1
|
Xiong Y, He C, Qi J, Xiong M, Liu S, Zhao J, Li Y, Liu G, Deng W. Black phosphorus nanosheets activate tumor immunity of glioblastoma by modulating the expression of the immunosuppressive molecule PD-L1. Biomaterials 2024; 317:123062. [PMID: 39736218 DOI: 10.1016/j.biomaterials.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The tumor microenvironment in glioblastoma (GBM) is characterized by a pronounced immunosuppressive state, which significantly hampers tumor treatment and contributes to treatment resistance. While our previous research established that black phosphorus nanosheets (BPNS) inhibited glioblastoma cell migration and invasion, the impact of BPNS on the anti-tumor-associated immune mechanism remains unexplored. This study firstly investigated whether BPNS could modulate the tumor microenvironment through immunotherapy and elucidated the underlying mechanisms. We used a subcutaneous mouse model of GBM, which evaded immune surveillance to evaluate BPNS effects on immune cells within the tumor microenvironment. Our results demonstrated that BPNS significantly enhanced the tumor-suppressive microenvironment, reactivating immune cells' cytotoxicity against tumor cells. Moreover, further analysis revealed that BPNS counteracted the immunosuppressive state by reducing the expression of the immunosuppressive molecule PD-L1 in tumor cells, leading to an anti-tumor effect. Mechanistically, BPNS reduced PD-L1 expression through two main pathways: by inducing autophagy via binding to the HSP90 protein, leading to PD-L1 degradation through the autophagy pathway, and by inhibiting the PI3K-AKT signaling pathway, which reduced PD-L1 mRNA levels. This study expands the understanding of BPNS biological activity and suggests new strategies for utilizing BPNS as an adjuvant in immunotherapy.
Collapse
Affiliation(s)
- Yue Xiong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518000, China
| | - Chao He
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Junyang Qi
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Meimei Xiong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuna Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingxin Zhao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuzhen Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518000, China
| | - Gan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Xu K, Liu Y, Chen C. Future prospects in clinical translation of inorganic nanoparticles. Acta Pharm Sin B 2024; 14:5082-5084. [PMID: 39664435 PMCID: PMC11628834 DOI: 10.1016/j.apsb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Ke Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yu W, Wang K, Li H, Ma T, Wu Y, Shang Y, Zhang C, Fan F, Lv S. An updated review of few-layer black phosphorus serving as a promising photocatalyst: synthesis, modification and applications. NANOSCALE 2024; 16:19131-19173. [PMID: 39320464 DOI: 10.1039/d4nr02567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Semiconductor photocatalysts represent a potential strategy to simultaneously solve the global energy shortage and environmental pollution, and black phosphorus (BP) has gained widespread applications in photocatalysis due to its high hole mobility, strong light trapping capabilities, and adjustable band gap. Nevertheless, the original material exhibits unsatisfactory photocatalytic activity in terms of low carrier separation efficiency, weak environmental stability, and difficult to control layer thickness. The following review briefly presents the fundamental characteristics and extensively discusses the synthesis methods and modification strategies for few-layer black phosphorus (FL-BP). Furthermore, various applications of composite photocatalysts derived from FL-BP such as water splitting, pollutant degradation, the carbon dioxide reduction reaction (CO2RR), phototherapy, bacterial disinfection, N2 fixation, and hydrogenation reactions are reviewed. Finally, the opportunities and challenges for the development and further investigation of advanced FL-BP-based photocatalysts are also presented.
Collapse
Affiliation(s)
- Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yingying Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yongchang Shang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Fuhao Fan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Shifei Lv
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
4
|
Cai W, Sun T, Qiu C, Sheng H, Chen R, Xie C, Kou L, Yao Q. Stable triangle: nanomedicine-based synergistic application of phototherapy and immunotherapy for tumor treatment. J Nanobiotechnology 2024; 22:635. [PMID: 39420366 PMCID: PMC11488210 DOI: 10.1186/s12951-024-02925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
In recent decades, cancer has posed a challenging obstacle that humans strive to overcome. While phototherapy and immunotherapy are two emerging therapies compared to traditional methods, they each have their advantages and limitations. These limitations include easy metastasis and recurrence, low response rates, and strong side effects. To address these issues, researchers have increasingly focused on combining these two therapies by utilizing a nano-drug delivery system due to its superior targeting effect and high drug loading rate, yielding remarkable results. The combination therapy demonstrates enhanced response efficiency and effectiveness, leading to a preparation that is highly targeted, responsive, and with low recurrence rates. This paper reviews several main mechanisms of anti-tumor effects observed in combination therapy based on the nano-drug delivery system over the last five years. Furthermore, the challenges and future prospects of this combination therapy are also discussed.
Collapse
Affiliation(s)
- Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Hong C, Liu Y, Shi D, Liu C, Zou S, Guo M, Chen X, Zheng C, Zhao Y, Yang X. Radiofrequency-responsive black phosphorus nanogel crosslinked with cisplatin for precise synergy in multi-modal tumor therapies. J Control Release 2024; 373:853-866. [PMID: 39094632 DOI: 10.1016/j.jconrel.2024.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Radiofrequency-responsive nanoparticles (RFNPs) have drawn increasingly attentions as RF energy absorbing antenna to enhance antitumor efficacy of radiofrequency ablation (RFA). However, it remains a huge challenge for inorganic RFNPs to precisely synergize RFA with other antitumor modes in a clinically acceptable way on bio-safety and bio-compatibility. In this work, RF-responsive black phosphorus (BP) nanogel (BP-Pt@PNA) was successfully fabricated by crosslinking coordination of cisplatin with BP and temperature sensitive polymer PNA. BP-Pt@PNA exhibited strong RF-heating effect and RF-induced pulsatile release of cisplatin. Under RF irradiation, BP-Pt@PNA exhibited cytotoxic enhancement on 4T1 cells. By the synergistic effect of BP and cisplatin, BP-Pt@PNA achieved RF-stimulated systemic immune effect, thus induced enhance suppression on tumor growth and metastasis. Moreover, BP-Pt@PNA realized long-term drug retention in tumor and favorable embolization to tumor-feeding arteries. With high drug loading capacity and favorable bio-safety and bio-degradability, BP-Pt@PNA is expected as an ideal RFNP for precisely synergizing RFA with other antitumor modes in clinical application.
Collapse
Affiliation(s)
- Can Hong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Yiming Liu
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Chao Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Shidong Zou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Xingyu Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China
| | - Chuansheng Zheng
- Hubei Province Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China..
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; School of Biomedical Engineering, Hubei University of Science and Technology, Xianning 437100, PR China.; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074 Wuhan, PR China..
