1
|
Shahbaz M, Seelan JSS, Abasi F, Fatima N, Mehak A, Raza MU, Raja NI, Proćków J. Nanotechnology for controlling mango malformation: a promising approach. J Biomol Struct Dyn 2025; 43:2610-2630. [PMID: 38344816 DOI: 10.1080/07391102.2024.2312449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/30/2023] [Indexed: 04/05/2024]
Abstract
Mango (Mangifera indica L.) is one of the most important fruit crops in the world with yields of approximately 40 million tons annually and its production continues to decrease every year as a result of the attack of certain pathogens i.e. Colletotrichum gloeosporioides, Erythricium salmonicolor, Amritodus atkinsoni, Idioscopus clypealis, Idioscopus nitidulus, Bactrocera obliqua, Bactrocera frauenfeldi, Xanthomonas campestris, and Fusarium mangiferae. So F. mangiferae is the most harmful pathogen that causes mango malformation disease in mango which decreases its 90% yield. Nanotechnology is an eco-friendly and has a promising effect over traditional methods to cure fungal diseases. Different nanoparticles possess antifungal potential in terms of controlling the fungal diseases in plants but applications of nanotechnology in plant disease managements is minimal. The main focus of this review is to highlight the previous and current strategies to control mango malformation and highlights the promising applications of nanomaterials in combating mango malformation. Hence, the present review aims to provide brief information on the disease and effective management strategies.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Fozia Abasi
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Asma Mehak
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Umair Raza
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, P MAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Pilotto L, Scalera F, Piccirillo C, Marchiol L, Zuluaga MYA, Pii Y, Cesco S, Civilini M, Fellet G. Phosphorus Release from Nano-Hydroxyapatite Derived from Biowastes in the Presence of Phosphate-Solubilizing Bacteria: A Soil Column Experiment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3918-3929. [PMID: 39918551 DOI: 10.1021/acs.jafc.4c09325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Phosphorus applications in agriculture can lead to significant environmental impacts, necessitating a revolution in current agricultural practices. This study explores the potential of hydroxyapatite nanoparticles (nHAPs) synthesized from poultry bones as P fertilizers. nHAPs were produced at 300 °C (nHAP300) and 700 °C (nHAP700), and their effectiveness was evaluated. An in vitro solubilization test with Pseudomonas alloputida evaluated the bacterium's ability to solubilize the nanoparticles, assessing dissolved P and organic acids produced. Additionally, a soil leaching test measured P losses and bioavailable P in soil compared to a conventional fertilizer, the triple superphosphate (TSP). nHAP300 displayed heterogeneous sizes, while nHAP700 were approximately 100 nm in size, with a P content of 8.8% and 19.4%, respectively. Pseudomonas alloputida successfully solubilized both types of nanoparticles, with nHAP700 demonstrating a higher solubility than nHAP300. The TSP treatment resulted in higher P losses (6.35 mg) compared with nHAP treatments (nHAP300 0.32 mg; nHAP700 0.28 mg), indicating the potential of nHAP for recycling P from waste. Our findings indicate that nHAP700 are more efficient in P release than nHAP300 but less prone to leaching compared to conventional fertilizers. Utilizing these nanoparticles enables phosphorus recovery from waste and holds significant potential for sustainable agricultural applications.
Collapse
Affiliation(s)
- Laura Pilotto
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 10, Trieste 34127, Italy
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine 33100, Italy
| | - Francesca Scalera
- Institute of Nanotechnology CNR-NANOTEC, Campus Ecotekne, Via Monteroni 165, Lecce 73100, Italy
| | - Clara Piccirillo
- Institute of Nanotechnology CNR-NANOTEC, Campus Ecotekne, Via Monteroni 165, Lecce 73100, Italy
| | - Luca Marchiol
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine 33100, Italy
| | - Monica Yorlady Alzate Zuluaga
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Universitätsplatz 5 - Piazza Università, 5, Bolzano 39100, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Universitätsplatz 5 - Piazza Università, 5, Bolzano 39100, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Universitätsplatz 5 - Piazza Università, 5, Bolzano 39100, Italy
| | - Marcello Civilini
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine 33100, Italy
| | - Guido Fellet
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine 33100, Italy
| |
Collapse
|
3
|
Heidarian F, Fallah S, Pokhrel LR, Rostamnejadi A. Magnetite nanoparticles (Fe 3O 4NPs) promote drought tolerance and improve plant health, grain quality and yield in kidney bean (Phaseolus vulgaris L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178544. [PMID: 39848156 DOI: 10.1016/j.scitotenv.2025.178544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
As a primary abiotic constraint for bean cultivation in semi-arid regions, drought stress significantly impacts both the yield and quality of beans. Foliar application of nanofertilizer has been shown to effectively improve crop yield and nutritional quality while mitigating environmental pollution associated with fertilizer runoff. In this study, we conducted a semi-field study using magnetite nanoparticles (Fe3O4NPs) to evaluate its effects on the growth, yield, nutrient quality, photosynthetic parameters, and physiological traits in kidney bean (Phaseolus vulgaris L.) subjected to drought stress and compared with ferrous sulfate (FeSO4; ionic Fe). Our findings revealed that moderate drought stress (50 % field water capacity) severely impaired growth and photosynthetic activity in kidney bean in untreated control plants. Notably, application of 500-1000 mg Fe L-1 as Fe3O4NPs, in contrast to 1000 mg Fe L-1 of ionic Fe, resulted in increased yield (29-72 %), grain quality (protein 7-17 % and iron 10-45 %), and photosynthetic apparatus (245-259 % for Chla; 203-260 % for Chlb), under drough condition. Furthermore, foliar applications of Fe3O4NPs promoted drought tolerance by increasing relative water content and proline levels, vis-à-vis reducing membrane lipid peroxidation and electrolyte leakage. It is concluded that Fe3O4NPs at 500-1000 mg L-1 could significantly promote growth, quality, and physiological attributes in kidney bean under moderate drought stress, underscoring the potential advantages of using nano‑iron over ionic iron fertilizers for improved agriculture production.
Collapse
Affiliation(s)
- Fatemeh Heidarian
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
4
|
Chen Y, Li H, Peng Y, Li T, Li X, Wang C, Xiao R, Dong J, Du X. Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2865-2879. [PMID: 39869849 DOI: 10.1021/acs.jafc.4c10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe3+, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, H2O2, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens. The tebuconazole nanocapsules not only enhanced the fungicidal activity against Fusarium graminearum and effective control efficacy in wheat powdery mildew through foliar spray and seed coating, but also improved the biosafety of target plant growth and nontarget organisms. The facile, smart, efficient, safe, and green pesticide nanocapsules using the universal strategy have broad application prospects in ecoagriculture.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhui Peng
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongtong Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaona Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruixi Xiao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiangtao Dong
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xuezhong Du
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Xiang B, Fang K, Song R, Chen J, Feng X, Wang G, Duan X, Yang C. Advancement in surfactant-enhanced droplet deposition on the hydrophobic surfaces. Adv Colloid Interface Sci 2025; 336:103374. [PMID: 39657559 DOI: 10.1016/j.cis.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
Droplets impacting solid surfaces are encountered in nature and industry, from rain to agricultural spraying and inkjet printing. Surfactants are an important factor that affects the impact behavior of droplets. An in-depth knowledge of the influence and mechanisms of surfactants on the dynamics of droplet impact can enhance the precise control of droplets in industrial processes. Herein, recent insights into surfactant-enhanced droplet deposition on hydrophobic surfaces are reviewed. First, the mechanisms of surfactant-enhanced droplet deposition are summarized. Second, the factors that influence droplet deposition, such as molecular diffusion, convective diffusion of surfactants, characteristics of hydrophobic surfaces, and interaction between the surfactant-laden droplets and the hydrophobic surfaces, are explored. Additionally, the influences of surfactants on the spreading and retraction processes of impacting droplets, maximum spreading factor, and oscillation dynamics are reviewed. Finally, typical applications of surfactants in different fields, such as inkjet printing, supercooled surface, and agricultural spray, are summarized, along with challenges and prospects in future research, to provide suggestions for subsequent studies.
Collapse
Affiliation(s)
- Bing Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Petroleum Molecular & Process Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Kefeng Fang
- State Key Laboratory of Petroleum Molecular & Process Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runci Song
- State Key Laboratory of Petroleum Molecular & Process Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Chen
- State Key Laboratory of Petroleum Molecular & Process Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Three Gorges Laboratory, Yichang 443008, China.
| | - Xin Feng
- State Key Laboratory of Petroleum Molecular & Process Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guilong Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Duan
- State Key Laboratory of Petroleum Molecular & Process Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Cao G, Zhao W, Han L, Teng Y, Xu S, Nguyen H, Tam KC. Enhancing Droplet Spreading on a Hydrophobic Plant Surface by Surfactant/Cellulose Nanocrystal Complexes. ACS NANO 2025; 19:3549-3561. [PMID: 39817302 DOI: 10.1021/acsnano.4c13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern. Thus, in this study, we developed a strategy to enhance pesticide loading and droplet deposition by mixing small amounts of sodium dodecyl sulfate (SDS) (0.1 wt %) and cationically modified cellulose nanocrystals (PCNC). The reduced surface tension, increased viscosity and adhesion, and electrostatic and hydrogen interactions resulted in a low retraction velocity, excellent spreading, and resistance to air turbulence. The improved loading content was facilitated by the hydrophobic domains of PCNC and SDS micelles.
