1
|
Hekmat A, Kostova I, Saboury AA. Application of metallic nanoparticles-amyloid protein supramolecular materials in tissue engineering and drug delivery: Recent progress and perspectives. Colloids Surf B Biointerfaces 2024; 244:114185. [PMID: 39226848 DOI: 10.1016/j.colsurfb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Supramolecular medicine refers to the formulation of therapeutic and diagnostic agents through supramolecular techniques, amid treating, diagnosing, and preventing disease. Recently, there has been growing interest in developing metal nanoparticles (MNPs)-amyloid hybrid materials, which have the potential to revolutionize medical applications. Furthermore, the development of MNPs-amyloid hydrogel/scaffold supramolecules represents a promising new direction in amyloid nanotechnology, with potential applications in tissue engineering and biomedicine. This review first provides a brief introduction to the formation process of protein amyloid aggregates and their unique nanostructures. Subsequently, we focused on recent investigations into the use of MNPs-amyloid hybrid materials in tissue engineering and biomedicine. We anticipate that MNPs-amyloid supramolecular materials will pave the way for new functional materials in medical science, particularly in the field of tissue engineering.
Collapse
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Irena Kostova
- Faculty of Pharmacy, Medical University Sofia, Bulgaria
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Fernández-Rico C, Dullens RPA. Liquid crystals from curved colloidal rods: waves, twists and more. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:094601. [PMID: 38996410 DOI: 10.1088/1361-6633/ad627b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
The curvature of elongated microscopic building blocks plays a crucial role on their self-assembly into orientationally ordered phases. While rod-like molecules form a handful of liquid crystal (LC) phases, curved or banana-shaped molecules show more than fifty phases, with fascinating physical properties, such as chirality or polarity. Despite the fundamental and technological importance of these so-called 'banana-shaped liquid crystals', little is known about their microscopic details at the single-molecule level. Curved colloidal liquid crystals-liquid crystals formed by curved colloidal rods-are excellent model systems to optically resolve the structure and dynamics of curved building blocks within these condensed phases. Recent advances in the synthesis of curved rod-like particles have unlocked the potential for studying-at the single-particle level-the intimate relationship between shape and phase symmetry, and even confirmed the stability of elusive LC phases. Further developments in this nascent field promise exciting findings, such as the first observation of the colloidal twist-bend nematic phase or the fabrication of functional materials with curvature-dependent properties. In this Report on Progress, we will highlight recent advances in the synthesis and assembly of curved colloidal liquid crystals and discuss the upcoming challenges and opportunities of this field.
Collapse
Affiliation(s)
| | - Roel P A Dullens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
3
|
Zhou J, Assenza S, Tatli M, Tian J, Ilie IM, Starostin EL, Caflisch A, Knowles TPJ, Dietler G, Ruggeri FS, Stahlberg H, Sekatskii SK, Mezzenga R. Hierarchical Protofilament Intertwining Rules the Formation of Mixed-Curvature Amyloid Polymorphs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402740. [PMID: 38899849 PMCID: PMC11348146 DOI: 10.1002/advs.202402740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Amyloid polymorphism is a hallmark of almost all amyloid species, yet the mechanisms underlying the formation of amyloid polymorphs and their complex architectures remain elusive. Commonly, two main mesoscopic topologies are found in amyloid polymorphs characterized by non-zero Gaussian and mean curvatures: twisted ribbons and helical fibrils, respectively. Here, a rich heterogeneity of configurations is demonstrated on insulin amyloid fibrils, where protofilament packing can occur, besides the common polymorphs, also in a combined mode forming mixed-curvature polymorphs. Through AFM statistical analysis, an extended array of heterogeneous architectures that are rationalized by mesoscopic theoretical arguments are identified. Notably, an unusual fibrillization pathway is also unraveled toward mixed-curvature polymorphs via the widespread recruitment and intertwining of protofilaments and protofibrils. The results present an original view of amyloid polymorphism and advance the fundamental understanding of the fibrillization mechanism from single protofilaments into mature amyloid fibrils.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory of Physics of Living Matter, Institute of PhysicsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadrid28049Spain
- Instituto Nicolás CabreraUniversidad Autónoma de MadridMadrid28049Spain
| | - Meltem Tatli
- Laboratory of Biological Electron MicroscopyInstitute of PhysicsSBEPFLand Dep. of Fund. Microbiol.Faculty of Biology and MedicineUNILRt. de la SorgeLausanne1015Switzerland
| | - Jiawen Tian
- Laboratory of Biological Electron MicroscopyInstitute of PhysicsSBEPFLand Dep. of Fund. Microbiol.Faculty of Biology and MedicineUNILRt. de la SorgeLausanne1015Switzerland
| | - Ioana M. Ilie
- van't Hoff Institute for Molecular SciencesUniversity of AmsterdamP.O. Box 94157Amsterdam1090 GDThe Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM)University of AmsterdamP.O. Box 94157Amsterdam1090 GDThe Netherlands
| | - Eugene L. Starostin
- Department of CivilEnvironmental & Geomatic EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Amedeo Caflisch
- Department of BiochemistryUniversity of ZürichZürichCH‐8057Switzerland
| | | | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Institute of PhysicsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Francesco S. Ruggeri
- Laboratory of Organic ChemistryWageningen University & ResearchStippeneng 4Wageningen6703 WEThe Netherlands
- Physical Chemistry and Soft MatterWageningen University & ResearchStippeneng 4Wageningen6703 WEThe Netherlands
| | - Henning Stahlberg
- Laboratory of Biological Electron MicroscopyInstitute of PhysicsSBEPFLand Dep. of Fund. Microbiol.Faculty of Biology and MedicineUNILRt. de la SorgeLausanne1015Switzerland
| | - Sergey K. Sekatskii
- Laboratory of Physics of Living Matter, Institute of PhysicsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
- Laboratory of Biological Electron MicroscopyInstitute of PhysicsSBEPFLand Dep. of Fund. Microbiol.Faculty of Biology and MedicineUNILRt. de la SorgeLausanne1015Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of MaterialsETH ZurichZurich8093Switzerland
| |
Collapse
|
4
|
Sabury S, Xu Z, Saiev S, Davies D, Österholm AM, Rinehart JM, Mirhosseini M, Tong B, Kim S, Correa-Baena JP, Coropceanu V, Jurchescu OD, Brédas JL, Diao Y, Reynolds JR. Non-covalent planarizing interactions yield highly ordered and thermotropic liquid crystalline conjugated polymers. MATERIALS HORIZONS 2024; 11:3352-3363. [PMID: 38686501 DOI: 10.1039/d3mh01974h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Controlling the multi-level assembly and morphological properties of conjugated polymers through structural manipulation has contributed significantly to the advancement of organic electronics. In this work, a redox active conjugated polymer, TPT-TT, composed of alternating 1,4-(2-thienyl)-2,5-dialkoxyphenylene (TPT) and thienothiophene (TT) units is reported with non-covalent intramolecular S⋯O and S⋯H-C interactions that induce controlled main-chain planarity and solid-state order. As confirmed by density functional theory (DFT) calculations, these intramolecular interactions influence the main chain conformation, promoting backbone planarization, while still allowing dihedral rotations at higher kinetic energies (higher temperature), and give rise to temperature-dependent aggregation properties. Thermotropic liquid crystalline (LC) behavior is confirmed by cross-polarized optical microscopy (CPOM) and closely correlated with multiple thermal transitions observed by differential scanning calorimetry (DSC). This LC behavior allows us to develop and utilize a thermal annealing treatment that results in thin films with notable long-range order, as shown by grazing-incidence X-ray diffraction (GIXD). Specifically, we identified a first LC phase, ranging from 218 °C to 107 °C, as a nematic phase featuring preferential face-on π-π stacking and edge-on lamellar stacking exhibiting a large extent of disorder and broad orientation distribution. A second LC phase is observed from 107 °C to 48 °C, as a smectic A phase featuring sharp, highly ordered out-of-plane lamellar stacking features and sharp tilted backbone stacking peaks, while the structure of a third LC phase with a transition at 48 °C remains unclear, but resembles that of the solid state at ambient temperature. Furthermore, the significance of thermal annealing is evident in the ∼3-fold enhancement of the electrical conductivity of ferric tosylate-doped annealed films reaching 55 S cm-1. More importantly, thermally annealed TPT-TT films exhibit both a narrow distribution of charge-carrier mobilities (1.4 ± 0.1) × 10-2 cm2 V-1 s-1 along with a remarkable device yield of 100% in an organic field-effect transistor (OFET) configuration. This molecular design approach to obtain highly ordered conjugated polymers in the solid state affords a deeper understanding of how intramolecular interactions and repeat-unit symmetry impact liquid crystallinity, solution aggregation, solution to solid-state transformation, solid-state morphology, and ultimately device applications.
