1
|
Kumar N, Mangla M. Nanotechnology and nanobots unleashed: pioneering a new era in gynecological cancer management - a comprehensive review. Cancer Chemother Pharmacol 2025; 95:18. [PMID: 39754614 DOI: 10.1007/s00280-024-04747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
INTRODUCTION Gynecological cancers, such as ovarian, cervical, and endometrial malignancies, are notoriously challenging due to their intricate biology and the critical need for precise diagnostic and therapeutic approaches. In recent years, groundbreaking advances in nanotechnology and nanobots have emerged as game-changers in this arena, offering the promise of a new paradigm in cancer management. This comprehensive review delves into the revolutionary potential of these technologies, showcasing their ability to transform the landscape of gynecological oncology. METHODOLOGY A systematic literature search spanning from March 2005 to August 2024 was conducted using major databases such as PubMed, Google Scholar, and Scopus. Keywords included "nanotechnology," "nanobots," "gynecological cancers," "ovarian cancer," "cervical cancer," and "endometrial cancer." Relevant articles published in English were selected based on their focus on nanotechnology and nanobots in the diagnosis, treatment, and management of gynecological cancers. The findings were synthesized to present a coherent overview of how nanotechnology and nanobots are reshaping gynecological cancer management. The review highlights key innovations, current applications, and future directions for research and clinical implementation. CONCLUSION The integration of nanotechnology and nanobots in gynecological cancer management represents a groundbreaking shift in the field. Recent advancements in nanoscale materials and robotic technology offer unprecedented opportunities for precision diagnosis, targeted drug delivery, and innovative therapeutic approaches. Despite promising developments, challenges such as biocompatibility, safety, and regulatory issues remain. Continued research and clinical trials are essential to overcome these hurdles and fully realize the potential of nanotechnology and nanobots.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India.
| | - Mishu Mangla
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India
| |
Collapse
|
2
|
Aza MK, Suberu A, Balogun M, Adegbola G, Sankoh MA, Oyediran T, Aderinto N, Olatunji G, Kokori E, Agbo CE. Nanotheranostics for gynecological cancers: a path forward for Africa. Med Oncol 2024; 42:34. [PMID: 39704911 DOI: 10.1007/s12032-024-02582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle-based therapies represent a transformative approach to managing gynecological cancers, offering targeted treatment strategies that minimize harm to healthy tissues while maximizing therapeutic efficacy. Despite their potential, implementing these advanced treatments in Africa is needed by a complex interplay of technological, economic, regulatory, and ethical challenges. This paper examines the current landscape of nanoparticle-based therapies, identifying critical barriers to their adoption, including inadequate infrastructure, high costs, and insufficient regulatory frameworks. Technological deficiencies manifest as a need for advanced nanoparticle synthesis, delivery, and diagnostics equipment, impeding research and clinical applications. Economically, the high production costs of nanoparticles, compounded by limited access to advanced diagnostic and treatment facilities, create significant financial barriers for healthcare systems and patients alike. Additionally, the regulatory environment needs to be more cohesive, characterized by a lack of established protocols and expertise to evaluate the unique properties of nanomedicines. However, opportunities for advancement exist through focused research and development initiatives. Targeted drug delivery systems, early detection methods, and immunotherapy integration are promising avenues to enhance treatment outcomes. Collaborative partnerships between African institutions and international research entities, alongside public-private collaborations, could bolster local capabilities in nanomedicine. To facilitate the integration of nanoparticle-based therapies, African governments must prioritize funding for nanomedicine research, create robust regulatory frameworks, and ensure equitable access to these innovative treatments. A concerted effort involving policy reforms, investment, and collaboration is essential for overcoming existing barriers and realizing the full potential of nanoparticle-based therapies in improving health outcomes for gynecological cancer patients across Africa.
Collapse
Affiliation(s)
- Mutia Kehwalla Aza
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | | | | | | | | | | | | | - Gbolahan Olatunji
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | | | | |
Collapse
|
3
|
Naguib YW, Alhaj-Suliman SO, Wafa EI, Saha S, Ebeid K, Mohammed HHH, Abdel-Rahman SA, Abuo-Rahma GEDA, Geary SM, Salem AK. Ciprofloxacin Derivative-Loaded Nanoparticles Synergize with Paclitaxel Against Type II Human Endometrial Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302931. [PMID: 37525558 PMCID: PMC10828114 DOI: 10.1002/smll.202302931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Indexed: 08/02/2023]
Abstract
Combinations of chemotherapeutic agents comprise a clinically feasible approach to combat cancers that possess resistance to treatment. Type II endometrial cancer is typically associated with poor outcomes and the emergence of chemoresistance. To overcome this challenge, a combination therapy is developed comprising a novel ciprofloxacin derivative-loaded PEGylated polymeric nanoparticles (CIP2b-NPs) and paclitaxel (PTX) against human type-II endometrial cancer (Hec50co with loss of function p53). Cytotoxicity studies reveal strong synergy between CIP2b and PTX against Hec50co, and this is associated with a significant reduction in the IC50 of PTX and increased G2/M arrest. Upon formulation of CIP2b into PEGylated polymeric nanoparticles, tumor accumulation of CIP2b is significantly improved compared to its soluble counterpart; thus, enhancing the overall antitumor activity of CIP2b when co-administered with PTX. In addition, the co-delivery of CIP2b-NPs with paclitaxel results in a significant reduction in tumor progression. Histological examination of vital organs and blood chemistry was normal, confirming the absence of any apparent off-target toxicity. Thus, in a mouse model of human endometrial cancer, the combination of CIP2b-NPs and PTX exhibits superior therapeutic activity in targeting human type-II endometrial cancer.
Collapse
Affiliation(s)
- Youssef W. Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
- Department of Pharmaceutics, and Minia 61519, Egypt
| | - Suhaila O. Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I. Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Sanjib Saha
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
- Department of Pharmaceutics, and Minia 61519, Egypt
| | - Hamada H. H. Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Somaya A. Abdel-Rahman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | | | - Sean M. Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States
| |
Collapse
|
4
|
Rowlands CE, Folberg AM, Beickman ZK, Devor EJ, Leslie KK, Givens BE. Particles and Prejudice: Nanomedicine Approaches to Reducing Health Disparities in Endometrial Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300096. [PMID: 37312613 PMCID: PMC10716380 DOI: 10.1002/smll.202300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Endometrial cancer is the most common gynecological malignancy worldwide and unfortunately has a much higher mortality rate in Black women compared with White women. Many potential factors contribute to these mortality rates, including the underlying effects of systemic and interpersonal racism. Furthermore, other trends in medicine have potential links to these rates including participation in clinical trials, hormone therapy, and pre-existing health conditions. Addressing the high incidence and disparate mortality rates in endometrial cancer requires novel methods, such as nanoparticle-based therapeutics. These therapeutics have been growing in increasing prevalence in pre-clinical development and have far-reaching implications in cancer therapy. The rigor of pre-clinical studies is enhanced by the likeness of the model to the human body. In systems for 3D cell culture, for example, the extracellular matrix mimics the tumor more closely. The increasing emphasis on precision medicine can be applied to cancer using nanoparticle-based methods and applied to pre-clinical models by using patient-derived model data. This review highlights the intersections of nanomedicine, precision medicine, and racial disparities within endometrial cancer and provides insights into reducing health disparities using recent scientific advances on the nanoscale.
Collapse
Affiliation(s)
- Claire E Rowlands
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| | - Abigail M Folberg
- Department of Psychology, University of Nebraska at Omaha, 6100 W. Dodge Road, ASH 347E, Omaha, NE, 68182, USA
| | - Zachary K Beickman
- Department of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Kimberly K Leslie
- Division of Molecular Medicine, Department of Internal Medicine, Department of Obstetrics and Gynecology, The University of New Mexico Comprehensive Cancer Center | The University of New Mexico Health Sciences Center, 1021 Medical Arts Ave NE, Albuquerque, NM, 87131, USA
| | - Brittany E Givens
- Department of Chemical and Materials Engineering, University of Kentucky, 512 Administration Drive, Lexington, KY, 40506, USA
| |
Collapse
|
5
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
6
|
Matoba Y, Devins KM, Milane L, Manning WB, Mazina V, Yeku OO, Rueda BR. High-Grade Endometrial Cancer: Molecular Subtypes, Current Challenges, and Treatment Options. Reprod Sci 2024; 31:2541-2559. [PMID: 38658487 DOI: 10.1007/s43032-024-01544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Although many recent advancements have been made in women's health, perhaps one of the most neglected areas of research is the diagnosis and treatment of high-grade endometrial cancer (EnCa). The molecular classification of EnCa in concert with histology was a major step forward. The integration of profiling for mismatch repair deficiency and Human Epidermal Growth Factor 2 (HER2) overexpression, can further inform treatment options, especially for drug resistant recurrent disease. Recent early phase trials suggest that regardless of subtype, combination therapy with agents that have distinct mechanisms of action is a fruitful approach to the treatment of high-grade EnCa. Unfortunately, although the importance of diagnosis and treatment of high-grade EnCa is well recognized, it is understudied compared to other gynecologic and breast cancers. There remains a tremendous need to couple molecular profiling and biomarker development with promising treatment options to inform new treatment strategies with higher efficacy and safety for all who suffer from high-grade recurrent EnCa.
