QseC autophosphorylation is involved in this process. The operon LekdpXFABC widely exists in Xanthomonadaceae. Moreover, indole promotes antimicrobial product production at the early exponential phase. Further analyses show that indole enhances potassium ion adsorption on the cell surface by upregulating the production of O-antigenic polysaccharides. Finally, we confirm that LeKdpXFABC mediation by indole is subject to the intraspecific signaling molecules DSFs, of which the biosynthesis genes always exist together with LekdpXFABC. Therefore, as a new idea, the signal collaborative strategy of indole and DSFs might ensure the persistent fitness advantage of Xanthomonadaceae in variable environments.
Collapse
Affiliation(s)
- Yuxiang Zhu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yong Han
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Guanglei Liu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zeran Bian
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiayi Yan
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250100, China
| | - Hongan Long
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Guanshuo Yu
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
33
|
Bannon C, Rapp I, Bertrand EM. Community Interaction Co-limitation: Nutrient Limitation in a Marine Microbial Community Context. Front Microbiol 2022; 13:846890. [PMID: 35711751 PMCID: PMC9196195 DOI: 10.3389/fmicb.2022.846890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
The simultaneous limitation of productivity by two or more nutrients, commonly referred to as nutrient co-limitation, affects microbial communities throughout the marine environment and is of profound importance because of its impacts on various biogeochemical cycles. Multiple types of co-limitation have been described, enabling distinctions based on the hypothesized mechanisms of co-limitation at a biochemical level. These definitions usually pertain to individuals and do not explicitly, or even implicitly, consider complex ecological dynamics found within a microbial community. However, limiting and co-limiting nutrients can be produced in situ by a subset of microbial community members, suggesting that interactions within communities can underpin co-limitation. To address this, we propose a new category of nutrient co-limitation, community interaction co-limitation (CIC). During CIC, one part of the community is limited by one nutrient, which results in the insufficient production or transformation of a biologically produced nutrient that is required by another part of the community, often primary producers. Using cobalamin (vitamin B12) and nitrogen fixation as our models, we outline three different ways CIC can arise based on current literature and discuss CIC's role in biogeochemical cycles. Accounting for the inherent and complex roles microbial community interactions play in generating this type of co-limitation requires an expanded toolset - beyond the traditional approaches used to identify and study other types of co-limitation. We propose incorporating processes and theories well-known in microbial ecology and evolution to provide meaningful insight into the controls of community-based feedback loops and mechanisms that give rise to CIC in the environment. Finally, we highlight the data gaps that limit our understanding of CIC mechanisms and suggest methods to overcome these and further identify causes and consequences of CIC. By providing this framework for understanding and identifying CIC, we enable systematic examination of the impacts this co-limitation can have on current and future marine biogeochemical processes.
Collapse
Affiliation(s)
- Catherine Bannon
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Insa Rapp
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Erin M. Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
34
|
Yan L, Liu Y. Mechanistic Insights into the Anaerobic Degradation of Globally Abundant Dihydroxypropanesulfonate Catalyzed by the DHPS-Sulfolyase (HpsG). J Chem Inf Model 2022; 62:2880-2888. [PMID: 35583151 DOI: 10.1021/acs.jcim.2c00174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
2(S)-Dihydroxypropanesulfonate (DHPS) is the main abundant organosulfonate in the biosphere generated by the microbial degradation of the abundant organosulfur species 6-deoxy-6-sulfo-d-glucopyranose (sulfoquinovose, SQ). Massive amounts of DHPS can also be produced by the highly abundant oceanic diatoms. The quantity of degradation DHPS is so large that it has become an important part of the earth's sulfur. The recently characterized O2-sensitive glycyl radical enzyme DHPS-sulfolyase HpsG in anaerobic bacteria was found to be capable of cleaving the C-S bond of DHPS under anaerobic conditions. However, the detailed degradation mechanism is still unclear. Here, on the basis of the crystal structure of HpsG, we constructed the computational model and performed QM/MM calculations to illuminate the anaerobic degradation mechanism of DHPS. Our calculations revealed that the degradation reaction follows an unusual radical-dependent mechanism that does not require a conserved Glu464 to deprotonate the C2 hydroxyl of substrate to promote the C-S cleavage; instead, after the first hydrogen abstraction triggered by the thiyl radical (Cys462), the C-S bond in 2(S)-dihydroxypropanesulfonate can directly collapse. Thus, conserved Glu464 mainly plays a role in stabilizing the substrate and reaction intermediate by forming a hydrogen bond. After the release of the sulfonic acid group from the protein environment, the deprotonated Glu464 spontaneously accepts a proton from the C2 hydroxyl of the substrate radical. Our findings clarified an unusual C-S cleavage mechanism involved in the DHPS degradation reaction catalyzed by GREs.