Collapse
Affiliation(s)
- Sina Sabury
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Zhuang Xu
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Shamil Saiev
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Daniel Davies
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Anna M Österholm
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Joshua M Rinehart
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Motahhare Mirhosseini
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Benedict Tong
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Sanggyun Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Juan-Pablo Correa-Baena
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Oana D Jurchescu
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0041, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
5
|
Wu C, Bagnani M, Jin T, Yuan Y, Mezzenga R. Cholesteric Tactoids with Tunable Helical Pitch Assembled by Lysozyme Amyloid Fibrils. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305839. [PMID: 38312104 DOI: 10.1002/smll.202305839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/22/2023] [Indexed: 02/06/2024]
Abstract
Amyloid fibrils are biological rod-like particles showing liquid-liquid crystalline phase separation into cholesteric phases through a complex behavior of nucleation, growth, and order-order transitions. Yet, controlling the self-assembly of amyloids into liquid crystals, and particularly the resulting helical periodicity, remains challenging. Here, a novel cholesteric system is introduced and characterized based on hen egg white lysozyme (HEWL) amyloid fibrils and the results rationalized via a combination of experiments and theoretical scaling arguments. Specifically, the transition behaviors are elucidated from homogenous nematic, bipolar nematic to cholesteric tactoids following the classic Onsager model and the free energy functional model from Frank-Oseen elasticity theory. Additionally, the critical effects of pH and ionic strength on these order-order-transitions, as well as on the shape and helical pitch of the cholesteric tactoids are demonstrated. It is found that a small increase in pH from 2.0 to 2.8 results in a 34% decrease in pitch, while, on the contrary, increasing ionic strength from 0 to 10 mm leads to a 39% increase in pitch. The present study provides an approach to obtain controllable chiral nematic structures from HEWL amyloid fibrils, and may contribute further to the application of protein-based liquid crystals in pitch-sensitive biosensors or biomimetic architectures.
Collapse
Affiliation(s)
- Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Tonghui Jin
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Ye Yuan
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich, 8093, Switzerland
| |
Collapse
|
6
|
Lin D, Bagnani M, Almohammadi H, Yuan Y, Zhao Y, Mezzenga R. Single-Step Control of Liquid-Liquid Crystalline Phase Separation by Depletion Gradients. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312564. [PMID: 38692672 DOI: 10.1002/adma.202312564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Fine-tuning nucleation and growth of colloidal liquid crystalline (LC) droplets, also known as tactoids, is highly desirable in both fundamental science and technological applications. However, the tactoid structure results from the trade-off between thermodynamics and nonequilibrium kinetics effects, and controlling liquid-liquid crystalline phase separation (LLCPS) in these systems is still a work in progress. Here, a single-step strategy is introduced to obtain a rich palette of morphologies for tactoids formed via nucleation and growth within an initially isotropic phase exposed to a gradient of depletants. The simultaneous appearance is shown of rich LC structures along the depleting potential gradient, where the position of each LC structure is correlated with the magnitude of the depleting potential. Changing the size (nanoparticles) or the nature (polymers) of the depleting agent provides additional, precise control over the resulting LC structures through a size-selective mechanism, where the depletant may be found both within and outside the LC droplets. The use of depletion gradients from depletants of varying sizes and nature offers a powerful toolbox for manipulation, templating, imaging, and understanding heterogeneous colloidal LC structures.
Collapse
Affiliation(s)
- Dongdong Lin
- School of Physical Science and Technology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P. R. China
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P. R. China
| | - Massimo Bagnani
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Hamed Almohammadi
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Ye Yuan
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P. R. China
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences & Technology, Schmelzbergstrasse 9, Zurich, 8092, Switzerland
- ETH Zurich, Department of Materials, Zurich, 8093, Switzerland
| |
Collapse
|
7
|
Wang R, He H, Tian J, Chodankar S, Hsiao BS, Rosén T. Solvent-Dependent Dynamics of Cellulose Nanocrystals in Process-Relevant Flow Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13319-13329. [PMID: 38859701 PMCID: PMC11210288 DOI: 10.1021/acs.langmuir.4c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Flow-assisted alignment of anisotropic nanoparticles is a promising route for the bottom-up assembly of advanced materials with tunable properties. While aligning processes could be optimized by controlling factors such as solvent viscosity, flow deformation, and the structure of the particles themselves, it is necessary to understand the relationship between these factors and their effect on the final orientation. In this study, we investigated the flow of surface-charged cellulose nanocrystals (CNCs) with the shape of a rigid rod dispersed in water and propylene glycol (PG) in an isotropic tactoid state. In situ scanning small-angle X-ray scattering (SAXS) and rheo-optical flow-stop experiments were used to quantify the dynamics, orientation, and structure of the assigned system at the nanometer scale. The effects of both shear and extensional flow fields were revealed in a single experiment by using a flow-focusing channel geometry, which was used as a model flow for nanomaterial assembly. Due to the higher solvent viscosity, CNCs in PG showed much slower Brownian dynamics than CNCs in water and thus could be aligned at lower deformation rates. Moreover, CNCs in PG also formed a characteristic tactoid structure but with less ordering than CNCs in water owing to weaker electrostatic interactions. The results indicate that CNCs in water stay assembled in the mesoscale structure at moderate deformation rates but are broken up at higher flow rates, enhancing rotary diffusion and leading to lower overall alignment. Albeit being a study of cellulose nanoparticles, the fundamental interplay between imposed flow fields, Brownian motion, and electrostatic interactions likely apply to many other anisotropic colloidal systems.
Collapse
Affiliation(s)
- Ruifu Wang
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - HongRui He
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Jiajun Tian
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Shirish Chodankar
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11793-5000, United States
| | - Benjamin S. Hsiao
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Tomas Rosén
- Department
of Fiber and Polymer Technology and Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Park SM, Yoon DK. Evaporation-induced self-assembly of liquid crystal biopolymers. MATERIALS HORIZONS 2024; 11:1843-1866. [PMID: 38375871 DOI: 10.1039/d3mh01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Evaporation-induced self-assembly (EISA) is a process that has gained significant attention in recent years due to its fundamental science and potential applications in materials science and nanotechnology. This technique involves controlled drying of a solution or dispersion of materials, forming structures with specific shapes and sizes. In particular, liquid crystal (LC) biopolymers have emerged as promising candidates for EISA due to their highly ordered structures and biocompatible properties after deposition. This review provides an overview of recent progress in the EISA of LC biopolymers, including DNA, nanocellulose, viruses, and other biopolymers. The underlying self-assembly mechanisms, the effects of different processing conditions, and the potential applications of the resulting structures are discussed.