Collapse
Affiliation(s)
- Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
| | - Kyle M Devins
- Department of Pathology, Massachusetts General Hospital, 021151, Boston, MA, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, 02115, Boston, MA, USA
| | - William B Manning
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Varvara Mazina
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Oladapo O Yeku
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, 55 Fruit St, 02114, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA.
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA.
| |
Collapse
|
7
|
Zhao Y, Zheng Y, Fu J, Zhang J, Shao H, Liu S, Lai J, Zhou X, Liang R, Jia L, Cui W, Yang J, Wu C, Wang L. KDM1A, a potent and selective target, for the treatment of DNMT3A-deficient non-small cell lung cancer. Br J Cancer 2024; 131:655-667. [PMID: 38951697 PMCID: PMC11333618 DOI: 10.1038/s41416-024-02772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.
Collapse
Affiliation(s)
- Yingxi Zhao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yonghao Zheng
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinjiang Fu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiayu Zhang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui Shao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shougeng Liu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiacheng Lai
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xue Zhou
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ruijuan Liang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Cui
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
8
|
Kirti A, Simnani FZ, Jena S, Lenka SS, Kalalpitiya C, Naser SS, Singh D, Choudhury A, Sahu RN, Yadav A, Sinha A, Nandi A, Panda PK, Kaushik NK, Suar M, Verma SK. Nanoparticle-mediated metronomic chemotherapy in cancer: A paradigm of precision and persistence. Cancer Lett 2024; 594:216990. [PMID: 38801886 DOI: 10.1016/j.canlet.2024.216990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Current methods of cancer therapy have demonstrated enormous potential in tumor inhibition. However, a high dosage regimen of chemotherapy results in various complications which affect the normal body cells. Tumor cells also develop resistance against the prescribed drugs in the whole treatment regimen increasing the risk of cancer relapse. Metronomic chemotherapy is a modern treatment method that involves administering drugs at low doses continuously, allowing the drug sufficient time to take its effect. This method ensures that the toxicity of the drugs is to a minimum in comparison to conventional chemotherapy. Nanoparticles have shown efficacy in delivering drugs to the tumor cells in various cancer therapies. Combining nanoparticles with metronomic chemotherapy can yield better treatment results. This combination stimulates the immune system, improving cancer cells recognition by immune cells. Evidence from clinical and pre-clinical trials supports the use of metronomic delivery for drug-loaded nanoparticles. This review focuses on the functionalization of nanoparticles for improved drug delivery and inhibition of tumor growth. It emphasizes the mechanisms of metronomic chemotherapy and its conjunction with nanotechnology. Additionally, it explores tumor progression and the current methods of chemotherapy. The challenges associated with nano-based metronomic chemotherapy are outlined, paving the way for prospects in this dynamic field.
Collapse
Affiliation(s)
- Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | | | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Rudra Narayan Sahu
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India; Instituto de Investigaciones en Materiales, UNAM, 04510, CDMX, Mexico
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
9
|
Salem AK. Recent Advances in Drug Delivery. AAPS J 2024; 26:49. [PMID: 38622411 DOI: 10.1208/s12248-024-00920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Affiliation(s)
- Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
10
|
Zhong Z, Lan Y, Chen J, Ping L, Li X, Wang Q, Zhuang X, Qiu Z, Yuan T, Guo Q, Xi L, Li Q, Luo D. Optimizing Paclitaxel Oral Absorption and Bioavailability: TPGS Co-Coating via Supercritical Anti-Solvent Fluidized Bed Technology. Pharmaceuticals (Basel) 2024; 17:412. [PMID: 38675374 PMCID: PMC11054146 DOI: 10.3390/ph17040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Supercritical anti-solvent fluidized bed (SAS-FB) coating technology has the advantages of reducing particle size, preventing high surface energy particle aggregation, improving the dissolution performance and bioavailability of insoluble drugs. The poor solubility of Biopharmaceutics Classification System (BCS) class IV drugs poses challenges in achieving optimal bioavailability. Numerous anti-cancer drugs including paclitaxel (PTX) belong to the BCS class IV, hindering their therapeutic efficacy. To address this concern, our study explored SAS-FB technology to coat PTX with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) onto lactose. Under our optimized conditions, we achieved a PTX coating efficiency of 96.8%. Further characterization confirmed the crystalline state of PTX in the lactose surface coating by scanning electron microscopy and X-ray powder diffraction. Dissolution studies indicated that SAS-FB processed samples release over 95% of the drug within 1 min. Moreover, cell transmembrane transport assays demonstrated that SAS-FB processed PTX samples co-coated with TPGS had an enhanced PTX internalization into cells and a higher permeability coefficient compared to those without TPGS. Finally, compared to unprocessed PTX, SAS-FB (TPGS) and SAS-FB processed samples showed a 2.66- and 1.49-fold increase in oral bioavailability in vivo, respectively. Our study highlights the efficacy of SAS-FB co-coating for PTX and TPGS as a promising strategy to overcome bioavailability challenges inherent in BCS class IV drugs. Our approach holds broader implications for enhancing the performance of similarly classified medications.
Collapse
Affiliation(s)
- Zicheng Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 University City Ring Road East, Panyu District, Guangzhou 510006, China; (Z.Z.); (Y.L.); (J.C.); (X.L.); (Q.W.); (L.X.)
| | - Yanling Lan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 University City Ring Road East, Panyu District, Guangzhou 510006, China; (Z.Z.); (Y.L.); (J.C.); (X.L.); (Q.W.); (L.X.)
| | - Jinxing Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 University City Ring Road East, Panyu District, Guangzhou 510006, China; (Z.Z.); (Y.L.); (J.C.); (X.L.); (Q.W.); (L.X.)
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, China
| | - Lu Ping
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (L.P.); (Z.Q.); (T.Y.)
| | - Xuchun Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 University City Ring Road East, Panyu District, Guangzhou 510006, China; (Z.Z.); (Y.L.); (J.C.); (X.L.); (Q.W.); (L.X.)
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 University City Ring Road East, Panyu District, Guangzhou 510006, China; (Z.Z.); (Y.L.); (J.C.); (X.L.); (Q.W.); (L.X.)
| | - Xiaodong Zhuang
- Division of Infection and Immunity, University College London, London OX3 7FZ, UK;
| | - Zhenwen Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (L.P.); (Z.Q.); (T.Y.)
| | - Tianhui Yuan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (L.P.); (Z.Q.); (T.Y.)
| | - Qiupin Guo
- Drug Non-Clinical Evaluation and Research Center of Guangzhou General Pharmaceutical Research Institute, Guangzhou 510240, China;
| | - Long Xi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 University City Ring Road East, Panyu District, Guangzhou 510006, China; (Z.Z.); (Y.L.); (J.C.); (X.L.); (Q.W.); (L.X.)
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 University City Ring Road East, Panyu District, Guangzhou 510006, China; (Z.Z.); (Y.L.); (J.C.); (X.L.); (Q.W.); (L.X.)
| | - Dandong Luo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (L.P.); (Z.Q.); (T.Y.)
| |
Collapse
|
11
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
12
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
13
|
Wang Y, Chen S, Wang C, Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother 2023; 166:115348. [PMID: 37639743 DOI: 10.1016/j.biopha.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is the second-most lethal global disease, as per health reports, and is responsible for around 70% of deaths in low- and middle-income countries. Endometrial cancer is one of the emerging malignancies and has been predicted as a public health challenge for the future. Insulin resistance, obesity, and diabetes mellitus are the key metabolic factors that promote risks for the development of endometrial cancer. Various signaling pathways and associated genes are involved in the genesis of endometrial cancer, and any mutation or deletion in such related factors leads to the induction of endometrial cancer. The conventional way of drug delivery has been used for ages but is associated with poor management of cancer due to non-targeting of the endometrial cancer cells, low efficacy of the therapy, and toxicity issues as well. In this context, nanocarrier-based therapy for the management of endometrial cancer is an effective alternate choice that overcomes the problems associated with conventional therapy. In this review article, we highlighted the nanocarrier-based targeting of endometrial cancer, with a special focus on targeting various metabolic signaling pathways. Furthermore, the future perspectives of nanocarrier-based targeting of metabolic pathways in endometrial cancer were also underpinned. It is concluded that targeting metabolic signaling pathways in endometrial cancer via nanocarrier scaffolds is the future of pharmaceutical design for the significant management and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun 130000, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
14
|
Wang J, Zhao Y, Nie G. Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities. MEDICAL REVIEW (2021) 2023; 3:321-342. [PMID: 38235406 PMCID: PMC10790212 DOI: 10.1515/mr-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 01/19/2024]
Abstract
Intelligent nanomedicine is currently one of the most active frontiers in cancer therapy development. Empowered by the recent progresses of nanobiotechnology, a new generation of multifunctional nanotherapeutics and imaging platforms has remarkably improved our capability to cope with the highly heterogeneous and complicated nature of cancer. With rationally designed multifunctionality and programmable assembly of functional subunits, the in vivo behaviors of intelligent nanosystems have become increasingly tunable, making them more efficient in performing sophisticated actions in physiological and pathological microenvironments. In recent years, intelligent nanomaterial-based theranostic platforms have showed great potential in tumor-targeted delivery, biological barrier circumvention, multi-responsive tumor sensing and drug release, as well as convergence with precise medication approaches such as personalized tumor vaccines. On the other hand, the increasing system complexity of anti-cancer nanomedicines also pose significant challenges in characterization, monitoring and clinical use, requesting a more comprehensive and dynamic understanding of nano-bio interactions. This review aims to briefly summarize the recent progresses achieved by intelligent nanomaterials in tumor-targeted drug delivery, tumor immunotherapy and temporospatially specific tumor imaging, as well as important advances of our knowledge on their interaction with biological systems. In the perspective of clinical translation, we have further discussed the major possibilities provided by disease-oriented development of anti-cancer nanomaterials, highlighting the critical importance clinically-oriented system design.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| |
Collapse
|
15
|
Yang S, Fei W, Zhao Y, Wang F, Ye Y, Wang F. Combat Against Gynecological Cancers with Blood Vessels as Entry Point: Anti-Angiogenic Drugs, Clinical Trials and Pre-Clinical Nano-Delivery Platforms. Int J Nanomedicine 2023; 18:3035-3046. [PMID: 37312935 PMCID: PMC10259534 DOI: 10.2147/ijn.s411761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Angiogenesis is an essential mechanism for the progression of gynecological cancers. Although approved anti-angiogenic drugs have demonstrated clinical efficacy in treating gynecological cancers, the full potential of therapeutic strategies based on tumor blood vessels has not yet been realized. This review summarizes the latest angiogenesis mechanisms involved in the progression of gynecological cancers and discusses the current clinical practice of approved anti-angiogenic drugs and related clinical trials. Given the close relationship between gynecological cancers and blood vessels, we highlight more delicate strategies for regulating tumor vessels, including wise drug combinations and smart nano-delivery platforms to achieve highly efficient drug delivery and overall vessel microenvironment regulation. We also address current challenges and future opportunities in this field. We aim to generate interest in therapeutic strategies that target blood vessels as a key entry point and offer new potential and inspiration for combating gynecological cancers.
