1
|
Joglekar SS, Baumgaertl K, Mucchietto A, Berger F, Grundler D. Reversing the magnetization of 50-nm-wide ferromagnets by ultrashort magnons in thin-film yttrium iron garnet. NANOSCALE HORIZONS 2024. [PMID: 39169812 PMCID: PMC11339637 DOI: 10.1039/d4nh00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Spin waves (magnons) can enable neuromorphic computing by which one aims at overcoming limitations inherent to conventional electronics and the von Neumann architecture. Encoding magnon signal by reversing magnetization of a nanomagnetic memory bit is pivotal to realize such novel computing schemes efficiently. A magnonic neural network was recently proposed consisting of differently configured nanomagnets that control nonlinear magnon interference in an underlying yttrium iron garnet (YIG) film [Papp et al., Nat. Commun., 2021, 12, 6422]. In this study, we explore the nonvolatile encoding of magnon signals by switching the magnetization of periodic and aperiodic arrays (gratings) of Ni81Fe19 (Py) nanostripes with widths w between 50 nm and 200 nm. Integrating 50-nm-wide nanostripes with a coplanar waveguide, we excited magnons having a wavelength λ of ≈100 nm. At a small spin-precessional power of 11 nW, these ultrashort magnons switch the magnetization of 50-nm-wide Py nanostripes after they have propagated over 25 μm in YIG in an applied field. We also demonstrate the magnetization reversal of nanostripes patterned in an aperiodic sequence. We thereby show that the magnon-induced reversal happens regardless of the width and periodicity of the nanostripe gratings. Our study enlarges substantially the parameter regime for magnon-induced nanomagnet reversal on YIG and is important for realizing in-memory computing paradigms making use of magnons with ultrashort wavelengths at low power consumption.
Collapse
Affiliation(s)
- Shreyas S Joglekar
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Korbinian Baumgaertl
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Andrea Mucchietto
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Francis Berger
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Dirk Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
- Institute of Electrical and Micro Engineering (IEM), EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Yue WC, Yuan Z, Huang P, Sun Y, Gao T, Lyu YY, Tu X, Dong S, He L, Dong Y, Cao X, Kang L, Wang H, Wu P, Nisoli C, Wang YL. Toroidic phase transitions in a direct-kagome artificial spin ice. NATURE NANOTECHNOLOGY 2024; 19:1101-1107. [PMID: 38684808 DOI: 10.1038/s41565-024-01666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Ferrotoroidicity-the fourth form of primary ferroic order-breaks both space and time-inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures. We design a nanomagnet array as to realize a direct-kagome spin ice. This artificial spin ice exhibits robust toroidal moments and a quasi-degenerate ground state with two distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. Using magnetic force microscopy and Monte Carlo simulation, we demonstrate a phase transition between ferrotoroidicity and paratoroidicity, along with a cross-over to a non-toroidal paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome structure provides a model system for the investigation of magnetic states and phase transitions that are inaccessible in natural materials.
Collapse
Affiliation(s)
- Wen-Cheng Yue
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Zixiong Yuan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Peiyuan Huang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Yizhe Sun
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Tan Gao
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Yang-Yang Lyu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Xuecou Tu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Sining Dong
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China.
| | - Liang He
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China
| | - Ying Dong
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou, China
| | - Xun Cao
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Lin Kang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Huabing Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
| | - Peiheng Wu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- Purple Mountain Laboratories, Nanjing, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - Yong-Lei Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
- Purple Mountain Laboratories, Nanjing, China.
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, China.
- National Key Laboratory of Spintronics, Nanjing University, Suzhou, China.
| |
Collapse
|
3
|
Dion T, Stenning KD, Vanstone A, Holder HH, Sultana R, Alatteili G, Martinez V, Kaffash MT, Kimura T, Oulton RF, Branford WR, Kurebayashi H, Iacocca E, Jungfleisch MB, Gartside JC. Ultrastrong magnon-magnon coupling and chiral spin-texture control in a dipolar 3D multilayered artificial spin-vortex ice. Nat Commun 2024; 15:4077. [PMID: 38744816 PMCID: PMC11094080 DOI: 10.1038/s41467-024-48080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Strongly-interacting nanomagnetic arrays are ideal systems for exploring reconfigurable magnonics. They provide huge microstate spaces and integrated solutions for storage and neuromorphic computing alongside GHz functionality. These systems may be broadly assessed by their range of reliably accessible states and the strength of magnon coupling phenomena and nonlinearities. Increasingly, nanomagnetic systems are expanding into three-dimensional architectures. This has enhanced the range of available magnetic microstates and functional behaviours, but engineering control over 3D states and dynamics remains challenging. Here, we introduce a 3D magnonic metamaterial composed from multilayered artificial spin ice nanoarrays. Comprising two magnetic layers separated by a non-magnetic spacer, each nanoisland may assume four macrospin or vortex states per magnetic layer. This creates a system with a rich 16N microstate space and intense static and dynamic dipolar magnetic coupling. The system exhibits a broad range of emergent phenomena driven by the strong inter-layer dipolar interaction, including ultrastrong magnon-magnon coupling with normalised coupling rates ofΔ f ν = 0.57 , GHz mode shifts in zero applied field and chirality-control of magnetic vortex microstates with corresponding magnonic spectra.