Collapse
Affiliation(s)
- Lijuan Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
35
|
Yakimovich KM, Quarmby LM. A metagenomic study of the bacteria in snow algae microbiomes. Can J Microbiol 2022; 68:507-520. [PMID: 35512372 DOI: 10.1139/cjm-2021-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial communities found in snow algae blooms have been described in terms of their 16S rRNA gene community profiles, but little information exists on their metabolic potential. Previously, we reported that several bacterial taxa are common across snow algae blooms in the southwestern mountains of the Coast Range in British Columbia, Canada. Here, we further this work by reporting a partial bacterial metagenome from the same snow algal microbiomes. Using shotgun metagenomic data, we constructed metagenomically assembled bacterial genomes (MAGs). Of the total 54 binned MAGs, 28 were bacterial and estimated to be at least 50% complete based on single copy core genes. The 28 MAGs fell into five Classes: Actinomycetia, Alphaproteobacteria, Bacteroidia, Betaproteobacteria and Gammaproteobacteria. All MAGs were assigned to a class, 27 to an order, 25 to family, 18 to genus, and none to species. MAGs showed the potential to support algal growth by synthesizing B-vitamins and growth hormones. There was also widespread adaptation to the low oxygen environment of biofilms, including synthesis of high-affinity terminal oxidases and anaerobic pathways for cobalamin synthesis. Also notable, was the absence of N2 fixation, and the presence of incomplete denitrification pathways suggestive of NO signalling within the microbiome.
Collapse
Affiliation(s)
- Kurt Michael Yakimovich
- Simon Fraser University, 1763, Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada;
| | - Lynne M Quarmby
- Simon Fraser University, 1763, Department of Molecular Biology and Biochemistry, Burnaby, Canada;
| |
Collapse
|
36
|
Uchimiya M, Schroer W, Olofsson M, Edison AS, Moran MA. Diel investments in metabolite production and consumption in a model microbial system. THE ISME JOURNAL 2022; 16:1306-1317. [PMID: 34921302 PMCID: PMC9038784 DOI: 10.1038/s41396-021-01172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/01/2022]
Abstract
Organic carbon transfer between surface ocean photosynthetic and heterotrophic microbes is a central but poorly understood process in the global carbon cycle. In a model community in which diatom extracellular release of organic molecules sustained growth of a co-cultured bacterium, we determined quantitative changes in the diatom endometabolome and the bacterial uptake transcriptome over two diel cycles. Of the nuclear magnetic resonance (NMR) peaks in the diatom endometabolites, 38% had diel patterns with noon or mid-afternoon maxima; the remaining either increased (36%) or decreased (26%) through time. Of the genes in the bacterial uptake transcriptome, 94% had a diel pattern with a noon maximum; the remaining decreased over time (6%). Eight diatom endometabolites identified with high confidence were matched to the bacterial genes mediating their utilization. Modeling of these coupled inventories with only diffusion-based phytoplankton extracellular release could not reproduce all the patterns. Addition of active release mechanisms for physiological balance and bacterial recognition significantly improved model performance. Estimates of phytoplankton extracellular release range from only a few percent to nearly half of annual net primary production. Improved understanding of the factors that influence metabolite release and consumption by surface ocean microbes will better constrain this globally significant carbon flux.
Collapse
Affiliation(s)
- Mario Uchimiya
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, US
| | - William Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala, Sweden
| | - Arthur S Edison
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, US
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US.