Collapse
Affiliation(s)
- Shan Yang
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Yunchun Zhao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Yiqing Ye
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| | - Fenfen Wang
- Department of Gynecology Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, Peoples Republic of China
| |
Collapse
|
16
|
Zaslavsky J, Bannigan P, Allen C. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opin Drug Deliv 2023; 20:241-257. [PMID: 36644850 DOI: 10.1080/17425247.2023.2167978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Interest in nanomedicines has surged in recent years due to the critical role they have played in the COVID-19 pandemic. Nanoformulations can turn promising therapeutic cargo into viable products through improvements in drug safety and efficacy profiles. However, the developmental pathway for such formulations is non-trivial and largely reliant on trial-and-error. Beyond the costly demands on time and resources, this traditional approach may stunt innovation. The emergence of automation, artificial intelligence (AI) and machine learning (ML) tools, which are currently underutilized in pharmaceutical formulation development, offers a promising direction for an improved path in the design of nanomedicines. AREAS COVERED the potential of harnessing experimental automation and AI/ML to drive innovation in nanomedicine development. The discussion centers on the current challenges in drug formulation research and development, and the major advantages afforded through the application of data-driven methods. EXPERT OPINION The development of integrated workflows based on automated experimentation and AI/ML may accelerate nanomedicine development. A crucial step in achieving this is the generation of high-quality, accessible datasets. Future efforts to make full use of these tools can ultimately contribute to the development of more innovative nanomedicines and improved clinical translation of formulations that rely on advanced drug delivery systems.
Collapse
Affiliation(s)
- Jonathan Zaslavsky
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, M5S 3M2, Toronto, ON, Canada
| |
Collapse
|
17
|
Wiwatchaitawee K, Ebeid K, Quarterman JC, Naguib Y, Ali MY, Oliva C, Griguer C, Salem AK. Surface Modification of Nanoparticles Enhances Drug Delivery to the Brain and Improves Survival in a Glioblastoma Multiforme Murine Model. Bioconjug Chem 2022; 33:1957-1972. [PMID: 35041398 PMCID: PMC9662320 DOI: 10.1021/acs.bioconjchem.1c00479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant type of brain tumor and has an extremely poor prognosis. Current treatment protocols lack favorable outcomes, and alternative treatments with superior efficacy are needed. In this study, we demonstrate that loading paclitaxel (PTX) in a polymeric, nanoparticulate delivery system is capable of improving its brain accumulation and therapeutic activity. We independently incorporated two different positively charged surface modifiers, poly(amidoamine) (PAMAM) and poly(ethylenimine) (PEI), onto poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG), PLGA-PEG, nanoparticles (NPs) using a modified nanoprecipitation technique that assures the formation of nanosized particles while exposing the positively charged polymer on the surface. The prepared NPs underwent comprehensive analyses of their size, charge, in vitro permeability against a BBB cell line, and in vivo biodistribution. Our results demonstrated the successful fabrication of positively charged NPs using PAMAM or PEI. Importantly, significant improvement in brain accumulation (in vivo) was associated with NPs containing PAMAM compared to unmodified NPs or NPs containing PEI. Finally, the efficacy of PAMAM-modified NPs loaded with PTX was evaluated with orthotopic human GBM xenografts in a mouse model, and the data demonstrated improved survival and equivalent safety compared to soluble PTX. Our data substantiate the importance of surface chemistry on the magnitude of NP accumulation in the brain and pave the way for further in vivo evaluation of chemotherapeutic drugs against GBM that have previously been overlooked because of their limited ability to cross the BBB.
Collapse
Affiliation(s)
- Kanawat Wiwatchaitawee
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Minia 61519, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia 61768, Egypt
| | - Juliana C Quarterman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Youssef Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Minia 61519, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia 61768, Egypt
| | - Md Yousuf Ali
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, United States
| | - Claudia Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, United States
| | - Corinne Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
18
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
19
|
Wijaya A, Wang Y, Tang D, Zhong Y, Liu B, Yan M, Jiu Q, Wu W, Wang G. A study of lovastatin and L-arginine co-loaded PLGA nanomedicine for enhancing nitric oxide production and eNOS expression. J Mater Chem B 2022; 10:607-624. [PMID: 34994373 DOI: 10.1039/d1tb01455b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is an exceptional endogenous biological gas that mediates and regulates physiological and pathological processes in the human body. However, its synthesis process is impaired during athero-progression and formation. Hence, a strategy to boost NO production and target endothelial nitric oxide synthase (eNOS) is crucial and intriguing in atherosclerosis (AS) management. Herein, we prepare L-arginine (LA) and lovastatin (LV) co-loaded PLGA nanomedicine to achieve sustainable release for enhancing NO production. The utilization of LA reveals that LA has dual contributions, acting as a NO donor and enhancing the solubility of LV by stabilizing PLGA NPs. PLGA-LA/LV demonstrated its potential to boost NO in vitro and in vivo confirmed using DAF-FM DA, augment eNOS and p-eNOS mRNA and protein levels, and suppress the ki67 proliferation marker in VSMCs; in addition, it lowers the total cholesterol level of blood plasma in C57BL/6 mice. Moreover, PLGA can protect the compound delivered and enhance the bioavailability to reach and get released in the blood circulation after oral administration. Collectively, our results endow a safe and efficient nanomedicine outcome, specifically with potential for AS management.
Collapse
Affiliation(s)
- Andy Wijaya
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dan Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Boyan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Quhui Jiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
20
|
Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Though numerous external-stimuli-triggered tumor therapies, including phototherapy, radiotherapy, and sonodynamic therapy have made great progress in cancer therapy, the low penetration depth of the laser, safety concerns of radiation, the therapeutic resistance, and the spatio-temporal constraints of the specific equipment restrict their convenient clinical applications. What is more, the inherent physiological barriers of the tumor microenvironment (TME), including hypoxia, heterogeneity, and high expression of antioxidant molecules also restrict the efficiency of tumor therapy. As a result, the development of nanoplatforms responsive to endogenous stimuli (such as glucose, acidic pH, cellular redox events, and etc.) has attracted great attention for starvation therapy, ion therapy, prodrug-mediated chemotherapy, or enzyme-catalyzed therapy. In addition, nanomedicines can be modified by some targeted units for precisely locating in subcellular organelles and boosting the destroying of tumor tissue, decreasing the dosage of nanoagents, reducing side effects, and enhancing the therapeutic efficiency. Herein, the properties of the TME, the advantages of endogenous stimuli, and the principles of subcellular-organelle-targeted strategies will be emphasized. Some necessary considerations for the exploitation of precision medicine and clinical translation of multifunctional nanomedicines in the future are also pointed out.
Collapse
Affiliation(s)
- Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuqi Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxue Hu
- Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Yujie Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Jung S, Park K, Park S, Heo J, Choi W, Hong J. Unraveling the Structured Solvation Shell of Zwitterion Nanoparticles for Controlled Release of Nitric Oxide. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54363-54374. [PMID: 34730330 DOI: 10.1021/acsami.1c15701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterions have been attracting emerging attention as an anti-fouling polymer. However, the relationship between structured solvation shells and controlled drug release induced by deceleration of water molecule's translational and vibrational motions of zwitterions is an uncharted territory. Herein, sulfobetaine zwitterion nanoparticles (ZWNPs) were designed as a stable nitric oxide (NO)-delivering carrier. The condensed water structure of the solvation shell at its isoelectric point (PI) and the loose structure of water under different pH conditions were investigated through rheological and thermodynamical analyses. The ZWNPs showed a sustained-release profile at the PI, which presented a structured solvation barrier. On the other hand, NO-loaded ZWNPs showed different release profiles with the burst release at pH 5.5. Notably, an increased cell proliferation rate and a decreased antibacterial effect were observed at the same concentration depending on solvation shell's characteristics.