Collapse
Affiliation(s)
- Troy Dion
- Solid State Physics Laboratory, Kyushu University, Fukuoka, Japan.
| | - Kilian D Stenning
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, University College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Holly H Holder
- Blackett Laboratory, Imperial College London, London, UK
| | - Rawnak Sultana
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Ghanem Alatteili
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Victoria Martinez
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | | | - Takashi Kimura
- Solid State Physics Laboratory, Kyushu University, Fukuoka, Japan
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Hidekazu Kurebayashi
- London Centre for Nanotechnology, University College London, London, UK
- Department of Electronic and Electrical Engineering, University College London, London, UK
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Ezio Iacocca
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | | | - Jack C Gartside
- Blackett Laboratory, Imperial College London, London, UK.
- London Centre for Nanotechnology, Imperial College London, London, UK.
| |
Collapse
|
4
|
Xu M, Chen X, Guo Y, Wang Y, Qiu D, Du X, Cui Y, Wang X, Xiong J. Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301063. [PMID: 37285592 DOI: 10.1002/adma.202301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Indexed: 06/09/2023]
Abstract
Neuromorphic computing has been attracting ever-increasing attention due to superior energy efficiency, with great promise to promote the next wave of artificial general intelligence in the post-Moore era. Current approaches are, however, broadly designed for stationary and unitary assignments, thus encountering reluctant interconnections, power consumption, and data-intensive computing in that domain. Reconfigurable neuromorphic computing, an on-demand paradigm inspired by the inherent programmability of brain, can maximally reallocate finite resources to perform the proliferation of reproducibly brain-inspired functions, highlighting a disruptive framework for bridging the gap between different primitives. Although relevant research has flourished in diverse materials and devices with novel mechanisms and architectures, a precise overview remains blank and urgently desirable. Herein, the recent strides along this pursuit are systematically reviewed from material, device, and integration perspectives. At the material and device level, one comprehensively conclude the dominant mechanisms for reconfigurability, categorized into ion migration, carrier migration, phase transition, spintronics, and photonics. Integration-level developments for reconfigurable neuromorphic computing are also exhibited. Finally, a perspective on the future challenges for reconfigurable neuromorphic computing is discussed, definitely expanding its horizon for scientific communities.
Collapse
Affiliation(s)
- Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xinrui Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yehao Guo
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xinchuan Du
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yi Cui
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
5
|
Searching for the ground state of complex spin-ice systems using deep learning techniques. Sci Rep 2022; 12:15026. [PMID: 36056094 PMCID: PMC9440018 DOI: 10.1038/s41598-022-19312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Searching for the ground state of a given system is one of the most fundamental and classical questions in scientific research fields. However, when the system is complex and large, it often becomes an intractable problem; there is essentially no possibility of finding a global energy minimum state with reasonable computational resources. Recently, a novel method based on deep learning techniques was devised as an innovative optimization method to estimate the ground state. We apply this method to one of the most complicated spin-ice systems, aperiodic Penrose P3 patterns. From the results, we discover new configurations of topologically induced emergent frustrated spins, different from those previously known. Additionally, a candidate of the ground state for a still unexplored type of Penrose P3 spin-ice system is first proposed through this study. We anticipate that the capabilities of the deep learning techniques will not only improve our understanding on the physical properties of artificial spin-ice systems, but also bring about significant advances in a wide range of scientific research fields requiring computational approaches for optimization.
Collapse
|
6
|
Wu X, Zhang W, Wang W, Chen Y. Accurate determination of MFM tip's magnetic parameters on nanoparticles by decoupling the influence of electrostatic force. NANOTECHNOLOGY 2022; 33:475703. [PMID: 35970138 DOI: 10.1088/1361-6528/ac8998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Magnetic force microscopy (MFM) has become one of the most important instruments for characterizing magnetic materials with nanoscale spatial resolution. When analyzing magnetic particles by MFM, calibration of the magnetic tips using reference magnetic nanoparticles is a prerequisite due to similar orientation and dimension of the yielded magnetic fields. However, in such a calibration process, errors caused by extra electrostatic interactions will significantly affect the output results. In this work, we evaluate the magnetic moment and dipole radius of the MFM tip on Fe3O4nanoparticles by considering the associated electrostatic force. The coupling of electrostatic contribution on the measured MFM phase is eliminated by combining MFM and Kelvin probe force microscopy together with theoretical modeling. Numerical simulations and experiments on nickel nanoparticles demonstrate the effectiveness of decoupling. Results show that the calibrated MFM tip can enable a more accurate analysis of micro-and-nano magnetism. In addition, a fast and easy calibration method by using bimodal MFM is discussed, in which the acquisition of multiple phase shifts at different lift heights is not required.
Collapse
Affiliation(s)
- Xiqi Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Wenhao Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Wenting Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yuhang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, People's Republic of China
| |
Collapse
|
7
|
Yue WC, Yuan Z, Lyu YY, Dong S, Zhou J, Xiao ZL, He L, Tu X, Dong Y, Wang H, Xu W, Kang L, Wu P, Nisoli C, Kwok WK, Wang YL. Crystallizing Kagome Artificial Spin Ice. PHYSICAL REVIEW LETTERS 2022; 129:057202. [PMID: 35960577 DOI: 10.1103/physrevlett.129.057202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Artificial spin ices are engineered arrays of dipolarly coupled nanobar magnets. They enable direct investigations of fascinating collective phenomena from their diverse microstates. However, experimental access to ground states in the geometrically frustrated systems has proven difficult, limiting studies and applications of novel properties and functionalities from the low energy states. Here, we introduce a convenient approach to control the competing diploar interactions between the neighboring nanomagnets, allowing us to tailor the vertex degeneracy of the ground states. We achieve this by tuning the length of selected nanobar magnets in the spin ice lattice. We demonstrate the effectiveness of our method by realizing multiple low energy microstates in a kagome artificial spin ice, particularly the hardly accessible long range ordered ground state-the spin crystal state. Our strategy can be directly applied to other artificial spin systems to achieve exotic phases and explore new emergent collective behaviors.