Collapse
Affiliation(s)
- Gaili Cao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Weinan Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lian Han
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Youchao Teng
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Shikuan Xu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Han Nguyen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Du J, Hu X, Zhou Q. Nanoagrochemicals May Present Food Safety Risks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:983-984. [PMID: 39748793 DOI: 10.1021/acs.jafc.4c12331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Junjie Du
- College of Life Science, Shanxi Engineering Research Center of Microbial Application Technologies, Shanxi Normal University, Taiyuan 030031, China
| | - Xiangang Hu
- Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Carbon Neutrality Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Liu H, Shangguan W, Zhao P, Cao C, Yu M, Huang Q, Cao L. Size Effects of Nanoenabled Agrochemicals in Sustainable Crop Production: Advances, Challenges, and Perspectives. ACS NANO 2025; 19:54-72. [PMID: 39725553 DOI: 10.1021/acsnano.4c09803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Nanoenabled agrochemicals mainly including nanopesticides and nanofertilizers based on nanotechnology play a crucial role in plant protection and food security. These agrochemicals exhibit high dose delivery efficiency and biological activity due to their unique nanoscale properties. However, nanoscale properties can also be a double-edged sword, posing potential risks to both humans and the environment. As nanoenabled agrochemicals become more widely used, it is essential to have an objective and comprehensive discussion of the size effects of these agrochemicals. In this paper, we reviewed the research progress on the size effects of nanoenabled agrochemicals in terms of dose delivery, biological activity, and nontarget safety. We investigated the complex factors affecting size effects and sought to draw insights from research in biomedicine, engineering, food, and other relevant fields. Based on the literatures review, it could be concluded that "the smaller the better" is not always the case. We further outlooked the development prospects of studying the size effects of nanoenabled agrochemicals, emphasizing the necessity for thorough and in-depth research while critically identifying key issues that need to be addressed. In conclusion, a proper comprehension of the size effects of nanoenabled agrochemicals bridges the gap between the scientific community and industry, bolstering the role in advancing sustainable agriculture.
Collapse
Affiliation(s)
- Hongyi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Wenjie Shangguan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Pengyue Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Manli Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
9
|
Verma A, Choudhary R, Singh VJ, Kachhwaha S, Kothari SL, Jain R. Assessment of the effect of multi-walled carbon nanotubes (-OH functionalized) on growth characteristics and biochemical profile of Brassica juncea (L.) Czern. & Coss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1345-1360. [PMID: 39725846 DOI: 10.1007/s11356-024-35681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
This study investigated the effect of various levels of OH-MWCNTs mediated seed priming on germination, growth, and biochemical responses of Indian mustard (Brassica juncea (L.) Czern. & Coss.). Germination efficiency declined significantly up to 33.8% with increasing concentration of OH-MWCNT; however, other growth characteristics including seedling length and weight exhibited a substantial increase of up to 61.6% and 142%, respectively, at moderate levels (≤ 100 µg mL-1). Higher doses (250 µg mL-1, 500 µg mL-1) of OH-MWCNT exhibited a toxic effect on all growth parameters resulting in ~ 20% and 55% decline in seedling length and biomass, respectively. Similar trend was recorded in chlorophyll content, and maximum total chlorophyll content (13 ± 3 mg/g FW) was noted at 100 µg/mL OH-MWCNT. Antioxidant enzyme activities including catalase (CAT), guaiacol peroxidase (GPX), polyphenol oxidase (PPO), and superoxide dismutase (SOD) also exhibited similar pattern such that all activities were maximum at 100 µgmL-1 in both shoots and roots and were significantly higher in shoots than in roots. Total phenol content and DPPH activity were also maximum at 100 µgmL-1, and both parameters were comparatively higher in roots than in shoots. GC-MS analysis revealed that lipids constituted the majority of the proportion of secondary metabolites detected in non-polar extracts of both shoots and roots. Further, correlation analysis established a significant correlation between various growth, physiological, and biochemical parameters. These findings therefore indicated that moderate levels of OH-MWCNT concentrations can enhance B. juncea growth and biochemical responses, which in turn promotes biosynthesis of valuable antioxidant compounds. This study highlighs the potential of MWCNTs as innovative growth enhancers, wherein the higher concentrations may have detrimental effects, therefore, emphasizing the need for careful management of OH-MWCNT usage for agricultural purposes.
Collapse
Affiliation(s)
- Aman Verma
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Rajpal Choudhary
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Vikram Jeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Sumita Kachhwaha
- Department of Botany, University of Rajasthan, Jaipur, 303004, Rajasthan, India
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Rohit Jain
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.
| |
Collapse
|
10
|
Sun XD, Ma JY, Feng LJ, Duan JL, Yuan XZ. Precise tracking of nanoparticles in plant roots. Nat Protoc 2025; 20:248-271. [PMID: 39237831 DOI: 10.1038/s41596-024-01044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/19/2024] [Indexed: 09/07/2024]
Abstract
One of the foremost challenges in nanobiotechnology is obtaining direct evidence of nanoparticles' absorption and internalization in plants. Although confocal laser scanning microscopy (CLSM) or transmission electron microscopy (TEM) are currently the most commonly used tools to characterize nanoparticles in plants, subjectivity of researchers, incorrect sample handling, inevitable fluorescence leakage and limitations of imaging instruments lead to false positives and non-reproducibility of experimental results. This protocol provides an easy-to-operate dual-step method, combining CLSM for macroscopic tissue examination and TEM for cellular-level analysis, to effectively trace single particles in plant roots with accuracy and precision. In addition, we also provide detailed methods for processing plant materials before imaging, including cleaning, and staining, to maximize the accuracy and reliability of imaging. This protocol involves currently commonly used nanomaterial types, such as metal-based and doped carbon-based materials, and enables accurate localization of nanoparticles with different sizes at the cell level in Arabidopsis thaliana root samples either through contrast or element mapping analysis. It serves as a valuable reference and benchmark for scholars in plant science, chemistry and environmental studies to understand the interaction between plant roots and nanomaterials and to detect the distribution of nanomaterials in plants. Excluding plant culture time, the protocol can be completed in 4-5 d.
Collapse
Affiliation(s)
- Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong, P. R. China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong, P. R. China
| | - Li-Juan Feng
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, P. R. China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, P. R. China.
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong, P. R. China.
| |
Collapse
|
11
|
Xu X, Hao Y, Cai Z, Cao Y, Jia W, Zhao J, White JC, Ma C. Nanoscale‑boron nitride positively alters rhizosphere microbial communities and subsequent cucumber (Cucumis sativa) growth: A metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178115. [PMID: 39700995 DOI: 10.1016/j.scitotenv.2024.178115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Boron (B) deficiency affects over 132 crop species globally, making effective B supplement crucial for enhancing agricultural yield and health. This study explores an innovative application of nanoscale boron nitride (nano-BN) as a sustainable solution for addressing B deficiency in crops. Cucumber seedlings were treated with different contents of nano-BN under greenhouse conditions and both B and N ionic treatments were set as comparisons. Results show that soil application of 10 mg/kg nano-BN achieved a remarkable 15.8 % increase in fresh weight compared to the control. Notably, nano-BN exhibited superior efficiency in providing essential micronutrients without inducing toxicity as compared to traditional ionic B sources. Phytohormone correlation analysis reveals that nano-BN application significantly enhances levels of indole-3-acetic acid (IAA) and cytokinins while reducing abscisic acid (ABA), fostering optimal plant growth conditions. Furthermore, increases in dissolved organic matter (DOM) and dissolved organic carbon (DOC) levels in the rhizosphere improve nutrient availability and promote beneficial microbial activity in the soil as affected by nano-BN. Metagenomics techniques were used to investigate the impact of nano-BN on soil carbon and nitrogen cycling, alongside its effects on the soil microbiome. The upregulation of genes associated with fermentation pathways as affected by nano-BN suggests the enhanced carbon cycling. Additionally, nano-BN upregulated a number of functional genes involved in nitrogen-based processes, leading to a significant increase in microorganisms harboring nitrogen-fixing genes, including Phenylobacterium, Novosphingobium, and Reyranella. Overall, these findings provide valuable insight into the application of nano-BN in agriculture to sustainably increase crop productivity and enhance the efficiency of carbon and nitrogen cycling.
Collapse
Affiliation(s)
- Xinxin Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zeyu Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Dong J, Wang G, Li X, Han A, Zhang W, Yue Y, Yang Y, Wang Y, Yuan B, Wang J, Peng Y, Liu R, Chen S, Du X. Bio-friendly multi-stimuli responsive α-CD polymer-gated mesoporous carbon nanoherbicides for enhanced paraquat delivery. J Adv Res 2024:S2090-1232(24)00561-7. [PMID: 39672232 DOI: 10.1016/j.jare.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Weeds seriously affect crop yield in global agricultural production. Paraquat (PQ), as one of low cost and highly effective herbicide, is forbidden or severely restricted in production and sales owing to its lethal toxicity to humans. Creating an efficient and bio-friendly PQ formulation is crucial to facilitate the open use of PQ in world's agriculture. OBJECTIVES This study aims to construct one intelligent and bio-friendly mesoporous carbon nanoparticles (MCN) nanoherbicides coated with α-CD polymer (CDP) gatekeepers. METHODS MCN was prepared through the low-concentration hydrothermal way, calcined and carbonized. PEG stalks were immobilized on MCN surface by amidation reaction. The PQ was trapped in the MCN pores via physical diffusion adsorption and the robust π-π effects between electron-deficient PQ and electron-rich MCN. CDP gatekeepers were fastened via host-guest effects between the chamber of α-CD units and PEG stalks. RESULTS The PQ-loaded MCN-PEG@CDP nanoherbicides integrated with multi-stimuli responses to amylase, elevated temperature under sunlight, and competitors at leaf interface to control the PQ release for efficient weed control, while appeared low PQ leakage under the simulated human gastric or intestinal conditions, low cytotoxicity to human normal cells in vitro, and high mouse survival rate in vivo. Even through the nanoherbicides inevitably contact with water or intake by beneficial insects, they appear good biosafety on zebrafish (D. rerio) and honeybees (Apis mellifera L.). CONCLUSION The as-prepared nanoherbicides have high herbicidal efficacy and low risks to non-target species, and could promote the open use of PQ in agriculture.