Collapse
Affiliation(s)
- Sungwon Jung
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woojin Choi
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
22
|
Wiwatchaitawee K, Mekkawy AI, Quarterman JC, Naguib YW, Ebeid K, Geary SM, Salem AK. The MEK 1/2 inhibitor PD98059 exhibits synergistic anti-endometrial cancer activity with paclitaxel in vitro and enhanced tissue distribution in vivo when formulated into PAMAM-coated PLGA-PEG nanoparticles. Drug Deliv Transl Res 2021; 12:1684-1696. [PMID: 34635984 DOI: 10.1007/s13346-021-01065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
Endometrial cancer is the most common gynecological cancer that affects the female reproductive organs. The standard therapy for EC for the past two decades has been chemotherapy and/or radiotherapy. PD98059 is a reversible MEK inhibitor that was found in these studies to increase the cytotoxicity of paclitaxel (PTX) against human endometrial cancer cells (Hec50co) in a synergistic and dose-dependent manner. Additionally, while PD98059 arrested Hec50co cells at the G0/G1 phase, and PTX increased accumulation of cells at the G2/M phase, the combination treatment increased accumulation at both the G0/G1 and G2/M phases at low PTX concentrations. We recently developed poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) modified with polyethylene glycol (PEG) and coated with polyamidoamine (PAMAM) (referred to here as PGM NPs) which have favorable biodistribution profiles in mice, compared to PD98059 solution. Here, in order to enhance tissue distribution of PD98059, PD98059-loaded PGM NPs were prepared and characterized. The average size, zeta potential, and % encapsulation efficiency (%EE) of these NPs was approximately 184 nm, + 18 mV, and 23%, respectively. The PD98059-loaded PGM NPs released ~ 25% of the total load within 3 days in vitro. In vivo murine studies revealed that the pharmacokinetics and biodistribution profile of intravenous (IV) injected PD98059 was improved when delivered as PD98059-loaded PGM NPs as opposed to soluble PD98059. Further investigation of the in vivo efficacy and safety of this formulation is expected to emphasize the potential of its clinical application in combination with commercial PTX formulations against different cancers.
Collapse
Affiliation(s)
- Kanawat Wiwatchaitawee
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Juliana C Quarterman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, 61768, Minia, Egypt
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, 61768, Minia, Egypt
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
23
|
Thermally active nanoparticle clusters enslaved by engineered domain wall traps. Nat Commun 2021; 12:5813. [PMID: 34608137 PMCID: PMC8490384 DOI: 10.1038/s41467-021-25931-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
Abstract
The stable assembly of fluctuating nanoparticle clusters on a surface represents a technological challenge of widespread interest for both fundamental and applied research. Here we demonstrate a technique to stably confine in two dimensions clusters of interacting nanoparticles via size-tunable, virtual magnetic traps. We use cylindrical Bloch walls arranged to form a triangular lattice of ferromagnetic domains within an epitaxially grown ferrite garnet film. At each domain, the magnetic stray field generates an effective harmonic potential with a field tunable stiffness. The experiments are combined with theory to show that the magnetic confinement is effectively harmonic and pairwise interactions are of dipolar nature, leading to central, strictly repulsive forces. For clusters of magnetic nanoparticles, the stationary collective states arise from the competition between repulsion, confinement and the tendency to fill the central potential well. Using a numerical simulation model as a quantitative map between the experiments and theory we explore the field-induced crystallization process for larger clusters and unveil the existence of three different dynamical regimes. The present method provides a model platform for investigations of the collective phenomena emerging when strongly confined nanoparticle clusters are forced to move in an idealized, harmonic-like potential.
Collapse
|
24
|
Peng S, Cai J, Bao S. CMBs carrying PTX and CRISPR/Cas9 targeting C‑erbB‑2 plasmids interfere with endometrial cancer cells. Mol Med Rep 2021; 24:830. [PMID: 34590151 PMCID: PMC8503745 DOI: 10.3892/mmr.2021.12470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Development of combination therapy to decrease side effects of chemotherapeutic drugs and increase their utilization rate in combination with gene editing is a key research topic in tumor treatment. The present study aimed to investigate the effect of cationic microbubbles (CMBs) carrying paclitaxel (PTX) and C-erbB-2 knockout plasmid on the endometrial cancer cell line HEC-1A and to determine how C-erbB-2 regulates the function of endometrial cancer cells. Cells were treated with CMB, PTX, PTX-CMBs, cationic plasmid-carrying or cationic PTX-carrying plasmid groups. After verifying the most effective combination of PTX-CMBs and plasmids, HEC-1A cells were transfected. Reverse transcription-quantitative (RT-q)PCR and western blotting were used to measure C-erbB-2 and protein expression. After verifying C-erbB-2 knockout, invasion, healing, clone formation and proliferation of HEC-1A cells were assessed. Simultaneously, expression levels of the genes for P21, P27, mammalian target of rapamycin (mTOR), and Bcl-2 associated death promoter (Bad) were measured by RT-qPCR. Compared with the PTX group, CMBs significantly enhanced the absorption efficiency of PTX by HEC-1A cells. C-erbB-2 knockout had an inhibitory effect on the proliferation, migration and invasion of HEC-1A cells; cell proliferation and invasion of the group carrying PTX and plasmids simultaneously were significantly weakened. The C-erbB-2-knockout group exhibited increased expression of P21 and P27. Simultaneously loading PTX and plasmid may be novel combination therapy with great potential. C-erbB-2 may regulate the proliferation of HEC-1A cells by downregulating expression of P21 and P27.
Collapse
Affiliation(s)
- Siyuan Peng
- Department of Gynaecology and Obstetrics, Hainan Hospital Affiliated to University of South China, Haikou, Hainan 570311, P.R. China
| | - Junhong Cai
- Key Laboratory of Cell and Molecular Genetic Translational Medicine in Hainan Province, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
25
|
Hyaluronic Acid-Functionalized Nanomicelles Enhance SAHA Efficacy in 3D Endometrial Cancer Models. Cancers (Basel) 2021; 13:cancers13164032. [PMID: 34439185 PMCID: PMC8394402 DOI: 10.3390/cancers13164032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary One of the major limitations to cancer therapies are the side effects caused by the drug interacting with any tissue in the body. There is often a balance between patient health and effectively treating the disease. To by-pass this balancing act nanoparticles are being used to deliver therapeutics straight to the tumors, acting as “Trojan Horses”. Endometrial cancers are known to have more of the cell surface protein CD44 than healthy tissues. Here, to efficiently target endometrial cancer, hyaluronic acid, which naturally binds to the CD44 protein was attached to the surface of nanoparticles and tested on microtissues or spheroids to better model a tumor and understand drug delivery performance. We show that our hyaluronic acid-nanoparticle formulations improve drug effects and interact with the cancer cells more than without this targeting agent. Abstract Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.
Collapse
|
26
|
Rizwanullah M, Perwez A, Mir SR, Alam Rizvi MM, Amin S. Exemestane encapsulated polymer-lipid hybrid nanoparticles for improved efficacy against breast cancer: optimization, in vitrocharacterization and cell culture studies. NANOTECHNOLOGY 2021; 32:415101. [PMID: 34198267 DOI: 10.1088/1361-6528/ac1098] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Polymer-lipid hybrid nanoparticles (PLHNPs) are novel nanoplatforms for the effective delivery of a lipophilic drug in the management of a variety of solid tumors. The present work was designed to develop exemestane (EXE) encapsulated D-alpha-tocopheryl polyethylene glycol succinate (TPGS) based PLHNPs (EXE-TPGS-PLHNPs) for controlled delivery of EXE for breast cancer management. EXE-TPGS-PLHNPs were formulated by single-step nano-precipitation technique and statistically optimized by a 33Box-Behnken design using Design expert®software. The polycaprolactone (PCL;X1), phospholipon 90 G (PL-90G;X2), and surfactant (X3) were selected as independent factors while particles size (PS;Y1), polydispersity index (PDI;Y2), and %entrapment efficiency (%EE;Y3) were chosen as dependent factors. The average PS, PDI, and %EE of the optimized EXE-TPGS-PLHNPs was observed to be 136.37 ± 3.27 nm, 0.110 ± 0.013, and 88.56 ± 2.15% respectively. The physical state of entrapped EXE was further validated by Fourier-transform infrared spectroscopy, differential scanning calorimetry, and powder x-ray diffraction that revealed complete encapsulation of EXE in the hybrid matrix of PLHNPs with no sign of significant interaction between drug and excipients.In vitrorelease study in simulated gastrointestinal fluids revealed initial fast release for 2 h after that controlled release profile up to 24 h of study. Moreover, optimized EXE-TPGS-PLHNPs exhibited excellent stability in gastrointestinal fluids as well as colloidal stability in different storage concentrations. Furthermore, EXE-TPGS-PLHNPs exhibited distinctively higher cellular uptake and time and dose-dependent cytotoxicity against MCF-7 breast tumor cells compared to EXE-PLHNPs without TPGS and free EXE. The obtained results suggested that EXE-TPGS-PLHNPs can be a promising platform for the controlled delivery of EXE for the effective treatment of breast cancer.