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 430074 Wuhan, PR China.; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074 Wuhan, PR China..
| |
Collapse
|
6
|
Zhang H, Zhang Y, Zhang Y, Li H, Ou M, Yu Y, Zhang F, Yin H, Mao Z, Mei L. Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy. Nat Commun 2024; 15:6783. [PMID: 39117634 PMCID: PMC11310355 DOI: 10.1038/s41467-024-50769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Although nanocatalytic medicine has demonstrated its advantages in tumor therapy, the outcomes heavily relie on substrate concentration and the metabolic pathways are still indistinct. We discover that violet phosphorus quantum dots (VPQDs) can catalyze the production of reactive oxygen species (ROS) without requiring external stimuli and the catalytic substrates are confirmed to be oxygen (O2) and hydrogen peroxide (H2O2) through the computational simulation and experiments. Considering the short of O2 and H2O2 at the tumor site, we utilize calcium peroxide (CaO2) to supply catalytic substrates for VPQDs and construct nanoparticles together with them, named VPCaNPs. VPCaNPs can induce oxidative stress in tumor cells, particularly characterized by a significant increase in hydroxyl radicals and superoxide radicals, which cause substantial damage to the structure and function of cells, ultimately leading to cell apoptosis. Intriguingly, O2 provided by CaO2 can degrade VPQDs slowly, and the degradation product, phosphate, as well as CaO2-generated calcium ions, can promote tumor calcification. Antitumor immune activation and less metastasis are also observed in VPCaNPs administrated animals. In conclusion, our study unveils the anti-tumor activity of VPQDs as catalysts for generating cytotoxic ROS and the degradation products can promote tumor calcification, providing a promising strategy for treating tumors.
Collapse
Affiliation(s)
- Hanjie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yitong Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yushi Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Hanyue Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yongkang Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Huijuan Yin
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
- Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Zhuo Mao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China.
| |
Collapse
|
7
|
Liu M, Zhao L, Chen Y, Chen X, Li J, Chen Z, Xu H, Zhao Y, Bai Y, Feng F. Aptamer-Modified Nb 2C Multifunctional Nanomedicine for Targeted Photothermal/Chemotherapy Combined Therapy of Tumor. Mol Pharm 2024; 21:4047-4059. [PMID: 38951109 DOI: 10.1021/acs.molpharmaceut.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The poor delivery efficiency of nanotherapeutic drugs and their potential off-target toxicity significantly limit their effectiveness and extensive application. An active targeting system with high efficiency and few side effects is a promising strategy for tumor therapy. Herein, a multifunctional nanomedicine Nb2C-PAA-DOX@Apt-M (NDA-M) was constructed for targeted photothermal/chemotherapy (PTT/CHT) combined tumor therapy. The specific targeting ability of aptamer could effectively enhance the absorption of nanomedicine by the MCF-7 cell. By employing Apt-M, the NDA-M nanosheets demonstrated targeted delivery to MCF-7 cells, resulting in enhanced intracellular drug concentration. Under 1060 nm laser irradiation, a rapid temperature increase of the NDA-M was observed within the tumor region to achieve PTT. Meanwhile, CHT was triggered when DOX release was induced by photothermal/acid stimulation. The experimental results demonstrated that aptamer-mediated targeting achieved enhanced PTT/CHT efficacy both in vitro and in vivo. Notably, NDA-M induced complete ablation of solid tumors without any adverse side effects in mice. This study demonstrated new and promising tactics for the development of nanomaterials for targeted tumor therapy.
Collapse
Affiliation(s)
- Meiqing Liu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
- School of Medical, Shanxi Datong University, Datong 037009, China
| | - Jiang Li
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Zezhong Chen
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
| | - Yingying Zhao
- Datong Comprehensive Inspection and Testing Center, Datong 037009, China
| | - Yunfeng Bai
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, China
- Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Taiyuan 030600, China
| |
Collapse
|
8
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Qu J, Yan Z, Lei D, Zhong T, Fang C, Wen Z, Liu J, Lai Z, Yu XF, Zheng B, Geng S. Effect of Bioactive Black Phosphorus Nanomaterials on Cancer-Associated Fibroblast Heterogeneity in Pancreatic Cancer. ACS NANO 2024; 18:19354-19368. [PMID: 38975953 DOI: 10.1021/acsnano.4c06147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Tumor-stromal interactions and stromal heterogeneity in the tumor microenvironment are critical factors that influence the progression, metastasis, and chemoresistance of pancreatic ductal adenocarcinoma (PDAC). Here, we used spatial transcriptome technology to profile the gene expression landscape of primary PDAC and liver metastatic PDAC after bioactive black phosphorus nanomaterial (bioactive BP) treatment using a murine model of PDAC (LSL-KrasG12D/+; LSL-Trp53R172H/+; and Pdx-1-Cre mice). Bioinformatic and biochemical analyses showed that bioactive BP contributes to the tumor-stromal interplay by suppressing cancer-associated fibroblast (CAF) activation. Our results showed that bioactive BP contributes to CAF heterogeneity by decreasing the amount of inflammatory CAFs and myofibroblastic CAFs, two CAF subpopulations. Our study demonstrates the influence of bioactive BP on tumor-stromal interactions and CAF heterogeneity and suggests bioactive BP as a potential PDAC treatment.
Collapse
Affiliation(s)
- Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Defeng Lei
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tongning Zhong
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chongzhou Fang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zonghua Wen
- Department of Pathology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, China
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Biao Zheng
- Department of Surgery, The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan 523710, China
| | - Shengyong Geng
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Ruan F, Liu C, Zeng J, Zhang F, Jiang Y, Zuo Z, He C. Multi-omics integration identifies ferroptosis involved in black phosphorus quantum dots-induced renal injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174532. [PMID: 38972417 DOI: 10.1016/j.scitotenv.2024.174532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Black phosphorus quantum dots (BPQDs) have recently emerged as a highly promising contender in biomedical applications ranging from drug delivery systems to cancer therapy modalities. Nevertheless, the potential toxicity and its effects on human health need to be thoroughly investigated. In this study, we utilized multi-omics integrated approaches to explore the complex mechanisms of BPQDs-induced kidney injury. First, histological examination showed severe kidney injury in male mice after subacute exposure to 1 mg/kg BPQDs for 28 days. Subsequently, transcriptomic and metabolomic analyses of kidney tissues exposed to BPQDs identified differentially expressed genes and metabolites associated with ferroptosis, an emerging facet of regulated cell death. Our findings highlight the utility of the multi-omics integrated approach in predicting and elucidating potential toxicological outcomes of nanomaterials. Furthermore, our study provides a comprehensive understanding of the mechanisms driving BPQDs-induced kidney injury, underscoring the importance of recognizing ferroptosis as a potential toxic mechanism associated with BPQDs.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361102, China.
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jie Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fucong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Jiang
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China; Molecular Diagnostic Laboratory for Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
11
|
Liu D, Zhao Q, Tu Z, Zhang S, Deng S, Xiong Z, Zeng J, Wu F, Zhang X, Xing B. Inhibitory effects of black phosphorus nanosheets on tumor cell proliferation through downregulation of ADIPOQ and downstream signaling pathways. Chem Biol Interact 2024; 395:110994. [PMID: 38582339 DOI: 10.1016/j.cbi.2024.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.