Collapse
Affiliation(s)
- Jiangtao Dong
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Guoquan Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Xiaona Li
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Aohui Han
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Wanpeng Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yuhang Yue
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yue Yang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yishan Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Bowen Yuan
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Jiahui Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yuhui Peng
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Si Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
13
|
Xu C, Cao L, Chen H, Liu T, Liang W, Li Y. Copper-Driven Formation of Prothioconazole Nanocomplex: An Innovative Strategy to Prepare Nanopesticide with Improved Bioactivity and Reduced Environmental Impacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406419. [PMID: 39439147 DOI: 10.1002/smll.202406419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Developing cost-effective, energy-saving, and eco-friendly methods to construct nanopesticides fulfill the requirement of modern agriculture. Benefiting from the versatility of metal-based complexes, a facile copper-driven method is discovered for the formation of a fungicide prothioconazole nanocomplex (Cu-Pro) with the particle size of ≈300 ± 85 nm. Interestingly, adding 0.5-1% of anionic surfactants could generate nanocomplexes within 60 ± 12 nm and form stable dispersed nanosuspensions. Both nanocomplexes exhibit remarkable control efficacy against six plant pathogenic fungi, and the EC50 values are 1.4-4.8 times lower than that of prothioconazole technical concentrate (Pro TC). In addition, the novel nanocomplexes demonstrate better resistance against UV irradiation and the half-lives are 3.27- and 1.56-times longer than that of Pro TC, respectively. The acute toxicity of prothioconazole nanocomplexes against non-target organism zebrafish is decreased. Due to the small size and chelation with metals, the uptake and accumulation of prothioconazole in wheat plant is promoted, and the metabolites prothioconazole-desthio is significantly decreased by 42-48% than that of Pro TC. This metal coordination-based strategy seeks to open a new avenue for the high-throughput preparation of nanopesticides, providing an innovative toolbox for reducing the input of agrochemicals in sustainable plant protection.
Collapse
Affiliation(s)
- Chunli Xu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Huiping Chen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Tingting Liu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Wenlong Liang
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Yuanbo Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang, 453500, China
| |
Collapse
|
14
|
Ansari MM, Shin M, Kim M, Ghosh M, Kim SH, Son YO. Nano-enabled strategies in sustainable agriculture for enhanced crop productivity: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123420. [PMID: 39581009 DOI: 10.1016/j.jenvman.2024.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The global food demand is increasing with the world population, burdening agriculture with unprecedented challenges. Agricultural techniques that ushered in the green revolution are now unsustainable, owing to population growth and climate change. The agri-tech revolution that promises a robust, efficient, and sustainable agricultural system while enhancing food security is expected to be greatly aided by advancements in nanotechnology, which have been reviewed here. Nanofertilizers and nanoinsecticides can benefit agricultural practices economically without major environment impact. Owing to their unique size and features, nano-agrochemicals provide enhanced delivery of active ingredients and increased bioavailability, and posing lesser environment hazard. Nano-agrochemicals should be improved for increased efficiency in the future. In this context, nanocomposites have drawn considerable interest with regard to food security. Nanocomposites can overcome the drawbacks of chemical fertilizers and improve plant output and nutrient bioavailability. Similarly, metallic and polymeric nanoparticles (NPs) can potentially improve sustainable agriculture via better plant development, increased nutrient uptake, and soil healing. Hence, they can be employed as nanofertilizers, nanopesticides, and nanoherbicides. Nanotechnology is also being used to enhance crop production via genetic modification of traits for efficient use of soil nutrients and higher yields. Furthermore, NPs can help plants overcome salinity stress-induced oxidative damage. We also review the fate of NPs in the soil system, plants, animals, and humans, highlight the shortcomings of previous research, and offer suggestions for toxicity studies that would aid regulatory bodies and benefit the agrochemical sector, consequently promoting efficient and sustainable use of nano-agrochemicals.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Myeongyeon Shin
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Minhye Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Sung-Hak Kim
- Animal Molecular Biochemistry Laboratory, Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
15
|
Thirumurugan NK, Velu G, Murugaiyan S, Maduraimuthu D, Ponnuraj S, D J S, Subramanian KS. Nano-biofertilizers: utilizing nanopolymers as coating matrix-a comprehensive review. Biofabrication 2024; 17:012007. [PMID: 39569883 DOI: 10.1088/1758-5090/ad94a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
In modern agriculture, nanotechnology was recognized as a potentially transformative innovation. Nanopolymers as coating matrix in nano-biofertilizer has a massive impact on agricultural productivity. The integration of nanotechnology with biofertilizers has led to the creation of nano-biofertilizer formulations that enhance nutrient delivery, improve plant growth, and increase resistance to environmental stress. Nanopolymers, both synthetic and biogenic, including chitosan, cellulose, gelatin, sodium alginate, starch, and polyvinyl alcohol, are utilized as encapsulating materials. They are effective in ensuring controlled nutrient release and shielding beneficial microorganisms from external environmental conditions. Studies indicate that nano-biofertilizers improve soil quality, raise crop yields, and reduce the usage of chemical fertilizers to enhance sustainable agricultural practices. The review also addresses the microbial encapsulation methodology, release kinetics, phytotoxicity, challenges and future prospects of nano-biofertilizer technology, including nanoparticle-bacteria interaction, scalability, and regulatory considerations. This paper elaborates the potential and limitations of nano-biofertilizers, providing insights for future advancements in the agriculture field.
Collapse
Affiliation(s)
- Navin Kumar Thirumurugan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Gomathi Velu
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Senthilkumar Murugaiyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | | | - Sathyamoorthy Ponnuraj
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Sharmila D J
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - K S Subramanian
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| |
Collapse
|
16
|
Wang X, Wang Q, Cui C, Yan M, Gao W, Li W, Wang G, Zhou H, Hou R. Real-Time In Situ Tracking of the Penetration and Uptake Behavior of Nano-pesticides in Tea Plants Using Surface-Enhanced Raman Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39565034 DOI: 10.1021/acs.jafc.4c07914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In situ monitoring of the uptake and transportation process of nano-pesticides during crop growth remains challenging thus far. In this report, the different three sizes of surface-enhanced Raman spectroscopy probes of nano-pesticides loaded with ferbam and acetamiprid are representative non-systemic or systemic pesticides, respectively. The probes were verified to have strong signals of the Raman spectrum enhancement effect. They were further applied on the leaves and roots of tea plants. Within 5 h, the nano-pesticides of 50 nm and 100 nm except 150 nm probes could rapidly penetrate young tea leaves to a depth of about 150-290 μm. Whereas none of the probes were observed to penetrate mature leaves and roots of tea plants. The result showed that the penetration rate depended on the size of the nano-pesticides and the structure or maturity of the plant tissue rather than the loaded pesticides. The penetration rate of small-sized nano-pesticides in young tea leaves is the fastest.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Qing Wang
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Chuanjian Cui
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Min Yan
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Wanjun Gao
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Wenchao Li
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
17
|
El-Mahrouk ESM, Atef EAM, Gabr MK, Aly MA, Mohamed AE, Eisa EA, Gururani MA. Response of Salvia officinalis to zinc and silicon nanoparticles and pollen extract as alternates to traditional fertilizers. FRONTIERS IN PLANT SCIENCE 2024; 15:1469691. [PMID: 39640988 PMCID: PMC11619789 DOI: 10.3389/fpls.2024.1469691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Salvia officinalis is used in a variety of medicinal and aromatic products. The effects of various treatments on sage (Salvia officinalis) plants were investigated in an open-field experiment conducted between 2021 and 2022. During the experiment, ZnO nanoparticles (NPs) were used at concentrations of 1.0 and 1.5 g/L, SiO2 NPs were used at concentrations of 0.1 and 0.2 g/L, and date palm pollen extracts (DPE) were used at concentrations of 15 and 25 g/L, in combination with NPK fertilizers at 75%, 50%, and 25%, respectively, with a control group of 100% NPK fertilizer. A treatment consisting of 75% NPK, 15 g/L DPE, 1.0 g/L ZnO NPs, and 0.1 g/L SiO2 NPs significantly improved vegetative traits and essential oil yield. Compared to the control in the growing seasons of 2021 and 2022, this treatment resulted in increases in plant height, chlorophyll index, fresh and dry weights, and essential oil yield (EOY) per plant of 23.40% and 28.30%, 27.56% and 26.54%, 42.17% and 42.95%, 64.10% and 62.79%, and 93.38% and 91.08%, respectively. Combinations of 25% NPK + 25 g/L DPE + 1.5 g/L ZnO nanoparticles + 0.2 g/L SiO2 NPs and 75% NPK + 0.1 g/L SiO2 NPs produced the highest essential oil percentage (EO%). During the experimental seasons, these treatments increased EO% by 15.45% and 26.25%. In total, 58 substances were identified across the different treatments in the essential oil composition analysis. There were 11 compounds in the 25% NPK, 25 g/L DPE, 1.5 g/L ZnO NPs, and 0.2 g/L SiO2 NPs treatments, and 32 in the 50% NPK, 25 g/L DPE, and 0.2 g/L SiO2 NPs treatments. Oxygenated hydrocarbons, sesquiterpenes, and monoterpenes varied by application. Thujone, camphor, manool, and ledol were the major constituents of the EO. Leaf chemical composition, antioxidant activity, and total phenolic compounds were significantly influenced by the treatments. In combination with DPE, ZnO and SiO2 NPs reduced the need for higher amounts of mineral NPK fertilizers. These agents can therefore be useful for advancing sustainable agricultural practices in novel and advantageous ways.