Collapse
Affiliation(s)
- Md Rizwanullah
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi-110062, India
| | - Ahmad Perwez
- Genome Biology Lab, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Showkat Rasool Mir
- Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi-110062, India
| | - Mohd Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Saima Amin
- Formulation Research Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
27
|
Advantages of Tyrosine Kinase Anti-Angiogenic Cediranib over Bevacizumab: Cell Cycle Abrogation and Synergy with Chemotherapy. Pharmaceuticals (Basel) 2021; 14:ph14070682. [PMID: 34358108 PMCID: PMC8308742 DOI: 10.3390/ph14070682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022] Open
Abstract
Angiogenesis plays a crucial role in tumor development and metastasis. Both bevacizumab and cediranib have demonstrated activity as single anti-angiogenic agents in endometrial cancer, though subsequent studies of bevacizumab combined with chemotherapy failed to improve outcomes compared to chemotherapy alone. Our objective was to compare the efficacy of cediranib and bevacizumab in endometrial cancer models. The cellular effects of bevacizumab and cediranib were examined in endometrial cancer cell lines using extracellular signal-related kinase (ERK) phosphorylation, ligand shedding, cell viability, and cell cycle progression as readouts. Cellular viability was also tested in eight patient-derived organoid models of endometrial cancer. Finally, we performed a phosphoproteomic array of 875 phosphoproteins to define the signaling changes related to bevacizumab versus cediranib. Cediranib but not bevacizumab blocked ligand-mediated ERK activation in endometrial cancer cells. In both cell lines and patient-derived organoids, neither bevacizumab nor cediranib alone had a notable effect on cell viability. Cediranib but not bevacizumab promoted marked cell death when combined with chemotherapy. Cell cycle analysis demonstrated an accumulation in mitosis after treatment with cediranib + chemotherapy, consistent with the abrogation of the G2/M checkpoint and subsequent mitotic catastrophe. Molecular analysis of key controllers of the G2/M cell cycle checkpoint confirmed its abrogation. Phosphoproteomic analysis revealed that bevacizumab and cediranib had both similar and unique effects on cell signaling that underlie their shared versus individual actions as anti-angiogenic agents. An anti-angiogenic tyrosine kinase inhibitor such as cediranib has the potential to be superior to bevacizumab in combination with chemotherapy.
Collapse
|
28
|
Mekkawy AI, Naguib YW, Alhaj-Suliman SO, Wafa EI, Ebeid K, Acri T, Salem AK. Paclitaxel anticancer activity is enhanced by the MEK 1/2 inhibitor PD98059 in vitro and by PD98059-loaded nanoparticles in BRAF V600E melanoma-bearing mice. Int J Pharm 2021; 606:120876. [PMID: 34252520 DOI: 10.1016/j.ijpharm.2021.120876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 02/02/2023]
Abstract
Melanoma, the most malignant form of skin cancer, shows resistance to traditional anticancer drugs including paclitaxel (PTX). Furthermore, over 50% of melanoma cases express the BRAFV600E mutation which activates the MAPK pathway increasing cell proliferation and survival. In the current study, we investigated the capacity of the combination therapy of PTX and the MAPK inhibitor, PD98059, to enhance the cytotoxicity of PTX against melanoma and therefore improve treatment outcomes. Synergistic in vitro cytotoxicity was observed when soluble PTX and PD98059 were used to treat the A375 melanoma cell line as evidenced by a significant reduction in the cell viability and IC50 value for PTX. Then, in further studies, TPGS-emulsified PD98059-loaded PLGA nanoparticles (NPs) were prepared, characterized in vitro and assessed for therapeutic efficacy when used in combination with soluble PTX. The average particle size (180 nm d.), zeta potential (-34.8 mV), polydispersity index (0.081), encapsulation efficiency (20%), particle yield (90.8%), and drug loading (6.633 µg/mg) of the prepared NPs were evaluated. Also, cellular uptake and in vitro cytotoxicity studies were performed with these PD98059-loaded NPs and compared to soluble PD98059. The PD98059-loaded NPs were superior to soluble PD98059 in terms of both cellular uptake and in vitro cytotoxicity in A375 cells. In in vivo studies, using A375 challenged mice, we report improved survival in mice treated with soluble PTX and PD98059-loaded NPs. Our findings suggest the potential for using this combinatorial therapy in the management of patients with metastatic melanoma harboring the BRAF mutation as a means to improve survival outcomes.
Collapse
Affiliation(s)
- Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Sohag 82524, Egypt
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Minia 61519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia 61768, Egypt
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Minia 61519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia 61768, Egypt
| | - Timothy Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Kulsirirat T, Sathirakul K, Kamei N, Takeda-Morishita M. The in vitro and in vivo study of novel formulation of andrographolide PLGA nanoparticle embedded into gelatin-based hydrogel to prolong delivery and extend residence time in joint. Int J Pharm 2021; 602:120618. [PMID: 33887393 DOI: 10.1016/j.ijpharm.2021.120618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Andrographolide (AG), a well-known traditional medicinal plant in Southeast Asia, is widely used for treatment of many chronic diseases. Interestingly, AG has been reported to have inhibitory effects on osteoclast function and anti-inflammatory properties. Because of these therapeutic properties, this study aimed to develop and optimize the formulation of AG using PLGA nanocarriers and gelatin-based hydrogel to prolong the retention time in the joint. We investigated the in vitro release pattern of the AG nanoparticles formulation which prepared by emulsion solvent evaporation method and embedded into gelatin-based hydrogel. The result showed that the AG loaded ester terminated end group PLGA polymer gradually released AG from the PLGA nanoparticles when compared with AG solution. Importantly, the combined use of gelatin-based hydrogel with AG from the PLGA nanoparticles significantly delayed the AG release more than 1 month. Furthermore, we selected the DiR fluorescence dye to represents AG and monitored the retention time by IVIS imaging. The optimal formulation was administered as intra-articular drug delivery systems in in vivo study. The results successfully displayed a long-term sustained release for implantation (≈2 months) and injection (≥2 months) providing a novel strategy for the local management of osteoarthritis disease.
Collapse
Affiliation(s)
- Thitianan Kulsirirat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Korbtham Sathirakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| |
Collapse
|
30
|
Modulation of Bovine Endometrial Cell Receptors and Signaling Pathways as a Nanotherapeutic Exploration against Dairy Cow Postpartum Endometritis. Animals (Basel) 2021; 11:ani11061516. [PMID: 34071093 PMCID: PMC8224678 DOI: 10.3390/ani11061516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The provision of updated information on the molecular pathogenesis of bovine endometritis with host-pathogen interactions and the possibility of exploring the cellular sensors mechanism in a nanotechnology-based drug delivery system against persistent endometritis were reported in this review. The mechanism of Gram-negative bacteria and their ligands has been vividly explored, with the paucity of research detail on Gram-positive bacteria in bovine endometritis. The function of cell receptors, biomolecules proteins, and sensors were reportedly essential in transferring signals into cell signaling pathways to induce immuno-inflammatory responses by elevating pro-inflammatory cytokines. Therefore, understanding endometrial cellular components and signaling mechanisms across pathogenesis are essential for nanotherapeutic exploration against bovine endometritis. The nanotherapeutic discovery that could inhibit infectious signals at the various cell receptors and signal transduction levels, interfering with transcription factors activation and pro-inflammatory cytokines and gene expression, significantly halts endometritis. Abstract In order to control and prevent bovine endometritis, there is a need to understand the molecular pathogenesis of the infectious disease. Bovine endometrium is usually invaded by a massive mobilization of microorganisms, especially bacteria, during postpartum dairy cows. Several reports have implicated the Gram-negative bacteria in the pathogenesis of bovine endometritis, with information dearth on the potentials of Gram-positive bacteria and their endotoxins. The invasive bacteria and their ligands pass through cellular receptors such as TLRs, NLRs, and biomolecular proteins of cells activate the specific receptors, which spontaneously stimulates cellular signaling pathways like MAPK, NF-kB and sequentially triggers upregulation of pro-inflammatory cytokines. The cascade of inflammatory induction involves a dual signaling pathway; the transcription factor NF-κB is released from its inhibitory molecule and can bind to various inflammatory genes promoter. The MAPK pathways are concomitantly activated, leading to specific phosphorylation of the NF-κB. The provision of detailed information on the molecular pathomechanism of bovine endometritis with the interaction between host endometrial cells and invasive bacteria in this review would widen the gap of exploring the potential of receptors and signal transduction pathways in nanotechnology-based drug delivery system. The nanotherapeutic discovery of endometrial cell receptors, signal transduction pathway, and cell biomolecules inhibitors could be developed for strategic inhibition of infectious signals at the various cell receptors and signal transduction levels, interfering on transcription factors activation and pro-inflammatory cytokines and genes expression, which may significantly protect endometrium against postpartum microbial invasion.