Collapse
Affiliation(s)
- Soon Mo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Chattopadhyay J, Mandal J, Maiti PK. Stability of the chiral crystal phase and breakdown of the cholesteric phase in mixtures of active-passive chiral rods. SOFT MATTER 2024; 20:2464-2473. [PMID: 38381111 DOI: 10.1039/d3sm01567j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
In this study, we aim to explore the effect of chirality on the phase behavior of active helical particles driven by two-temperature scalar activity. We first calculate the equation of state of soft helical particles of various intrinsic chiralities using molecular dynamics (MD) simulation. In equilibrium, the emergence of various liquid crystal (LC) phases such as nematic (N), cholesteric , smectic (Sm) and crystal (K) crucially depends on the presence of walls that induce planar alignment. Next, we introduce activity through the two-temperature model: keep increasing the temperature of half of the helical particles (labeled as 'hot' particles) while maintaining the temperature of the other half at a lower value (labeled as 'cold' particles). Starting from a homogeneous isotropic (I) phase, we find the emergence of 2-TIPS: two temperature-induced phase separations between the hot and cold particles. We also observe that the cold particles undergo an ordering transition to various LC phases even in the absence of a wall. This observation reveals that the hot-cold interface in the active system plays the role of a wall in the equilibrium system by inducing an alignment direction for the cold particles. However, in the case of a cholesteric phase, we observe that activity destabilizes the phase by inducing smectic ordering in the cold zone while an isotropic structure in the hot zone. The smectic ordering in the cold zone eventually transforms to a chiral crystal phase with high enough activity.
Collapse
Affiliation(s)
- Jayeeta Chattopadhyay
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Jaydeep Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Jin T, Yuan Y, Bagnani M, Wu C, Liu B, Mezzenga R. Structural Colors from Amyloid-Based Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308437. [PMID: 37804231 DOI: 10.1002/adma.202308437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Indexed: 10/09/2023]
Abstract
The helical periodicity and layered structure in cholesteric liquid crystals (CLCs) may be tuned to generate structural color according to the Bragg's law of diffraction. A wide range of natural-based materials such as condensed DNA, collagen, chitin, cellulose, and chiral biopolymers exhibit cholesteric phases with left-handed helixes and ensued structural colors. Here, the possibility of using amyloid CLCs is reported to prepare films with iridescent color reflection and opposite handedness. Right-handed CLCs assembled by left-handed amyloid fibrils are dried into layered structures with variable pitch controlled by the addition of glucose. Circularly polarized light with the same handedness of amyloid CLCs helix is reflected in the Bragg regime. Varying the drying speed leads to the switching between films with a rainbow-like color gradient and large area uniform color. It is confirmed that the origin of the colors derives from the layered structures of the amyloid CLCs, given the negligeable birefringence of the films, calculated from optical rotatory dispersion. These findings provide a facile approach to constructing biosourced cholesteric materials and introduce an original class of proteinaceous materials for the generation of structural colors from right-handed circularly polarized light.
Collapse
Affiliation(s)
- Tonghui Jin
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Ye Yuan
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Chao Wu
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100091, P. R. China
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
- Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, Zürich, 8093, Switzerland
| |
Collapse
|
11
|
Ross JL. Self-assembling synthetic polymer forms liquid-like droplets. Nature 2024; 626:957-958. [PMID: 38418908 DOI: 10.1038/d41586-024-00421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
12
|
Fu H, Huang J, van der Tol JJB, Su L, Wang Y, Dey S, Zijlstra P, Fytas G, Vantomme G, Dankers PYW, Meijer EW. Supramolecular polymers form tactoids through liquid-liquid phase separation. Nature 2024; 626:1011-1018. [PMID: 38418913 PMCID: PMC10901743 DOI: 10.1038/s41586-024-07034-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymers has recently been shown to play a central role in the formation of membraneless organelles with a multitude of biological functions1-3. The interplay between LLPS and macromolecular condensation is part of continuing studies4,5. Synthetic supramolecular polymers are the non-covalent equivalent of macromolecules but they are not reported to undergo LLPS yet. Here we show that continuously growing fibrils, obtained from supramolecular polymerizations of synthetic components, are responsible for phase separation into highly anisotropic aqueous liquid droplets (tactoids) by means of an entropy-driven pathway. The crowding environment, regulated by dextran concentration, affects not only the kinetics of supramolecular polymerizations but also the properties of LLPS, including phase-separation kinetics, morphology, internal order, fluidity and mechanical properties of the final tactoids. In addition, substrate-liquid and liquid-liquid interfaces proved capable of accelerating LLPS of supramolecular polymers, allowing the generation of a myriad of three-dimensional-ordered structures, including highly ordered arrays of micrometre-long tactoids at surfaces. The generality and many possibilities of supramolecular polymerizations to control emerging morphologies are demonstrated with several supramolecular polymers, opening up a new field of matter ranging from highly structured aqueous solutions by means of stabilized LLPS to nanoscopic soft matter.
Collapse
Affiliation(s)
- Hailin Fu
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jingyi Huang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering and Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joost J B van der Tol
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Swayandipta Dey
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Peter Zijlstra
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - George Fytas
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Max Planck Institute for Polymer Research, Mainz, Germany
- Institute of Electronic Structure and Laser, FO.R.T.H, Heraklion, Greece
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering and Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Frka-Petesic B, Parton TG, Honorato-Rios C, Narkevicius A, Ballu K, Shen Q, Lu Z, Ogawa Y, Haataja JS, Droguet BE, Parker RM, Vignolini S. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chem Rev 2023; 123:12595-12756. [PMID: 38011110 PMCID: PMC10729353 DOI: 10.1021/acs.chemrev.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 11/29/2023]
Abstract
Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas G. Parton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Camila Honorato-Rios
- Department
of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aurimas Narkevicius
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kevin Ballu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Qingchen Shen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zihao Lu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yu Ogawa
- CERMAV-CNRS,
CS40700, 38041 Grenoble cedex 9, France
| | - Johannes S. Haataja
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box
15100, Aalto, Espoo FI-00076, Finland
| | - Benjamin E. Droguet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard M. Parker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
14
|
Dadwal A, Prasher M, Sengupta P, Kumar N. Quantifying nematic order in the evaporation-driven self-assembly of halloysite nanotubes: nematic islands and the critical aspect ratio. SOFT MATTER 2023; 19:9050-9058. [PMID: 37975238 DOI: 10.1039/d3sm01224g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Halloysite nanotubes (HNTs) are naturally occurring clay minerals found in the Earth's crust that typically exist in the form of high aspect-ratio nanometer-long rods. Here, we investigate the evaporation-driven self-assembly process of HNTs and show that a highly polydisperse collection of HNTs self-sort into a spatially inhomogeneous structure, displaying a systematic variation in the resulting nematic order. Through detailed quantification using the nematic order parameter S and nematic correlation functions, we show the existence of well-defined isotropic-nematic transitions in the emerging structures. We also show that the onset of these transitions gives rise to the formation of nematic islands, a phase resembling ordered nematic domains surrounded by an isotropic phase, which grow in size with S. Detailed image analysis indicates a strong correlation between local S and the local aspect ratio, L/D, with nematic order possible only for rods with L/D ≥ 6.5 ± 1. Finally, we conclude that the observed phenomena directly result from aspect ratio-based sorting in our system. Altogether, our results provide a unique method of tuning the local microscopic structure in self-assembled HNTs using L/D as an external parameter.