Collapse
Affiliation(s)
- Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhaoxu Tu
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Xiong
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 0100, USA
| |
Collapse
|
12
|
Shu J, Wang Y, Zhang G, Shu X, Xu T, Zhang J, Wu F, He J. Fructose-mineralized black phosphorus for syncretic bone regeneration and tumor suppression. J Mater Chem B 2024; 12:4882-4898. [PMID: 38682491 DOI: 10.1039/d4tb00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Black phosphorus (BPs) nanosheets with their inherent and selective chemotherapeutic effects have recently been identified as promising cancer therapeutic agents, but challenges in surface functionalization hinder satisfactory enhancement of their selectivity between tumors and normal cells. To address this issue, we developed a novel biomineralization-inspired strategy to synthesize CaBPs-Na2FDP@CaCl2 nanosheets, aiming to achieve enhanced and selective anticancer bioactivity along with accelerated osteoblast activity. Benefiting from the in situ mineralization and fructose modification, CaBPs-Na2FDP@CaCl2 exhibited improved pH-responsive degradation behavior and targeted therapy for osteosarcoma. The in vitro results indicated that CaBPs-Na2FDP@CaCl2 exhibited efficient uptake and quick degradation by GLUT5-positive 143B osteosarcoma cells, enhancing BPs-driven chemotherapeutic effects through ATP level disturbance-mediated apoptosis of tumor cells. Moreover, CaBPs-Na2FDP@CaCl2 underwent gradual degradation into PO43-, Ca2+ and fructose in MC3T3-E1 cells, eliminating systemic toxicity. Intracellular Ca2+ bound to calmodulin (CaM), activating Ca2+/CaM-dependent signaling cascades, thereby enhancing osteoblast differentiation and mineralization in pro-osteoblastic cells. In vivo experiments affirmed the anti-tumor capability, inhibition of tumor recurrence and bone repair promotion of CaBPs-Na2FDP@CaCl2. This study not only broadens the application of BPs in bone tumor therapy but also provides a versatile surface functionalization strategy for nanotherapeutic agents.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Yao Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Guangpeng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Xuedong Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Tingting Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
13
|
Li T, Zhang X, Shi C, Liu Q, Zhao Y. Biomimetic nanodrug blocks CD73 to inhibit adenosine and boosts antitumor immune response synergically with photothermal stimulation. J Nanobiotechnology 2024; 22:214. [PMID: 38689291 PMCID: PMC11059694 DOI: 10.1186/s12951-024-02487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Combination of tumor immunotherapy with photothermal therapy (PTT) is a feasible tactic to overcome the drawback of immunotherapy such as poor immune response. Via triggering the immunogenic cells death (ICD), PTT can stimulate the activity of immune cells, but meanwhile, the level of adenosine is elevated via the CD73-induced decomposition of ATP which is overexpressed accompanying with the PTT process, resulting in negative feedback to impair the immune stimulation. Herein, we developed a novel biomimetic photothermal nanodrug to specifically block CD73 for inhibition of adenosine production and more efficient priming of the suppressive immune microenvironments. The nanodrug, named as AptEM@CBA, is constructed by encapsulation of photothermal agent black phosphorus quantum dots (BPQDs) and selective CD73 inhibitor α, β-Methyleneadenosine 5'-diphosphate (AMPCP) in chitosan nanogels, which are further covered with aptamer AS1411 modified erythrocyte membrane (EM) for biomimetic camouflage. With AS1411 induced active targeting and EM induced long blood circulation time, the enrichment of the nanodrug tumor sites is promoted. The photothermal treatment promotes the maturation of dendritic cells. Meanwhile, the release of AMPCP suppress the adenosine generation via CD73 blockade, alleviating the impairment of adenosine to dendritic cells and suppressing regulatory T cells, synergically stimulate the activity of T cells. The combination of CD73 blockade with PTT, not only suppresses the growth of primary implanted tumors, but also boosts strong antitumor immunity to inhibit the growth of distal tumors, providing good potential for tumor photoimmunotherapy.
Collapse
Affiliation(s)
- Tan Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China
| | - Xingyu Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China
| | - Chengyu Shi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China
| | - Qiao Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China
| | - Yuetao Zhao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| |
Collapse
|
14
|
Lan Z, Liu WJ, Yin WW, Yang SR, Cui H, Zou KL, Cheng GW, Chen H, Han YH, Rao L, Tian R, Li LL, Zhao YY, Yu GT. Biomimetic MDSCs membrane coated black phosphorus nanosheets system for photothermal therapy/photodynamic therapy synergized chemotherapy of cancer. J Nanobiotechnology 2024; 22:174. [PMID: 38609922 PMCID: PMC11015563 DOI: 10.1186/s12951-024-02417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.
Collapse
Affiliation(s)
- Zhou Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Wei-Jia Liu
- Department of Oral Mucosal Diseases, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Wu-Wei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Sheng-Ren Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Ke-Long Zou
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hao Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ling-Ling Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, No 101, Longmian Road, Jiangning Region, Nanjing, 211166, China.
| | - Yu-Yue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China.
| | - Guang-Tao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, No 366, Jiangnan Road, Haizhu Region, Guangzhou City, China.
| |
Collapse
|
15
|
Qiu Y, Yu C, Yue Z, Ren Y, Wang W, Yu Q, Guo B, Liang L, Yao F, Zhang H, Sun H, Li J. Chronological-Programmed Black Phosphorus Hydrogel for Responsive Modulation of the Pathological Microenvironment in Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17323-17338. [PMID: 38556990 DOI: 10.1021/acsami.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Electroactive hydrogels have garnered extensive interest as a promising approach to myocardial tissue engineering. However, the challenges of spatiotemporal-specific modulation of individual pathological processes and achieving nontoxic bioresorption still remain. Herein, inspired by the entire postinfarct pathological processes, an injectable conductive bioresorbable black phosphorus nanosheets (BPNSs)-loaded hydrogel (BHGD) was developed via reactive oxide species (ROS)-sensitive disulfide-bridge and photomediated cross-linking reaction. Significantly, the chronologically programmed BHGD hydrogel can achieve graded modulation during the inflammatory, proliferative, and maturation phases of myocardial infarction (MI). More details, during early infarction, the BHGD hydrogel can effectively reduce ROS levels in the MI area, inhibit cellular oxidative stress damage, and promote macrophage M2 polarization, creating a favorable environment for damaged myocardium repair. Meanwhile, the ROS-responsive structure can protect BPNSs from degradation and maintain good conductivity under MI microenvironments. Therefore, the BHGD hydrogel possesses tissue-matched modulus and conductivity in the MI area, facilitating cardiomyocyte maturation and electrical signal exchange, compensating for impaired electrical signaling, and promoting vascularization in infarcted areas in the maturation phase. More importantly, all components of the hydrogel degrade into nontoxic substances without adverse effects on vital organs. Overall, the presented BPNS-loaded hydrogel offers an expandable and safe option for clinical treatment of MI.