Collapse
Affiliation(s)
| | - Ekramy Abdel-Moatamed Atef
- Plant Production Department (Horticulture - Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed Kadry Gabr
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mahmoud Ahmed Aly
- Plant Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Abdallah E. Mohamed
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Eman Abdelhakim Eisa
- Department of Floriculture and Dendrology, Hungarian University of Agriculture and Life Science (MATE), Budapest, Hungary
- Botanical Gardens Research Department, Horticulture Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Mayank Anand Gururani
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
19
|
Zainab R, Hasnain M, Ali F, Abideen Z, Siddiqui ZS, Jamil F, Hussain M, Park YK. Prospects and challenges of nanopesticides in advancing pest management for sustainable agricultural and environmental service. ENVIRONMENTAL RESEARCH 2024; 261:119722. [PMID: 39098710 DOI: 10.1016/j.envres.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The expanding global population and the use of conventional agrochemical pesticides have led to the loss of crop yield and food shortages. Excessive pesticide used in agriculture risks life forms by contaminating soil and water resources, necessitating the use of nano agrochemicals. This article focuses on synthesis moiety and use of nanopesticides for enhanced stability, controlled release mechanisms, improved efficacy, and reduced pesticide residue levels. The current literature survey offered regulatory frameworks for commercial deployment of nanopesticides and evaluated societal and environmental impacts. Various physicochemical and biological processes, especially microorganisms and advanced oxidation techniques are important in treating pesticide residues through degradation mechanisms. Agricultural waste could be converted into nanofibers for sustainable composites production, new nanocatalysts, such as N-doped TiO2 and bimetallic nanoparticles for advancing pesticide degradation. Microbial and enzyme methods have been listed as emerging nanobiotechnology tools in achieving a significant reduction of chlorpyrifos and dimethomorph for the management of pesticide residues in agriculture. Moreover, cutting-edge biotechnological alternatives to conventional pesticides are advocated for promoting a transition towards more sustainable pest control methodologies. Application of nanopesticides could be critical in addressing environmental concern due to its increased mobility, prolonged persistence and ecosystem toxicity. Green synthesis of nanopesticides offers solutions to environmental risks associated and using genetic engineering techniques may induce pest and disease resistance for agricultural sustainability. Production of nanopesticides from biological sources is necessary to develop and implement comprehensive strategies to uphold agricultural productivity while safeguarding environmental integrity.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, P.O. Box 2727, United Arab Emirates; Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, P.O. Box 2727, United Arab Emirates; Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | | | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
20
|
Sharma S, Perring TM, Jeon SJ, Huang H, Xu W, Islamovic E, Sharma B, Giraldo YM, Giraldo JP. Nanocarrier mediated delivery of insecticides into tarsi enhances stink bug mortality. Nat Commun 2024; 15:9737. [PMID: 39528534 PMCID: PMC11554816 DOI: 10.1038/s41467-024-54013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Current delivery practices for insecticide active ingredients are inefficient with only a fraction reaching their intended target. Herein, we developed carbon dot based nanocarriers with molecular baskets (γ-cyclodextrin) that enhance the delivery of active ingredients into insects (southern green stink bugs, Nezara viridula L.) via their tarsal pores. Nezara viridula feeds on leguminous plants worldwide and is a primary pest of soybeans. After two days of exposure, most of the nanocarriers and their active ingredient cargo (>85%) remained on the soybean leaf surface, rendering them available to the insects. The nanocarriers enter stink bugs through their tarsi, enhancing the delivery of a fluorescent chemical cargo by 2.6 times. The insecticide active ingredient nanoformulation (10 ppm) was 25% more effective in controlling the stink bugs than the active ingredient alone. Styletectomy experiments indicated that the improved active ingredient efficacy was due to the nanoformulation entering through the insect tarsal pores, consistent with fluorescent chemical cargo assays. This new nanopesticide approach offers efficient active ingredient delivery and improved integrated pest management for a more sustainable agriculture.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Thomas M Perring
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Su-Ji Jeon
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Huazhang Huang
- BASF corporation, 26 Davis Drive, Research Triangle Park, NC, 27709-3528, USA
| | - Wen Xu
- BASF corporation, 26 Davis Drive, Research Triangle Park, NC, 27709-3528, USA
| | - Emir Islamovic
- BASF corporation, 26 Davis Drive, Research Triangle Park, NC, 27709-3528, USA
| | - Bhaskar Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | | | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
21
|
Thangavelu RM, da Silva WL, Zuverza-Mena N, Dimkpa CO, White JC. Nano-sized metal oxide fertilizers for sustainable agriculture: balancing benefits, risks, and risk management strategies. NANOSCALE 2024; 16:19998-20026. [PMID: 39417765 DOI: 10.1039/d4nr01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This critical review comprehensively analyses nano-sized metal oxide fertilizers (NMOFs) and their transformative potential in sustainable agriculture. It examines the characteristics and benefits of different NMOFs, such as zinc, copper, iron, magnesium, manganese, nickel, calcium, titanium, cerium, and silicon oxide nanoparticles. NMOFs offer unique advantages such as increased reactivity, controlled-release mechanisms, and targeted nutrient delivery to address micronutrient deficiencies, enhance crop resilience, and improve nutrient efficiency. The review underscores the essential role of micronutrients in plant metabolism, crop growth, and ecosystem health, highlighting their importance alongside macronutrients. NMOFs present significant benefits over traditional fertilizers, including enhanced plant uptake, reduced nutrient losses, and decreased environmental impact. However, the review also critically examines potential risks associated with NMOFs, such as nanoparticle toxicity and environmental persistence. A comparative analysis of different metal types used in nanofertilizers is provided, detailing their primary advantages and potential drawbacks. The review emphasizes the need for cautious management of NMOFs to ensure their safe and effective use in agriculture. It calls for comprehensive research to understand the long-term effects of NMOFs on plant health, soil ecosystems, and human health. By integrating insights from material science, plant biology, and environmental science, this review offers a holistic perspective on the potential of NMOFs to address global food security challenges amid resource constraints and climate change. The study concludes by outlining future research directions and advocating for interdisciplinary collaboration to advance sustainable agricultural practices and optimize the benefits of NMOFs.
Collapse
Affiliation(s)
| | | | | | | | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| |
Collapse
|
22
|
Guo D, Li Z, Zhang Y, Zhang W, Wang C, Zhang DX, Liu F, Gao Z, Xu B, Wang N. The effect of lambda-cyhalothrin nanocapsules on the gut microbial communities and immune response of the bee elucidates the potential environmental impact of emerging nanopesticides. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135650. [PMID: 39216249 DOI: 10.1016/j.jhazmat.2024.135650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Emerging nanopesticides are gradually gaining widespread application in agriculture due to their excellent properties, but their potential risks to pollinating insects are not fully understood. In this study, lambda-cyhalothrin nanocapsules (LC-NCs) were constructed by electrostatic self-assembly method with iron mineralization optimization, and their effects on bee gut microbial communities and host immune-related factors were investigated. Microbiome sequencing revealed that LC-NCs increase the diversity of gut microbial communities and reduce the complexity of network features, disrupting the overall structure of the microbial communities. In addition, LC-NCs also had systemic effects on the immune response of bees, including increased activity of SOD and CAT enzymes and expression of their genes, as well as downregulation of Defensin1. Furthermore, we noticed that the immune system of the host was activated simultaneously with a rise in the abundance of beneficial bacteria in the gut. Our research emphasizes the importance of both the host and gut microbiota of holobiont in revealing the potential risks of LC-NCs to environmental indicators of honey bees, and provides references for exploring the interactions between host-microbiota systems under exogenous stress. At the same time, we hope that more research can focus on the potential impacts of nanopesticides on the ecological environment.
Collapse
Affiliation(s)
- Dezheng Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhongyu Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wei Zhang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Da-Xia Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
23
|
Chidiamassamba SB, Gomes SIL, Amorim MJB, Scott-Fordsmand JJ. Considering safe and sustainable by design alternatives-Environmental hazards of an agriculture nano-enabled pesticide to non-target species. CHEMOSPHERE 2024; 367:143582. [PMID: 39454771 DOI: 10.1016/j.chemosphere.2024.143582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Nanopesticides (Npes) offer improved efficacy compared to their conventional forms while reducing the usage/application rates, hence being more sustainable options. However, there is still a knowledge gap on the Npes environmental impacts. To support the safety of nano-enabled pesticides, the present study aimed at assessing the toxicity of the commercial Npe NUCOP-M and the active substance copper oxychloride, using the ecotoxicological soil model Enchytraeus crypticus and LUFA 2.2 soil. Bioassays were performed to assess various endpoints within short-to longer-term exposures: avoidance behaviour (2 d), hatching (13 d), survival, reproduction and organisms' size (based on the standard OECD test (28 d), the OECD extension (56 d), and the Full Life Cycle test - FLCt (46 d)). Based on the standard OECD test and its extension, NUCOP-M had a similar level of toxicity as copper oxychloride without indications of increase in toxicity over time (28 versus 56 d). The shorter-term exposures (2 and 13 d) showed higher toxicity for copper oxychloride. The exposure from cocoon stage (FLCt) seemed to provide an adaptative advantage (reduced toxicity) to NUCOP-M. The differences might be related to a slower release of Cu2+ ions from NUCOP-M, which seems to account for the toxicity at longer-term. Based on the recommended application doses (ca. 1.72 mg NUCOP-M kg-1, i.e. 0.62 mg Cu kg-1 in the topsoil) there is no unacceptable risk of NUCOP-M on the enchytraeid population.
Collapse
Affiliation(s)
| | - Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-19, Aveiro, Portugal.
| | | |
Collapse
|
24
|
Cao Y, Ma C, White JC, Cao Y, Zhang F, Tong R, Yu H, Hao Y, Yan W, Kah M, Xing B. Engineered nanomaterials reduce metal(loid) accumulation and enhance staple food production for sustainable agriculture. NATURE FOOD 2024; 5:951-962. [PMID: 39394358 DOI: 10.1038/s43016-024-01063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
Metal(loid) contaminants in food pose a global health concern. This study offers a global analysis of the impact of nanomaterials (NMs) on crop responses to metal(loid) stresses. Our findings reveal that NMs have a positive effect on the biomass production of staple crops (22.8%), while showing inhibitory effects on metal(loid) accumulation in plants (-38.3%) and oxidative damage (-21.6%) under metal(loid) stress conditions. These effects are influenced by various factors such as NM dose, exposure duration, size and composition. Here we introduce a method using interval-valued intuitionistic fuzzy values by integrating the technique for order preference by similarity to an ideal solution and entropy weights to compare the effectiveness of different NM application patterns. These results offer practical insights for the application of NMs in similar multi-criteria decision-making scenarios, contributing to sustainable agriculture and global food safety.