Collapse
Affiliation(s)
- Arun Dadwal
- Department of Physics, Indian Institute of Technology Bombay Powai, Mumbai 400076, India.
| | - Meenu Prasher
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Pranesh Sengupta
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Nitin Kumar
- Department of Physics, Indian Institute of Technology Bombay Powai, Mumbai 400076, India.
| |
Collapse
|
15
|
Caimi F, Zanchetta G. Twisted Structures in Natural and Bioinspired Molecules: Self-Assembly and Propagation of Chirality Across Multiple Length Scales. ACS OMEGA 2023; 8:17350-17361. [PMID: 37251126 PMCID: PMC10210192 DOI: 10.1021/acsomega.3c01822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Several biomolecules can form dynamic aggregates in water, whose nanometric structures often reflect the chirality of the monomers in unexpected ways. Their twisted organization can be further propagated to the mesoscale, in chiral liquid crystalline phases, and even to the macroscale, where chiral, layered architectures contribute to the chromatic and mechanical properties of various plant, insect, and animal tissues. At all scales, the resulting organization is determined by a subtle balance among chiral and nonchiral interactions, whose understanding and fine-tuning is fundamental also for applications. We present recent advances in the chiral self-assembly and mesoscale ordering of biological and bioinspired molecules in water, focusing on systems based on nucleic acids or related aromatic molecules, oligopeptides, and their hybrid stuctures. We highlight the common features and key mechanisms governing this wide range of phenomena, together with novel characterization approaches.
Collapse
|
16
|
Joynul Abedin M, van der Schoot P, Garnier G, Majumder M. Nematic to Cholesteric Transformation in the Cellulose Nanocrystal Droplet Phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6142-6150. [PMID: 37022793 DOI: 10.1021/acs.langmuir.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nucleation, growth, and transformation of chirality in nanomaterial systems is a growing research topic with broad interest in tunable and configurable chiroptical materials. Similar to other one-dimensional nanomaterials, cellulose nanocrystals (CNCs), which are nanorods of naturally abundant biopolymer cellulose, display chiral or cholesteric liquid crystal (LC) phases in the form of tactoids. However, the nucleation and growth of the cholesteric CNC tactoids to equilibrium chiral structures and their morphological transformations are yet to be critically assessed. We noticed that the onset of liquid crystal formation in CNC suspensions is characterized by the nucleation of a nematic tactoid that grows in volume and spontaneously transforms into a cholesteric tactoid. The cholesteric tactoids merge with the neighboring tactoids to form bulk cholesteric mesophases with various configurational palettes. We applied scaling laws from the energy functional theory and found suitable agreement with the morphological transformation of the tactoid droplets monitored for their fine structure and orientation by quantitative polarized light imaging.
Collapse
Affiliation(s)
- Md Joynul Abedin
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Victorelli FD, Rodero CF, Lutz‐Bueno V, Chorilli M, Mezzenga R. Amyloid Fibrils Enhance the Topical Bio-Adhesivity of Liquid Crystalline Mesophase-Based Drug Formulations. Adv Healthc Mater 2023; 12:e2202720. [PMID: 36681654 PMCID: PMC11468793 DOI: 10.1002/adhm.202202720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/08/2023] [Indexed: 01/23/2023]
Abstract
Despite their distinctive secondary structure based on cross β-strands, amyloid fibrils (AF) are stable fibrous protein aggregates with features similar to collagen, one of the main components of the extracellular matrix, and thus constitute a potential scaffold for enhancing cell adhesion for topical applications. Here, the contribution of AF to skin bio-adhesivity aiming toward topical treatments is investigated. Liquid crystalline mesophase (LCM) based on phytantriol is formulated, with the aqueous phase containing either water or a solution of 4 wt% amyloid fibrils. Then resveratrol is added as a model anti-inflammatory molecule. The developed LCM presents a double gyroid Ia3d mesophase. The incorporation of AF into the LCM increases its bio-adhesive properties. In vitro release and ex vivo permeation and retention confirm the controlled release property of the system, and that resveratrol is retained in epidermis and dermis, but is also permeated through the skin. All formulations are biocompatible with L929 cells. The in vivo assay confirms that systems with AF lead to a higher anti-inflammatory effect of resveratrol. These results confirm the hypothesis that the incorporation of AF in the LCM increases the bio-adhesiveness and efficiency of the system for topical treatment, and consequently, the therapeutical action of the encapsulated drug.
Collapse
Affiliation(s)
| | - Camila Fernanda Rodero
- Department of Drugs and MedicineSchool of Pharmaceutical SciencesSão Paulo State UniversityAraraquaraSão Paulo14800‐903Brazil
| | | | - Marlus Chorilli
- Department of Drugs and MedicineSchool of Pharmaceutical SciencesSão Paulo State UniversityAraraquaraSão Paulo14800‐903Brazil
| | - Raffaele Mezzenga
- Department of Health Sciences & TechnologyETH ZurichZurich8092Switzerland
- Department of MaterialsETH ZurichZurich8093Switzerland
| |
Collapse
|
18
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
19
|
Azzari P, Mezzenga R. LLPS vs. LLCPS: analogies and differences. SOFT MATTER 2023; 19:1873-1881. [PMID: 36806460 PMCID: PMC9993225 DOI: 10.1039/d2sm01455f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
We compare the process of Liquid-Liquid Phase Separation (LLPS) of flexible macromolecular solutions, with the Liquid-Liquid Crystalline Phase Separation (LLCPS) of semiflexible polymers and rigid filamentous colloids, which involves the formation of a liquid phase that possesses a directional alignment. Although the observed phase separation follows a similar dynamic path, namely nucleation and growth or spinodal decomposition separating two phases of dilute and concentrated compositions, the underlying physics that defines the theoretical framework of LLCPS is completely different from the one of LLPS. We review the main theories that describe the phase separation processes and relying on thermodynamics and dynamical arguments, we highlight the differences and analogies between these two phase separation phenomena, attempting to clarify the inner mechanisms that regulate those two processes. A particular focus is given to metastable phases, as these intermediate states represent a key element in understanding how phase separation works.
Collapse
Affiliation(s)
- Paride Azzari
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- Department of Materials, ETH Zürich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
20
|
Etale A, Onyianta AJ, Turner SR, Eichhorn SJ. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem Rev 2023; 123:2016-2048. [PMID: 36622272 PMCID: PMC9999429 DOI: 10.1021/acs.chemrev.2c00477] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellulose is known to interact well with water, but is insoluble in it. Many polysaccharides such as cellulose are known to have significant hydrogen bond networks joining the molecular chains, and yet they are recalcitrant to aqueous solvents. This review charts the interaction of cellulose with water but with emphasis on the formation of both natural and synthetic fiber composites. Covering studies concerning the interaction of water with wood, the biosynthesis of cellulose in the cell wall, to its dispersion in aqueous suspensions and ultimately in water filtration and fiber-based composite materials this review explores water-cellulose interactions and how they can be exploited for synthetic and natural composites. The suggestion that cellulose is amphiphilic is critically reviewed, with relevance to its processing. Building on this, progress made in using various charged and modified forms of nanocellulose to stabilize oil-water emulsions is addressed. The role of water in the aqueous formation of chiral nematic liquid crystals, and subsequently when dried into composite films is covered. The review will also address the use of cellulose as an aid to water filtration as one area where interactions can be used effectively to prosper human life.
Collapse
Affiliation(s)
- Anita Etale
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| | - Amaka J Onyianta
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| | - Simon R Turner
- School of Biological Science, University of Manchester, Oxford Road, ManchesterM13 9PT, U.K
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| |
Collapse
|
21
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
22
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
23
|
De Filippo CA, Del Galdo S, Corsi P, De Michele C, Capone B. On the role of polydispersity on the phase diagram of colloidal rods. SOFT MATTER 2023; 19:1732-1738. [PMID: 36757264 DOI: 10.1039/d2sm01355j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rich and complex phase diagram typical of anisotropic biological or synthetic nanoparticles, has brought a great deal of interest over the equilibrium phase behaviour of non-spherical colloids. Amongst the class of anisotropic nanoparticles, hard spherocylindrical colloids have been, over the years, extensively studied because of their optical properties, for their rich phase diagrams, and their important industrial applications, as model particles for biological systems (viruses), or for example as potential drug carriers having the ability of surviving the attacks of the immune systems. As real anisotropic nanoparticles are often polydisperse in size and/or in shape, unveiling the effect of such a perturbation over their equilibrium phase diagram is of paramount importance. This work focuses on the effects of polydispersity over the full equilibrium phase diagram of hard spherocylindrical colloids (HSCs). Previous studies showed that a polydispersity in L alters the equilibrium phase diagram of HSCs. With this work we determine, both theoretically as well as computationally, the effects due to a generic polydispersity, namely in D, in L and, in both ones, on the equilibrium phase diagram and introduce a viable theoretical generalisation of the Onsager theory that allows us to get some insight into the observed phase behaviour.