Collapse
Affiliation(s)
- Yuwei Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhiwei Yue
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuchen Ren
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Weitong Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Qingyu Yu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
16
|
Zhang Y, Li C, Guo A, Yang Y, Nie Y, Liao J, Liu B, Zhou Y, Li L, Chen Z, Zhang W, Qin L, Lai Y. Black phosphorus boosts wet-tissue adhesion of composite patches by enhancing water absorption and mechanical properties. Nat Commun 2024; 15:1618. [PMID: 38388544 PMCID: PMC10883952 DOI: 10.1038/s41467-024-46003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Wet-tissue adhesives have long been attractive materials for realizing complicated biomedical functions. However, the hydration film on wet tissues can generate a boundary, forming hydrogen bonds with the adhesives that weaken adhesive strength. Introducing black phosphorus (BP) is believed to enhance the water absorption capacity of tape-type adhesives and effectively eliminate hydration layers between the tissue and adhesive. This study reports a composite patch integrated with BP nanosheets (CPB) for wet-tissue adhesion. The patch's improved water absorption and mechanical properties ensure its immediate and robust adhesion to wet tissues. Various bioapplications of CPB are demonstrated, such as rapid hemostasis (within ~1-2 seconds), monitoring of physical-activity and prevention of tumour-recurrence, all validated via in vivo studies. Given the good practicability, histocompatibility and biodegradability of CPB, the proposed patches hold significant promise for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Yuanchi Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cairong Li
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Along Guo
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yipei Yang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yangyi Nie
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaxin Liao
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ben Liu
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanmei Zhou
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Li
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhitong Chen
- Research Center for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Guangdong Province Engineering Laboratory for Biomedical Materials Additive Manufacturing, Shenzhen, China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
17
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Zhang M, Li J, Ji N, Bao Q, Sun N, Rong H, Peng X, Yang L, Xie M, He S, Lin Q, Zhang Z, Li L, Zhang L. Reducing Cholesterol Level in Live Macrophages Improves Delivery Performance by Enhancing Blood Shear Stress Adaptation. NANO LETTERS 2024; 24:607-616. [PMID: 38095305 DOI: 10.1021/acs.nanolett.3c03569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In recent years, live-cell-based drug delivery systems have gained considerable attention. However, shear stress, which accompanies blood flow, may cause cell death and weaken the delivery performance. In this study, we found that reducing cholesterol in macrophage plasma membranes enhanced their tumor targeting ability by more than 2-fold. Our study demonstrates that the reduced cholesterol level deactivated the mammalian target of rapamycin (mTOR) and consequently promoted the nuclear translocation of transcription factor EB (TFEB), which in turn enhanced the expression of superoxide dismutase (SOD) to reduce reactive oxygen species (ROS) induced by shear stress. A proof-of-concept system using low cholesterol macrophages attached to MXene (e.g., l-RX) was fabricated. In a melanoma mouse model, l-RX and laser irradiation treatments eliminated tumors with no recurrences observed in mice. Therefore, cholesterol reduction is a simple and effective way to enhance the targeting performance of macrophage-based drug delivery systems.
Collapse
Affiliation(s)
- Mengxing Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ji
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qixue Bao
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ningyun Sun
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongding Rong
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Peng
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Yang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingxin Xie
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610065, China
| | - Lin Li
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Qiu M, Tulufu N, Tang G, Ye W, Qi J, Deng L, Li C. Black Phosphorus Accelerates Bone Regeneration Based on Immunoregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304824. [PMID: 37953457 PMCID: PMC10767454 DOI: 10.1002/advs.202304824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Indexed: 11/14/2023]
Abstract
A fundamental understanding of inflammation and tissue healing suggests that the precise regulation of the inflammatory phase, both in terms of location and timing, is crucial for bone regeneration. However, achieving the activation of early inflammation without causing chronic inflammation while facilitating quick inflammation regression to promote bone regeneration continues to pose challenges. This study reveals that black phosphorus (BP) accelerates bone regeneration by building an osteogenic immunological microenvironment. BP amplifies the acute pro-inflammatory response and promotes the secretion of anti-inflammatory factors to accelerate inflammation regression and tissue regeneration. Mechanistically, BP creates an osteoimmune-friendly microenvironment by stimulating macrophages to express interleukin 33 (IL-33), amplifying the inflammatory response at an early stage, and promoting the regression of inflammation. In addition, BP-mediated IL-33 expression directly promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), which further facilitates bone repair. To the knowledge, this is the first study to reveal the immunomodulatory potential of BP in bone regeneration through the regulation of both early-stage inflammatory responses and later-stage inflammation resolution, along with the associated molecular mechanisms. This discovery serves as a foundation for the clinical use of BP and is an efficient approach for managing the immune microenvironment during bone regeneration.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Nijiati Tulufu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese MedicineAffiliated Hospital of Yangzhou University388 Zuchongzhi RoadKunshan CityJiangsu Province215300P. R. China
| | - Wenkai Ye
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
20
|
Zhang L, Zhai BZ, Wu YJ, Wang Y. Recent progress in the development of nanomaterials targeting multiple cancer metabolic pathways: a review of mechanistic approaches for cancer treatment. Drug Deliv 2023; 30:1-18. [PMID: 36597205 PMCID: PMC9943254 DOI: 10.1080/10717544.2022.2144541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer is a very heterogeneous disease, and uncontrolled cell division is the main characteristic of cancer. Cancerous cells need a high nutrition intake to enable aberrant growth and survival. To do so, cancer cells modify metabolic pathways to produce energy and anabolic precursors and preserve redox balance. Due to the importance of metabolic pathways in tumor growth and malignant transformation, metabolic pathways have also been given promising perspectives for cancer treatment, providing more effective treatment strategies, and target-specific with minimum side effects. Metabolism-based therapeutic nanomaterials for targeted cancer treatment are a promising option. Numerous types of nanoparticles (NPs) are employed in the research and analysis of various cancer therapies. The current review focuses on cutting-edge strategies and current cancer therapy methods based on nanomaterials that target various cancer metabolisms. Additionally, it highlighted the primacy of NPs-based cancer therapies over traditional ones, the challenges, and the future potential.
Collapse
Affiliation(s)
- Ling Zhang
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China,CONTACT Ling Zhang Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou310014, Zhejiang, China
| | - Bing-Zhong Zhai
- Hangzhou Municipal Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310021, China
| | - Yue-Jin Wu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yin Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China,; Yin Wang Institute of Food Science and Engineering, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou310013, Zhejiang, China
| |
Collapse
|
21
|
Yi K, Kong H, Zheng C, Zhuo C, Jin Y, Zhong Q, Mintz RL, Ju E, Wang H, Lv S, Lao YH, Tao Y, Li M. A LIGHTFUL nanomedicine overcomes EGFR-mediated drug resistance for enhanced tyrosine-kinase-inhibitor-based hepatocellular carcinoma therapy. Biomaterials 2023; 302:122349. [PMID: 37844429 DOI: 10.1016/j.biomaterials.2023.122349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.
Collapse
Affiliation(s)
- Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
23
|
Yu S, Zhang X, Yuan S, Jiang S, Zhang Q, Chen J, Yu H. Electron Transfer Mechanism at the Interface of Multi-Heme Cytochromes and Metal Oxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302670. [PMID: 37587775 PMCID: PMC10582406 DOI: 10.1002/advs.202302670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 08/18/2023]
Abstract
Electroactive microbial cells have evolved unique extracellular electron transfer to conduct the reactions via redox outer-membrane (OM) proteins. However, the electron transfer mechanism at the interface of OM proteins and nanomaterial remains unclear. In this study, the mechanism for the electron transfer at biological/inorganic interface is investigated by integrating molecular modeling with electrochemical and spectroscopic measurements. For this purpose, a model system composed of OmcA, a typical OM protein, and the hexagonal tungsten trioxide (h-WO3 ) with good biocompatibility is selected. The interfacial electron transfer is dependent mainly on the special molecular configuration of OmcA and the microenvironment of the solvent exposed active center. Also, the apparent electron transfer rate can be tuned by site-directed mutagenesis at the axial ligand of the active center. Furthermore, the equilibrium state of the OmcA/h-WO3 systems suggests that their attachment is attributed to the limited number of residues. The electrochemical analysis of OmcA and its variants reveals that the wild type exhibits the fastest electron transfer rate, and the transient absorption spectroscopy further shows that the axial histidine plays an important role in the interfacial electron transfer process. This study provides a useful approach to promote the site-directed mutagenesis and nanomaterial design for bioelectrocatalytic applications.