Collapse
Affiliation(s)
- Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Yuchi Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China
| | - Fan Zhang
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Ran Tong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Hao Yu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Yi Hao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, College of Life and Environmental Science, Central South University of Forestry and Technology, Changsha, China.
| | - Melanie Kah
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
25
|
Yan X, Shan Y, Ma Y, Wang Y, Wu C, Ren X, Song X, Wang D, Hu H, Ma X, Ma Y. Thiacloprid-silica nano-delivery system enhances toxicity against Aphis gossypii and improves non-target biosafety. CHEMOSPHERE 2024; 367:143596. [PMID: 39442578 DOI: 10.1016/j.chemosphere.2024.143596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Nanotechnology aligns with the requirements of sustainable development of agriculture, and nano-pesticides offer a promising approach to controlling agricultural pests and increasing productivity. Non-target predators also play a crucial role in pest controls and enhancing the efficacy of pesticide on target organisms. Reducing the toxicity of pesticides to non-target organisms is key to of coordinating chemical control and biological control methods. Therefore, it is essential to assess the toxicity of nano-pesticides on non-target predators. In this study, a carbon dots-doped mesoporous silica nano-delivery system (Thi@CD-MSN) was successfully developed using CD-MSN as carrier material and thiacloprid (Thi) as a model pesticide. The results demonstrated that the synthesized Thi@CD-MSN exhibited a relatively high loading efficiency (33.58%). Laboratory bioassay experiments revealed that Thi@CD-MSN demonstrated effective insecticidal activity (LC50 = 21.67 mg/L) in controlling Aphis gossypii Glover. Besides, the acute toxicity of Thi@CD-MSN on Chrysoperla pallens larvae was significantly lower than that of Thi, as was its toxicity to 4T1 cells. These findings suggest that CD-MSN can serve as an ecological safety carrier for pesticide delivery, improving the effective utilization of Thi while reducing the risks to non-target predators. These results are essential for comprehending the effects of nano-pesticides on non-target predators, providing informative data for implementing biological and chemical control strategies. It strengthens the safety evaluation of nano-pesticides.
Collapse
Affiliation(s)
- Xiaohui Yan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; College of Life Science and Technology, Tarim University, Alar, 843300, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Yajie Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Yanqin Wang
- College of Life Science and Technology, Tarim University, Alar, 843300, China
| | - Changcai Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dan Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Yan Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
26
|
Kapeleka JA, Mwema MF. State of nano pesticides application in smallholder agriculture production systems: Human and environmental exposure risk perspectives. Heliyon 2024; 10:e39225. [PMID: 39492887 PMCID: PMC11530829 DOI: 10.1016/j.heliyon.2024.e39225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Due to the intensive and widespread use of agrochemicals, especially pesticides, agriculture in the majority of the world is in dire need of practical improvements to fulfil the rising need for food while at the same time decreasing its associated health and environmental impact. Traditional methods, such as integrated pest control, have been used extensively and globally for decades to lessen the effects of intensive and extensive pesticide use, but they are insufficient. Safer pesticide alternatives, including biopesticides, to replace conventional pesticides have also been developed, but these efforts have not yet reached the necessary degree of operationalization and commercialization. In light of the challenges and trade-offs involved in using conventional pesticides, nanotechnology has sped up the development of nanopesticides, that are poisonous solely to specific pests and pathogens. The effectiveness of nano-agrochemicals has often demonstrated a median gain compared to traditional products of 20-30 %. The use of nanopesticides may enable more precise pest targeting, reduced pesticide dosage and decreased spray frequencies, allowing for a 10-fold reduction in pesticides dosage without sacrificing effectiveness. However, there are environmental concerns and potential for human exposure associated with the use of nanopesticides. This state-of-the-art review examines the most recent advances in science and the application of nanotechnology as a unique tool to address the serious negative effects of conventional pesticides. In addition to the health and environmental implications, policy and regulatory framework, and field application of nanopesticides in smallholder production systems are all part of the scientific review that is presented in this review.
Collapse
Affiliation(s)
- Jones Ackson Kapeleka
- Tanzania Plant Health and Pesticides Authority (TPHPA), P.O. Box 3024, Arusha, Tanzania
| | - Mwema Felix Mwema
- School of Materials, Energy, Water and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
27
|
Wu Z, Chen Y, Gong X, Yang S, Xue H, Jin C, Pan C, Zhang D, Xie Y. Cellulase-responsive hydroxypropyl cellulose-anchored hollow mesoporous silica carriers for pesticide delivery. Int J Biol Macromol 2024; 277:134612. [PMID: 39127268 DOI: 10.1016/j.ijbiomac.2024.134612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
In this study, a cellulase-responsive controlled-release formulation (FPR-HMS-HPC) was developed by grafting hydroxypropyl cellulose (HPC) onto fipronil (FPR) loaded hollow mesoporous silica (HMS) nanoparticles via ester linkage. The FPR-HMS-HPC formulation was characterized using scanning and transmission electron microscopies, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The results indicated that FPR-HMS-HPC exhibited a high loading capacity of 10.0 % (w/w) and demonstrated favorable responsiveness to cellulase enzyme. Moreover, its insecticidal efficacy against Reticulitermes flaviceps surpassed that of an equivalent dose of FPR. Toxicology studies showed that the mortality and hatching rates of zebrafish exposed to FPR-HMS-HPC nanoparticles were reduced by >6.5 and 8.0 times, respectively. Thus, HPC-anchored HMS nanoparticles as insecticide delivery systems present a sustainable method for pest control significantly reducing harm to non-target organisms and the environment.
Collapse
Affiliation(s)
- Ziwei Wu
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yiyang Chen
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xue Gong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Shimeng Yang
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Haozhe Xue
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Chunzhe Jin
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Chengyuan Pan
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Dayu Zhang
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Yongjian Xie
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
28
|
Du Q, Gao F, Cui B, Wang T, Chen F, Zeng Z, Sun C, Zhou X, Cui H. Improving the stability, foliar utilization and biological activity of imidacloprid delivery systems: Size effect of nanoparticles. ENVIRONMENTAL RESEARCH 2024; 257:119386. [PMID: 38852833 DOI: 10.1016/j.envres.2024.119386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Nanotechnology could improve the effectiveness and functionality of pesticides, but the size effect of nanopesticides on formulation performance and the related mechanisms have yet to be explored, hindering the precise design and development of efficient and eco-friendly nanopesticides. In this study, two non-carrier-coated imidacloprid formulations (Nano-IMI and Micro-IMI) with identical composition but varying particle size characteristics were constructed to exclude other interferences in the size effect investigation. Nano-IMI and Micro-IMI both exhibited rod-like structures. Specifically, Nano-IMI had average vertical and horizontal axis sizes of 239.5 nm and 561.8 nm, while Micro-IMI exhibited 6.7 μm and 22.1 μm, respectively. Compared to Micro-IMI, the small size effect of Nano-IMI affected the arrangement of interfacial molecules, reduced surface tension and contact angle, thereby improving the stability, dispersibility, foliar wettability, deposition and retention of the nano-system. Nano-IMI exhibited 1.3 times higher toxicity to Aphis gossypii Glover compared to Micro-IMI, attributed to its enhanced foliar utilization efficiency. Importantly, the Nano-IMI did not intensify the toxicity to non-target organism Apis mellifera L. This study systematically elucidates the influence of size effect on key indicators related to the effectiveness and safety, providing a theoretical basis for efficient and safe application of nanopesticides and critical insights into sustainable agriculture and environmental development.
Collapse
Affiliation(s)
- Qian Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Tingyu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Fangyuan Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xinhua Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, PR China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| |
Collapse
|
29
|
Yan N, Cao J, Wang J, Zou X, Yu X, Zhang X, Si T. Seed priming with graphene oxide improves salinity tolerance and increases productivity of peanut through modulating multiple physiological processes. J Nanobiotechnology 2024; 22:565. [PMID: 39272089 PMCID: PMC11401308 DOI: 10.1186/s12951-024-02832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Graphene oxide (GO), beyond its specialized industrial applications, is rapidly gaining prominence as a nanomaterial for modern agriculture. However, its specific effects on seed priming for salinity tolerance and yield formation in crops remain elusive. Under both pot-grown and field-grown conditions, this study combined physiological indices with transcriptomics and metabolomics to investigate how GO affects seed germination, seedling salinity tolerance, and peanut pod yield. Peanut seeds were firstly treated with 400 mg L⁻¹ GO (termed GO priming). At seed germination stage, GO-primed seeds exhibited higher germination rate and percentage of seeds with radicals breaking through the testa. Meanwhile, omics analyses revealed significant enrichment in pathways associated with carbon and nitrogen metabolisms in GO-primed seeds. At seedling stage, GO priming contributed to strengthening plant growth, enhancing photosynthesis, maintaining the integrity of plasma membrane, and promoting the nutrient accumulation in peanut seedlings under 200 mM NaCl stress. Moreover, GO priming increased the activities of antioxidant enzymes, along with reduced the accumulation of reactive oxygen species (ROS) in response to salinity stress. Furthermore, the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) of peanut seedlings under GO priming were mainly related to photosynthesis, phytohormones, antioxidant system, and carbon and nitrogen metabolisms in response to soil salinity. At maturity, GO priming showed an average increase in peanut pod yield by 12.91% compared with non-primed control. Collectively, our findings demonstrated that GO plays distinguish roles in enhancing seed germination, mitigating salinity stress, and boosting pod yield in peanut plants via modulating multiple physiological processes.
