1
|
da Silva S, Vuong P, Amaral JRV, da Silva VAS, de Oliveira SS, Vermelho AB, Beale DJ, Bissett A, Whiteley AS, Kaur P, Macrae A. The piranha gut microbiome provides a selective lens into river water biodiversity. Sci Rep 2024; 14:21518. [PMID: 39277613 PMCID: PMC11401890 DOI: 10.1038/s41598-024-72329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Advances in omics technologies have enabled the in-depth study of microbial communities and their metabolic profiles from all environments. Here metagenomes were sampled from piranha (Serrasalmus rhombeus) and from river water from the Rio São Benedito (Amazon Basin). Shotgun metagenome sequencing was used to explore diversity and to test whether fish microbiomes are a good proxy for river microbiome studies. The results showed that the fish microbiomes were not significantly different from the river water microbiomes at higher taxonomic ranks. However, at the genus level, fish microbiome alpha diversity decreased, and beta diversity increased. This result repeated for functional gene abundances associated with specific metabolic categories (SEED level 3). A clear delineation between water and fish was seen for beta diversity. The piranha microbiome provides a good and representative subset of its river water microbiome. Variations seen in beta biodiversity were expected and can be explained by temporal variations in the fish microbiome in response to stronger selective forces on its biodiversity. Metagenome assembled genomes construction was better from the fish samples. This study has revealed that the microbiome of a piranha tells us a lot about its river water microbiome and function.
Collapse
Affiliation(s)
- Sheila da Silva
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paton Vuong
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - João Ricardo Vidal Amaral
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Selma Soares de Oliveira
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alane Beatriz Vermelho
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David John Beale
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Dutton Park, QLD, Australia
| | - Andrew Bissett
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Battery Point, TAS, Australia
| | - Andrew Steven Whiteley
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Waterford, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - Andrew Macrae
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Kostic T, Schloter M, Arruda P, Berg G, Charles TC, Cotter PD, Kiran GS, Lange L, Maguin E, Meisner A, van Overbeek L, Sanz Y, Sarand I, Selvin J, Tsakalidou E, Smidt H, Wagner M, Sessitsch A. Concepts and criteria defining emerging microbiome applications. Microb Biotechnol 2024; 17:e14550. [PMID: 39236296 PMCID: PMC11376781 DOI: 10.1111/1751-7915.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
In recent years, microbiomes and their potential applications for human, animal or plant health, food production and environmental management came into the spotlight of major national and international policies and strategies. This has been accompanied by substantial R&D investments in both public and private sectors, with an increasing number of products entering the market. Despite widespread agreement on the potential of microbiomes and their uses across disciplines, stakeholders and countries, there is no consensus on what defines a microbiome application. This often results in non-comprehensive communication or insufficient documentation making commercialisation and acceptance of the novel products challenging. To showcase the complexity of this issue we discuss two selected, well-established applications and propose criteria defining a microbiome application and their conditions of use for clear communication, facilitating suitable regulatory frameworks and building trust among stakeholders.
Collapse
Affiliation(s)
- Tanja Kostic
- AIT Austrian Institute of Technology GmbHViennaAustria
| | | | | | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, MooreparkAPC Microbiome Ireland and VistaMilkCorkIreland
| | | | - Lene Lange
- LL‐BioEconomy, Research and AdvisoryCopenhagenDenmark
| | - Emmanuelle Maguin
- Université Paris‐Saclay, INRAE, AgroParisTech, MICALIS UMR1319Jouy‐en‐JosasFrance
| | - Annelein Meisner
- Wageningen University & Research, Wageningen ResearchWageningenThe Netherlands
| | - Leo van Overbeek
- Wageningen University & Research, Wageningen ResearchWageningenThe Netherlands
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology – Spanish National Research Council (IATA‐CSIC)PaternaValenciaSpain
| | - Inga Sarand
- Tallinn University of TechnologyTallinnEstonia
| | | | | | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Martin Wagner
- FFoQSI GmbH – Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
| | | |
Collapse
|
3
|
Gapp C, Dijamentiuk A, Mangavel C, Callon C, Theil S, Revol-Junelles AM, Chassard C, Borges F. Serial fermentation in milk generates functionally diverse community lineages with different degrees of structure stabilization. mSystems 2024; 9:e0044524. [PMID: 39041801 PMCID: PMC11334471 DOI: 10.1128/msystems.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Microbial communities offer considerable potential for tackling environmental challenges by improving the functioning of ecosystems. Top-down community engineering is a promising strategy that could be used to obtain communities of desired function. However, the ecological factors that control the balance between community shaping and propagation are not well understood. Dairy backslopping, which consists of using part of the previous production to inoculate a new one, can be used as a model engineering approach to investigate community dynamics during serial propagations. In this study, 26 raw milk samples were serially propagated 6 times each, giving rise to 26 community lineages. Bacterial community structures were analyzed by metabarcoding, and acidification was recorded by pH monitoring. The results revealed that different types of community lineages could be obtained in terms of taxonomic composition and dynamics. Five lineages reached a repeatable community structure in a few propagation steps, with little variation between the final generations, giving rise to stable acidification kinetics. Moreover, these stabilized communities presented a high variability of structure and diverse acidification properties between community lineages. Besides, the other lineages were characterized by different levels of dynamics leading to parallel or divergent trajectories. The functional properties and dynamics of the communities were mainly related to the relative abundance and the taxonomic composition of lactic acid bacteria within the communities. These findings highlight that short-term schemes of serial fermentation can produce communities with a wide range of dynamics and that the balance between community shaping and propagation is intimately linked to community structure. IMPORTANCE Microbiome applications require approaches for shaping and propagating microbial communities. Shaping allows the selection of communities with desired taxonomic and functional properties, while propagation allows the production of the biomass required to inoculate the engineered communities in the target ecosystem. In top-down community engineering, where communities are obtained from a pool of mixed microorganisms by acting on environmental variables, a major challenge is to master the balance between shaping and propagation. However, the ecological factors that favor high dynamics of community structure and, conversely, those that favor stability during propagation are not well understood. In this work, short-term dairy backslopping was used to investigate the key role of the taxonomic composition and structure of bacterial communities on their dynamics. The results obtained open up interesting prospects for the biotechnological use of microbiomes, particularly in the field of dairy fermentation, to diversify approaches for injecting microbial biodiversity into cheesemaking processes.
Collapse
Affiliation(s)
- Chloé Gapp
- Université de Lorraine, LIBio, Nancy, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | | | | - Cécile Callon
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | | - Christophe Chassard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 0545 Fromage, Aurillac, France
| | | |
Collapse
|
4
|
Compant S, Cassan F, Kostić T, Johnson L, Brader G, Trognitz F, Sessitsch A. Harnessing the plant microbiome for sustainable crop production. Nat Rev Microbiol 2024:10.1038/s41579-024-01079-1. [PMID: 39147829 DOI: 10.1038/s41579-024-01079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Global research on the plant microbiome has enhanced our understanding of the complex interactions between plants and microorganisms. The structure and functions of plant-associated microorganisms, as well as the genetic, biochemical, physical and metabolic factors that influence the beneficial traits of plant microbiota have also been intensively studied. Harnessing the plant microbiome has led to the development of various microbial applications to improve crop productivity in the face of a range of challenges, for example, climate change, abiotic and biotic stresses, and declining soil properties. Microorganisms, particularly nitrogen-fixing rhizobia as well as mycorrhizae and biocontrol agents, have been applied for decades to improve plant nutrition and health. Still, there are limitations regarding efficacy and consistency under field conditions. Also, the wealth of expanding knowledge on microbiome diversity, functions and interactions represents a huge source of information to exploit for new types of application. In this Review, we explore plant microbiome functions, mechanisms, assembly and types of interaction, and discuss current applications and their pitfalls. Furthermore, we elaborate on how the latest findings in plant microbiome research may lead to the development of new or more advanced applications. Finally, we discuss research gaps to fully leverage microbiome functions for sustainable plant production.
Collapse
Affiliation(s)
| | | | - Tanja Kostić
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | - Günter Brader
- AIT Austrian Institute of Technology, Vienna, Austria
| | | | | |
Collapse
|
5
|
Daraz U, Erhunmwunse AS, Dubeux JCB, Mackowiak C, Liao HL, Wang XB. Soil fungal community structure and function response to rhizoma perennial peanut cultivars. BMC PLANT BIOLOGY 2024; 24:582. [PMID: 38898415 PMCID: PMC11186081 DOI: 10.1186/s12870-024-05209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.