| |
Collapse
|
37
|
Boysen AK, Durham BP, Kumler W, Key RS, Heal KR, Carlson L, Groussman RD, Armbrust EV, Ingalls AE. Glycine betaine uptake and metabolism in marine microbial communities. Environ Microbiol 2022; 24:2380-2403. [PMID: 35466501 PMCID: PMC9321204 DOI: 10.1111/1462-2920.16020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
Glycine betaine (GBT) is a compatible solute in high concentrations in marine microorganisms. As a component of labile organic matter, GBT has complex biochemical potential as a substrate for microbial use that is unconstrained in the environment. Here we determine the uptake kinetics and metabolic fate of GBT in two natural microbial communities in the North Pacific characterized by different nitrate concentrations. Dissolved GBT had maximum uptake rates of 0.36 and 0.56 nM h−1 with half‐saturation constants of 79 and 11 nM in the high nitrate and low nitrate stations respectively. During multiday incubations, most GBT taken into cells was retained as a compatible solute. Stable isotopes derived from the added GBT were also observed in other metabolites, including choline, carnitine and sarcosine, suggesting that GBT was used for biosynthesis and for catabolism to pyruvate and ammonium. Where nitrate was scarce, GBT was primarily metabolized via demethylation to glycine. Gene transcript data were consistent with SAR11 using GBT as a source of methyl groups to fuel the methionine cycle. Where nitrate concentrations were higher, more GBT was partitioned for lipid biosynthesis by both bacteria and eukaryotic phytoplankton. Our data highlight unexpected metabolic pathways and potential routes of microbial metabolite exchange.
Collapse
Affiliation(s)
- Angela K Boysen
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Bryndan P Durham
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - William Kumler
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rebecca S Key
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - Katherine R Heal
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Laura Carlson
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Ryan D Groussman
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
38
|
Raina JB, Lambert BS, Parks DH, Rinke C, Siboni N, Bramucci A, Ostrowski M, Signal B, Lutz A, Mendis H, Rubino F, Fernandez VI, Stocker R, Hugenholtz P, Tyson GW, Seymour JR. Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature 2022; 605:132-138. [PMID: 35444277 DOI: 10.1038/s41586-022-04614-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/04/2022] [Indexed: 01/04/2023]
Abstract
The capacity of planktonic marine microorganisms to actively seek out and exploit microscale chemical hotspots has been widely theorized to affect ocean-basin scale biogeochemistry1-3, but has never been examined comprehensively in situ among natural microbial communities. Here, using a field-based microfluidic platform to quantify the behavioural responses of marine bacteria and archaea, we observed significant levels of chemotaxis towards microscale hotspots of phytoplankton-derived dissolved organic matter (DOM) at a coastal field site across multiple deployments, spanning several months. Microscale metagenomics revealed that a wide diversity of marine prokaryotes, spanning 27 bacterial and 2 archaeal phyla, displayed chemotaxis towards microscale patches of DOM derived from ten globally distributed phytoplankton species. The distinct DOM composition of each phytoplankton species attracted phylogenetically and functionally discrete populations of bacteria and archaea, with 54% of chemotactic prokaryotes displaying highly specific responses to the DOM derived from only one or two phytoplankton species. Prokaryotes exhibiting chemotaxis towards phytoplankton-derived compounds were significantly enriched in the capacity to transport and metabolize specific phytoplankton-derived chemicals, and displayed enrichment in functions conducive to symbiotic relationships, including genes involved in the production of siderophores, B vitamins and growth-promoting hormones. Our findings demonstrate that the swimming behaviour of natural prokaryotic assemblages is governed by specific chemical cues, which dictate important biogeochemical transformation processes and the establishment of ecological interactions that structure the base of the marine food web.
Collapse
Affiliation(s)
- Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Bennett S Lambert
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.,Center for Environmental Genomics, School of Oceanography, University of Washington, Seattle, WA, USA.,Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Anna Bramucci
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Martin Ostrowski
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Brandon Signal
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Adrian Lutz
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Himasha Mendis
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Francesco Rubino
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.
| |
Collapse
|
39
|
Burchill L, Williams SJ. Chemistry and biology of the aminosulfonate cysteinolic acid: discovery, distribution, synthesis and metabolism. Org Biomol Chem 2022; 20:3043-3055. [PMID: 35354198 DOI: 10.1039/d2ob00362g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
D-Cysteinolic acid is a zwitterionic aminosulfonate found in marine (and occasionally freshwater) environments. It is distributed in a wide range of algae (red, green and brown algae and diatoms), and some bacteria and sea animals. It was discovered in 1957 and in spite of its long history, its biosynthesis and degradation is poorly understood. Cysteinolic acid is found conjugated to steroids, lipids and arsenosugars, and the cysteinolic acid motif is found within the structures of various capnoid and sulfoceramide sulfonolipids. This review provides an historical account of the discovery of D-cysteinolic acid and related molecules, its distribution and occurrence within marine and freshwater organisms, routes for its chemical synthesis, and summarizes knowledge and speculations surrounding its biosynthesis, degradation and bioconversions.