Collapse
Affiliation(s)
- Ning Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Junfeng Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P.R. China.
| | - Jie Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
30
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
31
|
Cheng X, Wang A, Cao L, Cao C, Zhao P, Yu M, Zheng L, Huang Q. Efficient delivery of the herbicide quinclorac by nanosuspension for enhancing deposition, uptake and herbicidal activity. PEST MANAGEMENT SCIENCE 2024; 80:4665-4674. [PMID: 38884421 DOI: 10.1002/ps.8182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND The presence of barnyardgrass poses a threat to global food security by reducing rice yields. Currently, herbicides are primarily applied for weed management. However, the effectiveness of herbicide deposition and uptake on barnyardgrass is limited as a consequence of the high wax content on leaves, low water solubility and extreme lipophilicity of herbicides. Therefore, it is imperative to develop novel formulations for efficient delivery of herbicides to improve herbicidal activity and reduce dosage. RESULTS We successfully prepared nanosuspension(s) (NS) of quinclorac through the wet media milling technique. This NS demonstrates excellent physical stability and maintains nanoscale during dose transfer. The deposition concentration and uptake concentration of NS on barnyardgrass were 3.84-4.47- and 2.11-2.58-fold greater than those traditional formulations, respectively. Moreover, the NS exhibited enhanced herbicidal activity against barnyardgrass at half the dosage required by conventional formulations without compromising rice safety. CONCLUSIONS These findings suggest that NS can effectively facilitate the delivery of hydrophobic and poorly water-soluble herbicide active ingredients, thereby enhancing their deposition, uptake and bioactivity. This study expands the potential application of NS in pesticide delivery, which can provide valuable support for optimizing pesticide utilization, improving economic efficiency and mitigating environmental risks. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuejian Cheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Aiping Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lidong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Chong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Pengyue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Manli Yu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Li Zheng
- College of Science, China Agricultural University, Beijing, P. R. China
| | - Qiliang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
32
|
Wei L, Liu J, Jiang G. Nanoparticle-specific transformations dictate nanoparticle effects associated with plants and implications for nanotechnology use in agriculture. Nat Commun 2024; 15:7389. [PMID: 39191767 DOI: 10.1038/s41467-024-51741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Nanotechnology shows potential to promote sustainable and productive agriculture and address the growing population and food demand worldwide. However, the applications of nanotechnology are hindered by the lack of knowledge on nanoparticle (NP) transformations and the interactions between NPs and macromolecules within crops. In this Review, we discuss the beneficial and toxicity-relieving transformation products of NPs that provide agricultural benefits and the toxic and physiology-disturbing transformations that induce phytotoxicities. Based on knowledge related to the management of NP transformations and their long-term effects, we propose feasible design suggestions to attain nano-enabled efficient and sustainable agricultural applications.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
33
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Ma G, Han J. Effect of CeO 2, TiO 2 and SiO 2 nanoparticles on the growth and quality of model medicinal plant Salvia miltiorrhiza by acting on soil microenvironment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116552. [PMID: 38850694 DOI: 10.1016/j.ecoenv.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
In this study, a six-month pot experiment was conducted to explore the effects of nanoparticles (NPs), including CeO2, TiO2 and SiO2 NPs at 200 and 800 mg/kg, on the growth and quality of model medicinal plant Salvia miltiorrhiza. A control group was implemented without the application of NPs. Results showed that NPs had no significant effect on root biomass. Treatment with 200 mg/kg of SiO2 NPs significantly increased the total tanshinone content by 44.07 %, while 200 mg/kg of CeO2 NPs were conducive to a 22.34 % increase in salvianolic acid B content. Exposure to CeO2 NPs induced a substantial rise in the MDA content in leaves (176.25 % and 329.15 % under low and high concentration exposure, respectively), resulting in pronounced oxidative stress. However, TiO2 and SiO2 NPs did not evoke a robust response from the antioxidant system. Besides, high doses of CeO2 NP-amended soil led to reduced nitrogen, phosphorus and potassium contents. Furthermore, the NP amendment disturbed the carbon and nitrogen metabolism in the plant rhizosphere and reshaped the rhizosphere microbial community structure. The application of CeO2 and TiO2 NPs promoted the accumulation of metabolites with antioxidant functions, such as D-altrose, trehalose, arachidonic acid and ergosterol. NPs displayed a notable suppressive effect on pathogenic fungi (Fusarium and Gibberella) in the rhizosphere, while enriching beneficial taxa with disease resistance, heavy metal antagonism and plant growth promotion ability (Lysobacter, Streptomycetaceae, Bacillaceae and Hannaella). Correlation analysis indicated the involvement of rhizosphere microorganisms in plant adaptation to NP amendments. NPs regulate plant growth and quality by altering soil properties, rhizosphere microbial community structure, and influencing plant and rhizosphere microbe metabolism. These findings were beneficial to deepening the understanding of the mechanism by which NPs affect medicinal plants.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
34
|
Montaño MD, Goodman AJ, Ranville JF. Past progress in environmental nanoanalysis and a future trajectory for atomic mass-spectrometry methods. NANOIMPACT 2024; 35:100518. [PMID: 38906249 DOI: 10.1016/j.impact.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The development of engineered nanotechnology has necessitated a commensurate maturation of nanoanalysis capabilities. Building off a legacy established by electron microscopy and light-scattering, environmental nanoanalysis has now benefited from ongoing advancements in instrumentation and data analysis, which enable a deeper understanding of nanomaterial properties, behavior, and impacts. Where once environmental nanoparticles and colloids were grouped into broad 'dissolved or particulate' classes that are dependent on a filter size cut-off, now size distributions of submicron particles can be separated and characterized providing a more comprehensive examination of the nanoscale. Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS), directly coupled to field flow fractionation (FFF-ICP-QMS) or operated in single particle mode (spICP-MS) have spearheaded a revolution in nanoanalysis, enabling research into nanomaterial behavior in environmental and biological systems at expected release concentrations. However, the complexity of the nanoparticle population drives a need to characterize and quantify the multi-element composition of nanoparticles, which has begun to be realized through the application of time-of-flight MS (spICP-TOFMS). Despite its relative infancy, this technique has begun to make significant strides in more fully characterizing particulate systems and expanding our understanding of nanoparticle behavior. Though there is still more work to be done with regards to improving instrumentation and data processing, it is possible we are on the cusp of a new nanoanalysis revolution, capable of broadening our understanding of the size regime between dissolved and bulk particulate compartments of the environment.
Collapse
Affiliation(s)
- M D Montaño
- Department of Environmental Sciences, Western Washington University, Bellingham, WA 98225, United States of America
| | - A J Goodman
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America
| | - J F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America.
| |
Collapse
|
35
|
Malandrakis AA, Varikou K, Kavroulakis Ν, Nikolakakis A, Dervisi I, Reppa CΙ, Papadakis S, Holeva MC, Chrysikopoulos CV. Copper nanoparticles interfere with insecticide sensitivity, fecundity and endosymbiont abundance in olive fruit fly Bactrocera oleae (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:3640-3649. [PMID: 38456555 DOI: 10.1002/ps.8068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Kyriaki Varikou
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Νektarios Kavroulakis
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Antonis Nikolakakis
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Irene Dervisi
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Chrysavgi Ι Reppa
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - Maria C Holeva
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Constantinos V Chrysikopoulos
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
36
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
37
|
Wang Z, Bergemann CM, Simonin M, Avellan A, Kiburi P, Hunt DE. Interactions shape aquatic microbiome responses to Cu and Au nanoparticle treatments in wetland manipulation experiments. ENVIRONMENTAL RESEARCH 2024; 252:118603. [PMID: 38513752 DOI: 10.1016/j.envres.2024.118603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
In natural systems, organisms are embedded in complex networks where their physiology and community composition is shaped by both biotic and abiotic factors. Therefore, to assess the ecosystem-level effects of contaminants, we must pair complex, multi-trophic field studies with more targeted hypothesis-driven approaches to explore specific actors and mechanisms. Here, we examine aquatic microbiome responses to long-term additions of commercially-available metallic nanoparticles [copper-based (CuNPs) or gold (AuNPs)] and/or nutrients in complex, wetland mesocosms over 9 months, allowing for a full growth cycle of the aquatic plants. We found that both CuNPs and AuNPs (but not nutrient) treatments showed shifts in microbial communities and populations largely at the end of the experiment, as the aquatic plant community senesced. we examine aquatic microbiomes under chronic dosing of NPs and nutrients Simplified microbe-only or microbe + plant incubations revealed that direct effects of AuNPs on aquatic microbiomes can be buffered by plants (regardless of seasonal As mesocosms were dosed weekly, the absence of water column accumulation indicates the partitioning of both metals into other environmental compartments, mainly the floc and aquatic plants photosynthetically-derived organic matter. Overall, this study identifies the potential for NP environmental impacts to be either suppressed by or propagated across trophic levels via the presence of primary producers, highlighting the importance of organismal interactions in mediating emerging contaminants' ecosystem-wide impacts.
Collapse
Affiliation(s)
- Zhao Wang
- Duke University Marine Laboratory, Beaufort, NC, USA
| | - Christina M Bergemann
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, 27708, USA; Biology Department, Duke University, Durham, NC, 27708, USA
| | - Marie Simonin
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, 27708, USA; Biology Department, Duke University, Durham, NC, 27708, USA
| | - Astrid Avellan
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, 27708, USA; Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15289, USA
| | - Phoebe Kiburi
- Duke University Marine Laboratory, Beaufort, NC, USA
| | - Dana E Hunt
- Duke University Marine Laboratory, Beaufort, NC, USA; Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
38
|
Guo D, Wang Y, Li Z, Zhang DX, Wang C, Wang H, Liu Z, Liu F, Guo X, Wang N, Xu B, Gao Z. Effects of abamectin nanocapsules on bees through host physiology, immune function, and gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172738. [PMID: 38670362 DOI: 10.1016/j.scitotenv.2024.172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pesticide usage is a common practice to increase crop yields. Nevertheless, the existence of pesticide residues in the surrounding environment presents a significant hazard to pollinators, specifically the potential undisclosed dangers related to emerging nanopesticides. This study examines the impact of abamectin nanocapsules (AbaNCs), created through electrostatic self-assembly, as an insecticide on honey bees. It was determined that AbaNCs upregulated detoxification genes, including CYP450, as well as antioxidant and immune genes in honey bees. Furthermore, AbaNCs affected the activity of crucial enzymes such as superoxide dismutase (SOD). Although no apparent damage was observed in bee gut tissue, AbaNCs significantly decreased digestive enzyme activity. Microbiome sequencing revealed that AbaNCs disrupted gut microbiome, resulting in a reduction of beneficial bacteria such as Bifidobacterium and Lactobacillus. Additionally, these changes in the gut microbiome were associated with decreased activity of digestive enzymes, including lipase. This study enhances our understanding of the impact of nanopesticides on pollinating insects. Through the revelation of the consequences arising from the utilization of abamectin nanocapsules, we have identified potential stress factors faced by these pollinators, enabling the implementation of improved protective measures.