Collapse
Affiliation(s)
- Umar Daraz
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral, Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
| | | | - José C B Dubeux
- North Florida Research and Education Center, University of Florida, Marianna, FL, USA
| | - Cheryl Mackowiak
- North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Xiao-Bo Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral, Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China.
| |
Collapse
|
6
|
Khan AL. Silicon: A valuable soil element for improving plant growth and CO 2 sequestration. J Adv Res 2024:S2090-1232(24)00217-0. [PMID: 38806098 DOI: 10.1016/j.jare.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Silicon (Si), the second most abundant and quasi-essential soil element, is locked as a recalcitrant silicate mineral in the Earth's crust. The physical abundance of silicates can play an essential role in increasing plant productivity. Plants store Si as biogenic silica (phytoliths), which is mobilized through a chemical weathering process in the soil. AIM OF REVIEW Although Si is a critical element for plant growth, there is still a considerable need to understand its dissolution, uptake, and translocation in agroecosystems. Here, we show recent progress in understanding the interactome of Si, CO2, the microbiome, and soil chemistry, which can sustainably govern silicate dissolution and cycling in agriculture. KEY SCIENTIFIC CONCEPTS OF THIS REVIEW Si cycling is directly related to carbon cycling, and the resulting climate stability can be enhanced by negative feedback between atmospheric CO2 and the silicate uptake process. Improved Si mobilization in the rhizosphere by the presence of reactive elements (for example, Ca, Na, Al, Zn, and Fe) and Si uptake through genetic transporters in plants are crucial to achieving the dual objectives of (i) enhancing crop productivity and (ii) abiotic stress tolerance. Furthermore, the microbiome is a symbiotic partner of plants. Bacterial and fungal microbiomes can solubilize silicate minerals through intriguingly complex bioweathering mechanisms by producing beneficial metabolites and enzymes. However, the interaction of Si with CO2 and the microbiome's function in mobilization have been understudied. This review shows that enhancing our understanding of Si, CO2, the microbiome, and soil chemistry can help in sustainable crop production during climatic stress events.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston TX, USA.
| |
Collapse
|
7
|
Dijamentiuk A, Mangavel C, Gapp C, Elfassy A, Revol-Junelles AM, Borges F. Serial cultures in invert emulsion and monophase systems for microbial community shaping and propagation. Microb Cell Fact 2024; 23:50. [PMID: 38355580 PMCID: PMC10865683 DOI: 10.1186/s12934-024-02322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Microbial communities harbor important biotechnological potential in diverse domains, however, the engineering and propagation of such communities still face both knowledge and know-how gaps. More specifically, culturing tools are needed to propagate and shape microbial communities, to obtain desired properties, and to exploit them. Previous work suggested that micro-confinement and segregation of microorganisms using invert (water-in-oil, w/o) emulsion broth can shape communities during propagation, by alleviating biotic interactions and inducing physiological changes in cultured bacteria. The present work aimed at evaluating invert emulsion and simple broth monophasic cultures for the propagation and shaping of bacterial communities derived from raw milk in a serial propagation design. RESULTS The monophasic setup resulted in stable community structures during serial propagation, whereas the invert emulsion system resulted in only transiently stable structures. In addition, different communities with different taxonomic compositions could be obtained from a single inoculum. Furthermore, the implementation of invert emulsion systems has allowed for the enrichment of less abundant microorganisms and consequently facilitated their isolation on culture agar plates. CONCLUSIONS The monophasic system enables communities to be propagated in a stable manner, whereas the invert emulsion system allowed for the isolation of less abundant microorganisms and the generation of diverse taxonomic compositions from a single inoculum.
Collapse
Affiliation(s)
- Alexis Dijamentiuk
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Cécile Mangavel
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Chloé Gapp
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | - Annelore Elfassy
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France
| | | | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, Nancy, France.
| |
Collapse
|
8
|
Coffman L, Mejia HD, Alicea Y, Mustafa R, Ahmad W, Crawford K, Khan AL. Microbiome structure variation and soybean's defense responses during flooding stress and elevated CO 2. FRONTIERS IN PLANT SCIENCE 2024; 14:1295674. [PMID: 38389716 PMCID: PMC10882081 DOI: 10.3389/fpls.2023.1295674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 02/24/2024]
Abstract
Introduction With current trends in global climate change, both flooding episodes and higher levels of CO2 have been key factors to impact plant growth and stress tolerance. Very little is known about how both factors can influence the microbiome diversity and function, especially in tolerant soybean cultivars. This work aims to (i) elucidate the impact of flooding stress and increased levels of CO2 on the plant defenses and (ii) understand the microbiome diversity during flooding stress and elevated CO2 (eCO2). Methods We used next-generation sequencing and bioinformatic methods to show the impact of natural flooding and eCO2 on the microbiome architecture of soybean plants' below- (soil) and above-ground organs (root and shoot). We used high throughput rhizospheric extra-cellular enzymes and molecular analysis of plant defense-related genes to understand microbial diversity in plant responses during eCO2 and flooding. Results Results revealed that bacterial and fungal diversity was substantially higher in combined flooding and eCO2 treatments than in non-flooding control. Microbial diversity was soil>root>shoot in response to flooding and eCO2. We found that sole treatment of eCO2 and flooding had significant abundances of Chitinophaga, Clostridium, and Bacillus. Whereas the combination of flooding and eCO2 conditions showed a significant abundance of Trichoderma and Gibberella. Rhizospheric extra-cellular enzyme activities were significantly higher in eCO2 than flooding or its combination with eCO2. Plant defense responses were significantly regulated by the oxidative stress enzyme activities and gene expression of Elongation factor 1 and Alcohol dehydrogenase 2 in floodings and eCO2 treatments in soybean plant root or shoot parts. Conclusion This work suggests that climatic-induced changes in eCO2 and submergence can reshape microbiome structure and host defenses, essential in plant breeding and developing stress-tolerant crops. This work can help in identifying core-microbiome species that are unique to flooding stress environments and increasing eCO2.
Collapse
Affiliation(s)
- Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Hector D Mejia
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Yelinska Alicea
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Raneem Mustafa
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Kerri Crawford
- Department of Biological Sciences and Chemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biological Sciences and Chemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
9
|
Soldan R, Fusi M, Cardinale M, Homma F, Santos LG, Wenzl P, Bach-Pages M, Bitocchi E, Chacon Sanchez MI, Daffonchio D, Preston GM. Consistent effects of independent domestication events on the plant microbiota. Curr Biol 2024; 34:557-567.e4. [PMID: 38232731 DOI: 10.1016/j.cub.2023.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.
Collapse
Affiliation(s)
| | - Marco Fusi
- Center for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - Massimiliano Cardinale
- University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Felix Homma
- University of Oxford, Department of Biology, Oxford, UK
| | - Luis Guillermo Santos
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Peter Wenzl
- The Alliance Biodiversity International and the International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | | | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Isabel Chacon Sanchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gail M Preston
- University of Oxford, Department of Biology, Oxford, UK.
| |
Collapse
|
10
|
Gao M, Xiong C, Tsui CKM, Cai L. Pathogen invasion increases the abundance of predatory protists and their prey associations in the plant microbiome. Mol Ecol 2024; 33:e17228. [PMID: 38037712 DOI: 10.1111/mec.17228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Soil and plant-associated protistan communities play a key role in shaping bacterial and fungal communities, primarily through their function as top-down predators. However, our understanding of how pathogen invasion influences these protistan communities and their relationships with bacterial and fungal communities remains limited. Here, we studied the protistan communities along the soil-plant continuum of healthy chilli peppers and those affected by Fusarium wilt disease (FWD), and integrated bacterial and fungal community data from our previous research. Our research showed that FWD was associated with a significant enrichment of phagotrophic protists in roots, and also increased the proportion and connectivity of these protists (especially Cercozoa and Ciliophora) in both intra- and inter-kingdom networks. Furthermore, the microbiome of diseased plants not only showed a higher relative abundance of functional genes related to bacterial anti-predator responses than healthy plants, but also contained a greater abundance of metagenome-assembled genomes with functional traits involved in this response. The increased microbial inter-kingdom associations between bacteria and protists, coupled with the notable bacterial anti-predator feedback in the microbiome of diseased plants, suggest that FWD may catalyse the associations between protists and their microbial prey. These findings highlight the potential role of predatory protists in influencing microbial assembly and functionality through top-down forces under pathogenic stress.
Collapse
Affiliation(s)
- Min Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Clement K M Tsui
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- National Center for Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Orozco-Mosqueda MDC, Kumar A, Babalola OO, Santoyo G. Rhizobiome Transplantation: A Novel Strategy beyond Single-Strain/Consortium Inoculation for Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2023; 12:3226. [PMID: 37765390 PMCID: PMC10535606 DOI: 10.3390/plants12183226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture.