Collapse
|
31
|
Abdel-Rahman SA, Wafa EI, Ebeid K, Geary SM, Naguib YW, El-Damasy AK, Salem AK. Thiophene derivative-loaded nanoparticles mediate anticancer activity through the inhibition of kinases and microtubule assembly. ADVANCED THERAPEUTICS 2021; 4. [PMID: 34423112 DOI: 10.1002/adtp.202100058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Different tetrahydrobenzo[b]thiophene derivatives were explored as new tubulin polymerization destabilizers to arrest tumor cell mitosis. A series of compounds incorporating the tetrahydrobenzo[b]thiophene scaffold were synthesized, and their biological activities were investigated. The cytotoxicity of each of the synthesized compounds was assessed against a range of cell lines. Specifically, the benzyl urea tetrahydrobenzo[b]thiophene derivative, 1-benzyl-3-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)urea (BU17), was identified as the most potent compound with broad-spectrum antitumor activity against several cancer cell lines. The potential mechanism(s) of action were investigated where dose-dependent G2/M accumulation and A549 cell cycle arrest were detected. Additionally, A549 cells treated with BU17 expressed enhanced levels of caspase 3 and 9, indicating the induction of apoptosis. Furthermore, it was found that BU17 inhibits WEE1 kinase and targets tubulin by blocking its polymerization. BU17 was also formulated into PLGA nanoparticles, and it was demonstrated that BU17-loaded nanoparticles could significantly enhance antitumor activity compared to the soluble counterpart.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, 61519 Egypt
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, 61519 Egypt
| | - Ashraf K El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
32
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Cheng HW, Chiang CS, Ho HY, Chou SH, Lai YH, Shyu WC, Chen SY. Dextran-modified Quercetin-Cu(II)/hyaluronic acid nanomedicine with natural poly(ADP-ribose) polymerase inhibitor and dual targeting for programmed synthetic lethal therapy in triple-negative breast cancer. J Control Release 2021; 329:136-147. [PMID: 33278482 DOI: 10.1016/j.jconrel.2020.11.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/03/2023]
Abstract
Serious side effects from chemotherapies are the main problem with cancer treatments. To solve these issues, precision cancer nanomedicine based on natural therapeutic materials is developed, which enables specifically apoptosis by interacting with genetic mutation in cancer cells, while leaving normal cells unaffected. Here, we report a novel nanomedicine (CuQDA/IO@HA) composed of hyaluronic acid (HA) / copper ion (Cu(II))-chelated dextran-aldehyde (DA)-quercetin (Q) with dual targeting for synthetic lethal therapy. The CuQDA/IO@HA prepared using a ratio of metal/Q at 0.5:1 resulted in a stable particle structure with uniform particle distribution. The CuQDA/IO@HA can specifically target and induce specific cytotoxicity in BRCA-mutant cancer cells in vitro. Combination treatment with CuQDA/IO@HA and magnetic navigation can induce poly (ADP-ribose) polymerase (PARP) inhibition and DNA damage in BRCA-mutant triple-negative breast cancer (TNBC) via CD44 targeting. The dual-targeting CuQDA/IO@HA can extend the median survival of the BRCA-mutant xenograft mice from 34 to 61 days in comparison to Q treatment alone in vivo, which is attributed to the significant increase in γH2AX, leading to significant apoptosis. More importantly, the CuQDA/IO@HA displayed biocompatibility and no obvious side-effect in normal organs. These results demonstrate the promising potential of integrating natural and metal ions into a nanomedicine that can provide precision medicine through synthetic lethality.
Collapse
Affiliation(s)
- Hung-Wei Cheng
- Materials Science and Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan
| | - Chih-Sheng Chiang
- Cell Therapy Center, China Medical University Hospital, 404 Taichung, Taiwan
| | - Hsin-Yao Ho
- Materials Science and Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan
| | - Syun-Hong Chou
- Materials Science and Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan
| | - Yen-Ho Lai
- Materials Science and Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Science, China Medical University, 404 Taichung, Taiwan.
| | - San-Yuan Chen
- Materials Science and Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan; Graduate Institute of Biomedical Science, China Medical University, 404 Taichung, Taiwan; Frontier Research Centre on Fundamental and Applied Sciences of Matters National Tsing Hua University, 300 Hsinchu, Taiwan; School of Dentistry, College of Dental Medicine Kaohsiung Medical University Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Farooq MA, Xinyu H, Jabeen A, Ahsan A, Seidu TA, Kutoka PT, Wang B. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes. Colloids Surf B Biointerfaces 2020; 199:111523. [PMID: 33360624 DOI: 10.1016/j.colsurfb.2020.111523] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022]
Abstract
Vorinostat (VOR) is known as one of the histone deacetylase inhibitors (HDACi) for cancer treatment, and the FDA approves it for cutaneous T cell lymphoma therapy. Poor solubility, permeability, and less anti-cancer activity are the main challenges for the effective delivery of VOR against various cancers. So, our team assumed that the surface-coated liposomes might improve the physicochemical properties of biopharmaceutics classification system class IV drugs such as VOR. The present study aimed to enhance the cytotoxicity and improve cellular uptake using TPGS-coated liposomes in breast cancer cells. Liposomes were fabricated by the film hydration following the probe ultra-sonication method. OR-LIPO and TPGS-VOR-LIPO showed an average particle size of 211.97 ± 3.42 nm with PDI 0.2168 ± 0.006 and 176.99 ± 2.06 nm with PDI 0.175 ± 0.018, respectively. TPGS-coated liposomes had better stability and revealed more than 80 % encapsulation efficiency than conventional liposomes. Transmission electron microscopy confirmed the TPGS coating around liposomes. Moreover, TPGS-coated liposomes enhanced the solubility and showed sustained release of VOR over 48 h. DSC and PXRD analysis also reveal an amorphous state of VOR within the liposomal formulation. MTT assay result indicates that the superior cytotoxic effect of surface-modified liposomes contrasts with the conventional and free VOR solution, respectively. Fluorescence microscopy and flow cytometry results also presented an enhanced cellular uptake of TPGS-coated liposomes against breast cancer cells, respectively. The current investigation's final results declared that TPGS-coated liposomes are promising drug carriers for the effective delivery of hydrophobic drugs for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Huang Xinyu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Amna Jabeen
- Faculty of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, PR China
| | - Theodora Amanda Seidu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Perpetua Takunda Kutoka
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| |
Collapse
|
35
|
Rouhimoghadam M, Lu AS, Salem AK, Filardo EJ. Therapeutic Perspectives on the Modulation of G-Protein Coupled Estrogen Receptor, GPER, Function. Front Endocrinol (Lausanne) 2020; 11:591217. [PMID: 33329395 PMCID: PMC7719807 DOI: 10.3389/fendo.2020.591217] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogens exert their physiological and pathophysiological effects via cellular receptors, named ERα, ERβ, and G-protein coupled estrogen receptor (GPER). Estrogen-regulated physiology is tightly controlled by factors that regulate estrogen bioavailability and receptor sensitivity, while disruption of these control mechanisms can result in loss of reproductive function, cancer, cardiovascular and neurodegenerative disease, obesity, insulin resistance, endometriosis, and systemic lupus erythematosus. Restoration of estrogen physiology by modulating estrogen bioavailability or receptor activity is an effective approach for treating these pathological conditions. Therapeutic interventions that block estrogen action are employed effectively for the treatment of breast and prostate cancer as well as for precocious puberty and anovulatory infertility. Theoretically, treatments that block estrogen biosynthesis should prevent estrogen action at ERs and GPER, although drug resistance and ligand-independent receptor activation may still occur. In addition, blockade of estrogen biosynthesis does not prevent activation of estrogen receptors by naturally occurring or man-made exogenous estrogens. A more complicated scenario is provided by anti-estrogen drugs that antagonize ERs since these drugs function as GPER agonists. Based upon its association with metabolic dysregulation and advanced cancer, GPER represents a therapeutic target with promise for the treatment of several critical health concerns facing Western society. Selective ligands that specifically target GPER have been developed and may soon serve as pharmacological agents for treating human disease. Here, we review current forms of estrogen therapy and the implications that GPER holds for these therapies. We also discuss existing GPER targeted drugs, additional approaches towards developing GPER-targeted therapies and how these therapies may complement existing modalities of estrogen-targeted therapy.
Collapse
Affiliation(s)
- Milad Rouhimoghadam
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Anh S. Lu
- College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Aliasger K. Salem
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Edward J. Filardo
- Department of Surgery, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
36
|
Topatana W, Juengpanich S, Li S, Cao J, Hu J, Lee J, Suliyanto K, Ma D, Zhang B, Chen M, Cai X. Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation. J Hematol Oncol 2020; 13:118. [PMID: 32883316 PMCID: PMC7470446 DOI: 10.1186/s13045-020-00956-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Synthetic lethality is a lethal phenomenon in which the occurrence of a single genetic event is tolerable for cell survival, whereas the co-occurrence of multiple genetic events results in cell death. The main obstacle for synthetic lethality lies in the tumor biology heterogeneity and complexity, the inadequate understanding of synthetic lethal interactions, drug resistance, and the challenges regarding screening and clinical translation. Recently, DNA damage response inhibitors are being tested in various trials with promising results. This review will describe the current challenges, development, and opportunities for synthetic lethality in cancer therapy. The characterization of potential synthetic lethal interactions and novel technologies to develop a more effective targeted drug for cancer patients will be explored. Furthermore, this review will discuss the clinical development and drug resistance mechanisms of synthetic lethality in cancer therapy. The ultimate goal of this review is to guide clinicians at selecting patients that will receive the maximum benefits of DNA damage response inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | - Diana Ma
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China. .,School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China. .,School of Medicine, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, Hangzhou, 310016, China.