Collapse
Affiliation(s)
- Wen-Cheng Yue
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zixiong Yuan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yang-Yang Lyu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Sining Dong
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Zhou
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zhi-Li Xiao
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - Liang He
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Ying Dong
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Weiwei Xu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Wai-Kwong Kwok
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yong-Lei Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Purple Mountain Laboratories, Nanjing 211111, China
| |
Collapse
|
8
|
Puttock R, Andersen IM, Gatel C, Park B, Rosamond MC, Snoeck E, Kazakova O. Defect-induced monopole injection and manipulation in artificial spin ice. Nat Commun 2022; 13:3641. [PMID: 35752624 PMCID: PMC9233697 DOI: 10.1038/s41467-022-31309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Lithographically defined arrays of nanomagnets are well placed for application in areas such as probabilistic computing or reconfigurable magnonics due to their emergent collective dynamics and writable magnetic order. Among them are artificial spin ice (ASI), which are arrays of binary in-plane macrospins exhibiting geometric frustration at the vertex interfaces. Macrospin flips in the arrays create topologically protected magnetic charges, or emergent monopoles, which are bound to an antimonopole to conserve charge. In the absence of controllable pinning, it is difficult to manipulate individual monopoles in the array without also influencing other monopole excitations or the counter-monopole charge. Here, we tailor the local magnetic order of a classic ASI lattice by introducing a ferromagnetic defect with shape anisotropy into the array. This creates monopole injection sites at nucleation fields below the critical lattice switching field. Once formed, the high energy monopoles are fixed to the defect site and may controllably propagate through the lattice under stimulation. Defect programing of bound monopoles within the array allows fine control of the pathways of inverted macrospins. Such control is a necessary prerequisite for the realization of functional devices, e. g. reconfigurable waveguide in nanomagnonic applications. Artificial spin ice systems offer a promising platform to study the motion of emergent magnetic monopoles, but controlled nucleation of monopoles is challenging. Here the authors demonstrate controlled injection and propagation of emergent monopoles in an artificial spin ice utilizing ferromagnetic defects.
Collapse
Affiliation(s)
- Robert Puttock
- Quantum Materials and Sensors, National Physical Laboratory, Teddington, UK.
| | - Ingrid M Andersen
- Centre d'Elaboration de Materiaux et d'Etudes Structurales, Toulouse, France
| | - Christophe Gatel
- Centre d'Elaboration de Materiaux et d'Etudes Structurales, Toulouse, France
| | - Bumsu Park
- Centre d'Elaboration de Materiaux et d'Etudes Structurales, Toulouse, France
| | - Mark C Rosamond
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Etienne Snoeck
- Centre d'Elaboration de Materiaux et d'Etudes Structurales, Toulouse, France
| | - Olga Kazakova
- Quantum Materials and Sensors, National Physical Laboratory, Teddington, UK
| |
Collapse
|
9
|
Chaurasiya A, Anand M, Rawat RS. Controlling degeneracy and magnetization switching in an artificial spin ice system of peanut-shaped nanomagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:275801. [PMID: 35413699 DOI: 10.1088/1361-648x/ac66b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Using extensive numerical simulations, we probe the magnetization switching in a two-dimensional artificial spin ice (ASI) system consisting of peanut-shaped nanomagnets. We also investigated the effect of external magnetic field on the degeneracy of the magnetic states in such a system. The switching field is found to be one order smaller in the proposed ASI system with peanut-shaped nanomagnets as compared to the conventionally used highly-anisotropic nanoisland such as elliptically shaped nanomagnets. The metastable two-in/two-out (Type II) magnetic state is robust at the remanence. We are also able to access the other possible microstate corresponding to Type II magnetic configurations by carefully varying the external magnetic field. It implies that one can control the degeneracy of the magnetic state by an application of suitable magnetic field. Interestingly, the magnetic charge neutrality at the vertex breaks due to the defects induced by removing nanomagnets. In such a case, the system also appears to have one-out/three-in or three-out/one-in (Type III) spin state, reminiscent of magnetic monopole at the vertex. We believe that our study is highly desirable in the context of developing the next-generation spintronics-based devices for future technologies.
Collapse
Affiliation(s)
- Avinash Chaurasiya
- Natural Sciences and Science Education, NIE, Nanyang Technological University, 637616, Singapore
| | - Manish Anand
- Department of Physics, Bihar National College, Patna University, Patna-800004, India
| | - Rajdeep Singh Rawat
- Natural Sciences and Science Education, NIE, Nanyang Technological University, 637616, Singapore
| |
Collapse
|
10
|
Gartside JC, Stenning KD, Vanstone A, Holder HH, Arroo DM, Dion T, Caravelli F, Kurebayashi H, Branford WR. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. NATURE NANOTECHNOLOGY 2022; 17:460-469. [PMID: 35513584 DOI: 10.1038/s41565-022-01091-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Strongly interacting artificial spin systems are moving beyond mimicking naturally occurring materials to emerge as versatile functional platforms, from reconfigurable magnonics to neuromorphic computing. Typically, artificial spin systems comprise nanomagnets with a single magnetization texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we have achieved macrospin-vortex bistability and demonstrated a four-state metamaterial spin system, the 'artificial spin-vortex ice' (ASVI). ASVI can host Ising-like macrospins with strong ice-like vertex interactions and weakly coupled vortices with low stray dipolar field. Vortices and macrospins exhibit starkly differing spin-wave spectra with analogue mode amplitude control and mode frequency shifts of Δf = 3.8 GHz. The enhanced bitextural microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex injection and history-dependent non-linear fading memory when driven through global magnetic field cycles. We employed spin-wave microstate fingerprinting for rapid, scalable readout of vortex and macrospin populations, and leveraged this for spin-wave reservoir computation. ASVI performs non-linear mapping transformations of diverse input and target signals in addition to chaotic time-series forecasting.