Collapse
Affiliation(s)
- Ma. del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa;
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico
| |
Collapse
|
12
|
Khan AL. The phytomicrobiome: solving plant stress tolerance under climate change. FRONTIERS IN PLANT SCIENCE 2023; 14:1219366. [PMID: 37746004 PMCID: PMC10513501 DOI: 10.3389/fpls.2023.1219366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
With extraordinary global climate changes, increased episodes of extreme conditions result in continuous but complex interaction of environmental variables with plant life. Exploring natural phytomicrobiome species can provide a crucial resource of beneficial microbes that can improve plant growth and productivity through nutrient uptake, secondary metabolite production, and resistance against pathogenicity and abiotic stresses. The phytomicrobiome composition, diversity, and function strongly depend on the plant's genotype and climatic conditions. Currently, most studies have focused on elucidating microbial community abundance and diversity in the phytomicrobiome, covering bacterial communities. However, least is known about understanding the holistic phytomicrobiome composition and how they interact and function in stress conditions. This review identifies several gaps and essential questions that could enhance understanding of the complex interaction of microbiome, plant, and climate change. Utilizing eco-friendly approaches of naturally occurring synthetic microbial communities that enhance plant stress tolerance and leave fewer carbon-foot prints has been emphasized. However, understanding the mechanisms involved in stress signaling and responses by phytomicrobiome species under spatial and temporal climate changes is extremely important. Furthermore, the bacterial and fungal biome have been studied extensively, but the holistic interactome with archaea, viruses, oomycetes, protozoa, algae, and nematodes has seldom been studied. The inter-kingdom diversity, function, and potential role in improving environmental stress responses of plants are considerably important. In addition, much remains to be understood across organismal and ecosystem-level responses under dynamic and complex climate change conditions.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Houston, TX, United States
| |
Collapse
|
13
|
Olmo R, Wetzels SU, Berg G, Cocolin L, Hartmann M, Hugas M, Kostic T, Rattei T, Ruthsatz M, Rybakova D, Sessitsch A, Shortt C, Timmis K, Selberherr E, Wagner M. Food systems microbiome-related educational needs. Microb Biotechnol 2023; 16:1412-1422. [PMID: 37338855 PMCID: PMC10281364 DOI: 10.1111/1751-7915.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 06/21/2023] Open
Abstract
Within the European-funded Coordination and Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), the Workshop 'Education in Food Systems Microbiome Related Sciences: Needs for Universities, Industry and Public Health Systems' brought together over 70 researchers, public health and industry partners from all over the world to work on elaborating microbiome-related educational needs in food systems. This publication provides a summary of discussions held during and after the workshop and the resulting recommendations.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Gabriele Berg
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
- Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Luca Cocolin
- Department of Agricultural, Forest and Food SciencesUniversity of TurinTurinItaly
| | - Moritz Hartmann
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Marta Hugas
- European Food Safety Authority (EFSA), EUParmaItaly
| | - Tanja Kostic
- Bioresouces Unit, Center for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | | | - Daria Rybakova
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
| | - Angela Sessitsch
- Bioresouces Unit, Center for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | | | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Evelyne Selberherr
- FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Martin Wagner
- FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| |
Collapse
|
14
|
Makhalanyane TP, Bezuidt OKI, Pierneef RE, Mizrachi E, Zeze A, Fossou RK, Kouadjo CG, Duodu S, Chikere CB, Babalola OO, Klein A, Keyster M, du Plessis M, Yorou NS, Hijri M, Rossouw T, Kamutando CN, Venter S, Moleleki LN, Murrell C. African microbiomes matter. Nat Rev Microbiol 2023:10.1038/s41579-023-00925-y. [PMID: 37328673 DOI: 10.1038/s41579-023-00925-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Thulani P Makhalanyane
- DSI/NRF SARChI in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Oliver K I Bezuidt
- DSI/NRF SARChI in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rian E Pierneef
- DSI/NRF SARChI in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Adolphe Zeze
- Laboratoire de Biotechnologies Végétale et Microbienne/UMRI Sciences Agronomiques et Génie Rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Romain K Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne/UMRI Sciences Agronomiques et Génie Rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Claude Ghislaine Kouadjo
- Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique, Abidjan, Côte d'Ivoire
| | - Samuel Duodu
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Chioma B Chikere
- Department of Microbiology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Olubukola O Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Mornè du Plessis
- Genetics Department, University of the Free State, Bloemfontein, South Africa
| | - Nourou S Yorou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, Parakou, Benin
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Theresa Rossouw
- Department of Immunology, University of Pretoria School of Medicine, Pretoria, South Africa
| | - Casper N Kamutando
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, Harare, Zimbabwe
| | - Stephanus Venter
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lucy N Moleleki
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
15
|
López-Gálvez J, Schiessl K, Besmer MD, Bruckmann C, Harms H, Müller S. Development of an Automated Online Flow Cytometry Method to Quantify Cell Density and Fingerprint Bacterial Communities. Cells 2023; 12:1559. [PMID: 37371029 DOI: 10.3390/cells12121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cell density is an important factor in all microbiome research, where interactions are of interest. It is also the most important parameter for the operation and control of most biotechnological processes. In the past, cell density determination was often performed offline and manually, resulting in a delay between sampling and immediate data processing, preventing quick action. While there are now some online methods for rapid and automated cell density determination, they are unable to distinguish between the different cell types in bacterial communities. To address this gap, an online automated flow cytometry procedure is proposed for real-time high-resolution analysis of bacterial communities. On the one hand, it allows for the online automated calculation of cell concentrations and, on the other, for the differentiation between different cell subsets of a bacterial community. To achieve this, the OC-300 automation device (onCyt Microbiology, Zürich, Switzerland) was coupled with the flow cytometer CytoFLEX (Beckman Coulter, Brea, USA). The OC-300 performs the automatic sampling, dilution, fixation and 4',6-diamidino-2-phenylindole (DAPI) staining of a bacterial sample before sending it to the CytoFLEX for measurement. It is demonstrated that this method can reproducibly measure both cell density and fingerprint-like patterns of bacterial communities, generating suitable data for powerful automated data analysis and interpretation pipelines. In particular, the automated, high-resolution partitioning of clustered data into cell subsets opens up the possibility of correlation analysis to identify the operational or abiotic/biotic causes of community disturbances or state changes, which can influence the interaction potential of organisms in microbiomes or even affect the performance of individual organisms.
Collapse
Affiliation(s)
- Juan López-Gálvez
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | | | - Michael D Besmer
- onCyt Microbiology AG, Marchwartstrasse 61, 8038 Zürich, Switzerland
| | - Carmen Bruckmann
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Permoserstraße 15, D-04318 Leipzig, Germany
| |
Collapse
|
16
|
Wang L, Wang H, Liu M, Xu J, Bian H, Chen T, You E, Deng C, Wei Y, Yang T, Shen Y. Effects of different fertilization conditions and different geographical locations on the diversity and composition of the rhizosphere microbiota of Qingke ( Hordeum vulgare L.) plants in different growth stages. Front Microbiol 2023; 14:1094034. [PMID: 37213511 PMCID: PMC10192736 DOI: 10.3389/fmicb.2023.1094034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction The excessive use of chemical fertilizer causes increasing environmental and food security crisis. Organic fertilizer improves physical and biological activities of soil. Rhizosphere microbiota, which consist of highly diverse microorganisms, play an important role in soil quality. However, there is limited information about the effects of different fertilization conditions on the growth of Qingke plants and composition of the rhizosphere microbiota of the plants. Methods In this study, we characterized the rhizosphere microbiota of Qingke plants grown in three main Qingke-producing areas (Tibet, Qinghai, and Gansu). In each of the three areas, seven different fertilization conditions (m1-m7, m1: Unfertilized; m2: Farmer Practice; m3: 75% Farmer Practice; m4: 75% Farmer Practice +25% Organic manure; m5: 50% Farmer Practice; m6: 50% Farmer Practice +50% Organic manure; m7: 100% Organic manure) were applied. The growth and yields of the Qingke plants were also compared under the seven fertilization conditions. Results There were significant differences in alpha diversity indices among the three areas. In each area, differences in fertilization conditions and differences in the growth stages of Qingke plants resulted in differences in the beta diversity of the rhizosphere microbiota. Meanwhile, in each area, fertilization conditions, soil depths, and the growth stages of Qingke plants significantly affected the relative abundance of the top 10 phyla and the top 20 bacterial genera. For most of microbial pairs established through network analysis, the significance of their correlations in each of the microbial co-occurrence networks of the three experimental sites was different. Moreover, in each of the three networks, there were significant differences in relative abundance and genera among most nodes (i.e., the genera Pseudonocardia, Skermanella, Pseudonocardia, Skermanella, Aridibacter, and Illumatobacter). The soil chemical properties (i.e., TN, TP, SOM, AN, AK, CEC, Ca, and K) were positively or negatively correlated with the relative abundance of the top 30 genera derived from the three main Qingke-producing areas (p < 0.05). Fertilization conditions markedly influenced the height of a Qingke plant, the number of spikes in a Qingke plant, the number of kernels in a spike, and the fresh weight of a Qingke plant. Considering the yield, the most effective fertilization conditions for Qingke is combining application 50% chemical fertilizer and 50% organic manure. Conclusion The results of the present study can provide theoretical basis for practice of reducing the use of chemical fertilizer in agriculture.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Handong Wang
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Meijin Liu
- Gannan Institute of Agricultural Sciences, Hezuo, China
| | - Jinqing Xu
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Haiyan Bian
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tongrui Chen
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - En You
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Deng
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youhai Wei
- Academy of Agriculture and Forestry Science, Qinghai University, Xining, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yuhu Shen
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
17
|
Dijamentiuk A, Mangavel C, Elfassy A, Michaux F, Burgain J, Rondags E, Delaunay S, Ferrigno S, Revol-Junelles AM, Borges F. Invert emulsions alleviate biotic interactions in bacterial mixed culture. Microb Cell Fact 2023; 22:16. [PMID: 36670385 PMCID: PMC9854087 DOI: 10.1186/s12934-022-02014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The large application potential of microbiomes has led to a great need for mixed culture methods. However, microbial interactions can compromise the maintenance of biodiversity during cultivation in a reactor. In particular, competition among species can lead to a strong disequilibrium in favor of the fittest microorganism. In this study, an invert emulsion system was designed by dispersing culture medium in a mixture of sunflower oil and the surfactant PGPR. Confocal laser scanning microscopy revealed that this system allowed to segregate microorganisms in independent droplets. Granulomorphometric analysis showed that the invert emulsion remains stable during at least 24 h, and that the introduction of bacteria did not have a significant impact on the structure of the invert emulsion. A two-strain antagonistic model demonstrated that this invert emulsion system allows the propagation of two strains without the exclusion of the less-fit bacterium. The monitoring of single-strain cultures of bacteria representative of a cheese microbiota revealed that all but Brevibacterium linens were able to grow. A consortium consisting of Lactococcus lactis subsp. lactis biovar diacetylactis, Streptococcus thermophilus, Leuconostoc mesenteroides, Staphylococcus xylosus, Lactiplantibacillus plantarum and Carnobacterium maltaromaticum was successfully cultivated without detectable biotic interactions. Metabarcoding analysis revealed that the system allowed a better maintenance of alpha diversity and produced a propagated bacterial consortium characterized by a structure closer to the initial state compared to non-emulsified medium. This culture system could be an important tool in the field of microbial community engineering.