Collapse
Affiliation(s)
- Dezheng Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhongyu Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Da-Xia Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ningxin Wang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
39
|
Voloshyna IM, Netiaha YM, Nechaiuk YV, Khomenko VG, Shkotova LV. The influence of metal nanoparticles on plants. BIOPOLYMERS AND CELL 2024; 40:83-95. [DOI: 10.7124/bc.000aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | | | | | | | - L. V. Shkotova
- 'Institute of Molecular Biology and Genetics, NAS of Ukraine'
| |
Collapse
|
40
|
Salama DM, Khater MA, Abd El-Aziz ME. The influence of potassium nanoparticles as a foliar fertilizer on onion growth, production, chemical content, and DNA fingerprint. Heliyon 2024; 10:e31635. [PMID: 38832265 PMCID: PMC11145210 DOI: 10.1016/j.heliyon.2024.e31635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Potassium is an important macro-fertilizer for plant growth but can be lost from the soil after application via irrigation. Slow-release nano-fertilizers can achieve sustainable crop cultivation and production, so this study evaluated the influence of potassium nanoparticles (K-NPs) with various concentrations (0, 50, 100, and 200 mg/l) on onion development, production, pigments, chemical content, and DNA fingerprint during two sequential agriculture seasons in 2021 and 2022 at a private farm in Zagazig, Sharkia Governorate, Egypt. Spraying onion plants with K-NPs (200 mg/l) significantly improved the vegetative characteristics of onion plant growth and production, as well as increasing the plant pigments and the content of carbohydrate, oil, total indole, and phosphorus in onion bulbs. Similarly, 50 mg/l of K-NPs considerably increased the content of nitrogen, potassium, protein, antioxidant activity, and phenols in the onion bulbs. The content of total flavonoids and anthocyanin was increased with 100 mg/l of K-NPs. In conclusion, the foliar application of K-NPs improves the onion plant yield and quality and can achieve agricultural sustainability.
Collapse
Affiliation(s)
- Dina M. Salama
- Vegetable Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Mahmoud Ahmed Khater
- Botany Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Mahmoud E. Abd El-Aziz
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
41
|
Jin X, Xiao R, Cao Z, Du X. Smart controlled-release nanopesticides based on metal-organic frameworks. Chem Commun (Camb) 2024; 60:6082-6092. [PMID: 38813806 DOI: 10.1039/d4cc01390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The practical utilization rates of conventional pesticide formulations by target organisms are very low, which results in the pollution of ecological environments and the formation of pesticide residues in agricultural products. Water-based nanopesticide formulations could become alternative and effective formulations to eventually resolve the main issues of conventional pesticide formulations. In this feature article, we describe the design concept of smart (stimuli-responsive) controlled-release nanopesticides, which are created toward hierarchical targets (pests, pathogens, and foliage) in response to multidimensional stimuli from physiological and environmental factors (such as sunlight) of target organisms and plants, for achieving enhanced insecticidal and fungicidal efficacies. The pore sizes and functionalities of metal-organic frameworks (MOFs) can be fine-tuned through the choice of metal-containing units and organic ligands. Tailor-made MOF nanoparticles with large microporous or mesoporous sizes, as well as good biocompatibility and high thermal, mechanical, and chemical durabilities, are used to load pesticides within these pores followed by coating of plant polyphenols and natural polymers for stimuli-responsive controlled pesticide release. This feature article highlights our works on smart controlled-release MOF-based nanopesticides and also includes related works from other laboratories. The future challenges and promising prospects of smart controlled-release MOF-based nanopesticides are also discussed.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Ruixi Xiao
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zejun Cao
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
42
|
Yang CW, Xie G, Yuan L, Hu Y, Sheng GP. Harnessing Multiscale Physiochemical Interactions on Nanobiointerface for Enhanced Stress Resilience in Rice. ACS NANO 2024; 18:14617-14628. [PMID: 38759100 DOI: 10.1021/acsnano.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Nanoagrochemicals present promising solutions for augmenting conventional agriculture, while insufficient utilization of nanobiointerfacial interactions hinders their field application. This work investigates the multiscale physiochemical interactions between nanoagrochemicals and rice (Oryza sativa L.) leaves and devises a strategy for elevating targeting efficiency of nanoagrochemicals and stress resilience of rice. We identified multiple deposition behaviors of nanoagrochemicals on hierarchically structured leaves and demonstrated the crucial role of leaf microarchitectures. A transition from the Cassie-Baxter to the Wenzel state significantly changed the deposition behavior from superlattice assembly, ring-shaped aggregation to uniform monolayer deposition. By fine-tuning the formulation properties, we achieved a 415.9-fold surge in retention efficiency, and enhanced the sustainability of nanoagrochemicals by minimizing loss during long-term application. This biointerface design significantly relieved the growth inhibition of Cd(II) pollutant on rice plants with a 95.2% increase in biomass after foliar application of SiO2 nanoagrochemicals. Our research elucidates the intricate interplay between leaf structural attributes, nanobiointerface design, and biological responses of plants, fostering field application of nanoagrochemicals.
Collapse
Affiliation(s)
- Chuan-Wang Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ge Xie
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
43
|
Wu F, Zhang S, Li H, Liu P, Su H, Zhang Y, Brooks BW, You J. Toxicokinetics Explain Differential Freshwater Ecotoxicity of Nanoencapsulated Imidacloprid Compared to Its Conventional Active Ingredient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9548-9558. [PMID: 38778038 DOI: 10.1021/acs.est.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Agricultural applications of nanotechnologies necessitate addressing safety concerns associated with nanopesticides, yet research has not adequately elucidated potential environmental risks between nanopesticides and their conventional counterparts. To address this gap, we investigated the risk of nanopesticides by comparing the ecotoxicity of nanoencapsulated imidacloprid (nano-IMI) with its active ingredient to nontarget freshwater organisms (embryonic Danio rerio, Daphnia magna, and Chironomus kiinensis). Nano-IMI elicited approximately 5 times higher toxicity than IMI to zebrafish embryos with and without chorion, while no significant difference was observed between the two invertebrates. Toxicokinetics further explained the differential toxicity patterns of the two IMI analogues. One-compartmental two-phase toxicokinetic modeling showed that nano-IMI exhibited significantly slower elimination and subsequently higher bioaccumulation potential than IMI in zebrafish embryos (dechorinated), while no disparity in toxicokinetics was observed between nano-IMI and IMI in D. magna and C. kiinensis. A two-compartmental toxicokinetic model successfully simulated the slow elimination of IMI from C. kiinensis and confirmed that both analogues of IMI reached toxicologically relevant targets at similar levels. Although nanopesticides exhibit comparable or elevated toxicity, future work is of utmost importance to properly understand the life cycle risks from production to end-of-life exposures, which helps establish optimal management measures before their widespread applications.
Collapse
Affiliation(s)
- Fan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Shaoqiong Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Peipei Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Hang Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yueyang Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta 11455, Canada
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
44
|
Dong W, Ren Y, Xue H. Fabrication and application of carrier-free and carrier-based nanopesticides in pest management. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22124. [PMID: 38860794 DOI: 10.1002/arch.22124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Pesticides are widely used for pest control to promote sustained and stable growth of agricultural production. However, indiscriminate pesticide usage poses a great threat to environmental and human health. In recent years, nanotechnology has shown the ability to increase the performance of conventional pesticides and has great potential for improving adhesion to crop foliage, solubility, stability, targeted delivery, and so forth. This review discusses two types of nanopesticides, namely, carrier-free nanopesticides and carrier-based nanopesticides, that can precisely release necessary and sufficient amounts of active ingredients. At first, the basic characterization and preparation methods of these two distinct types of nanopesticides are briefly summarized. Subsequently, current applications and future perspectives on scientific examples and strategies for promoting the usage efficacy and reducing the environmental risks of these nanopesticides were also described. Overall, nanopesticides can promote higher crop yields and lay the foundation for sustainable agriculture and global food security.
Collapse
Affiliation(s)
- Wenhao Dong
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yipeng Ren
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
45
|
Malheiro C, Prodana M, Cardoso DN, Morgado RG, Loureiro S. Ageing influences the toxicity of two innovative nanofertilizers to the soil invertebrates Enchytraeus crypticus and Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123989. [PMID: 38642791 DOI: 10.1016/j.envpol.2024.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The increasing global food demand is threatening the sustainability of agrifood production systems. The intensification of agricultural practices, with inadequate use of pesticides and fertilizers, poses major challenges to the good functioning of agroecosystems and drastically degrades the soil quality. Nanotechnology is expected to optimize the current farming practices and mitigate some associated impacts. Layered double hydroxides (LDHs) are a class of nanomaterials with high potential for use in agricultural productions, mostly due to their sustained release of nutrients. Considering its novelty and lack of studies on the terrestrial ecosystem, it is essential to assess potential long-term harmful consequences to non-target organisms. Our study aimed to evaluate the effect of Zn-Al-NO3 LDH and Mg-Al-NO3 LDH ageing on the survival and reproduction of two soil invertebrate species Enchytraeus crypticus and Folsomia candida. We postulated that the toxicity of nanomaterials to soil invertebrates would change with time, such that the ageing of soil amendments would mediate their impacts on both species. Our results showed that the toxicity of LDHs was species-dependent, with Zn-Al-NO3 LDH being more toxic to E. crypticus, while Mg-Al-NO3 LDH affected more F. candida, especially in the last ageing period, where reproduction was the most sensitive biological parameter. The toxicity of both nanomaterials increased with ageing time, as shown by the decrease of the EC50 values over time. The influence of LDH dissolution and availability of Zn and Mg in the soil pore water was the main factor related to the toxicity, although we cannot rule out the influence of other structural constituents of LDHs (e.g., nitrates and aluminium). This study supports the importance of incorporating ageing in the ecotoxicity testing of nanomaterials, considering their slow release, as effects on soil organisms can change and lead to more severe impacts on the ecosystem functioning.