Collapse
Affiliation(s)
- Sheng‐Song Yu
- Department of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Xin‐Yu Zhang
- Department of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Shi‐Jie Yuan
- State Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Shen‐Long Jiang
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
| | - Qun Zhang
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
| | - Jie‐Jie Chen
- Department of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Han‐Qing Yu
- Department of Environmental Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
24
|
Gao S, Liu M, Liu D, Kong X, Fang Y, Li Y, Wu H, Ji J, Yang X, Zhai G. Biomimetic biomineralization nanoplatform-mediated differentiation therapy and phototherapy for cancer stem cell inhibition and antitumor immunity activation. Asian J Pharm Sci 2023; 18:100851. [PMID: 37915760 PMCID: PMC10616143 DOI: 10.1016/j.ajps.2023.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023] Open
Abstract
Growing evidence suggests that the presence of cancer stem cells (CSCs) is a major challenge in current tumor treatments, especially the transition from non-CSCs to differentiation of CSCs for evading conventional therapies and driving metastasis. Here we propose a therapeutic strategy of synergistic differentiation therapy and phototherapy to induce differentiation of CSCs into mature tumor cells by differentiation inducers and synergistic elimination of them and normal cancer cells through phototherapy. In this work, we synthesized a biomimetic nanoplatform loaded with IR-780 and all-trans retinoic acid (ATRA) via biomineralization. This method can integrate aluminum ions into small-sized protein carriers to form nanoclusters, which undergo responsive degradation under acidic conditions and facilitate deep tumor penetration. With the help of CSC differentiation induced by ATRA, IR-780 inhibited the self-renewal of CSCs and cancer progression by generating hyperthermia and reactive oxygen species in a synergistic manner. Furthermore, ATRA can boost immunogenic cell death induced by phototherapy, thereby strongly causing a systemic anti-tumor immune response and efficiently eliminating CSCs and tumor cells. Taken together, this dual strategy represents a new paradigm of targeted eradication of CSCs and tumors by inducing CSC differentiation, improving photothermal therapy/photodynamic therapy and enhancing antitumor immunity.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Meng Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dongzhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinru Kong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hang Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
25
|
Dou L, Liu R, Wang Z, Huang Z, Wang L, Lin M, Hou X, Zhang J, Cheng T, He Q, Wang D, Guo D, An R, Wei L, Yao Y, Zhang Y. Black phosphorus quantum dots induced ferroptosis in lung cell via increasing lipid peroxidation and iron accumulation. Food Chem Toxicol 2023; 179:113952. [PMID: 37481226 DOI: 10.1016/j.fct.2023.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Black Phosphorus Quantum Dots (BP-QDs) have potential applications in biomedicine. BP-QDs may enter the body through the respiratory tract during grinding and crushing production and processing, causing respiratory toxicity. Ferroptosis is an oxidative, iron-dependent form of cell death. Here, respiratory toxicity of BP-QDs has been validated in mice and human bronchial epithelial cells. After 24 h of exposure to different doses (4-32 μg/mL) of BP-QDs, intracellular lipid peroxidation and iron overload occurred in Beas-2B cells. After 4 times exposures by noninvasive tracheal instillation at four doses [0, 0.25, 0.5 and 1 (mg/kg/48h)], all animals were sacrificed, organs were removed, processed for pathological examination and molecular analysis. Iron overload, glutathione (GSH) depletion and lipid peroxidation in the lung tissue of mice in the exposure group. Furthermore, based on the ferroptosis-associated protein and mRNA expression, it was hypothesized that BP-QDs induced ferroptosis through increasing intracellular free iron and polyunsaturated fatty acid synthesis. By comparing with previous studies, we speculate that primary cells generally are more sensitive to BP-QDs-induced damage than cancer cells. In summary, findings in the present study confirmed that BP-QDs induce ferroptosis via increasing lipid peroxidation and iron accumulation in vitro and in vivo.
Collapse
Affiliation(s)
- Liangding Dou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Rong Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhaojizhe Wang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhi Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Lei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Mo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Xin Hou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Jinwen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Tantan Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Qi He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Ran An
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Lifang Wei
- Department of Nephrology, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yongxing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
26
|
Zhou Z, Li X. Research progress in mRNA drug modification and delivery systems. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:439-450. [PMID: 37643978 PMCID: PMC10495253 DOI: 10.3724/zdxbyxb-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Messenger RNA (mRNA) has shown tremendous potential in disease prevention and therapy. The clinical application requires mRNA with enhanced stability and high translation efficiency, ensuring it not to be degraded by nucleases and targeting to specific tissues and cells. mRNA immunogenicity can be reduced by nucleotide modification, and translation efficiency can be enhanced by codon optimization. The 5´ capping structure and 3´ poly A increase mRNA stability, and the addition of 5' and 3' non-translational regions regulate mRNA translation initiation and protein production. Nanoparticle delivery system protects mRNA from degradation by ubiquitous nucleases, enhances mRNA concentration in circulation and assists it cytoplasmic entrance for the purpose of treatment and prevention. Here, we review the recent advances of mRNA technology, discuss the methods and principles to enhance mRNA stability and translation efficiency; summarize the requirements involved in designing mRNA delivery systems with the potential for industrial translation and biomedical application. Furthermore, we provide insights into future directions of mRNA therapeutics to meet the needs for personalized precision medicine.
Collapse
Affiliation(s)
- Zhengjie Zhou
- Department of Medicine, Pritzker School of Molecular Engineering, The University of Chicago, Chicago 60637, USA.
| | - Xin Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China
| |
Collapse
|
27
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Zhao Q, Donskyi IS, Xiong Z, Liu D, Page TM, Zhang S, Deng S, Xu Y, Zeng J, Wu F, Zhang X. Recent Advances in the Biological Responses to Nano-black Phosphorus: Understanding the Importance of Intrinsic Properties and Cell Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11373-11388. [PMID: 37470763 DOI: 10.1021/acs.est.3c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.
Collapse
Affiliation(s)
- Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Xu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
29
|
Xu Y, Du L, Han B, Wang Y, Fei J, Xia K, Zhai Y, Yu Z. Black phosphorus quantum dots camouflaged with platelet-osteosarcoma hybrid membrane and doxorubicin for combined therapy of osteosarcoma. J Nanobiotechnology 2023; 21:243. [PMID: 37507707 PMCID: PMC10386629 DOI: 10.1186/s12951-023-02016-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most prevalent primary malignant bone tumor. However, single-agent chemotherapy exhibits limited efficacy against OS and often encounters tumor resistance. Therefore, we designed and constructed an integrated treatment strategy of photothermal therapy (PTT) combined with chemotherapy and used a surface-encapsulated platelet-osteosarcoma hybrid membrane (OPM) that enhances circulation time and enables OS-specific targeting. RESULTS The OPM functions as a shell structure, encapsulating multiple drug-loaded nanocores (BPQDs-DOX) and controlling the release rate of doxorubicin (DOX). Moreover, near-infrared light irradiation accelerates the release of DOX, thereby extending circulation time and enabling photostimulation-responsive release. The OPM encapsulation system improves the stability of BPQDs, enhances their photothermal conversion efficiency, and augments PTT efficacy. In vitro and ex vivo experiments demonstrate that BPQDs-DOX@OPM effectively delivers drugs to tumor sites with prolonged circulation time and specific targeting, resulting in superior anti-tumor activity compared to single-agent chemotherapy. Furthermore, these experiments confirm the favorable biosafety profile of BPQDs-DOX@OPM. CONCLUSIONS Compared to single-agent chemotherapy, the combined therapy using BPQDs-DOX@OPM offers prolonged circulation time, targeted drug delivery, enhanced anti-tumor activity, and high biosafety, thereby introducing a novel approach for the clinical treatment of OS.