Collapse
Affiliation(s)
| | | | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Holly H Holder
- Blackett Laboratory, Imperial College London, London, UK
| | - Daan M Arroo
- Department of Materials, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Troy Dion
- London Centre for Nanotechnology, University College London, London, UK
- Solid State Physics Lab., Kyushu University, Fukuoka, Japan
| | - Francesco Caravelli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| |
Collapse
|
11
|
Fan P, Gao J, Mao H, Geng Y, Yan Y, Wang Y, Goel S, Luo X. Scanning Probe Lithography: State-of-the-Art and Future Perspectives. MICROMACHINES 2022; 13:228. [PMID: 35208352 PMCID: PMC8878409 DOI: 10.3390/mi13020228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023]
Abstract
High-throughput and high-accuracy nanofabrication methods are required for the ever-increasing demand for nanoelectronics, high-density data storage devices, nanophotonics, quantum computing, molecular circuitry, and scaffolds in bioengineering used for cell proliferation applications. The scanning probe lithography (SPL) nanofabrication technique is a critical nanofabrication method with great potential to evolve into a disruptive atomic-scale fabrication technology to meet these demands. Through this timely review, we aspire to provide an overview of the SPL fabrication mechanism and the state-the-art research in this area, and detail the applications and characteristics of this technique, including the effects of thermal aspects and chemical aspects, and the influence of electric and magnetic fields in governing the mechanics of the functionalized tip interacting with the substrate during SPL. Alongside this, the review also sheds light on comparing various fabrication capabilities, throughput, and attainable resolution. Finally, the paper alludes to the fact that a majority of the reported literature suggests that SPL has yet to achieve its full commercial potential and is currently largely a laboratory-based nanofabrication technique used for prototyping of nanostructures and nanodevices.
Collapse
Affiliation(s)
- Pengfei Fan
- Centre for Precision Manufacturing, Department of DMEM, University of Strathclyde, Glasgow G1 1XQ, UK; (P.F.); (J.G.)
| | - Jian Gao
- Centre for Precision Manufacturing, Department of DMEM, University of Strathclyde, Glasgow G1 1XQ, UK; (P.F.); (J.G.)
| | - Hui Mao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Yanquan Geng
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.G.); (Y.Y.); (Y.W.)
| | - Yongda Yan
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.G.); (Y.Y.); (Y.W.)
| | - Yuzhang Wang
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China; (Y.G.); (Y.Y.); (Y.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Xichun Luo
- Centre for Precision Manufacturing, Department of DMEM, University of Strathclyde, Glasgow G1 1XQ, UK; (P.F.); (J.G.)
| |
Collapse
|
12
|
Rana B, Mondal AK, Bandyopadhyay S, Barman A. Applications of nanomagnets as dynamical systems: II. NANOTECHNOLOGY 2021; 33:082002. [PMID: 34644699 DOI: 10.1088/1361-6528/ac2f59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
In Part I of this topical review, we discussed dynamical phenomena in nanomagnets, focusing primarily on magnetization reversal with an eye to digital applications. In this part, we address mostly wave-like phenomena in nanomagnets, with emphasis on spin waves in myriad nanomagnetic systems and methods of controlling magnetization dynamics in nanomagnet arrays which may have analog applications. We conclude with a discussion of some interesting spintronic phenomena that undergird the rich physics exhibited by nanomagnet assemblies.