Collapse
Affiliation(s)
| | - Sara Del Galdo
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| | - Pietro Corsi
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| | - Cristiano De Michele
- Physics Department, University of Roma "La Sapienza", Piazzale Aldo Moro 2, 00186, Rome, Italy.
| | - Barbara Capone
- Science Department, University of Roma Tre, Via della Vasca Navale 84, 00146, Rome, Italy.
| |
Collapse
|
24
|
Almohammadi H, Fu Y, Mezzenga R. Evaporation-Driven Liquid-Liquid Crystalline Phase Separation in Droplets of Anisotropic Colloids. ACS NANO 2023; 17:3098-3106. [PMID: 36719319 DOI: 10.1021/acsnano.2c12065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Drying a colloidal droplet involves complex physics that is often accompanied by evaporation-induced concentration gradients inside of the droplet, offering a platform for fundamental and technological opportunities, including self-assembly, thin film deposition, microfabrication, and DNA stretching. Here, we investigate the drying, liquid crystalline structures, and deposit patterns of colloidal liquid crystalline droplets undergoing liquid-liquid crystalline phase separation (LLCPS) during evaporation. We show that evaporation-induced progressive up-concentration inside the drying droplets makes it possible to cross, at different speeds, various thermodynamic stability states in solutions of amyloid fibril rigid filamentous colloids, thus allowing access to both metastable states, where phase separation occurs via nucleation and growth, as well as to unstable states, where phase separation occurs via the more elusive spinodal decomposition, leading to the formation of liquid crystalline microdroplets (or tactoids) of different shapes. We present the tactoids "phase diagram" as a function of the position within the droplet and elucidate their hydrodynamics. Furthermore, we demonstrate that the presence of the amyloid fibrils not only does not enhance the pinning behavior during droplet evaporation but also slightly suppresses it, thus minimizing the coffee-ring effect. We observed that microsize domains with cholesteric structure emerge in the drying droplet close to the droplet's initial edge, yet such domains are not connected to form a uniform cholesteric dried film. Finally, we demonstrate that a fully cholesteric dried layer can be generated from the drying droplets by regulating the kinetics of the evaporation process.
Collapse
Affiliation(s)
- Hamed Almohammadi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Yutong Fu
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
25
|
Almohammadi H, Martinek S, Yuan Y, Fischer P, Mezzenga R. Disentangling kinetics from thermodynamics in heterogeneous colloidal systems. Nat Commun 2023; 14:607. [PMID: 36739286 PMCID: PMC9899263 DOI: 10.1038/s41467-023-36292-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
In Nucleation and Growth, the process by which most heterogeneous systems form, thermodynamics sets the asymptotic boundaries toward which the system must evolve, while kinetics tries to cope with it by imposing the transport rates. In all heterogeneous colloidal systems observed in nature, composition, shape, structure and physical properties result from the trade-off between thermodynamics and kinetics. Here we show, by carefully selecting colloidal systems and controlling phase separation in microfluidic devices, that it becomes possible to disentangle kinetics effects from thermodynamics. Using amyloids and nanocellulose filamentous colloids, we demonstrate that decoupling kinetics from thermodynamics in the phase separation process unveils new physical phenomena, such as orders of magnitude shorter timescales, a wider phase diagram, and structures that are not observable via conventional liquid-liquid phase separation. Our approach enables on-demand fabrication of multicomponent heterogeneous liquid crystals, enhancing their potential, and introducing original fundamental and technological directions in multicomponent structured fluids.
Collapse
Affiliation(s)
- Hamed Almohammadi
- grid.5801.c0000 0001 2156 2780Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sandra Martinek
- grid.5801.c0000 0001 2156 2780Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ye Yuan
- grid.5801.c0000 0001 2156 2780Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Peter Fischer
- grid.5801.c0000 0001 2156 2780Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Raffaele Mezzenga
- grid.5801.c0000 0001 2156 2780Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland ,grid.5801.c0000 0001 2156 2780Department of Materials, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Guo S, Tao H, Gao G, Mhatre S, Lu Y, Takagi A, Li J, Mo L, Rojas OJ, Chu G. All-Aqueous Bicontinuous Structured Liquid Crystal Emulsion through Intraphase Trapping of Cellulose Nanoparticles. Biomacromolecules 2023; 24:367-376. [PMID: 36479984 PMCID: PMC9832472 DOI: 10.1021/acs.biomac.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe the all-aqueous bicontinuous emulsions with cholesteric liquid crystal domains through hierarchical colloidal self-assembly of nanoparticles. This is achieved by homogenization of a rod-like cellulose nanocrystal (CNC) with two immiscible, phase separating polyethylene glycol (PEG) and dextran polymer solutions. The dispersed CNCs exhibit unequal affinity for the binary polymer mixtures that depends on the balance of osmotic and chemical potential between the two phases. Once at the critical concentration, CNC particles are constrained within one component of the polymer phases and self-assemble into a cholesteric organization. The obtained liquid crystal emulsion demonstrates a confined three-dimensional percolating bicontinuous network with cholesteric self-assembly of CNC within the PEG phase; meanwhile, the nanoparticles in the dextran phase remain isotropic instead. Our results provide an alternative way to arrest bicontinuous structures through intraphase trapping and assembling of nanoparticles, which is a viable and flexible route to extend for a wide range of colloidal systems.
Collapse
Affiliation(s)
- Shasha Guo
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China,Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Han Tao
- Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland
| | - Guang Gao
- Department
of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sameer Mhatre
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ayako Takagi
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jun Li
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China
| | - Lihuan Mo
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Pulp
and Paper Engineering, South China University
of Technology, Guangzhou 510640, China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland,, . Phone: +358503080661
| | - Guang Chu
- Bio-based
Colloids and Materials, Department of Bioproducts and Biosystems,
School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 02510, Finland,. Phone: +1-604-822-3457
| |
Collapse
|
27
|
Hierarchical metal-peptide assemblies with chirality-encoded spiral architecture and catalytic activity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1351-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Liu Y, Wood JA, Giacometti A, Widmer-Cooper A. The thermodynamic origins of chiral twist in monolayer assemblies of rod-like colloids. NANOSCALE 2022; 14:16837-16844. [PMID: 36367437 DOI: 10.1039/d2nr05230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The propagation of chirality across scales is a common but poorly understood phenomenon in soft matter. Here, using computer simulations, we study twisted monolayer assemblies formed by both chiral and achiral rod-like particles in the presence of non-adsorbing polymer and characterise the thermodynamic driving forces responsible for the twisting. We observe assemblies with both like and inverted chirality relative to the rods and show that the preferred twist is already determined during the initial stage of the self-assembly. Depending on the geometry of the constituent rods, the chiral twist is regulated by either the entropy gain of the polymer, or of the rods, or both. This can include important contributions from changes in both the surface area and volume of the monolayer and from rod fluctuations perpendicular to the monolayer. These findings can deepen our understanding of why chirality propagates and of how to control it.
Collapse
Affiliation(s)
- Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia.