Collapse
Affiliation(s)
- Yanlong Xu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Longhang Road 1508#, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Longhang Road 1508#, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Binxu Han
- Department of Orthopedics, Jinshan Hospital, Fudan University, Longhang Road 1508#, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Longhang Road 1508#, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Jichang Fei
- Department of Orthopedics, Nanping First Hospital of Fujian Medical University, Fujian, People's Republic of China
| | - Kuo Xia
- Department of Orthopedics, Jinshan Hospital, Fudan University, Longhang Road 1508#, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Yonghua Zhai
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Longhang Road 1508#, Jinshan District, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
30
|
Wang L, Lin M, Hou X, Dou L, Huang Z, Liu R, Zhang J, Cai C, Chen C, Liu Y, Wang D, Guo D, An R, Wei L, Yao Y, Zhang Y. Black phosphorus quantum dots induce autophagy and apoptosis of human bronchial epithelial cells via endoplasmic reticulum stress. CHEMOSPHERE 2023; 327:138463. [PMID: 36966929 DOI: 10.1016/j.chemosphere.2023.138463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE The board application of black phosphorus quantum dots (BP-QDs) increases the risk of inhalation exposure in the manufacturing process. The aim of this study is to explore the toxic effect of BP-QDs on human bronchial epithelial cells (Beas-2B) and lung tissue of Balb/c mice. METHODS The BP-QDs were characterized using transmission electron microscopy (TEM) and a Malvern laser particle size analyzer. Cell Counting Kit-8 (CCK-8) and TEM were used to detect cytotoxicity and organelle injury. Damage to the endoplasmic reticulum (ER) was detected by using the ER-Tracker molecular probe. Rates of apoptosis were detected by AnnexinV/PI staining. Phagocytic acid vesicles were detected using AO staining. Western blotting and immunohistochemistry were used to examine the molecular mechanisms. RESULTS After treatment with different concentrations of BP-QDs for 24 h, the cell viability decreased, as well as activation of the ER stress and autophagy. Furthermore, the rate of apoptosis was increased. Inhibition of ER stress caused by 4-phenyl butyric acid (4-PBA) was shown to significantly inhibit both apoptosis and autophagy, suggesting that ER stress could be an upstream mediator of both autophagy and apoptosis. BP-QD-induced autophagy can also inhibit the occurrence of apoptosis using molecules related to autophagy including rapamycin (Rapa), 3-methyladenine (3-MA), and bafilomycin A1 (Bafi A1). In general, BP-QDs activate ER stress in Beas-2B cells, which further induces autophagy and apoptosis, and autophagy may be activated as a factor that protects against apoptosis. We also observed strong staining of related proteins of ER stress, autophagy, and apoptosis proteins in mouse lung tissue following intracheal instillation over the course of a week. CONCLUSION BP-QD-induced ER stress facilitates autophagy and apoptosis in Beas-2B cells and autophagy may be activated as a protective factor against apoptosis. Under conditions of ER stress induced by BP-QDs, The interplay between autophagy and apoptosis determines cell fate.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mo Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Liangding Dou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhi Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rong Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinwen Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chuchu Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dongbei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ran An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lifang Wei
- Department of Nephrology, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Yongxing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
31
|
Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev 2023; 52:2031-2081. [PMID: 36633202 DOI: 10.1039/d2cs00352j] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioactive materials are a special class of biomaterials that can react in vivo to induce a biological response or regulate biological functions, thus achieving a better curative effect than traditional inert biomaterials. For cancer theranostics, compared with organic or polymer nanomaterials, inorganic nanomaterials possess unique physical and chemical properties, have stronger mechanical stability on the basis of maintaining certain bioactivity, and are easy to be compounded with various carriers (polymer carriers, biological carriers, etc.), so as to achieve specific antitumor efficacy. After entering the nanoscale, due to the nano-size effect, high specific surface area and special nanostructures, inorganic nanomaterials exhibit unique biological effects, which significantly influence the interaction with biological organisms. Therefore, the research and applications of bioactive inorganic nanomaterials in cancer theranostics have attracted wide attention. In this review, we mainly summarize the recent progress of bioactive inorganic nanomaterials in cancer theranostics, and also introduce the definition, synthesis and modification strategies of bioactive inorganic nanomaterials. Thereafter, the applications of bioactive inorganic nanomaterials in tumor imaging and antitumor therapy, including tumor microenvironment (TME) regulation, catalytic therapy, gas therapy, regulatory cell death and immunotherapy, are discussed. Finally, the biosafety and challenges of bioactive inorganic nanomaterials are also mentioned, and their future development opportunities are prospected. This review highlights the bioapplication of bioactive inorganic nanomaterials.
Collapse
Affiliation(s)
- Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
32
|
Luo QW, Yao L, Li L, Yang Z, Zhao MM, Zheng YZ, Zhuo FF, Liu TT, Zhang XW, Liu D, Tu PF, Zeng KW. Inherent Capability of Self-Assembling Nanostructures in Specific Proteasome Activation for Cancer Cell Pyroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205531. [PMID: 36549896 DOI: 10.1002/smll.202205531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Understanding the direct interaction of nanostructures per se with biological systems is important for biomedical applications. However, whether nanostructures regulate biological systems by targeting specific cellular proteins remains largely unknown. In the present work, self-assembling nanomicelles are constructed using small-molecule oleanolic acid (OA) as a molecular template. Unexpectedly, without modifications by functional ligands, OA nanomicelles significantly activate cellular proteasome function by directly binding to 20S proteasome subunit alpha 6 (PSMA6). Mechanism study reveals that OA nanomicelles interact with PSMA6 to dynamically modulate its N-terminal domain conformation change, thereby controlling the entry of proteins into 20S proteasome. Subsequently, OA nanomicelles accelerate the degradation of several crucial proteins, thus potently driving cancer cell pyroptosis. For translational medicine, OA nanomicelles exhibit a significant anticancer potential in tumor-bearing mouse models and stimulate immune cell infiltration. Collectively, this proof-of-concept study advances the mechanical understanding of nanostructure-guided biological effects via their inherent capacity to activate proteasome.
Collapse
Affiliation(s)
- Qian-Wei Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fang-Fang Zhuo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
33
|
Zhang X, Donskyi IS, Tang W, Deng S, Liu D, Zhang S, Zhao Q, Xing B. Biological Effects of Black Phosphorus Nanomaterials on Mammalian Cells and Animals. Angew Chem Int Ed Engl 2023; 62:e202213336. [PMID: 36218046 PMCID: PMC10107789 DOI: 10.1002/anie.202213336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs' endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts.