Collapse
Affiliation(s)
- Bivas Rana
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznanskiego 2, Poznań 61-614, Poland
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Amrit Kumar Mondal
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Supriyo Bandyopadhyay
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, 23284, United States of America
| | - Anjan Barman
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| |
Collapse
|
13
|
Zhang X, Duzgun A, Lao Y, Subzwari S, Bingham NS, Sklenar J, Saglam H, Ramberger J, Batley JT, Watts JD, Bromley D, Chopdekar RV, O'Brien L, Leighton C, Nisoli C, Schiffer P. String Phase in an Artificial Spin Ice. Nat Commun 2021; 12:6514. [PMID: 34764259 PMCID: PMC8585881 DOI: 10.1038/s41467-021-26734-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022] Open
Abstract
One-dimensional strings of local excitations are a fascinating feature of the physical behavior of strongly correlated topological quantum matter. Here we study strings of local excitations in a classical system of interacting nanomagnets, the Santa Fe Ice geometry of artificial spin ice. We measured the moment configuration of the nanomagnets, both after annealing near the ferromagnetic Curie point and in a thermally dynamic state. While the Santa Fe Ice lattice structure is complex, we demonstrate that its disordered magnetic state is naturally described within a framework of emergent strings. We show experimentally that the string length follows a simple Boltzmann distribution with an energy scale that is associated with the system's magnetic interactions and is consistent with theoretical predictions. The results demonstrate that string descriptions and associated topological characteristics are not unique to quantum models but can also provide a simplifying description of complex classical systems with non-trivial frustration.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayhan Duzgun
- Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yuyang Lao
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shayaan Subzwari
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Nicholas S Bingham
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Joseph Sklenar
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48201, USA
| | - Hilal Saglam
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Justin Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph T Batley
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Justin D Watts
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Bromley
- Department of Physics, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Liam O'Brien
- Department of Physics, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Peter Schiffer
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
14
|
Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic force microscopy (MFM) belongs to the methods that enable spatially resolved magnetization measurements on common thin-film samples or magnetic nanostructures. The lateral resolution can be much higher than in Kerr microscopy, another spatially resolved magnetization imaging technique, but since MFM commonly necessitates positioning a cantilever tip typically within a few nanometers from the surface, it is often more complicated than other techniques. Here, we investigate the progresses in MFM on magnetic nanofibers that can be found in the literature during the last years. While MFM measurements on magnetic nanodots or thin-film samples can often be found in the scientific literature, reports on magnetic force microscopy on single nanofibers or chaotic nanofiber mats are scarce. The aim of this review is to show which MFM investigations can be conducted on magnetic nanofibers, where the recent borders are, and which ideas can be transferred from MFM on other rough surfaces towards nanofiber mats.
Collapse
|
15
|
Caravelli F, Saccone M, Nisoli C. On the degeneracy of spin ice graphs, and its estimate via the Bethe permanent. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The concept of spin ice can be extended to a general graph. We study the degeneracy of spin ice graph on arbitrary interaction structures via graph theory. We map spin ice graphs to the Ising model on a graph and clarify whether the inverse mapping is possible via a modified Krausz construction. From the gauge freedom of frustrated Ising systems, we derive exact, general results about frustration and degeneracy. We demonstrate for the first time that every spin ice graph, with the exception of the one-dimensional Ising model, is degenerate. We then study how degeneracy scales in size, using the mapping between Eulerian trails and spin ice manifolds, and a permanental identity for the number of Eulerian orientations. We show that the Bethe permanent technique provides both an estimate and a lower bound to the frustration of spin ices on arbitrary graphs of even degree. While such a technique can also be used to obtain an upper bound, we find that in all finite degree examples we studied, another upper bound based on Schrijver inequality is tighter.
Collapse
Affiliation(s)
- Francesco Caravelli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Michael Saccone
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cristiano Nisoli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
16
|
Chaurasiya AK, Mondal AK, Gartside JC, Stenning KD, Vanstone A, Barman S, Branford WR, Barman A. Comparison of Spin-Wave Modes in Connected and Disconnected Artificial Spin Ice Nanostructures Using Brillouin Light Scattering Spectroscopy. ACS NANO 2021; 15:11734-11742. [PMID: 34132521 DOI: 10.1021/acsnano.1c02537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic, and magnonics. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising results. As the field progresses, direct in-depth comparisons of distinct artificial spin systems are crucial to advancing the field. While studies have investigated the effects of different lattice geometries, little comparison exists between systems comprising continuously connected nanostructures, where spin-waves propagate via dipole-exchange interaction, and systems with nanobars disconnected at vertices, where spin-wave propagation occurs via stray dipolar field. Gaining understanding of how these very different coupling methods affect both spin-wave dynamics and magnetic reversal is key for the field to progress and provides crucial system-design information including for future systems containing combinations of connected and disconnected elements. Here, we study the magnonic response of two kagome spin ices via Brillouin light scattering, a continuously connected system and a disconnected system with vertex gaps. We observe distinct high-frequency dynamics and magnetization reversal regimes between the systems, with key distinctions in spin-wave localization and mode quantization, microstate trajectory during reversal and internal field profiles. These observations are pertinent for the fundamental understanding of artificial spin systems and broader design and engineering of reconfigurable functional magnonic crystals.
Collapse
Affiliation(s)
- Avinash Kumar Chaurasiya
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700 106, India
| | - Amrit Kumar Mondal
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700 106, India
| | - Jack C Gartside
- Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kilian D Stenning
- Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alex Vanstone
- Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Saswati Barman
- Institute of Engineering and Management, Sector-V, Salt Lake, Kolkata 700 091, India
| | - Will R Branford
- Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anjan Barman
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata 700 106, India
| |
Collapse
|
17
|
Gartside JC, Vanstone A, Dion T, Stenning KD, Arroo DM, Kurebayashi H, Branford WR. Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice. Nat Commun 2021; 12:2488. [PMID: 33941786 PMCID: PMC8093262 DOI: 10.1038/s41467-021-22723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
Strongly-interacting nanomagnetic arrays are finding increasing use as model host systems for reconfigurable magnonics. The strong inter-element coupling allows for stark spectral differences across a broad microstate space due to shifts in the dipolar field landscape. While these systems have yielded impressive initial results, developing rapid, scaleable means to access a broad range of spectrally-distinct microstates is an open research problem. We present a scheme whereby square artificial spin ice is modified by widening a 'staircase' subset of bars relative to the rest of the array, allowing preparation of any ordered vertex state via simple global-field protocols. Available microstates range from the system ground-state to high-energy 'monopole' states, with rich and distinct microstate-specific magnon spectra observed. Microstate-dependent mode-hybridisation and anticrossings are observed at both remanence and in-field with dynamic coupling strength tunable via microstate-selection. Experimental coupling strengths are found up to g/2π = 0.16 GHz. Microstate control allows fine mode-frequency shifting, gap creation and closing, and active mode number selection.