Collapse
Affiliation(s)
- Alexis Dijamentiuk
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Cécile Mangavel
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Annelore Elfassy
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Florentin Michaux
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Jennifer Burgain
- grid.29172.3f0000 0001 2194 6418LIBio, Université de Lorraine, Nancy, France
| | - Emmanuel Rondags
- grid.29172.3f0000 0001 2194 6418LRGP, Université de Lorraine, Nancy, France
| | - Stéphane Delaunay
- grid.29172.3f0000 0001 2194 6418LRGP, Université de Lorraine, Nancy, France
| | - Sandie Ferrigno
- grid.29172.3f0000 0001 2194 6418IECL, Equipe BIGS, INRIA Nancy, Université de Lorraine, Nancy, France
| | | | | |
Collapse
|
18
|
Wang K, Bi Y, Zhang J, Ma S. AMF Inoculum Enhances Crop Yields of Zea mays L. 'Chenghai No. 618' and Glycine max L. 'Zhonghuang No. 17' without Disturbing Native Fugal Communities in Coal Mine Dump. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17058. [PMID: 36554943 PMCID: PMC9779662 DOI: 10.3390/ijerph192417058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
For the agricultural development of dumps, increase in land use efficiency and protection of food security, to verify the safety, efficacy and sustainability of field-applied arbuscular mycorrhizal fungi (AMF) inoculum, and to exclude the risk of potential biological invasion, in this study, we determined the effect of AMF inoculation and intercropping patterns (maize-soybean) on the temporal dynamics of soil parameters, native AMF communities and crop yields. AMF communities were analyzed using Illumina MiSeq. A total of 448 AMF operational taxonomic units (OTUs) belonging to six genera and nine families were identified. AMF inoculation treatment significantly improved the yield of intercropping maize and increased the content of available phosphorus. AMF diversity was significantly influenced by cropping pattern and growth stage, but not by the inoculation treatment. Inoculation altered the AMF community composition in the early growth stage and facilitated a more complex AMF network in the early and late growth stages. These results indicate that AMF inoculation affects native AMF only in the early stage, and its impact on yield may be the consequence of cumulative effects due to the advantages of plant growth and nutrient uptake in the early stage.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Yinli Bi
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
- Institute of Ecological Environment Restoration in Mine Areas of West China, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Jiayu Zhang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Shaopeng Ma
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
19
|
Callens K, Fontaine F, Sanz Y, Bogdanski A, D‘Hondt K, Lange L, Smidt H, van Overbeek L, Kostic T, Maguin E, Meisner A, Sarand I, Sessitsch A. Microbiome-based solutions to address new and existing threats to food security, nutrition, health and agrifood systems' sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1047765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In addition to challenges like climate change and biodiversity loss, the sustainability and resilience of agrifood systems worldwide are currently challenged by new threats, such as the COVID-19 pandemic and the Ukraine war. Furthermore, the resilience and sustainability of our agrifood systems need to be enhanced in ways that simultaneously increase agricultural production, decrease post-harvest food losses and food waste, protect the climate, environment and health, and preserve biodiversity. The precarious situation of agrifood systems is also illustrated by the fact that overall, around 3 billion people worldwide still do not have regular access to a healthy diet. This results in various forms of malnutrition, as well as increasing number of people suffering from overweight and obesity, and diet-related, non-communicable diseases (NCDs) around the world. Findings from microbiome research have shown that the human gut microbiome plays a key role in nutrition and diet-related diseases and thus human health. Furthermore, the microbiome of soils, plants, and animals play an equally important role in environmental health and agricultural production. Upcoming, microbiome-based solutions hold great potential for more resilient, sustainable, and productive agrifood systems and open avenues toward preventive health management. Microbiome-based solutions will also be key to make better use of natural resources and increase the resilience of agrifood systems to future emerging and already-known crises. To realize the promises of microbiome science and innovation, there is a need to invest in enhancing the role of microbiomes in agrifood systems in a holistic One Health approach and to accelerate knowledge translation and implementation.
Collapse
|
20
|
Vuong P, Chong S, Kaur P. The little things that matter: how bioprospecting microbial biodiversity can build towards the realization of United Nations Sustainable Development Goals. NPJ BIODIVERSITY 2022; 1:4. [PMID: 39242677 PMCID: PMC11290601 DOI: 10.1038/s44185-022-00006-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/03/2022] [Indexed: 09/09/2024]
Affiliation(s)
- Paton Vuong
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - Sandy Chong
- Faculty of Science & Engineering, Curtin University, Perth, Australia
- United Nations Association of Australia (WA Division), Perth, Australia
| | - Parwinder Kaur
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia.
| |
Collapse
|
21
|
Imachi H, Nobu MK, Miyazaki M, Tasumi E, Saito Y, Sakai S, Ogawara M, Ohashi A, Takai K. Cultivation of previously uncultured microorganisms with a continuous-flow down-flow hanging sponge (DHS) bioreactor, using a syntrophic archaeon culture obtained from deep marine sediment as a case study. Nat Protoc 2022; 17:2784-2814. [PMID: 36104596 DOI: 10.1038/s41596-022-00735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
In microbiology, cultivation is a central approach for uncovering novel physiology, ecology, and evolution of microorganisms, but conventional methods have left many microorganisms found in nature uncultured. To overcome the limitations of traditional methods and culture indigenous microorganisms, we applied a two-stage approach: enrichment/activation of indigenous organisms by using a continuous-flow down-flow hanging sponge bioreactor and subsequent selective batch cultivation. Here, we provide a protocol for this bioreactor-mediated technique using activation of deep marine sediment microorganisms and downstream isolation of a syntrophic co-culture containing an archaeon closely related to the eukaryote ancestor (Candidatus Promethearchaeum syntrophicum strain MK-D1) as an example. Both stages can easily be tailored to target other environments and organisms by modifying the inoculum, feed solution/gases, attachment material and/or cultivation media. We anaerobically incubate polyurethane sponges inoculated with deep-sea methane seep sediment in a reactor at 10 °C and feed anaerobic artificial seawater medium and methane. Once phylogenetically diverse and metabolically active microorganisms are adapted to synthetic conditions in the reactor, we transition to growing community samples in glass tubes with the above medium, simple substrates and selective compounds (e.g., antibiotics). To accommodate for the slow growth anticipated for target organisms, primary cultures can be incubated for ≥6-12 months and analyzed for community composition even when no cell turbidity is observed. One casamino acid- and antibiotic-amended culture prepared in this way led to the enrichment of uncultured archaea. Through successive transfer in vitro combined with molecular growth monitoring, we successfully obtained the target archaeon with its partner methanogen as a pure syntrophic co-culture.