Collapse
Affiliation(s)
- Xuejiao Zhang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Weihao Tang
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
- University of Chinese Academy of SciencesBeijing100049China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Qing Zhao
- National–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South ChinaGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementInstitute of Eco-environmental and Soil SciencesGuangdong Academy of SciencesGuangzhou510650China
- Key Laboratory of Pollution Ecology and Environmental EngineeringInstitute of Applied EcologyChinese Academy of SciencesShenyang110016China
| | - Baoshan Xing
- Stockbridge School of AgricultureUniversity of MassachusettsAmherstMA 01003USA
| |
Collapse
|
34
|
Combined chemotherapy based on bioactive black phosphorus for pancreatic cancer therapy. J Control Release 2023; 354:889-901. [PMID: 36586672 DOI: 10.1016/j.jconrel.2022.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Pancreatic cancer is the most aggressive malignant tumor with difficulty in early diagnosis, very short survival time in advanced stage, and lack of effective treatment options. In this work, a novel combination chemotherapy strategy based on bioactive black phosphorus (BP) and gemcitabine (GEM) is developed for efficient treatment of pancreatic cancer. The combined cell cycle blockage in G2/M phase induced by BP and G0/G1 phase by GEM results in synergistic killing of pancreatic cancer cells with the combination index (CI) < 1. The iRGD modified zein nanoparticles co-loaded with BP quantum dots (BPQDs) and GEM are designed and prepared as a targeted nanoplatform (BP-GEM@NPs). After intravenous injection, the in vivo distribution and pharmacokinetics results demonstrate that BP-GEM@NPs shows excellent tumor targeting capability and significantly prolonged blood circulation time. The targeted co-delivery of BPQDs and GEM induces much more pancreatic tumor cell apoptosis and synergistically inhibits tumor growth in both subcutaneous xenograft and orthotopic models. Meanwhile, BP-GEM@NPs exhibit good biocompatibility without bring adverse effects. This work indicates the great potential of BP-GEM@NPs as a combination chemotherapy for pancreatic cancer and provides insights into development of biomedicine by exploring the intrinsic bioactivities of nanomaterials.
Collapse
|
35
|
Liu Y, Yi Y, Zhong C, Ma Z, Wang H, Dong X, Yu F, Li J, Chen Q, Lin C, Li X. Advanced bioactive nanomaterials for diagnosis and treatment of major chronic diseases. Front Mol Biosci 2023; 10:1121429. [PMID: 36776741 PMCID: PMC9909026 DOI: 10.3389/fmolb.2023.1121429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
With the rapid innovation of nanoscience and technology, nanomaterials have also been deeply applied in the medical and health industry and become one of the innovative methods to treat many diseases. In recent years, bioactive nanomaterials have attracted extensive attention and have made some progress in the treatment of some major chronic diseases, such as nervous system diseases and various malignant tumors. Bioactive nanomaterials depend on their physical and chemical properties (crystal structure, surface charge, surface functional groups, morphology, and size, etc.) and direct produce biological activity and play to the role of the treatment of diseases, compared with the traditional nanometer pharmaceutical preparations, biological active nano materials don't exert effects through drug release, way more directly, also is expected to be more effective for the treatment of diseases. However, further studies are needed in the evaluation of biological effects, fate in vivo, structure-activity relationship and clinical transformation of bionanomaterials. Based on the latest research reports, this paper reviews the application of bioactive nanomaterials in the diagnosis and treatment of major chronic diseases and analyzes the technical challenges and key scientific issues faced by bioactive nanomaterials in the diagnosis and treatment of diseases, to provide suggestions for the future development of this field.
Collapse
Affiliation(s)
- Yongfei Liu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Yi Yi
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China,*Correspondence: Yi Yi,
| | - Chengqian Zhong
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Zecong Ma
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Haifeng Wang
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xingmo Dong
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Feng Yu
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Jing Li
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Qinqi Chen
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Chaolu Lin
- Department of Urology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| | - Xiaohong Li
- Longyan First Hospital Affiliated to Fujian Medical University, Longyan, China
| |
Collapse
|
36
|
Zhao Y, Xie Z, Deng Y, Huang A, He Y, Wen B, Liao X, Chang R, Zhang G, Zhu L, Wang Y, Li T, Zhong Y, Zuo J, Zhang H, Chen M, Liu J, Chen X, Liu H. Photothermal nanobomb blocking metabolic adenosine-A2AR potentiates infiltration and activity of T cells for robust antitumor immunotherapy. CHEMICAL ENGINEERING JOURNAL 2022; 450:138139. [DOI: 10.1016/j.cej.2022.138139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
|
37
|
Zhang G, Luo W, Yang W, Li S, Li D, Zeng Y, Li Y. The importance of the
IL
‐1 family of cytokines in nanoimmunosafety and nanotoxicology. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1850. [DOI: 10.1002/wnan.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Guofang Zhang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenhe Luo
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenjie Yang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Su Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| |
Collapse
|
38
|
Yang W, Jannatun N, Zeng Y, Liu T, Zhang G, Chen C, Li Y. Impacts of microplastics on immunity. FRONTIERS IN TOXICOLOGY 2022; 4:956885. [PMID: 36238600 PMCID: PMC9552327 DOI: 10.3389/ftox.2022.956885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Most disposable plastic products are degraded slowly in the natural environment and continually turned to microplastics (MPs) and nanoplastics (NPs), posing additional environmental hazards. The toxicological assessment of MPs for marine organisms and mammals has been reported. Thus, there is an urgent need to be aware of the harm of MPs to the human immune system and more studies about immunological assessments. This review focuses on how MPs are produced and how they may interact with the environment and our body, particularly their immune responses and immunotoxicity. MPs can be taken up by cells, thus disrupting the intracellular signaling pathways, altering the immune homeostasis and finally causing damage to tissues and organs. The generation of reactive oxygen species is the mainly toxicological mechanisms after MP exposure, which may further induce the production of danger-associated molecular patterns (DAMPs) and associate with the processes of toll-like receptors (TLRs) disruption, cytokine production, and inflammatory responses in immune cells. MPs effectively interact with cell membranes or intracellular proteins to form a protein-corona, and combine with external pollutants, chemicals, and pathogens to induce greater toxicity and strong adverse effects. A comprehensive research on the immunotoxicity effects and mechanisms of MPs, including various chemical compositions, shapes, sizes, combined exposure and concentrations, is worth to be studied. Therefore, it is urgently needed to further elucidate the immunological hazards and risks of humans that exposed to MPs.
Collapse
Affiliation(s)
- Wenjie Yang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nahar Jannatun
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tinghao Liu
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, National Centre for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
39
|
Fan T, Yan L, He S, Hong Q, Ai F, He S, Ji T, Hu X, Ha E, Zhang B, Li Z, Zhang H, Chen X, Hu J. Biodistribution, degradability and clearance of 2D materials for their biomedical applications. Chem Soc Rev 2022; 51:7732-7751. [PMID: 36047060 DOI: 10.1039/d1cs01070k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional (2D) materials have evolved to be a class of rapidly advancing chemical entities in the biomedical field. Nevertheless, potential side effects and safety concerns severely limit their clinical translation. After administration, 2D materials cross multiple biological barriers and are distributed throughout the body. Only the portion that accumulates at the diseased sites exerts a therapeutic effect, whereas those distributed elsewhere may cause damage to healthy tissues and interference to normal physiological function of various organs. To achieve maximum therapeutic efficacy and minimum adverse effects simultaneously, the delivery of 2D materials must be targeted at diseased sites to reach therapeutic concentrations, and the materials must possess sufficient degradation and clearance rates to avoid long-term toxicity. Therefore, it is essential to understand the biodistribution and destiny of 2D materials in vivo. In this review, first, we provide a comprehensive picture of the strategies that are currently adopted for regulating the in vivo fate of 2D materials, including modulations of their size, surface properties, composition, and external stimuli. Second, we systematically review the biodistribution, degradation, and metabolism of several newly emerged 2D materials. Finally, we also discuss the development opportunities of 2D materials in the biomedical field and the challenges to be addressed.