Collapse
Affiliation(s)
| | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Troy Dion
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, University College London, London, UK
| | | | - Daan M Arroo
- London Centre for Nanotechnology, University College London, London, UK
- Department of Materials, Imperial College London, London, UK
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| |
Collapse
|
18
|
Woods JS, Chen XM, Chopdekar RV, Farmer B, Mazzoli C, Koch R, Tremsin AS, Hu W, Scholl A, Kevan S, Wilkins S, Kwok WK, De Long LE, Roy S, Hastings JT. Switchable X-Ray Orbital Angular Momentum from an Artificial Spin Ice. PHYSICAL REVIEW LETTERS 2021; 126:117201. [PMID: 33798337 DOI: 10.1103/physrevlett.126.117201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Artificial spin ices (ASI) have been widely investigated as magnetic metamaterials with exotic properties governed by their geometries. In parallel, interest in x-ray photon orbital angular momentum (OAM) has been rapidly growing. Here we show that a square ASI with a patterned topological defect, a double edge dislocation, imparts OAM to scattered x rays. Unlike single dislocations, a double dislocation does not introduce magnetic frustration, and the ASI equilibrates to its antiferromagnetic (AFM) ground state. The topological charge of the defect differs with respect to the structural and magnetic order; thus, x-ray diffraction from the ASI produces photons with even and odd OAM quantum numbers at the structural and AFM Bragg conditions, respectively. The magnetic transitions of the ASI allow the AFM OAM beams to be switched on and off by modest variations of temperature and applied magnetic field. These results demonstrate ASIs can serve as metasurfaces for reconfigurable x-ray optics that could enable selective probes of electronic and magnetic properties.
Collapse
Affiliation(s)
- Justin S Woods
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Xiaoqian M Chen
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Rajesh V Chopdekar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Barry Farmer
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Claudio Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Roland Koch
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anton S Tremsin
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - Wen Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Andreas Scholl
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Steve Kevan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stuart Wilkins
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Wai-Kwong Kwok
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lance E De Long
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Sujoy Roy
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J Todd Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
19
|
Stenning KD, Gartside JC, Dion T, Vanstone A, Arroo DM, Branford WR. Magnonic Bending, Phase Shifting and Interferometry in a 2D Reconfigurable Nanodisk Crystal. ACS NANO 2021; 15:674-685. [PMID: 33320533 DOI: 10.1021/acsnano.0c06894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Strongly interacting nanomagnetic systems are pivotal across next-generation technologies including reconfigurable magnonics and neuromorphic computation. Controlling magnetization states and local coupling between neighboring nanoelements allows vast reconfigurability and a host of associated functionalities. However, existing designs typically suffer from an inability to tailor interelement coupling post-fabrication and nanoelements restricted to a pair of Ising-like magnetization states. Here, we propose a class of reconfigurable magnonic crystals incorporating nanodisks as the functional element. Ferromagnetic nanodisks are crucially bistable in macrospin and vortex states, allowing interelement coupling to be selectively activated (macrospin) or deactivated (vortex). Through microstate engineering, we leverage the distinct coupling behaviors and magnonic band structures of bistable nanodisks to achieve reprogrammable magnonic waveguiding, bending, gating, and phase-shifting across a 2D network. The potential of nanodisk-based magnonics for wave-based computation is demonstrated via an all-magnon interferometer exhibiting XNOR logic functionality. Local microstate control is achieved here via topological magnetic writing using a magnetic force microscope tip.
Collapse
Affiliation(s)
- Kilian D Stenning
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jack C Gartside
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - Troy Dion
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Alexander Vanstone
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - Daan M Arroo
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Will R Branford
- Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Farhan A, Saccone M, Petersen CF, Dhuey S, Hofhuis K, Mansell R, Chopdekar RV, Scholl A, Lippert T, van Dijken S. Geometrical Frustration and Planar Triangular Antiferromagnetism in Quasi-Three-Dimensional Artificial Spin Architecture. PHYSICAL REVIEW LETTERS 2020; 125:267203. [PMID: 33449705 DOI: 10.1103/physrevlett.125.267203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
We present a realization of highly frustrated planar triangular antiferromagnetism achieved in a quasi-three-dimensional artificial spin system consisting of monodomain Ising-type nanomagnets lithographically arranged onto a deep-etched silicon substrate. We demonstrate how the three-dimensional spin architecture results in the first direct observation of long-range ordered planar triangular antiferromagnetism, in addition to a highly disordered phase with short-range correlations, once competing interactions are perfectly tuned. Our work demonstrates how escaping two-dimensional restrictions can lead to new types of magnetically frustrated metamaterials.