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jared A Wood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia Campus Scientifico, Edificio Alfa, via Torino 155, 30170 Venezia Mestre, Italy
- European Centre for Living Technology (ECLT) Ca' Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia.
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
29
|
Sun Q, Lutz-Bueno V, Zhou J, Yuan Y, Fischer P. Polymer induced liquid crystal phase behavior of cellulose nanocrystal dispersions. NANOSCALE ADVANCES 2022; 4:4863-4870. [PMID: 36381514 PMCID: PMC9642361 DOI: 10.1039/d2na00303a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanocrystals (CNCs) are a promising bio-based material that has attracted significant attention in the fabrication of functional hybrid materials. The rod-like shape and negative surface charge of CNCs enable their rich colloidal behavior, such as a liquid crystalline phase and hydrogel formation that can be mediated by different additives. This study investigates the effect of depletion-induced attraction in the presence of non-absorbing polyethylene glycol (PEG) of different molecular weights in CNC aqueous dispersions, where the polymer molecules deplete the space around particles, apply osmotic pressure and drive the phase transition. Polarized light microscopy (PLM), rheology, small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are used to characterize the phase behavior over a time period of one month. In our results, pure CNC dispersion shows three typical liquid crystal shear rheology regimes and cholesteric self-assembly behavior. Tactoid nucleation, growth and coalescence are observed microscopically, and eventually the dispersion presents macroscopic phase separation. PEG with lower molecular weight induces weak attractive depletion forces. Tactoid growth is limited, and the whole system turns into a fully nematic phase macroscopically. With PEG of higher molecular weight, attractive depletion force becomes predominant, thus CNC self-assembly is inhibited and nematic hydrogel formation is triggered. Overall, we demonstrate that depletion induced attraction forces by the addition of PEG enable precise tuning of CNC self-assembly and phase behavior with controllable mechanical strength and optical activity. These findings deepen our fundamental understanding of cellulose nanocrystals and advance their application in colloidal systems and nanomaterials.
Collapse
Affiliation(s)
- Qiyao Sun
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
| | - Viviane Lutz-Bueno
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
- Paul Scherrer Institute 5232 Villigen PSI Switzerland
| | - Jiangtao Zhou
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
| | - Ye Yuan
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
| | - Peter Fischer
- Department of Health Science and Technology, ETH Zurich 8092 Zurich Switzerland +41 44 632 9710
| |
Collapse
|
30
|
Usuelli M, Ruzzi V, Buzzaccaro S, Nyström G, Piazza R, Mezzenga R. Unraveling gelation kinetics, arrested dynamics and relaxation phenomena in filamentous colloids by photon correlation imaging. SOFT MATTER 2022; 18:5632-5644. [PMID: 35861104 DOI: 10.1039/d1sm01578h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental understanding of the gelation kinetics, stress relaxation and temporal evolution in colloidal filamentous gels is central to many aspects of soft and biological matter, yet a complete description of the inherent complex dynamics of these systems is still missing. By means of photon correlation imaging (PCI), we studied the gelation of amyloid fibril solutions, chosen as a model filamentous colloid with immediate significance to biology and nanotechnology, upon passage of ions through a semi-permeable membrane. We observed a linear-in-time evolution of the gelation front and rich rearrangement dynamics of the gels, the magnitude and the spatial propagation of which depend on how effectively electrostatic interactions are screened by different ionic strengths. Our analysis confirms the pivotal role of salt concentration in tuning the properties of amyloid gels, and suggests potential routes for explaining the physical mechanisms behind the linear advance of the salt ions.
Collapse
Affiliation(s)
- Mattia Usuelli
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Gustav Nyström
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- EMPA, Laboratory for Cellulose & Wood Materials, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Raffaele Mezzenga
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- ETH Zürich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Zhang X, Xu Y, Valenzuela C, Zhang X, Wang L, Feng W, Li Q. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2022; 11:223. [PMID: 35835737 PMCID: PMC9283403 DOI: 10.1038/s41377-022-00913-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/15/2023]
Abstract
Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Xinfang Zhang
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
32
|
Fittolani G, Vargová D, Seeberger PH, Ogawa Y, Delbianco M. Bottom-Up Approach to Understand Chirality Transfer across Scales in Cellulose Assemblies. J Am Chem Soc 2022; 144:12469-12475. [PMID: 35765970 PMCID: PMC9284553 DOI: 10.1021/jacs.2c04522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellulose is a polysaccharide that displays chirality across different scales, from the molecular to the supramolecular level. This feature has been exploited to generate chiral materials. To date, the mechanism of chirality transfer from the molecular level to higher-order assemblies has remained elusive, partially due to the heterogeneity of cellulose samples obtained via top-down approaches. Here, we present a bottom-up approach that uses well-defined cellulose oligomers as tools to understand the transfer of chirality from the single oligomer to supramolecular assemblies beyond the single cellulose crystal. Synthetic cellulose oligomers with defined sequences self-assembled into thin micrometer-sized platelets with controllable thicknesses. These platelets further assembled into bundles displaying intrinsic chiral features, directly correlated to the monosaccharide chirality. Altering the stereochemistry of the oligomer termini impacted the chirality of the self-assembled bundles and thus allowed for the manipulation of the cellulose assemblies at the molecular level. The molecular description of cellulose assemblies and their chirality will improve our ability to control and tune cellulose materials. The bottom-up approach could be expanded to other polysaccharides whose supramolecular chirality is less understood.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Yu Ogawa
- Univ.
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
33
|
Shape and structural relaxation of colloidal tactoids. Nat Commun 2022; 13:2778. [PMID: 35589676 PMCID: PMC9120485 DOI: 10.1038/s41467-022-30123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Facile geometric-structural response of liquid crystalline colloids to external fields enables many technological advances. However, the relaxation mechanisms for liquid crystalline colloids under mobile boundaries remain still unexplored. Here, by combining experiments, numerical simulations and theory, we describe the shape and structural relaxation of colloidal liquid crystalline micro-droplets, called tactoids, where amyloid fibrils and cellulose nanocrystals are used as model systems. We show that tactoids shape relaxation bears a universal single exponential decay signature and derive an analytic expression to predict this out of equilibrium process, which is governed by liquid crystalline anisotropic and isotropic contributions. The tactoids structural relaxation shows fundamentally different paths, with first- and second-order exponential decays, depending on the existence of splay/bend/twist orientation structures in the ground state. Our findings offer a comprehensive understanding on dynamic confinement effects in liquid crystalline colloidal systems and may set unexplored directions in the development of novel responsive materials. Tactoids, consisting of micro-confined liquid crystalline colloids with self-selected shape, bear both fundamental and technological significance. The authors show that the shape relaxation of tactoids follows an exponential decay and develop a model to predict this out-of-the-equilibrium process.
Collapse
|
34
|
Park KS, Xue Z, Patel BB, An H, Kwok JJ, Kafle P, Chen Q, Shukla D, Diao Y. Chiral emergence in multistep hierarchical assembly of achiral conjugated polymers. Nat Commun 2022; 13:2738. [PMID: 35585050 PMCID: PMC9117306 DOI: 10.1038/s41467-022-30420-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Intimately connected to the rule of life, chirality remains a long-time fascination in biology, chemistry, physics and materials science. Chiral structures, e.g., nucleic acid and cholesteric phase developed from chiral molecules are common in nature and synthetic soft materials. While it was recently discovered that achiral but bent-core mesogens can also form chiral helices, the assembly of chiral microstructures from achiral polymers has rarely been explored. Here, we reveal chiral emergence from achiral conjugated polymers, in which hierarchical helical structures are developed through a multistep assembly pathway. Upon increasing concentration beyond a threshold volume fraction, dispersed polymer nanofibers form lyotropic liquid crystalline (LC) mesophases with complex, chiral morphologies. Combining imaging, X-ray and spectroscopy techniques with molecular simulations, we demonstrate that this structural evolution arises from torsional polymer molecules which induce multiscale helical assembly, progressing from nano- to micron scale helical structures as the solution concentration increases. This study unveils a previously unknown complex state of matter for conjugated polymers that can pave way to a field of chiral (opto)electronics. We anticipate that hierarchical chiral helical structures can profoundly impact how conjugated polymers interact with light, transport charges, and transduce signals from biomolecular interactions and even give rise to properties unimagined before.