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yumi Saito
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sanae Sakai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Miyuki Ogawara
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| |
Collapse
|
22
|
Lange L, Berg G, Cernava T, Champomier-Vergès MC, Charles T, Cocolin L, Cotter P, D’Hondt K, Kostic T, Maguin E, Makhalanyane T, Meisner A, Ryan M, Kiran GS, de Souza RS, Sanz Y, Schloter M, Smidt H, Wakelin S, Sessitsch A. Microbiome ethics, guiding principles for microbiome research, use and knowledge management. ENVIRONMENTAL MICROBIOME 2022; 17:50. [PMID: 36180931 PMCID: PMC9526347 DOI: 10.1186/s40793-022-00444-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The overarching biological impact of microbiomes on their hosts, and more generally their environment, reflects the co-evolution of a mutualistic symbiosis, generating fitness for both. Knowledge of microbiomes, their systemic role, interactions, and impact grows exponentially. When a research field of importance for planetary health evolves so rapidly, it is essential to consider it from an ethical holistic perspective. However, to date, the topic of microbiome ethics has received relatively little attention considering its importance. Here, ethical analysis of microbiome research, innovation, use, and potential impact is structured around the four cornerstone principles of ethics: Do Good; Don't Harm; Respect; Act Justly. This simple, but not simplistic approach allows ethical issues to be communicative and operational. The essence of the paper is captured in a set of eleven microbiome ethics recommendations, e.g., proposing gut microbiome status as common global heritage, similar to the internationally agreed status of major food crops.
Collapse
Affiliation(s)
- Lene Lange
- LL-BioEconomy, Valby, Copenhagen, Denmark
| | | | | | | | | | | | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Kathleen D’Hondt
- Department of Economy, Science and Innovation, Flemish Government, Brussels, Belgium
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Emmanuelle Maguin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Annelein Meisner
- Wageningen Research, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology- Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | | |
Collapse
|
23
|
Jurburg SD, Eisenhauer N, Buscot F, Chatzinotas A, Chaudhari NM, Heintz-Buschart A, Kallies R, Küsel K, Litchman E, Macdonald CA, Müller S, Reuben RC, da Rocha UN, Panagiotou G, Rillig MC, Singh BK. Potential of microbiome-based solutions for agrifood systems. NATURE FOOD 2022; 3:557-560. [PMID: 37118595 DOI: 10.1038/s43016-022-00576-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Biology, Leipzig University, Leipzig, Germany.
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
| | - Antonis Chatzinotas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Narendrakumar M Chaudhari
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Rene Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kirsten Küsel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Elena Litchman
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Catriona A Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rine C Reuben
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia.
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia.
| |
Collapse
|
24
|
Salomon MJ, Watts-Williams SJ, McLaughlin MJ, Bücking H, Singh BK, Hutter I, Schneider C, Martin FM, Vosatka M, Guo L, Ezawa T, Saito M, Declerck S, Zhu YG, Bowles T, Abbott LK, Smith FA, Cavagnaro TR, van der Heijden MG. Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. iScience 2022; 25:104636. [PMID: 35800760 PMCID: PMC9254352 DOI: 10.1016/j.isci.2022.104636] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Microbial inoculants containing arbuscular mycorrhizal (AM) fungi are potential tools in increasing the sustainability of our food production systems. Given the demand for sustainable agriculture, the production of such inoculants has potential economic value and has resulted in a variety of commercial inoculants currently being advertised. However, their use is limited by inconsistent product efficacy and lack of consumer confidence. Here, we propose a framework that can be used to assess the quality and reliability of AM inoculants. First, we set out a range of basic quality criteria which are required to achieve reliable inoculants. This is followed by a standardized bioassay which can be used to test inoculum viability and efficacy under controlled conditions. Implementation of these measurements would contribute to the adoption of AM inoculants by producers with the potential to increase sustainability in food production systems.
Collapse
Affiliation(s)
- Matthias J. Salomon
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Stephanie J. Watts-Williams
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Michael J. McLaughlin
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Heike Bücking
- University of Missouri, Division of Plant Sciences, Columbia, MO 65211, USA
| | - Brajesh K. Singh
- Global Centre for Land-Based Innovation, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, SA 2747, Australia
| | | | | | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China
| | - Miroslav Vosatka
- The Institute of Botany, Czech Academy of Sciences, Zamek 1, 25243 Pruhonice, Czech Republic
| | - Liangdong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 1st Beichen West Rd., Chaoyang District, Beijing 100101, China
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 3, 1348 Louvain-la-Neuve, Belgium
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Timothy Bowles
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Lynette K. Abbott
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - F. Andrew Smith
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Timothy R. Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1 Glen Osmond, SA 5064, Australia
| | - Marcel G.A. van der Heijden
- Plant-Soil-Interaction Group, Institute for Sustainability Science, Agroscope, Zürich, 8046 Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zürich 8008, Switzerland
| |
Collapse
|
25
|
Choudoir MJ, Eggleston EM. Reciprocal Inclusion of Microbiomes and Environmental Justice Contributes Solutions to Global Environmental Health Challenges. mSystems 2022; 7:e0146221. [PMID: 35642845 PMCID: PMC9239259 DOI: 10.1128/msystems.01462-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generations of colonialism, industrialization, intensive agriculture, and anthropogenic climate change have radically altered global ecosystems and by extension, their environmental microbiomes. The environmental consequences of global change disproportionately burden racialized communities, those with lower socioeconomic status, and other systematically underserved populations. Environmental justice seeks to balance the relationships between environmental burden, beneficial ecosystem functions, and local communities. Given their direct links to human and ecosystem health, microbes are embedded within social and environmental justice. Considering scientific and technological advances is becoming an important step in developing actionable solutions to global equity challenges. Here we identify areas where inclusion of microbial knowledge and research can support planetary health goals. We offer guidelines for strengthening a reciprocal integration of environmental justice into environmental microbiology research. Microbes form intimate relationships with the environment and society, thus microbiologists have numerous and unique opportunities to incorporate equity into their research, teaching, and community engagement.
Collapse
Affiliation(s)
- Mallory J. Choudoir
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | |
Collapse
|
26
|
Abdelfattah A, Tack AJM, Wasserman B, Liu J, Berg G, Norelli J, Droby S, Wisniewski M. Evidence for host-microbiome co-evolution in apple. THE NEW PHYTOLOGIST 2022; 234:2088-2100. [PMID: 34823272 PMCID: PMC9299473 DOI: 10.1111/nph.17820] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 05/07/2023]
Abstract
Plants evolved in association with a diverse community of microorganisms. The effect of plant phylogeny and domestication on host-microbiome co-evolutionary dynamics are poorly understood. Here we examined the effect of domestication and plant lineage on the composition of the endophytic microbiome of 11 Malus species, representing three major groups: domesticated apple (M. domestica), wild apple progenitors, and wild Malus species. The endophytic community of M. domestica and its wild progenitors showed higher microbial diversity and abundance than wild Malus species. Heirloom and modern cultivars harbored a distinct community composition, though the difference was not significant. A community-wide Bayesian model revealed that the endophytic microbiome of domesticated apple is an admixture of its wild progenitors, with clear evidence for microbiome introgression, especially for the bacterial community. We observed a significant correlation between the evolutionary distance of Malus species and their microbiome. This study supports co-evolution between Malus species and their microbiome during domestication. This finding has major implications for future breeding programs and our understanding of the evolution of plants and their microbiomes.