Collapse
Affiliation(s)
- Alan Farhan
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Michael Saccone
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Physics Department, University of California, 1156 High Street, Santa Cruz, California 95064, USA
| | - Charlotte F Petersen
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Scott Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Kevin Hofhuis
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Rhodri Mansell
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Thomas Lippert
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
21
|
Talapatra A, Adeyeye AO. Linear chains of nanomagnets: engineering the effective magnetic anisotropy. NANOSCALE 2020; 12:20933-20944. [PMID: 33090176 DOI: 10.1039/d0nr06026g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper investigates the control of effective magnetic anisotropy in Permalloy linear chain arrays, achieved by tuning the symmetry arrangement of the ellipsoidal nanomagnets and the film thickness. When the ellipsoidal nanomagnets are coupled along their easy axis, stronger effective magnetic anisotropy is achieved compared to when the nanomagnets are coupled along their hard axis. A clear transition from a single domain state to a combination of complex flux closure states such as a vortex or double vortices is observed at different applied field angles when the film thickness is varied in the range from 20 nm to 100 nm. Tunable microwave absorption spectra, obtained by ferromagnetic resonance spectroscopy, established the complex interplay between the shape anisotropy and magnetostatic interactions, which becomes more intriguing at different film thicknesses and applied field angles. The micromagnetic simulations are in good agreement with the experimental results. Our results demonstrate possible ways of manipulating the effective magnetic anisotropy in arrays of nanomagnets for magnonic and microwave applications.
Collapse
Affiliation(s)
- A Talapatra
- Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576.
| | - A O Adeyeye
- Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576. and Department of Physics, Durham University, South Rd, Durham, DH1 3LE, UK
| |
Collapse
|
22
|
Schánilec V, Canals B, Uhlíř V, Flajšman L, Sadílek J, Šikola T, Rougemaille N. Bypassing Dynamical Freezing in Artificial Kagome Ice. PHYSICAL REVIEW LETTERS 2020; 125:057203. [PMID: 32794868 DOI: 10.1103/physrevlett.125.057203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Spin liquids are correlated, disordered states of matter that fluctuate even at low temperatures. Experimentally, the extensive degeneracy characterizing their low-energy manifold is expected to be lifted, for example, because of dipolar interactions, leading to an ordered ground state at absolute zero. However, this is not what is usually observed, and many systems, whether they are chemically synthesized or nanofabricated, dynamically freeze before magnetic ordering sets in. In artificial realizations of highly frustrated magnets, ground state configurations, and even low-energy manifolds, thus remain out of reach for practical reasons. Here, we show how dynamical freezing can be bypassed in an artificial kagome ice. We illustrate the efficiency of our method by demonstrating that the a priori dynamically inaccessible ordered ground state and fragmented spin liquid configurations can be obtained reproducibly, imaged in real space at room temperature, and studied conveniently. We then identify the mechanism by which dynamical freezing occurs in the dipolar kagome ice.
Collapse
Affiliation(s)
- V Schánilec
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - B Canals
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| | - V Uhlíř
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - L Flajšman
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - J Sadílek
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - T Šikola
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, Brno, 616 69, Czech Republic
| | - N Rougemaille
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| |
Collapse
|
23
|
Zhao K, Deng H, Chen H, Ross KA, Petříček V, Günther G, Russina M, Hutanu V, Gegenwart P. Realization of the kagome spin ice state in a frustrated intermetallic compound. Science 2020; 367:1218-1223. [PMID: 32165582 DOI: 10.1126/science.aaw1666] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2020] [Indexed: 11/02/2022]
Abstract
Spin ices are exotic phases of matter characterized by frustrated spins obeying local "ice rules," in analogy with the electric dipoles in water ice. In two dimensions, one can similarly define ice rules for in-plane Ising-like spins arranged on a kagome lattice. These ice rules require each triangle plaquette to have a single monopole and can lead to different types of orders and excitations. Using experimental and theoretical approaches including magnetometry, thermodynamic measurements, neutron scattering, and Monte Carlo simulations, we establish HoAgGe as a crystalline (i.e., nonartificial) system that realizes the kagome spin ice state. The system features a variety of partially and fully ordered states and a sequence of field-induced phases at low temperatures, all consistent with the kagome ice rule.
Collapse
Affiliation(s)
- Kan Zhao
- Experimentalphysik VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany.
| | - Hao Deng
- Institute of Crystallography, RWTH Aachen University and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), D-85747 Garching, Germany
| | - Hua Chen
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
| | - Kate A Ross
- Department of Physics, Colorado State University, Fort Collins, CO 80523, USA
| | - Vaclav Petříček
- Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Prague, Czech Republic
| | - Gerrit Günther
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Margarita Russina
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Vladimir Hutanu
- Institute of Crystallography, RWTH Aachen University and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), D-85747 Garching, Germany
| | - Philipp Gegenwart
- Experimentalphysik VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany.
| |
Collapse
|
24
|
Wyss M, Gliga S, Vasyukov D, Ceccarelli L, Romagnoli G, Cui J, Kleibert A, Stamps RL, Poggio M. Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal. ACS NANO 2019; 13:13910-13916. [PMID: 31820931 DOI: 10.1021/acsnano.9b05428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificial spin ices are a class of metamaterials consisting of magnetostatically coupled nanomagnets. Their interactions give rise to emergent behavior, which has the potential to be harnessed for the creation of functional materials. Consequently, the ability to map the stray field of such systems can be decisive for gaining an understanding of their properties. Here, we use a scanning nanometer-scale superconducting quantum interference device (SQUID) to image the magnetic stray field distribution of an artificial spin ice system exhibiting structural chirality as a function of applied magnetic fields at 4.2 K. The images reveal that the magnetostatic interaction gives rise to a measurable bending of the magnetization at the edges of the nanomagnets. Micromagnetic simulations predict that, owing to the structural chirality of the system, this edge bending is asymmetric in the presence of an external field and gives rise to a preferred direction for the reversal of the magnetization. This effect is not captured by models assuming a uniform magnetization. Our technique thus provides a promising means for understanding the collective response of artificial spin ices and their interactions.