Collapse
Affiliation(s)
- Kyung Sun Park
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Zhengyuan Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Bijal B Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Hyosung An
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801, USA
| | - Justin J Kwok
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801, USA
| | - Prapti Kafle
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA.
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL, 61801, USA.
- Beckman Institute, Molecular Science and Engineering, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S. Mathews Ave., Urbana, IL, 61801, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, 104 S. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
35
|
Parton TG, Parker RM, van de Kerkhof GT, Narkevicius A, Haataja JS, Frka-Petesic B, Vignolini S. Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles. Nat Commun 2022; 13:2657. [PMID: 35550506 PMCID: PMC9098854 DOI: 10.1038/s41467-022-30226-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
The transfer of chirality across length-scales is an intriguing and universal natural phenomenon. However, connecting the properties of individual building blocks to the emergent features of their resulting large-scale structure remains a challenge. In this work, we investigate the origins of mesophase chirality in cellulose nanocrystal suspensions, whose self-assembly into chiral photonic films has attracted significant interest. By correlating the ensemble behaviour in suspensions and films with a quantitative morphological analysis of the individual nanoparticles, we reveal an inverse relationship between the cholesteric pitch and the abundance of laterally-bound composite particles. These 'bundles' thus act as colloidal chiral dopants, analogous to those used in molecular liquid crystals, providing the missing link in the hierarchical transfer of chirality from the molecular to the colloidal scale.
Collapse
Affiliation(s)
- Thomas G Parton
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Richard M Parker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Gea T van de Kerkhof
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Aurimas Narkevicius
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Johannes S Haataja
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Bruno Frka-Petesic
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
36
|
Liu L, Tanguy NR, Yan N, Wu Y, Liu X, Qing Y. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress. Carbohydr Polym 2022; 280:119005. [PMID: 35027120 DOI: 10.1016/j.carbpol.2021.119005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022]
Abstract
Conventional hydrogels with isotropic polymer networks usually lack selective response to external stimuli and that limits their applications in intelligent devices. Herein, hydrogels with distinctive anisotropic optical characteristics combined with thermosensitivity were prepared through in situ photopolymerization. Self-assembled cellulose nanocrystals (CNCs) with chiral nematic ordered structure were embedded in polyethylene glycol derivatives/polyacrylamide polymer networks. The arrangement of CNCs showed a strong dependence on the self-assembly angle and standing time, enabling the fabrication of hydrogels with customizable CNCs arrangements. Increasing the self-assembly angle from 0° to 90° changed the CNCs arrangement from chiral nematic to symmetrical nematic order which, together with CNCs dynamic arrangement from isotropic to annealed chiral nematic phase at longer standing time, provided versatile ways to produce CNCs hydrogels with tunable anisotropic properties. In addition, the obtained hydrogel displayed reversible temperature and compression response, showing excellent promise to be used as soft mechanical stress and temperature sensors or novel anti-counterfeiting materials.
Collapse
Affiliation(s)
- Liu Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3B3, Canada; School of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Nicolas R Tanguy
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3B3, Canada
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3B3, Canada.
| | - Yiqiang Wu
- School of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| | - Xiubo Liu
- School of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China; Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yan Qing
- School of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| |
Collapse
|
37
|
Abstract
Controlled assembly of inorganic nanoparticles with different compositions, sizes and shapes into higher-order structures of collective functionalities is a central pursued objective in chemistry, physics, materials science and nanotechnology. The emerging chiral superstructures, which break spatial symmetries at the nanoscale, have attracted particular attention, owing to their unique chiroptical properties and potential applications in optics, catalysis, biology and so on. Various bottom-up strategies have been developed to build inorganic chiral superstructures based on the intrinsic configurational preference of the building blocks, external fields or chiral templates. Self-assembled inorganic chiral superstructures have demonstrated significant superior optical activity from the strong electric/magnetic coupling between the building blocks, as compared with the organic counterparts. In this Review, we discuss recent progress in preparing self-assembled inorganic chiral superstructures, with an emphasis on the driving forces that enable symmetry breaking during the assembly process. The chiroptical properties and applications are highlighted and a forward-looking trajectory of where research efforts should be focused is discussed.
Collapse
|
38
|
Park SM, Bagnani M, Yun HS, Han MJ, Mezzenga R, Yoon DK. Hierarchically Fabricated Amyloid Fibers via Evaporation-Induced Self-Assembly. ACS NANO 2021; 15:20261-20266. [PMID: 34890186 DOI: 10.1021/acsnano.1c08374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multiscale hierarchical nano- and microstructures of amyloid fibrils are fabricated by evaporation-induced self-assembly combined with topographic surface patterning techniques. The continuous stick-and-slip motion induces uniaxial alignment of amyloid fibrils characterized by high orientational order during the drying process. The optical textures of the resultant amyloid aggregates are directly observed by polarized optical microscopy (POM) and atomic force microscopy (AFM). The resulting fiber structure can be tuned by varying the width of the topographic pattern, e.g., the microchannel width, inducing different separation between the deposited amyloid fibers on the glass substrate. Additionally, amyloid fibrils are decorated with gold nanoparticles to produce conductive microwires showing good conductivity (∼10-3 S/m). The finely controlled deposited amyloid fibers presented here can show a way to use naturally-abundant biomaterials for practical applications such as nanowires and sensors.
Collapse
Affiliation(s)
- Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich 8092, Switzerland
| | - Hee Seong Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Moon Jong Han
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich 8092, Switzerland
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
39
|
Yuan Y, Almohammadi H, Probst J, Mezzenga R. Plasmonic Amyloid Tactoids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106155. [PMID: 34658087 PMCID: PMC11468577 DOI: 10.1002/adma.202106155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Despite their link to neurodegenerative diseases, amyloids of natural and synthetic sources can also serve as building blocks for functional materials, while possessing intrinsic photonic properties. Here, it is demonstrated that orientationally ordered amyloid fibrils exhibit polarization-dependent fluorescence, and can mechanically align rod-shaped plasmonic nanoparticles codispersed with them. The coupling between the photonic fibrils in liquid crystalline phases and the plasmonic effect of the nanoparticles leads to selective activation of plasmonic extinctions as well as enhanced fluorescence from the hybrid material. These findings are consistent with numerical simulations of the near-field plasmonic enhancement around the nanoparticles. The study provides an approach to synthesize the intrinsic photonic and mechanical properties of amyloid into functional hybrid materials, and may help improve the detection of amyloid deposits based on their enhanced intrinsic luminescence.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Hamed Almohammadi
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | - Julie Probst
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8093Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
- Department of MaterialsETH ZürichZürich8093Switzerland
| |
Collapse
|
40
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Fraccia TP, Zanchetta G. Liquid–liquid crystalline phase separation in biomolecular solutions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
43
|
Zhang XJ, Sun YW, Li ZW, Sun ZY. Transition kinetics of defect patterns in confined two-dimensional smectic liquid crystals. Phys Rev E 2021; 104:044704. [PMID: 34781539 DOI: 10.1103/physreve.104.044704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Topological defects in liquid crystals under confined geometries have attracted extensive research interests. Here, we perform molecular dynamics simulations to investigate the formation and transition of defect patterns in two-dimensional smectic Gay-Berne liquid crystals with a simple rectangular confinement boundary. Two typical types of defect patterns, bridge and diagonal defect patterns, are observed, which can be transformable continuously between each other over time. The transition usually starts from the line or point defect regions, and the competition between neighboring and opposite boundary effects induces the continuous realignments of the smectic layers to connect the neighboring or opposite walls. The relative stability of these two defect patterns can be controlled by changing the confinement conditions. These results deepen our understanding of transition kinetics of defect patterns in confined liquid crystals.