Collapse
Affiliation(s)
- Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
40
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Olofsson M, Ferrer-González FX, Uchimiya M, Schreier JE, Holderman NR, Smith CB, Edison AS, Moran MA. Growth-stage-related shifts in diatom endometabolome composition set the stage for bacterial heterotrophy. ISME COMMUNICATIONS 2022; 2:28. [PMID: 37938663 PMCID: PMC9723723 DOI: 10.1038/s43705-022-00116-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups. In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatom Thalassiosira pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release, and transfer to assembled bacterial communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling.
Collapse
Affiliation(s)
- Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 57, Uppsala, Sweden
| | | | - Mario Uchimiya
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Nicole R Holderman
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Arthur S Edison
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
42
|
Zoccarato L, Sher D, Miki T, Segrè D, Grossart HP. A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Commun Biol 2022; 5:276. [PMID: 35347228 PMCID: PMC8960797 DOI: 10.1038/s42003-022-03184-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10% of genomes), phytohormones (3-8%) and different B vitamins (57-70%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.
Collapse
Affiliation(s)
- Luca Zoccarato
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel.
| | - Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, 520-2194, Otsu, Japan
| | - Daniel Segrè
- Departments of Biology, Biomedical Engineering, Physics, Boston University, 02215, Boston, MA, USA
- Bioinformatics Program & Biological Design Center, Boston University, 02215, Boston, MA, USA
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
- Institute of Biochemistry and Biology, Potsdam University, 14476, Potsdam, Germany.
| |
Collapse
|
43
|
Liu S, Longnecker K, Kujawinski EB, Vergin K, Bolaños LM, Giovannoni SJ, Parsons R, Opalk K, Halewood E, Hansell DA, Johnson R, Curry R, Carlson CA. Linkages Among Dissolved Organic Matter Export, Dissolved Metabolites, and Associated Microbial Community Structure Response in the Northwestern Sargasso Sea on a Seasonal Scale. Front Microbiol 2022; 13:833252. [PMID: 35350629 PMCID: PMC8957919 DOI: 10.3389/fmicb.2022.833252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023] Open
Abstract
Deep convective mixing of dissolved and suspended organic matter from the surface to depth can represent an important export pathway of the biological carbon pump. The seasonally oligotrophic Sargasso Sea experiences annual winter convective mixing to as deep as 300 m, providing a unique model system to examine dissolved organic matter (DOM) export and its subsequent compositional transformation by microbial oxidation. We analyzed biogeochemical and microbial parameters collected from the northwestern Sargasso Sea, including bulk dissolved organic carbon (DOC), total dissolved amino acids (TDAA), dissolved metabolites, bacterial abundance and production, and bacterial community structure, to assess the fate and compositional transformation of DOM by microbes on a seasonal time-scale in 2016-2017. DOM dynamics at the Bermuda Atlantic Time-series Study site followed a general annual trend of DOC accumulation in the surface during stratified periods followed by downward flux during winter convective mixing. Changes in the amino acid concentrations and compositions provide useful indices of diagenetic alteration of DOM. TDAA concentrations and degradation indices increased in the mesopelagic zone during mixing, indicating the export of a relatively less diagenetically altered (i.e., more labile) DOM. During periods of deep mixing, a unique subset of dissolved metabolites, such as amino acids, vitamins, and benzoic acids, was produced or lost. DOM export and compositional change were accompanied by mesopelagic bacterial growth and response of specific bacterial lineages in the SAR11, SAR202, and SAR86 clades, Acidimicrobiales, and Flavobacteria, during and shortly following deep mixing. Complementary DOM biogeochemistry and microbial measurements revealed seasonal changes in DOM composition and diagenetic state, highlighting microbial alteration of the quantity and quality of DOM in the ocean.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Krista Longnecker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Kevin Vergin