| |
Collapse
|
37
|
Najjar O, Erickson BK, Nickles-Fader AN. Diagnosis and management of uterine serous carcinoma: current strategies and clinical challenges. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1784723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Omar Najjar
- The Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Britt K. Erickson
- Division of Gynecologic Oncology, Department of Obstetrics Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, USA
| | - Amanda N. Nickles-Fader
- The Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Wang J, Zhao H, Zhi K, Yang X. Exploration of the Natural Active Small-Molecule Drug-Loading Process and Highly Efficient Synergistic Antitumor Efficacy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6827-6839. [PMID: 31960671 DOI: 10.1021/acsami.9b18443] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development and application of nano-drug carriers might provide an excellent opportunity for cancer therapy. However, it is still an important challenge to realize the regulation and control of drug loading by analyzing the assembly process of carrier-loaded drugs. Herein, we show a "self-contained bioactive nanocarrier" system, which is prepared from ursolic acid, one of the very promising biologically active natural products with self-assembly properties. The study decrypts the assembly process of drug-carrier interaction and achieves the regulation of drug loading by controlling the interaction force. This nanocarrier highlights the unique advantages of active natural products in therapeutic efficacy and health benefits. In antitumor experiments, the carrier and drug demonstrated synergistic therapeutic efficacy. Furthermore, the nanocarrier is biosafe and capable of reducing the risk of liver damage induced by chemotherapeutics through the upregulation of key antioxidant pathways. Taken together, this "self-contained bioactive nanocarrier" system makes up for the drawback that conventional nanocarriers have no therapeutic efficacy and health benefits and eliminates the trouble of the toxic side effects associated with chemotherapy agents and the additional toxicity caused by long-term use of nanocarriers.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Chemistry and Chemical Engineering , Harbin Institute of Technology , No. 92 West Dazhi Street , Nan Gang District, Harbin , Heilongjiang 150001 , P. R. China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering , Harbin Institute of Technology , No. 92 West Dazhi Street , Nan Gang District, Harbin , Heilongjiang 150001 , P. R. China
| | - Kangkang Zhi
- School of Chemistry and Chemical Engineering , Harbin Institute of Technology , No. 92 West Dazhi Street , Nan Gang District, Harbin , Heilongjiang 150001 , P. R. China
| | - Xin Yang
- School of Chemistry and Chemical Engineering , Harbin Institute of Technology , No. 92 West Dazhi Street , Nan Gang District, Harbin , Heilongjiang 150001 , P. R. China
| |
Collapse
|
39
|
Abstract
Endometrial cancer accounts for ~76,000 deaths among women each year worldwide. Disease mortality and the increasing number of new diagnoses make endometrial cancer an important consideration in women's health, particularly in industrialized countries, where the incidence of this tumour type is highest. Most endometrial cancers are carcinomas, with the remainder being sarcomas. Endometrial carcinomas can be classified into several histological subtypes, including endometrioid, serous and clear cell carcinomas. Histological subtyping is currently used routinely to guide prognosis and treatment decisions for endometrial cancer patients, while ongoing studies are evaluating the potential clinical utility of molecular subtyping. In this Review, we summarize the overarching molecular features of endometrial cancers and highlight recent studies assessing the potential clinical utility of specific molecular features for early detection, disease risk stratification and directing targeted therapies.
Collapse
Affiliation(s)
- Mary Ellen Urick
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daphne W Bell
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Bi J, Areecheewakul S, Li Y, Yang S, Zhang Y, Ebeid K, Li L, Thiel KW, Zhang J, Dai D, Salem AK, Leslie KK, Meng X. MTDH/AEG-1 downregulation using pristimerin-loaded nanoparticles inhibits Fanconi anemia proteins and increases sensitivity to platinum-based chemotherapy. Gynecol Oncol 2019; 155:349-358. [PMID: 31477281 DOI: 10.1016/j.ygyno.2019.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Platinum compounds have been widely used as a primary treatment for many types of cancer. However, resistance is the major cause of therapeutic failure for patients with metastatic or recurrent disease, thus highlighting the need to identify novel factors driving resistance to Platinum compounds. Metadherin (MTDH, also known as AEG-1 and LYRIC), located in a frequently amplified region of chromosome 8, has been consistently associated with resistance to chemotherapeutic agents, though the precise mechanisms remain incompletely defined. METHODS The mRNA of FANCD2 and FANCI was pulled down by RNA-binding protein immunoprecipitation. Pristimerin-loaded nanoparticles were prepared using the nanoprecipitation method. Immunocompromised mice bearing patient-derived xenograft tumors were treated with pristimerin-loaded nanoparticles, cisplatin and a combination of the two. RESULTS MTDH, through its recently discovered role as an RNA binding protein, regulates expression of FANCD2 and FANCI, two components of the Fanconi anemia complementation group (FA) that play critical roles in interstrand crosslink damage induced by platinum compounds. Pristimerin, a quinonemethide triterpenoid extract from members of the Celastraceae family used to treat inflammation in traditional Chinese medicine, significantly decreased MTDH, FANCD2 and FANCI levels in cancer cells, thereby restoring sensitivity to platinum-based chemotherapy. Using a patient-derived xenograft model of endometrial cancer, we discovered that treatment with pristimerin in a novel nanoparticle formulation markedly inhibited tumor growth when combined with cisplatin. CONCLUSIONS MTDH is involved in post-transcriptional regulation of FANCD2 and FANCI. Pristimerin can increase sensitivity to platinum-based agents in tumors with MTDH overexpression by inhibiting the FA pathway.
Collapse
Affiliation(s)
- Jianling Bi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sudartip Areecheewakul
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Yujun Li
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shujie Yang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Long Li
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristina W Thiel
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical / Cancer Centers, Kansas City, KS 66160
| | - Donghai Dai
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Xiangbing Meng
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Do AV, Smith R, Tobias P, Carlsen D, Pham E, Bowden NB, Salem AK. Sustained Release of Hydrogen Sulfide (H 2S) from Poly(Lactic Acid) Functionalized 4-Hydroxythiobenzamide Microparticles to Protect Against Oxidative Damage. Ann Biomed Eng 2019; 47:1691-1700. [PMID: 31139973 PMCID: PMC6650332 DOI: 10.1007/s10439-019-02270-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
Abstract
Hydrogen sulfide (H2S) has emerged as a gaseous mediator capable of exhibiting many beneficial properties including cytoprotection, anti-inflammation, and vasodilation. The study presented here provides characterization of a poly(lactic acid) polymer with a functionalized 4-hydroxythiobenzamide (PLA-4HTB) capable of extended H2S release. The polymer was used to fabricate microparticles that can be potentially loaded with a drug allowing for co-release of the drug and H2S. Microparticles with the average diameter of 500 ± 207 nm were fabricated and shown to release 77.0 ± 1.76 µM of H2S over 4 weeks (release of H2S from 1 mg of particles). To test for the antioxidant properties of the PLA-4HTB microparticles, human embryonic kidney 293 cells were first incubated with PLA-4HTB microparticles and then oxidative stress was induced using CoCl2. Particle suspensions of 1 mg/mL were shown to protect cells resulting in reactive oxygen species (ROS) levels of superoxide that were similar to that of the control group. The microparticles fabricated from the PLA-4HTB released H2S over a sustained period of weeks to months, while providing protection from ROS. The microparticles described in this article represent a new platform technology that could be used to prevent and treat diseases caused by oxidative damage.
Collapse
Affiliation(s)
- Anh-Vu Do
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Rasheid Smith
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Phillip Tobias
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Daniel Carlsen
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Erica Pham
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA
| | - Ned B Bowden
- Department of Chemistry, College of Liberal Arts and Sciences, University of Iowa, Iowa, IA, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa, IA, USA.
| |
Collapse
|
42
|
Expression of TRA2B in endometrial carcinoma and its regulatory roles in endometrial carcinoma cells. Oncol Lett 2019; 18:2455-2463. [PMID: 31452736 PMCID: PMC6676653 DOI: 10.3892/ol.2019.10553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Expression levels of Transformer 2 protein homolog beta (TRA2B) in patients with endometrial carcinoma were assessed to investigate the impact of TRA2B on endometrial carcinoma cells. Furthermore, we analyzed the expression of several genes in the tissue samples from patients with endometrial cancer (EC) to identify whether cancer related genes we chose are differently expressed between the endometrial carcinoma tissues and adjacent normal tissues. The results of RT-qPCR analysis, western blot technology and immunofluorescence method consistently manifested that the expression of several genes in endometrial carcinoma tissue was significantly dysregulated between the two groups. Among the dysregulated genes, the strongly upregulated TRA2B in the tissues and serum from patients with EC was selected for further analysis. Endometrial carcinoma cells were transfected with chemically synthesized TRA2B plasmid, siRNA-TRA2B and their corresponding negative control respectively to assess the effects of TRA2B on the EC cells. Overexpression of TRA2B increased both the cell viability and proliferation potency of EC cells. Whereas, the viability and the proliferation ability of EC cells were strongly decreased by siRNA-TRA2B treatment. Furthermore, the invasion of EC cells was promoted by transfection of TRA2B and overexpression of TRA2B decreased the apoptosis of EC cells. Moreover, siRNA-TRA2B transfection inhibited the invasion but accelerated apoptosis of EC cells. Our results demonstrated that TRA2B is closely related to the development of endometrial carcinoma, and inhibition of TRA2B can decrease viability, proliferation and invasion of endometrial carcinoma, suggesting TRA2B is associated with the pathogenesis of human EC. Knockdown of TRA2B may be used for treatment of endometrial carcinoma, furthermore, these findings suggest an experimental foundation to clinical prognostic role of TRA2B in patients with endometrial carcinoma.