Collapse
Affiliation(s)
- Marcus Wyss
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | - Sebastian Gliga
- SUPA, School of Physics and Astronomy , University of Glasgow , Glasgow , G12 8QQ , United Kingdom
- Paul Scherrer Institute , Villigen 5232 , Switzerland
| | - Denis Vasyukov
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | | | - Giulio Romagnoli
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| | - Jizhai Cui
- Paul Scherrer Institute , Villigen 5232 , Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials , ETH Zürich , 8093 Zürich , Switzerland
| | | | - Robert L Stamps
- Department of Physics and Astronomy , University of Manitoba , Winnipeg , R3T 2N2 , Canada
| | - Martino Poggio
- Department of Physics , University of Basel , 4056 Basel , Switzerland
| |
Collapse
|
25
|
Chen XM, Farmer B, Woods JS, Dhuey S, Hu W, Mazzoli C, Wilkins SB, Chopdekar RV, Scholl A, Robinson IK, De Long LE, Roy S, Hastings JT. Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet. PHYSICAL REVIEW LETTERS 2019; 123:197202. [PMID: 31765174 DOI: 10.1103/physrevlett.123.197202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Collective dynamics often play an important role in determining the stability of ground states for both naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a continuous time random walk model we show that these superdomain walls undergo low-temperature ballistic and high-temperature diffusive motions.
Collapse
Affiliation(s)
- X M Chen
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - B Farmer
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - J S Woods
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - W Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - S B Wilkins
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - R V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - I K Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- London Centre for Nanotechnology, University College, Gower Street, London WC1E 6BT, United Kingdom
| | - L E De Long
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
| | - S Roy
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J T Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
26
|
Rollano V, Muñoz-Noval A, Gomez A, Valdes-Bango F, Martin JI, Velez M, Osorio MR, Granados D, Gonzalez EM, Vicent JL. Topologically protected superconducting ratchet effect generated by spin-ice nanomagnets. NANOTECHNOLOGY 2019; 30:244003. [PMID: 30790770 DOI: 10.1088/1361-6528/ab0923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have designed, fabricated and tested a robust superconducting ratchet device based on topologically frustrated spin ice nanomagnets. The device is made of a magnetic Co honeycomb array embedded in a superconducting Nb film. This device is based on three simple mechanisms: (i) the topology of the Co honeycomb array frustrates in-plane magnetic configurations in the array yielding a distribution of magnetic charges which can be ordered or disordered with in-plane magnetic fields, following spin ice rules; (ii) the local vertex magnetization, which consists of a magnetic half vortex with two charged magnetic Néel walls; (iii) the interaction between superconducting vortices and the asymmetric potentials provided by the Néel walls. The combination of these elements leads to a superconducting ratchet effect. Thus, superconducting vortices driven by alternating forces and moving on magnetic half vortices generate a unidirectional net vortex flow. This ratchet effect is independent of the distribution of magnetic charges in the array.
Collapse
Affiliation(s)
- V Rollano
- IMDEA-Nanociencia, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lehmann J, Donnelly C, Derlet PM, Heyderman LJ, Fiebig M. Poling of an artificial magneto-toroidal crystal. NATURE NANOTECHNOLOGY 2019; 14:141-144. [PMID: 30531991 DOI: 10.1038/s41565-018-0321-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Although ferromagnetism is known to be of enormous importance, the exploitation of materials with a compensated (for example, antiferromagnetic) arrangement of long-range ordered magnetic moments is still in its infancy. Antiferromagnetism is more robust against external perturbations, exhibits ultrafast responses of the spin system1 and is key to phenomena such as exchange bias2,3, magnetically induced ferroelectricity4 or certain magnetoresistance phenomena5. However, there is no conjugate field for the manipulation of antiferromagnetic order, hindering both its observation and direct manipulation. Only recently, direct poling of a particular antiferromagnet was achieved with spintronic approaches6. An interesting alternative to antiferromagnetism is ferrotoroidicity-a recently established fourth form of ferroic order7,8. This is defined as a vortex-like magnetic state with zero net magnetization, yet with a spontaneously occurring toroidal moment9. As a hallmark of ferroic order, there must be a conjugate field that can manipulate the order parameter. For ferrotoroidic materials, this is a toroidal field-a magnetic vortex field violating both space-inversion and time-reversal symmetry analogous to the toroidal moment10. However, the nature and generation of the toroidal field remain elusive for conventional crystalline systems. Here, we demonstrate the creation of an artificial crystal11,12 consisting of mesoscopic planar nanomagnets with a magneto-toroidal-ordered ground state. Effective toroidal fields of either sign are applied by scanning a magnetic tip over the crystal. Thus, we achieve local control over the orientation of the toroidal moment despite its zero net magnetization.
Collapse
Affiliation(s)
- Jannis Lehmann
- Laboratory for Multifunctional Ferroic Materials, Department of Materials, ETH Zurich, Zurich, Switzerland.
| | - Claire Donnelly
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Villigen, Switzerland
| | - Peter M Derlet
- Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Laura J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Villigen, Switzerland
| | - Manfred Fiebig
- Laboratory for Multifunctional Ferroic Materials, Department of Materials, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
Wang B, Zhang B, Shen C, Chen J, Reiter G. Generating Nanoscopic Patterns in Conductivity within a Poly(3-hexylthiophene) Crystal via Bias-Controlled Scanning Probe Nanolithography. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Binghua Wang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Bin Zhang
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Changyu Shen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Günter Reiter
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
29
|
Affiliation(s)
- Cristiano Nisoli
- Theoretical Division and Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|