Collapse
Affiliation(s)
- C Malheiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Prodana
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - D N Cardoso
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - R G Morgado
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - S Loureiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
46
|
Orfei B, Moretti C, Scian A, Paglialunga M, Loreti S, Tatulli G, Scotti L, Aceto A, Buonaurio R. Combat phytopathogenic bacteria employing Argirium-SUNCs: limits and perspectives. Appl Microbiol Biotechnol 2024; 108:357. [PMID: 38822872 PMCID: PMC11144149 DOI: 10.1007/s00253-024-13189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Bacterial plant diseases are difficult to control as the durability of deployed control measures is thwarted by continuous and rapid changing of bacterial populations. Although application of copper compounds to plants is the most widespread and inexpensive control measure, it is often partially efficacious for the frequent appearance of copper-resistant bacterial strains and it is raising concerns for the harmful effects of copper on environment and human health. Consequently, European Community included copper compounds in the list of substances candidates for substitution. Nanotechnologies and the application of nanoparticles seem to respond to the need to find new very effective and durable measures. We believe that Argirium-SUNCs®, silver ultra nanoclusters with an average size of 1.79 nm and characterized by rare oxidative states (Ag2+/3+), represent a valid candidate as a nano-bactericide in the control of plant bacterial diseases. Respect to the many silver nanoparticles described in the literature, Argirium-SUNCs have many strengths due to the reproducibility of the synthesis method, the purity and the stability of the preparation, the very strong (less than 1 ppm) antimicrobial, and anti-biofilm activities. In this mini-review, we provide information on this nanomaterial and on the possible application in agriculture. KEY POINTS: • Argirium-SUNCs have strong antimicrobial activities against phytopathogenic bacteria. • Argirium-SUNCs are a possible plant protection product. • Argirium-SUNCs protect tomato plants against bacterial speck disease.
Collapse
Affiliation(s)
- Benedetta Orfei
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy.
| | - Anna Scian
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Michela Paglialunga
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Giuseppe Tatulli
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
47
|
Zhang P, Jiang Y, Schwab F, Monikh FA, Grillo R, White JC, Guo Z, Lynch I. Strategies for Enhancing Plant Immunity and Resilience Using Nanomaterials for Sustainable Agriculture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9051-9060. [PMID: 38742946 PMCID: PMC11137868 DOI: 10.1021/acs.est.4c03522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Research on plant-nanomaterial interactions has greatly advanced over the past decade. One particularly fascinating discovery encompasses the immunomodulatory effects in plants. Due to the low doses needed and the comparatively low toxicity of many nanomaterials, nanoenabled immunomodulation is environmentally and economically promising for agriculture. It may reduce environmental costs associated with excessive use of chemical pesticides and fertilizers, which can lead to soil and water pollution. Furthermore, nanoenabled strategies can enhance plant resilience against various biotic and abiotic stresses, contributing to the sustainability of agricultural ecosystems and the reduction of crop losses due to environmental factors. While nanoparticle immunomodulatory effects are relatively well-known in animals, they are still to be understood in plants. Here, we provide our perspective on the general components of the plant's immune system, including the signaling pathways, networks, and molecules of relevance for plant nanomodulation. We discuss the recent scientific progress in nanoenabled immunomodulation and nanopriming and lay out key avenues to use plant immunomodulation for agriculture. Reactive oxygen species (ROS), the mitogen-activated protein kinase (MAPK) cascade, and the calcium-dependent protein kinase (CDPK or CPK) pathway are of particular interest due to their interconnected function and significance in the response to biotic and abiotic stress. Additionally, we underscore that understanding the plant hormone salicylic acid is vital for nanoenabled applications to induce systemic acquired resistance. It is suggested that a multidisciplinary approach, incorporating environmental impact assessments and focusing on scalability, can expedite the realization of enhanced crop yields through nanotechnology while fostering a healthier environment.
Collapse
Affiliation(s)
- Peng Zhang
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yaqi Jiang
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100093, China
| | - Fabienne Schwab
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Fazel Abdolahpur Monikh
- Department
of Environmental and Biological Sciences, University of Eastern Finland, Joensuu-Kuopio 80101, Finland
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Renato Grillo
- Department
of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, SP 15385-000, Brazil
| | - Jason C. White
- Department
of Analytical Chemistry, The Connecticut
Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zhiling Guo
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
48
|
Huang X, Wang X, Liu X, Cheng L, Pan J, Yang X. Nanotechnology in Agriculture: Manganese Ferrite Nanoparticles as a Micronutrient Fertilizer for Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:1395. [PMID: 38794464 PMCID: PMC11124989 DOI: 10.3390/plants13101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Limited research has focused on nanoparticle (NP) applications' impact on edible wheat parts in a field environment. Here, we studied the nutritional quality of edible parts of wheat (Triticum aestivum L.) with a field experiment by spraying MnFe2O4 nanoparticles. Wheat was foliar sprayed with 0, 25, 50, and 100 mg/L composite manganese ferrite (MnFe2O4) NPs during 220 d of a growth period. Ionic controls were prepared using the conventional counterparts (MnSO4·H2O and FeSO4·7H2O) to compare with the 100 mg/L MnFe2O4 NPs. After three consecutive foliar applications, nanoparticles demonstrated a substantial elevation in grain yield and harvest index, exhibiting a noteworthy increase to 5.0 ± 0.12 t/ha and 0.46 ± 0.001 in the 100 mg/L NP dose, respectively, concomitant with a 14% enhancement in the grain number per spike. Fe, Mn, and Ca content in grain increased to 77 ± 2.7 mg/kg, 119 ± 2.8 mg/kg, and 0.32 ± 7.9 g/kg in the 100 mg/L NPs, respectively. Compared to the ion treatment, the 100 mg/L NP treatments notably boosts wheat grain crude protein content (from 13 ± 0.79% to 15 ± 0.58%) and effectively lowers PA/Fe levels (from 11 ± 0.7 to 9.3 ± 0.5), thereby improving Fe bioavailability. The VSM results exhibited a slight superparamagnetic behavior, whereas the grains and stems exhibited diamagnetic behavior. The results indicate that the nanomaterial did not accumulate in the grains, suggesting its suitability as an Fe and Mn-rich fertilizer in agriculture. Above all, the foliar application of nanocomposites increased the concentrations of Fe, Mn, and Ca in wheat grains, accompanied by a significant enhancement in grain yield. Therefore, the research results indicate that the foliar application of MnFe2O4 NPs can positively regulate wheat grains' nutritional quality and yield.
Collapse
Affiliation(s)
- Xiwei Huang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (X.H.); (X.W.); (X.L.); (L.C.)
| | - Xin Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (X.H.); (X.W.); (X.L.); (L.C.)
| | - Xingxing Liu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (X.H.); (X.W.); (X.L.); (L.C.)
| | - Liping Cheng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (X.H.); (X.W.); (X.L.); (L.C.)
| | - Jianqing Pan
- Agriculture Bureau of Changxing County, Huzhou 323000, China;
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (X.H.); (X.W.); (X.L.); (L.C.)
| |
Collapse
|
49
|
Shangguan W, Huang Q, Chen H, Zheng Y, Zhao P, Cao C, Yu M, Cao Y, Cao L. Making the Complicated Simple: A Minimizing Carrier Strategy on Innovative Nanopesticides. NANO-MICRO LETTERS 2024; 16:193. [PMID: 38743342 PMCID: PMC11093950 DOI: 10.1007/s40820-024-01413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024]
Abstract
The flourishing progress in nanotechnology offers boundless opportunities for agriculture, particularly in the realm of nanopesticides research and development. However, concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides. It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return, and if the complex material composition genuinely improves the efficiency, safety, and circularity of nanopesticides. Herein, we introduced the concept of nanopesticides with minimizing carriers (NMC) prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations, and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers (NNC). We further summarized the current development strategy of NMC and examined potential challenges in its preparation, performance, and production. Overall, we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides, offering a way out of the current predicament.
Collapse
Affiliation(s)
- Wenjie Shangguan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Huiping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yingying Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- State Key Laboratory of Element-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Pengyue Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Manli Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
50
|
Musielak M, Musielak E, Sitko R. Ultrasensitive determination of selenium in food samples and its speciation in water and beverages using thiosemicarbazide-incorporated graphene and total-reflection X-ray fluorescence spectrometry. Food Chem 2024; 439:138156. [PMID: 38064828 DOI: 10.1016/j.foodchem.2023.138156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The paper presents a new analytical procedure for the determination and speciation of trace and ultratrace selenium in water, beverages, seafood, milk, and vegetables. The developed method is based on the dispersive micro-solid phase extraction with the use of new thiosemicarbazide-incorporated graphene as a solid sorbent, in combination of the total-reflection X-ray fluorescence spectrometry (TXRF). As a result, we have created an auspicious analytical tool for fast and sensitive analysis of samples with a complex matrix. Regardless of the specimen type, the method is characterized by a very low detection limit of 1.7 pg mL-1 and high precision. The developed strategy allowed us to solve common problems associated with selenium loss during the sample preparation for the TXRF measurement and also improve its performance toward the analysis of beverages and high saline/solid samples, which may even be impossible to perform using standard sample preparation procedures for a TXRF measurement.
Collapse
Affiliation(s)
- Marcin Musielak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Ewelina Musielak
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| | - Rafal Sitko
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|