Collapse
|
43
|
Chakka JL, Salem AK. 3D printing in drug delivery systems. JOURNAL OF 3D PRINTING IN MEDICINE 2019; 3:59-62. [PMID: 31258935 PMCID: PMC6587107 DOI: 10.2217/3dp-2019-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jaidev L Chakka
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
44
|
Liu C, Zhang S, McClements DJ, Wang D, Xu Y. Design of Astaxanthin-Loaded Core-Shell Nanoparticles Consisting of Chitosan Oligosaccharides and Poly(lactic- co-glycolic acid): Enhancement of Water Solubility, Stability, and Bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5113-5121. [PMID: 31013074 DOI: 10.1021/acs.jafc.8b06963] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Astaxanthin, a hydrophobic carotenoid found in marine plants and animals, is claimed to exhibit various beneficial biological activities. Its use as a nutraceutical in foods, however, is currently limited by its low water-solubility and poor bioavailability. The goal of this paper was to fabricate astaxanthin-loaded colloidal particles to overcome these challenges. Astaxanthin was encapsulated in poly(lactic- co-glycolic acid) (PLGA) nanoparticles coated with chitosan oligosaccharides (COS). The properties of the loaded nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The influence of PLGA properties on the loading capacity, water solubility, stability, and release of the astaxanthin were determined. The nanoparticles were smooth spheres with mean particle diameters around 150 nm and positive surface potentials (ζ = +30 mV). The encapsulation efficiency (>85%) and loading capacity (>15%) of the astaxanthin in the nanoparticles was relatively high. X-ray analysis suggested that the encapsulated astaxanthin was in an amorphous form. The nanoparticles had good dispersibility and stability in aqueous solutions, as well as high cytocompatibility. In vitro studies showed that the astaxanthin was released from the nanoparticles under simulated gastric and small intestinal conditions. Overall, our results suggest the core-shell nanoparticles developed in this study may be suitable for encapsulating this important nutraceutical in functional foods and cosmetics.
Collapse
Affiliation(s)
- Chengzhen Liu
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Shinan District, Qingdao , Shandong Province 266003 , China
| | - Shuaizhong Zhang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Shinan District, Qingdao , Shandong Province 266003 , China
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - Dongfeng Wang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Shinan District, Qingdao , Shandong Province 266003 , China
| | - Ying Xu
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Shinan District, Qingdao , Shandong Province 266003 , China
| |
Collapse
|
45
|
Zhang J, Nie W, Chen R, Chelora J, Wan Y, Cui X, Zhang X, Zhang W, Chen X, Xie HY, Lee CS. Green Mass Production of Pure Nanodrugs via an Ice-Template-Assisted Strategy. NANO LETTERS 2019; 19:658-665. [PMID: 30346182 DOI: 10.1021/acs.nanolett.8b03043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To make nanomedicine potentially applicable in a clinical setting, several methods have been developed to synthesize pure nanodrugs (PNDs) without using any additional inert carriers. In this work, we report a novel green, low-cost, and scalable ice-template-assisted approach which shows several unique characteristics. First, the whole process only requires adding a drug solution into an ice template and subsequent melting (or freeze-drying), allowing easy industrial mass production with low capital investment. Second, the production yield is much higher than that of the traditional reprecipitation approach. The yield of Curcumin (Cur) PNDs is over two orders (∼140 times) magnitude higher than that obtained in a typical reprecipitation preparation. By adjusting simple processing parameters, PNDs with different sizes (∼20-200 nm) can be controllably obtained. Finally, the present approach can be easily applicable for a wide range of hydrophobic therapeutic drugs without any structural modification.
Collapse
Affiliation(s)
- Jinfeng Zhang
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
| | - Weidong Nie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Rui Chen
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
| | - Jipsa Chelora
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering , The University of Edinburgh , King's Buildings, Mayfield Road , Edinburgh EH9 3JL , United Kingdom
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong SAR , P. R. China
| |
Collapse
|
46
|
Banerjee P, Geng T, Mahanty A, Li T, Zong L, Wang B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int J Pharm 2019; 557:374-389. [DOI: 10.1016/j.ijpharm.2018.12.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022]
|
47
|
Terry TL, Givens BE, Rodgers VGJ, Salem AK. Tunable Properties of Poly-DL-Lactide-Monomethoxypolyethylene Glycol Porous Microparticles for Sustained Release of Polyethylenimine-DNA Polyplexes. AAPS PharmSciTech 2019; 20:23. [PMID: 30604270 DOI: 10.1208/s12249-018-1215-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Direct pulmonary delivery is a promising step in developing effective gene therapies for respiratory disease. Gene therapies can be used to treat the root cause of diseases, rather than just the symptoms. However, developing effective therapies that do not cause toxicity and that successfully reach the target site at therapeutic levels is challenging. We have developed a polymer-DNA complex utilizing polyethylene imine (PEI) and DNA, which was then encapsulated into poly(lactic acid)-co-monomethoxy poly(ethylene glycol) (PLA-mPEG) microparticles via double emulsion, solvent evaporation. Then, the resultant particle size, porosity, and encapsulation efficiency were measured as a function of altering preparation parameters. Microsphere formation was confirmed from scanning electron micrographs and the aerodynamic particle diameter was measured using an aerodynamic particle sizer. Several formulations produced particles with aerodynamic diameters in the 0-5 μm range despite having larger particle diameters which is indicative of porous particles. Furthermore, these aerodynamic diameters correspond to high deposition within the airways when inhaled and the measured DNA content indicated high encapsulation efficiency. Thus, this formulation provides promise for developing inhalable gene therapies.
Collapse
|
48
|
Combination of Proteasome and Histone Deacetylase Inhibitors Overcomes the Impact of Gain-of-Function p53 Mutations. DISEASE MARKERS 2018; 2018:3810108. [PMID: 30647797 PMCID: PMC6311857 DOI: 10.1155/2018/3810108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Mutations in the “guardian of the genome” TP53 predominate in solid tumors. In addition to loss of tumor suppressor activity, a specific subset of missense mutations confers additional oncogenic properties. These “gain-of-function” (GOF) mutations portend poor prognosis across cancer types regardless of treatment. Our objective in this study was to identify novel therapeutic opportunities to overcome the deleterious effects of GOF TP53 mutants. Using gynecologic cancer cell lines with known TP53 mutational status, we established that treatment with a proteasome inhibitor induced cell death in cells with two recurrent GOF TP53 mutations (R175H and R248Q), and addition of a histone deacetylase inhibitor (HDACi) enhanced this effect. By contrast, p53-null cancer cells were relatively resistant to the combination. Proteasome inhibition promoted apoptosis of cells with TP53 GOF mutations, potentially through induction of the unfolded protein response. In line with the reported hyperstabilization of GOF p53 protein, cells treated with HDACi exhibited reduced levels of p53 protein. Together, these data form the basis for future clinical studies examining therapeutic efficacy in a preselected patient population with GOF TP53 mutations.
Collapse
|
49
|
Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS J 2018; 20:108. [PMID: 30306365 PMCID: PMC6398936 DOI: 10.1208/s12248-018-0267-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
The recent progress in harnessing the efficient and precise method of DNA editing provided by CRISPR/Cas9 is one of the most promising major advances in the field of gene therapy. However, the development of safe and optimally efficient delivery systems for CRISPR/Cas9 elements capable of achieving specific targeting of gene therapy to the location of interest without off-target effects is a primary challenge for clinical therapeutics. Nanoparticles (NPs) provide a promising means to meet such challenges. In this review, we present the most recent advances in developing innovative NP-based delivery systems that efficiently deliver CRISPR/Cas9 constructs and maximize their effectiveness.
Collapse
Affiliation(s)
- Brittany E Givens
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Youssef W Naguib
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, 52242, USA.
- Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
50
|
Meng F, Wang J, Ping Q, Yeo Y. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited. ACS NANO 2018; 12:6458-6468. [PMID: 29920064 PMCID: PMC6105334 DOI: 10.1021/acsnano.8b02881] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorescence-based whole-body imaging is widely used in the evaluation of nanoparticles (NPs) in small animals, often combined with quantitative analysis to indicate their spatiotemporal distribution following systemic administration. An underlying assumption is that the fluorescence label represents NPs and the intensity increases with the amount of NPs and/or the labeling dyes accumulated in the region of interest. We prepare DiR-loaded poly(lactic- co-glycolic acid) (PLGA) NPs with different surface layers (polyethylene glycol with and without folate terminus) and compare the distribution of fluorescence signals in a mouse model of folate-receptor-expressing tumors by near-infrared fluorescence whole-body imaging. Unexpectedly, we observe that fluorescence distribution patterns differ far more dramatically with DiR loading than with the surface ligand, reaching opposite conclusions with the same type of NPs (tumor-specific delivery vs predominant liver accumulation). Analysis of DiR-loaded PLGA NPs reveals that fluorescence quenching, dequenching, and signal saturation, which occur with the increasing dye content and local NP concentration, are responsible for the conflicting interpretations. This study highlights the critical need for validating fluorescence labeling of NPs in the quantitative analysis of whole-body imaging. In light of our observation, we make suggestions for future whole-body fluorescence imaging in the in vivo evaluation of NP behaviors.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qineng Ping
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author: Yoon Yeo, Ph.D., Phone: 1.765.496.9608, Fax: 1.765.494.6545,
| |
Collapse
|