Collapse
Affiliation(s)
- Ahmed Abdelfattah
- Institute of Environmental BiotechnologyGraz University of TechnologyPetersgasse 12Graz8010Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)Max‐Eyth Allee 10014469PotsdamGermany
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant SciencesStockholm UniversitySvante Arrhenius väg 20AStockholmSE‐106 91Sweden
| | - Birgit Wasserman
- Institute of Environmental BiotechnologyGraz University of TechnologyPetersgasse 12Graz8010Austria
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant BiotechnologyCollege of Landscape Architecture and Life SciencesChongqing University of Arts and SciencesYongchuanChongquing402160China
| | - Gabriele Berg
- Institute of Environmental BiotechnologyGraz University of TechnologyPetersgasse 12Graz8010Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)Max‐Eyth Allee 10014469PotsdamGermany
- Institute for Biochemistry and BiologyUniversity of Postdam14476Potsdam OT GolmGermany
| | - John Norelli
- Appalachian Fruit Research StationUnited States Department of Agriculture – Agricultural Research ServiceKearneysvilleWV25430USA
| | - Samir Droby
- Department of Postharvest ScienceAgricultural Research OrganizationThe Volcani InstitutePO Box 15159Rishon LeZion7505101Israel
| | - Michael Wisniewski
- Department of Biological SciencesVirginia Polytechnic Institute and State University220 Ag Quad LnBlacksburgVA24061USA
| |
Collapse
|
27
|
Babalola BJ, Li J, Willing CE, Zheng Y, Wang YL, Gan HY, Li XC, Wang C, Adams CA, Gao C, Guo LD. Nitrogen fertilisation disrupts the temporal dynamics of arbuscular mycorrhizal fungal hyphae but not spore density and community composition in a wheat field. THE NEW PHYTOLOGIST 2022; 234:2057-2072. [PMID: 35179789 DOI: 10.1111/nph.18043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Elucidating the temporal dynamics of arbuscular mycorrhizal (AM) fungi is critical for understanding their functions. Furthermore, research investigating the temporal dynamics of AM fungi in response to agricultural practices remains in its infancy. We investigated the effect of nitrogen fertilisation and watering reduction on the temporal dynamics of AM fungi, across the lifespan of wheat. Nitrogen fertilisation decreased AM fungal spore density (SD), extraradical hyphal density (ERHD), and intraradical colonisation rate (IRCR) in both watering conditions. Nitrogen fertilisation affected AM fungal community composition in soil but not in roots, regardless of watering conditions. The temporal analysis revealed that AM fungal ERHD and IRCR were higher under conventional watering and lower under reduced watering in March than in other growth stages at low (≤ 70 kg N ha-1 yr-1 ) but not at high (≥ 140) nitrogen fertilisation levels. AM fungal SD was lower in June than in other growth stages and community composition varied with plant development at all nitrogen fertilisation levels, regardless of watering conditions. This study demonstrates that high nitrogen fertilisation levels disrupt the temporal dynamics of AM fungal hyphal growth but not sporulation and community composition.
Collapse
Affiliation(s)
- Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Yong Zheng
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, Inner Mongolia, 014030, China
| | - Hui-Yun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Catharine A Adams
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, 94720-3102, USA
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Chen C, Zhong C, Gao X, Tan C, Bai H, Ning K. Glycyrrhiza uralensis Fisch. Root-associated microbiota: the multifaceted hubs associated with environmental factors, growth status and accumulation of secondary metabolites. ENVIRONMENTAL MICROBIOME 2022; 17:23. [PMID: 35526053 PMCID: PMC9080174 DOI: 10.1186/s40793-022-00418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Glycyrrhiza uralensis Fisch. is an important, perennial medicinal plant whose root microbiome is considered to play an important role in promoting accumulation of effective medicinal ingredients (liquiritin and glycrrhizic acid). Here, we report a comprehensive analysis of the microbial community structural composition and metabolite-plant-microbes association of G. uralensis Fisch. We collected both soil and rhizosphere samples of G. uralensis from different environmental conditions (cultivated and wild) and growth years (grown for one year and three years). Our data revealed higher species diversity in the wild group than in the cultivated group. The core rhizosphere microbiome of G. uralensis comprised 78 genera, including Bacillus, Pseudomonas, Rhizobium, some of which were potential plant beneficial microbes. Our results suggest that the growth of G. uralensis has a correlation with the root-associated microbiota assemblage. Integrated analysis among rhizosphere microbial taxa, plant gene expressions, and liquiritin and glycrrhizic acid accumulation showed that the liquiritin and glycrrhizic acid accumulation exhibited associations with the rhizosphere microbial composition at the genus level. The results provide valuable information to guide cultivation of G. uralensis, and potentially to harness the power of the root-associated microbiota to improve medicinal plant production.
Collapse
Affiliation(s)
- Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Xi Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Chongyang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Hong Bai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| |
Collapse
|
29
|
Li S, Abdulkadir N, Schattenberg F, Nunes da Rocha U, Grimm V, Müller S, Liu Z. Stabilizing microbial communities by looped mass transfer. Proc Natl Acad Sci U S A 2022; 119:e2117814119. [PMID: 35446625 PMCID: PMC9169928 DOI: 10.1073/pnas.2117814119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 01/18/2023] Open
Abstract
Building and changing a microbiome at will and maintaining it over hundreds of generations has so far proven challenging. Despite best efforts, complex microbiomes appear to be susceptible to large stochastic fluctuations. Current capabilities to assemble and control stable complex microbiomes are limited. Here, we propose a looped mass transfer design that stabilizes microbiomes over long periods of time. Five local microbiomes were continuously grown in parallel for over 114 generations and connected by a loop to a regional pool. Mass transfer rates were altered and microbiome dynamics were monitored using quantitative high-throughput flow cytometry and taxonomic sequencing of whole communities and sorted subcommunities. Increased mass transfer rates reduced local and temporal variation in microbiome assembly, did not affect functions, and overcame stochasticity, with all microbiomes exhibiting high constancy and increasing resistance. Mass transfer synchronized the structures of the five local microbiomes and nestedness of certain cell types was eminent. Mass transfer increased cell number and thus decreased net growth rates μ′. Subsets of cells that did not show net growth μ′SCx were rescued by the regional pool R and thus remained part of the microbiome. The loop in mass transfer ensured the survival of cells that would otherwise go extinct, even if they did not grow in all local microbiomes or grew more slowly than the actual dilution rate D would allow. The rescue effect, known from metacommunity theory, was the main stabilizing mechanism leading to synchrony and survival of subcommunities, despite differences in cell physiological properties, including growth rates.
Collapse
Affiliation(s)
- Shuang Li
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Nafi'u Abdulkadir
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Volker Grimm
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
- Plant Ecology and Nature Conservation, University of Potsdam, 14476 Potsdam, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Ali SS, Al-Tohamy R, Mohamed TM, Mahmoud YAG, Ruiz HA, Sun L, Sun J. Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:35. [PMID: 35379342 PMCID: PMC8981686 DOI: 10.1186/s13068-022-02131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
Abstract
Biodiesel is a renewable fuel that can be produced from a range of organic and renewable feedstock including fresh or vegetable oils, animal fats, and oilseed plants. In recent years, the lignin-based aromatic wastes, such as various aromatic waste polymers from agriculture, or organic dye wastewater from textile industry, have attracted much attention in academia, which can be uniquely selected as a potential renewable feedstock for biodiesel product converted by yeast cell factory technology. This current investigation indicated that the highest percentage of lipid accumulation can be achieved as high as 47.25% by an oleaginous yeast strain, Meyerozyma caribbica SSA1654, isolated from a wood-feeding termite gut system, where its synthetic oil conversion ability can reach up to 0.08 (g/l/h) and the fatty acid composition in yeast cells represents over 95% of total fatty acids that are similar to that of vegetable oils. Clearly, the use of oleaginous yeasts, isolated from wood-feeding termites, for synthesizing lipids from aromatics is a clean, efficient, and competitive path to achieve "a sustainable development" towards biodiesel production. However, the lacking of potent oleaginous yeasts to transform lipids from various aromatics, and an unknown metabolic regulation mechanism presented in the natural oleaginous yeast cells are the fundamental challenge we have to face for a potential cell factory development. Under this scope, this review has proposed a novel concept and approach strategy in utilization of oleaginous yeasts as the cell factory to convert aromatic wastes to lipids as the substrate for biodiesel transformation. Therefore, screening robust oleaginous yeast strain(s) from wood-feeding termite gut system with a set of the desirable specific tolerance characteristics is essential. In addition, to reconstruct a desirable metabolic pathway/network to maximize the lipid transformation and accumulation rate from the aromatic wastes with the applications of various "omics" technologies or a synthetic biology approach, where the work agenda will also include to analyze the genome characteristics, to develop a new base mutation gene editing technology, as well as to clarify the influence of the insertion position of aromatic compounds and other biosynthetic pathways in the industrial chassis genome on the expressional level and genome stability. With these unique designs running with a set of the advanced biotech approaches, a novel metabolic pathway using robust oleaginous yeast developed as a cell factory concept can be potentially constructed, integrated and optimized, suggesting that the hypothesis we proposed in utilizing aromatic wastes as a feedstock towards biodiesel product is technically promising and potentially applicable in the near future.