- Microbial DNA Analytics, Phoenix, OR, United States
| | - Luis M. Bolaños
- School of Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | | - Rachel Parsons
- Bermuda Institute of Ocean Sciences, Saint George’s, Bermuda
| | - Keri Opalk
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Elisa Halewood
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Dennis A. Hansell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Rod Johnson
- Bermuda Institute of Ocean Sciences, Saint George’s, Bermuda
| | - Ruth Curry
- Bermuda Institute of Ocean Sciences, Saint George’s, Bermuda
| | - Craig A. Carlson
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
44
|
Burchill L, Zudich L, van der Peet PL, White JM, Williams SJ. Synthesis of the Alkylsulfonate Metabolites Cysteinolic Acid, 3-Amino-2-hydroxypropanesulfonate, and 2,3-Dihydroxypropanesulfonate. J Org Chem 2022; 87:4333-4342. [PMID: 35199527 DOI: 10.1021/acs.joc.2c00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chiral hydroxy- and aminohydroxysulfonic acids are widespread in the marine and terrestrial environment. Here we report simple methods for the synthesis of d- and l-cysteinolic acid (from (Boc-d-Cys-OH)2 and (Boc-l-Cys-OH)2, respectively), R- and S-3-amino-2-hydroxypropanesulfonate (from S- and R-epichlorohydrin, respectively), and R- and S-2,3-dihydroxypropanesulfonate (from S- and R-epichlorohydrin, respectively). d-Cysteinolate bile salts were generated by coupling with cholic and chenodeoxycholic acids. A series of single-crystal 3D X-ray structures confirmed the absolute configurations of the aminosulfonates. By comparison of optical rotation, we assign naturally occurring 3-amino-2-hydroxypropanesulfonate from Gateloupia livida as possessing the R-configuration. This simple synthetic approach will support future studies of the occurrence, chemotaxonomic distribution, and metabolism of these alkylsulfonates.
Collapse
Affiliation(s)
- Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Luca Zudich
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Phillip L van der Peet
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
45
|
O'Brien J, McParland EL, Bramucci AR, Siboni N, Ostrowski M, Kahlke T, Levine NM, Brown MV, van de Kamp J, Bodrossy L, Messer LF, Petrou K, Seymour JR. Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton. ISME COMMUNICATIONS 2022; 2:16. [PMID: 37938744 PMCID: PMC9723663 DOI: 10.1038/s43705-022-00099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2023]
Abstract
Ecological interactions between marine bacteria and phytoplankton play a pivotal role in governing the ocean's major biogeochemical cycles. Among these, members of the marine Roseobacter Group (MRG) can establish mutualistic relationships with phytoplankton that are, in part, maintained by exchanges of the organosulfur compound, dimethylsulfoniopropionate (DMSP). Yet most of what is known about these interactions has been derived from culture-based laboratory studies. To investigate temporal and spatial co-occurrence patterns between members of the MRG and DMSP-producing phytoplankton we analysed 16S and 18S rRNA gene amplicon sequence variants (ASVs) derived from 5 years of monthly samples from seven environmentally distinct Australian oceanographic time-series. The MRG and DMSP-producer communities often displayed contemporaneous seasonality, which was greater in subtropical and temperate environments compared to tropical environments. The relative abundance of both groups varied latitudinally, displaying a poleward increase, peaking (MRG at 33% of total bacteria, DMSP producers at 42% of eukaryotic phototrophs) during recurrent spring-summer phytoplankton blooms in the most temperate site (Maria Island, Tasmania). Network analysis identified 20,140 significant positive correlations between MRG ASVs and DMSP producers and revealed that MRGs exhibit significantly stronger correlations to high DMSP producers relative to other DMSP-degrading bacteria (Pelagibacter, SAR86 and Actinobacteria). By utilising the power of a continental network of oceanographic time-series, this study provides in situ confirmation of interactions found in laboratory studies and demonstrates that the ecological dynamics of an important group of marine bacteria are shaped by the production of an abundant and biogeochemically significant organosulfur compound.