Collapse
Affiliation(s)
- Xiao-Jie Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
44
|
Ansell HS, Kamien RD. Twisted loxodromes in spindle-shaped polymer nematics. SOFT MATTER 2021; 17:7076-7085. [PMID: 34235531 DOI: 10.1039/d1sm00772f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We develop an energetic model that captures the twisting behavior of spindle-shaped polymer microparticles with nematic ordering, which display remarkably different twisting behavior to ordinary nematics confined to spindles. We have previously developed a geometric model of the twisting, based on experimental observations, in which we showed that the twist pattern follows loxodrome spirals [Ansell, et al., Phys. Rev. Lett., 2019, 123, 157801]. In this study, we first consider a spindle-shaped surface and show that the loxodrome twisting behavior of our system can be captured by the Frank free energy of the nematic with an additional term constraining the length of the integral curves of the system. We then extend the ideas of this model to the bulk and explore the parameter space for which the twisted loxodrome solution is energetically favorable.
Collapse
Affiliation(s)
- Helen S Ansell
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Randall D Kamien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
45
|
Azzari P, Bagnani M, Mezzenga R. Liquid-liquid crystalline phase separation in biological filamentous colloids: nucleation, growth and order-order transitions of cholesteric tactoids. SOFT MATTER 2021; 17:6627-6636. [PMID: 34143859 PMCID: PMC8279111 DOI: 10.1039/d1sm00466b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/28/2021] [Indexed: 05/19/2023]
Abstract
The process of liquid-liquid crystalline phase separation (LLCPS) in filamentous colloids is at the very core of multiple biological, physical and technological processes of broad significance. However, the complete theoretical understanding of the process is still missing. LLCPS involves the nucleation, growth and up-concentration of anisotropic droplets from a continuous isotropic phase, until a state of equilibrium is reached. Herein, by combining the thermodynamic extremum principle with the Onsager theory, we describe the nucleation and growth of liquid crystalline droplets, and the evolution of their size and concentration during phase separation, eventually leading to a multitude of order-order phase transitions. Furthermore, a decreasing pitch behaviour can be predicted using this combined theory during tactoid growth, already observed experimentally but not yet explained by present theories. The results of this study are compared with the experimental data of cholesteric pitch, observed in three different systems of biological chiral liquid crystals. These findings give an important framework for predicting the formation, growth and phase behaviour of biological filamentous colloids undergoing LLCPS, advancing our understanding of liquid-liquid phase separation and self-assembly mechanisms in biological systems, and provide a valuable rationale for developing nanomaterials and applications in nanotechnology.
Collapse
Affiliation(s)
- Paride Azzari
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland. and Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
46
|
|
47
|
Wang Y, Li Q, Zhang J, Qi W, You S, Su R, He Z. Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays. ACS NANO 2021; 15:9827-9840. [PMID: 34047550 DOI: 10.1021/acsnano.1c00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral self-assembly of peptides has attracted great interest owing to their promising applications in biomedicine, chemistry, and materials science. However, compared with the rich knowledge about their chiral self-assembly at the molecular or nanoscale, the formation of long-range-ordered hierarchical helical arrays (HHAs) from simple peptides remains a formidable challenge. Herein, we report the self-templated assembly of an amyloid-like dipeptide into long-range-ordered HHAs by their spontaneous fibrillization and hierarchical helical assembly within a confined film. The chiral interactions between the peptide and diamines result in geometry frustration and the phase transition of self-assembling peptide films from achiral spherulite structures into chiral HHAs. By changing the chirality and enantioselective interactions, we can control the phase behavior, handedness, and chiroptics of the self-assembled HHAs precisely. Moreover, the redox activity of the HHAs allows the in situ decoration of nanoparticles with high catalytic activity. These results provide insights into the chiral self-assembly of peptides and the fabrication of highly ordered materials with complex architectures and promising applications in chiroptics and catalysis.
Collapse
Affiliation(s)
- Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Qing Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Shengping You
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, People's Republic of China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
48
|
Sahu S, Herbst L, Quinn R, Ross JL. Crowder and surface effects on self-organization of microtubules. Phys Rev E 2021; 103:062408. [PMID: 34271669 DOI: 10.1103/physreve.103.062408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/14/2021] [Indexed: 12/30/2022]
Abstract
Microtubules are an essential physical building block of cellular systems. They are organized using specific crosslinkers, motors, and influencers of nucleation and growth. With the addition of antiparallel crosslinkers, microtubule self-organization patterns go through a transition from fanlike structures to homogeneous tactoid condensates in vitro. Tactoids are reminiscent of biological mitotic spindles, the cell division machinery. To create these organizations, we previously used polymer crowding agents. Here we study how altering the properties of the crowders, such as type, size, and molecular weight, affects microtubule organization. Comparing simulations with experiments, we observe a scaling law associated with the fanlike patterns in the absence of crosslinkers. Tactoids formed in the presence of crosslinkers show variable length, depending on the crowders. We correlate the subtle differences to filament contour length changes, affected by nucleation and growth rate changes induced by the polymers in solution. Using quantitative image analysis, we deduce that the tactoids differ from traditional liquid crystal organization, as they are limited in width irrespective of crowders and surfaces, and behave as solidlike condensates.
Collapse
Affiliation(s)
- Sumon Sahu
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Lena Herbst
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Ryan Quinn
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
49
|
Jasiurkowska-Delaporte M, Juszyńska-Gałązka E, Sas W, Zieliński PM, Baranowska-Korczyc A. Soft versus hard confinement effects on the phase transitions, and intra- and inter- molecular dynamics of 6BT liquid crystal constrained in electrospun polymer fibers and in nanopores. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
50
|
Jehle F, Priemel T, Strauss M, Fratzl P, Bertinetti L, Harrington MJ. Collagen Pentablock Copolymers Form Smectic Liquid Crystals as Precursors for Mussel Byssus Fabrication. ACS NANO 2021; 15:6829-6838. [PMID: 33793207 DOI: 10.1021/acsnano.0c10457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein-based biological materials are important role models for the design and fabrication of next generation advanced polymers. Marine mussels (Mytilus spp.) fabricate hierarchically structured collagenous fibers known as byssal threads via bottom-up supramolecular assembly of fluid protein precursors. The high degree of structural organization in byssal threads is intimately linked to their exceptional toughness and self-healing capacity. Here, we investigated the hypothesis that multidomain collagen precursor proteins, known as preCols, are stored in secretory vesicles as a colloidal liquid crystal (LC) phase prior to thread self-assembly. Using advanced electron microscopy methods, including scanning TEM and FIB-SEM, we visualized the detailed smectic preCol LC nanostructure in 3D, including various LC defects, confirming this hypothesis and providing quantitative insights into the mesophase structure. In light of these findings, we performed an in-depth comparative analysis of preCol protein sequences from multiple Mytilid species revealing that the smectic organization arises from an evolutionarily conserved ABCBA pentablock copolymer-like primary structure based on demarcations in hydropathy and charge distribution as well as terminal pH-responsive domains that trigger fiber formation. These distilled supramolecular assembly principles provide inspiration and strategies for sustainable assembly of nanostructured polymeric materials for potential applications in engineering and biomedical applications.
Collapse
Affiliation(s)
- Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Tobias Priemel
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Luca Bertinetti
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
- BCUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|