Collapse
Affiliation(s)
- Sameh S. Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| | - Tarek M. Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila Mexico
| | - Lushan Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
31
|
Khan AL, Lopes LD, Bilal S, Asaf S, Crawford KM, Balan V, Al-Rawahi A, Al-Harrasi A, Schachtman DP. Microbiome Variation Across Populations of Desert Halophyte Zygophyllum qatarensis. FRONTIERS IN PLANT SCIENCE 2022; 13:841217. [PMID: 35432394 PMCID: PMC9009292 DOI: 10.3389/fpls.2022.841217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Microbial symbionts play a significant role in plant health and stress tolerance. However, few studies exist that address rare species of core-microbiome function during abiotic stress. In the current study, we compared the microbiome composition of succulent dwarf shrub halophyte Zygophyllum qatarensis Hadidi across desert populations. The results showed that rhizospheric and endosphere microbiome greatly varied due to soil texture (sandy and gravel). No specific bacterial amplicon sequence variants were observed in the core-microbiome of bulk soil and rhizosphere, however, bacterial genus Alcaligenes and fungal genus Acidea were abundantly distributed across root and shoot endospheres. We also analyzed major nutrients such as silicon (Si), magnesium, and calcium across different soil textures and Z. qatarensis populations. The results showed that the rhizosphere and root parts had significantly higher Si content than the bulk soil and shoot parts. The microbiome variation can be attributed to markedly higher Si - suggesting that selective microbes are contributing to the translocation of soluble Si to root. In conclusion, low core-microbiome species abundance might be due to the harsh growing conditions in the desert - making Z. qatarensis highly selective to associate with microbial communities. Utilizing rare microbial players from plant microbiomes may be vital for increasing crop stress tolerance and productivity during stresses.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, United States
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lucas Dantas Lopes
- Department of Agronomy and Horticulture, Centre for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Saqib Bilal
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kerri M. Crawford
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, United States
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Daniel P. Schachtman
- Department of Agronomy and Horticulture, Centre for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
32
|
Palù M, Basile A, Zampieri G, Treu L, Rossi A, Silvia Morlino M, Campanaro S. KEMET - a python tool for KEGG Module evaluation and microbial genome annotation expansion. Comput Struct Biotechnol J 2022; 20:1481-1486. [PMID: 35422973 PMCID: PMC8976094 DOI: 10.1016/j.csbj.2022.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
KEMET allows evaluating and expanding microbial genome annotations. KEMET can identify unannotated genes having partial sequence truncations. Annotation expansion can improve contextual draft genome-scale metabolic model reconstruction.
Background The rapid accumulation of sequencing data from metagenomic studies is enabling the generation of huge collections of microbial genomes, with new challenges for mapping their functional potential. In particular, metagenome-assembled genomes are typically incomplete and harbor partial gene sequences that can limit their annotation from traditional tools. New scalable solutions are thus needed to facilitate the evaluation of functional potential in microbial genomes. Methods To resolve annotation gaps in microbial genomes, we developed KEMET, an open-source Python library devised for the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional units. KEMET focuses on the in-depth analysis of metabolic reaction networks to identify missing orthologs through hidden Markov model profiles. Results We evaluate the potential of KEMET for expanding functional annotations by simulating the effect of assembly issues on real gene sequences and showing that our approach can identify missing KEGG orthologs. Additionally, we show that recovered gene annotations can sensibly increase the quality of draft genome-scale metabolic models obtained from metagenome-assembled genomes, in some cases reaching the accuracy of models generated from complete genomes. Conclusions KEMET therefore allows expanding genome annotations by targeted searches for orthologous sequences, enabling a better qualitative and quantitative assessment of metabolic capabilities in novel microbial organisms.
Collapse
|
33
|
Zafeiropoulos H, Paragkamian S, Ninidakis S, Pavlopoulos GA, Jensen LJ, Pafilis E. PREGO: A Literature and Data-Mining Resource to Associate Microorganisms, Biological Processes, and Environment Types. Microorganisms 2022; 10:microorganisms10020293. [PMID: 35208748 PMCID: PMC8879827 DOI: 10.3390/microorganisms10020293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
To elucidate ecosystem functioning, it is fundamental to recognize what processes occur in which environments (where) and which microorganisms carry them out (who). Here, we present PREGO, a one-stop-shop knowledge base providing such associations. PREGO combines text mining and data integration techniques to mine such what-where-who associations from data and metadata scattered in the scientific literature and in public omics repositories. Microorganisms, biological processes, and environment types are identified and mapped to ontology terms from established community resources. Analyses of comentions in text and co-occurrences in metagenomics data/metadata are performed to extract associations and a level of confidence is assigned to each of them thanks to a scoring scheme. The PREGO knowledge base contains associations for 364,508 microbial taxa, 1090 environmental types, 15,091 biological processes, and 7971 molecular functions with a total of almost 58 million associations. These associations are available through a web portal, an Application Programming Interface (API), and bulk download. By exploring environments and/or processes associated with each other or with microbes, PREGO aims to assist researchers in design and interpretation of experiments and their results. To demonstrate PREGO’s capabilities, a thorough presentation of its web interface is given along with a meta-analysis of experimental results from a lagoon-sediment study of sulfur-cycle related microbes.
Collapse
Affiliation(s)
- Haris Zafeiropoulos
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013 Heraklion, Crete, Greece; (H.Z.); (S.P.)
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Savvas Paragkamian
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013 Heraklion, Crete, Greece; (H.Z.); (S.P.)
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Stelios Ninidakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Evangelos Pafilis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
- Correspondence: or ; Tel.: +30-2810-337748
| |
Collapse
|
34
|
González Guzmán M, Cellini F, Fotopoulos V, Balestrini R, Arbona V. New approaches to improve crop tolerance to biotic and abiotic stresses. PHYSIOLOGIA PLANTARUM 2022; 174:e13547. [PMID: 34480798 PMCID: PMC9290814 DOI: 10.1111/ppl.13547] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 05/24/2023]
Abstract
During the last years, a great effort has been dedicated at the development and employment of diverse approaches for achieving more stress-tolerant and climate-flexible crops and sustainable yield increases to meet the food and energy demands of the future. The ongoing climate change is in fact leading to more frequent extreme events with a negative impact on food production, such as increased temperatures, drought, and soil salinization as well as invasive arthropod pests and diseases. In this review, diverse "green strategies" (e.g., chemical priming, root-associated microorganisms), and advanced technologies (e.g., genome editing, high-throughput phenotyping) are described on the basis of the most recent research evidence. Particularly, attention has been focused on the potential use in a context of sustainable and climate-smart agriculture (the so called "next agriculture generation") to improve plant tolerance and resilience to abiotic and biotic stresses. In addition, the gap between the results obtained in controlled experiments and those from application of these technologies in real field conditions (lab to field step) is also discussed.
Collapse
Affiliation(s)
- Miguel González Guzmán
- Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume ICastelló de la PlanaSpain
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
| | - Francesco Cellini
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA)MetapontoItaly
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante (CNR, IPSP)TorinoItaly
| | - Vasileios Fotopoulos
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Department of Agricultural Sciences, Biotechnology & Food ScienceCyprus University of TechnologyLemesosCyprus
| | - Raffaella Balestrini
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante (CNR, IPSP)TorinoItaly
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume ICastelló de la PlanaSpain
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
| |
Collapse
|
35
|
Abstract
Schism is the new normal for the bioeconomy concept. Since its proliferation in governments, the concept has been adapted to fit national or regional exigencies. Earlier this century the knowledge-based bioeconomy (KBBE) in Europe was seen as a technical and knowledge fix in the evolving sustainability landscape. At the OECD, the concept was further honed by imagining a future where biotechnologies contribute significantly to economic growth and development. Countries started to make national bioeconomy strategies. Some countries have diverged and made the bioeconomy both much larger and more general, involving a wide variety of sectors, such as industry, energy, healthcare, agriculture, aquaculture, forestry and fishing. Whatever the approach, what seems to be consistent is the need to reconcile environmental, social and economic sustainability. This paper attempts to establish one schism that could have ramifications for the future development of the bioeconomy. Some countries, including some of the largest economies but not exclusively so, are clearly following a biotechnology model, whereas others are clearly not. In the wake of the COVID-19 pandemic, biotechnologies offer outstanding potential in healthcare, although this sector is by no means included in all bioeconomy strategies. The paper also attempts to clarify how biotechnologies can address the grand challenges and the United Nations Sustainable Development Goals. The communities of scientists seem to have no difficulty with this, but citizens and governments find it more difficult. In fact, some biotechnologies are already well established, whereas others are emerging and more controversial.