Collapse
Affiliation(s)
- James O'Brien
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Erin L McParland
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Naomi M Levine
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | | | - Lauren F Messer
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Katherina Petrou
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| |
Collapse
|
46
|
Selak L, Osterholz H, Stanković I, Hanžek N, Udovič MG, Dittmar T, Orlić S. Adaptations of microbial communities and dissolved organics to seasonal pressures in a mesotrophic coastal Mediterranean lake. Environ Microbiol 2022; 24:2282-2298. [PMID: 35106913 DOI: 10.1111/1462-2920.15924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion, and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Helena Osterholz
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany.,Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Igor Stanković
- Hrvatske vode, Central Water Management Laboratory, Zagreb, Croatia
| | - Nikola Hanžek
- Hrvatske vode, Central Water Management Laboratory, Zagreb, Croatia
| | - Marija Gligora Udovič
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, Zagreb, Croatia
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Sandi Orlić
- Ruđer Bošković Institute, Zagreb, Croatia.,Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| |
Collapse
|
47
|
Ubiquitous Occurrence of a Biogenic Sulfonate in Marine Environment. SUSTAINABILITY 2022. [DOI: 10.3390/su14031240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biogenic sulfonate 2,3-dihydroxypropane-1-sulfonate (DHPS) is a vital metabolic currency between phytoplankton and bacteria in marine environments. However, the occurrence and quantification of DHPS in the marine environment has not been well-characterized. In this study, we used targeted metabolomics to determine the concentration of DHPS in the Pearl River Estuary, an in situ costal mesocosm ecosystem and a hydrothermal system off Kueishantao Island. The results suggested that DHPS occurred ubiquitously in the marine environment, even in shallow-sea hydrothermal systems, at a level comparable to that of dimethylsulfoniopropionate. The concentration of DHPS was closely related to phytoplankton community composition and was especially associated with the abundance of diatoms. Epsilonproteobacteria were considered as the most likely producers of DHPS in shallow-sea hydrothermal systems. This work expands current knowledge on sulfonates and presents a new viewpoint on the sulfur cycle in hydrothermal systems.
Collapse
|
48
|
Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nat Ecol Evol 2022; 6:218-229. [DOI: 10.1038/s41559-021-01606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2021] [Indexed: 12/20/2022]
|
49
|
Abstract
The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic-anoxic boundary layers in the ocean.
Collapse
Affiliation(s)
- Robert M Morris
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA;
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
50
|
Chen X, Liu L, Gao X, Dai X, Han Y, Chen Q, Tang K. Metabolism of chiral sulfonate compound 2,3-dihydroxypropane-1-sulfonate (DHPS) by Roseobacter bacteria in marine environment. ENVIRONMENT INTERNATIONAL 2021; 157:106829. [PMID: 34425483 DOI: 10.1016/j.envint.2021.106829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The sulfonate compound 2,3-dihydroxypropane-1-sulfonate (DHPS) is one of the most abundant organic sulfur compounds in the biosphere. DHPS derived from dietary intake could be transformed into sulfide by intestinal microbiota and thus impacts human health. However, little is known about its sulfur transformation and subsequent impacts in marine environment. In this study, laboratory-culturing was combined with targeted metabolomic, chemical fluorescence probing, and comparative proteomic methods to examine the bioavailability of chiral DHPS (R and S isomers) for bacteria belonging to the marine Roseobacter clade. The metabolic potential of DHPS in bacteria was further assessed based on genomic analysis. Roseobacter members Ruegeria pomeroyi DSS-3, Dinoroseobacter shibae DFL 12, and Roseobacter denitrificans OCh 114 could utilize chiral DHPS for growth, producing sulfite. They all contained a similar gene cluster for DHPS metabolism but differed in the genes encoding enzymes for desulfonation. There was no significant difference in the growth rate and DHPS consumption rate for R. pomeroyi DSS-3 between R- and S-DHPS cultures, with few proteins expressed differentially were found. Proteomic data suggested that a series of hydrogenases oxidized DHPS, after which desulfonation could proceed via three distinct enzymatic pathways. Strain R. pomeroyi DSS-3 completed the desulfonation via L-cysteate sulfo-lyase, while D. shibae DFL 12 and R. denitrificans OCh 114 primarily utilized sulfolactate sulfo-lyase, and sulfopyruvate decarboxylase followed by sulfoacetaldehyde acetyltransferase, respectively, to complete desulfonation releasing the sulfonate-moiety. The sulfite could be further oxidized or incorporated into sulfate assimilation, indicated by the proteomic data. Furthermore, DHPS metabolic pathways were found primarily in marine bacterial groups, including the majority of sequenced Roseobacter genomes. Our results suggest that chiral DHPS, as a vital reduced sulfur reservoir, could be metabolized by marine bacteria, providing a resource for bacterial growth, rather than acting as a source of toxic sulfide within the marine ecosystem.
Collapse
Affiliation(s)
- Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Le Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xi Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yu Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen 361102, Fujian, PR China.
| |
Collapse
|