Collapse
|
36
|
Ali BM, Ang F, van der Fels-Klerx HJ. Consumer willingness to pay for plant-based foods produced using microbial applications to replace synthetic chemical inputs. PLoS One 2021; 16:e0260488. [PMID: 34874958 PMCID: PMC8651115 DOI: 10.1371/journal.pone.0260488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Analysis of consumer preferences and willingness-to-pay (WTP) for sustainable foods produced using new agri-food technologies is required to enhance the uptake of innovations that accelerate the transition towards sustainable food systems. Consumers' willingness to buy new food products, with no or limited consumption experience, mainly depends on their food choice motivational orientations (promotion- vs prevention-orientation). The objective of this study was to elicit consumers' WTP for foods that are produced with microbial applications during the plant production phase with the aim to reduce the use of synthetic chemicals in crop farming, as well as to understand the associations of food choice motives, personal and socio-demographic factors with the WTP. We used contingent valuation to elicit consumers' WTP for three food products (wheat bread, consumer potatoes and tomato sauce) through online surveys. Data were collected from 291 consumers, primarily from Italy, Germany and the Netherlands. Descriptive statistics, latent variable modelling and logistic regression were used to analysis data. Results show that more than two-third of the respondents are willing to pay premiums of at least 0.11 euro per kg of food products for reductions in synthetic chemical use by at least 50% due to microbial applications. The amount of WTP increases with the level of reductions in synthetic chemical use. The majority of the respondents are promotion-oriented consumers in relation to their food involvement, and are more likely to pay premiums for the sustainably produced food products. Environmentally concerned consumers are also more likely to pay premiums, whereas health concerned consumers are not. This study contributes to understanding of consumers' attitude and perceived health risks towards foods obtained using microbial applications, and the heterogeneity of their preferences. Results provide insights for identifying potential buyers of foods produced using microbial applications, and to set prices according to the levels of consumers' WTP.
Collapse
Affiliation(s)
- Beshir M. Ali
- Business Economics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Frederic Ang
- Business Economics Group, Wageningen University & Research, Wageningen, the Netherlands
| | | |
Collapse
|
37
|
Wille L, Kurmann M, Messmer MM, Studer B, Hohmann P. Untangling the Pea Root Rot Complex Reveals Microbial Markers for Plant Health. FRONTIERS IN PLANT SCIENCE 2021; 12:737820. [PMID: 34712258 PMCID: PMC8545811 DOI: 10.3389/fpls.2021.737820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plant health is recognised as a key element to ensure global food security. While plant breeding has substantially improved crop resistance against individual pathogens, it showed limited success for diseases caused by the interaction of multiple pathogens such as root rot in pea (Pisum sativum L.). To untangle the causal agents of the pea root rot complex and determine the role of the plant genotype in shaping its own detrimental or beneficial microbiome, fungal and oomycete root rot pathogens, as well as previously identified beneficials, i.e., arbuscular mycorrhizal fungi (AMF) and Clonostachys rosea, were qPCR quantified in diseased roots of eight differently resistant pea genotypes grown in four agricultural soils under controlled conditions. We found that soil and pea genotype significantly determined the microbial compositions in diseased pea roots. Despite significant genotype x soil interactions and distinct soil-dependent pathogen complexes, our data revealed key microbial taxa that were associated with plant fitness. Our study indicates the potential of fungal and oomycete markers for plant health and serves as a precedent for other complex plant pathosystems. Such microbial markers can be used to complement plant phenotype- and genotype-based selection strategies to improve disease resistance in one of the world's most important pulse crops of the world.
Collapse
Affiliation(s)
- Lukas Wille
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| | - Mario Kurmann
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| | - Monika M. Messmer
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zürich, Zurich, Switzerland
| | - Pierre Hohmann
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
38
|
Jonassen KR, Hagen LH, Vick SHW, Arntzen MØ, Eijsink VGH, Frostegård Å, Lycus P, Molstad L, Pope PB, Bakken LR. Nitrous oxide respiring bacteria in biogas digestates for reduced agricultural emissions. ISME JOURNAL 2021; 16:580-590. [PMID: 34489539 PMCID: PMC8776835 DOI: 10.1038/s41396-021-01101-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Inoculating agricultural soils with nitrous oxide respiring bacteria (NRB) can reduce N2O-emission, but would be impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production are suitable substrates and vectors for NRB. We show that indigenous NRB in digestates grew to high abundance during anaerobic enrichment under N2O. Gas-kinetics and meta-omic analyses showed that these NRB’s, recovered as metagenome-assembled genomes (MAGs), grew by harvesting fermentation intermediates of the methanogenic consortium. Three NRB’s were isolated, one of which matched the recovered MAG of a Dechloromonas, deemed by proteomics to be the dominant producer of N2O-reductase in the enrichment. While the isolates harbored genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O sinks in soil, which was confirmed experimentally. The isolates were grown by aerobic respiration in digestates, and fertilization with these NRB-enriched digestates reduced N2O emissions from soil. Our use of digestates for low-cost and large-scale inoculation with NRB in soil can be taken as a blueprint for future applications of this powerful instrument to engineer the soil microbiome, be it for enhancing plant growth, bioremediation, or any other desirable function.
Collapse
Affiliation(s)
- Kjell Rune Jonassen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.,VEAS WWTP, Slemmestad, Norway
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Silas H W Vick
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Pawel Lycus
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Lars Molstad
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.,Faculty of Biosciences, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
39
|
Meisner A, Wepner B, Kostic T, van Overbeek LS, Bunthof CJ, de Souza RSC, Olivares M, Sanz Y, Lange L, Fischer D, Sessitsch A, Smidt H. Calling for a systems approach in microbiome research and innovation. Curr Opin Biotechnol 2021; 73:171-178. [PMID: 34479027 DOI: 10.1016/j.copbio.2021.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022]
Abstract
Microbiomes are all around us in natural and cultivated ecosystems, for example, soils, plants, animals and our own body. Microbiomes are essential players of biotechnological applications, and their functions drive human, animal, plant and environmental health. The rapidly developing microbiome research landscape was studied by a global mapping excercise and bibliometric analysis. Although microbiome research is performed in many different science fields, using similar concepts within and across fields, microbiomes are mostly investigated one ecosystem at-a-time. In order to fully understand microbiome impacts and leverage microbial functions, research needs to adopt a systems approach connecting microbiomes and research initiatives in divergent fields to create understanding on how microbiomes can be modulated for desirable functions as a basis of sustainable, circular bioeconomy.
Collapse
Affiliation(s)
- Annelein Meisner
- Wageningen University & Research,Wageningen Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, The Netherlands
| | - Beatrix Wepner
- AIT Austrian Institute of Technology, Center for Innovation Systems & Policy, Giefinggasse 4, Vienna, 1210, Austria
| | - Tanja Kostic
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources Unit, Konrad Lorenz Strasse 24, Tulln, 3430, Austria
| | - Leo S van Overbeek
- Wageningen University & Research,Wageningen Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, The Netherlands
| | - Christine J Bunthof
- Wageningen University & Research,Wageningen Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, The Netherlands
| | - Rafael Soares Correa de Souza
- Genomics for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-875, Brazil
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna-Valencia, 46980, Spain
| | - Lene Lange
- BioEconomy, Research & Advisory, Karensgade 5, Valby, 2500, Denmark
| | - Doreen Fischer
- Helmholtz Zentrum München, National Research Center for Environmental Health, Research Unit for Comparative Microbiome Analysis, Ingolstaedter Landstr. 1, Neuherberg, Munich, D-85764, Germany
| | - Angela Sessitsch
- AIT Austrian Institute of Technology, Center for Health & Bioresources, Bioresources Unit, Konrad Lorenz Strasse 24, Tulln, 3430, Austria
| | - Hauke Smidt
- Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.
| |
Collapse
|
40
|
Xiong C, Singh BK, He JZ, Han YL, Li PP, Wan LH, Meng GZ, Liu SY, Wang JT, Wu CF, Ge AH, Zhang LM. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. MICROBIOME 2021; 9:171. [PMID: 34389047 PMCID: PMC8364065 DOI: 10.1186/s40168-021-01118-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plants live with diverse microbial communities which profoundly affect multiple facets of host performance, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils, epiphytic and endophytic niches of leaf and root, and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics. RESULTS Our results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartments than in soils, with the strongest effect in the phylloplane. Phylloplane microbiomes were co-shaped by both plant growth and seasonal environmental factors, with the air (represented by fake plants) as its important source. Further, we found that bacterial communities in plant compartments were more strongly driven by deterministic processes at the early stage but a similar pattern was for fungal communities at the late stage. Moreover, bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity at the early stage than the late stage, with functional genes related to nutrient provision enriched at the early stage and N assimilation and C degradation enriched at the late stage. Coincidently, more abundant beneficial bacterial taxa like Actinobacteria, Burkholderiaceae and Rhizobiaceae in plant microbiomes were observed at the early stage, but more saprophytic fungi at the late stage. CONCLUSIONS Our results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different stages of plant development. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection during plant growth and development. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity. Video Abstract.
Collapse
Affiliation(s)
- Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yan-Lai Han
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pei-Pei Li
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Li-Hua Wan
- Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, Qujing, 655000, China
| | - Guo-Zhong Meng
- Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, Qujing, 655000, China
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Fa Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - An-Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|