Collapse
Affiliation(s)
- Taojian Fan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China. .,Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China.
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China.
| | - Qiancun Hong
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China.
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China.
| | - Shuqing He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China.
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China.
| | - Xin Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China.
| | - Enna Ha
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China.
| | - Bin Zhang
- Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Han Zhang
- Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 518118, Shenzhen, China. .,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
40
|
Ji X, Li Q, Song H, Fan C. Protein-Mimicking Nanoparticles in Biosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201562. [PMID: 35576606 DOI: 10.1002/adma.202201562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Proteins are essential elements for almost all life activities. The emergence of nanotechnology offers innovative strategies to create a diversity of nanoparticles (NPs) with intrinsic capacities of mimicking the functions of proteins. These artificial mimics are produced in a cost-efficient and controllable manner, with their protein-mimicking performances comparable or superior to those of natural proteins. Moreover, they can be endowed with additional functionalities that are absent in natural proteins, such as cargo loading, active targeting, membrane penetrating, and multistimuli responding. Therefore, protein-mimicking NPs have been utilized more and more often in biosystems for a wide range of applications including detection, imaging, diagnosis, and therapy. To highlight recent progress in this broad field, herein, representative protein-mimicking NPs that fall into one of the four distinct categories are summarized: mimics of enzymes (nanozymes), mimics of fluorescent proteins, NPs with high affinity binding to specific proteins or DNA sequences, and mimics of protein scaffolds. This review covers their subclassifications, characteristic features, functioning mechanisms, as well as the extensive exploitation of their great potential for biological and biomedical purposes. Finally, the challenges and prospects in future development of protein-mimicking NPs are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
41
|
Li X, Li D, Zhang G, Zeng Y, Monteiro-Riviere NA, Chang YZ, Li Y. Biocorona modulates the inflammatory response induced by gold nanoparticles in human epidermal keratinocytes. Toxicol Lett 2022; 369:34-42. [PMID: 36057382 DOI: 10.1016/j.toxlet.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
The functional activities of gold nanoparticles (AuNPs) on biological systems depend on their physical-chemical properties and their surface functionalizations. Within a biological environment and depending on their surface characteristics, NPs can adsorb biomolecules (mostly proteins) present in the microenvironment, thereby forming a dynamic biomolecular corona on the surface. The presence of this biocorona changes the physical-chemical and functional properties of the NPs and how it interacts with cells. Here, we show that primary human epidermal keratinocytes (HEK) exposed in culture to branched polyethyleneimine (BPEI)-AuNPs, but not to lipoic acid (LA)-AuNPs, show potent particle uptake, decreased viability and enhanced production of inflammatory factors, while the presence of a human plasma-derived biocorona decreased NPs uptake and rescued cells from BPEI-AuNP-induced cell death. The mechanistic study revealed that the intracellular oxidative level greatly increased after the BPEI-AuNPs treatment, and the transcriptomic analysis showed that the dominant modulated pathways were related to oxidative stress and an antioxidant response. The stress level measured by flow cytometry also showed a significant decrease in the presence of a biocorona. Further anaylsis discovered that nuclear factor erythroid-2 related factor (Nrf2), a major regulator of anti-oxidant and anti-inflammatory gene, as the key factor related to the AuNPs induced oxidative stress and inflammation. This study provides futher understanding into the mechanisms on how NPs-induced cellular stress and reveals the protective effects of a biocorona on inflammatory responses in HEK at the molecular level, which provides important insights into the biological responses of AuNPs and their biocorona.
Collapse
Affiliation(s)
- Xuejin Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China; Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Dongjie Li
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China; Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, 66506 USA
| | - Yan-Zhong Chang
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei, China.
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
42
|
Hou Y, Fei Y, Liu Z, Liu Y, Li M, Luo Z. Black phosphorous nanomaterials as a new paradigm for postoperative tumor treatment regimens. J Nanobiotechnology 2022; 20:366. [PMID: 35953821 PMCID: PMC9367102 DOI: 10.1186/s12951-022-01579-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
Surgery is currently a mainstream treatment modality for various solid tumor indications. However, aggressive resection of tumor tissues frequently causes postoperative complications, which severely undermine the well-being of patients. Moreover, the residue tumor cells may substantially increase the risk of local and distant tumor relapse. The recent development in black phosphorus (BP)-based nanomaterials offers a promising opportunity to address these clinical challenges. BP is an emerging nanomaterial with excellent biocompatibility and versatile functionality, which has already demonstrated great potential for a variety of biomedical applications including tumor therapy and tissue engineering. In this review, the recent advances in BP-based nanobiomaterials for the post-surgery treatment of solid tumor have been summarized, while specific emphasis was placed on their capability to continuously inhibit residue tumor growth at the surgery site as well as stimulating various healing mechanisms, aiming to preventing tumor relapse while promoting the healing of surgery-induced traumatic soft/hard tissue injuries. It is anticipated that the nanoengineered BP-based materials may open new avenues to tackle those clinical challenges in surgical treatment of solid tumors.
Collapse
Affiliation(s)
- Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zehong Liu
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China. .,111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
43
|
Chen X, Zhang S, Liu J, Ren M, Xing D, Qin H. Controlling dielectric loss of biodegradable black phosphorus nanosheets by iron-ion-modification for imaging-guided microwave thermoacoustic therapy. Biomaterials 2022; 287:121662. [PMID: 35797855 DOI: 10.1016/j.biomaterials.2022.121662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Microwave-induced thermoacoustic (TA) technology transforms microwave into acoustic waves useable for imaging or therapy, based on the power density of the pulsed microwaves. Exploiting nanoparticles with high biocompatibility, safe metabolism, and high microwave-acoustic conversion is the key to the clinical translational application of TA therapy. In this paper, we proposed a biodegradable and high microwave absorption nanoparticle for TA therapy. The proposed nanoparticle uses iron ions to regulate the atomic defects of biodegradable black phosphorus (BP) nanosheets to augment the dielectric loss. The iron ions adsorb with the lone pair electrons indicated of BP through the conjugated π bond to increase the permanent electric dipoles. With pulsed microwave irradiation, a large number of electric dipoles are repeatedly polarized, causing instantaneous temperature rise and then generating significant TA shockwave via TA cavitation effect. TA shockwave can disrupt cell membranes in situ to trigger programmed apoptosis and produce precise anti-tumor effects. Additionally, the nanoparticle-mediated TA process generates images that deliver valuable data, such as the size, shape, and location of the tumor for treatment planning and monitoring. This hypothesis has been tested in vitro and in vivo with animal models of glioblastoma tumors. The experimental results demonstrate the high theragnostic efficiency for tumor inhibition and TA imaging, exhibiting low systemic cytotoxicity and good biocompatibility after systemic administration. The established BP-based nanoparticle with both safe metabolism and high microwave-acoustic conversion is a promising candidate for precision theranostics without obvious side effects.
Collapse
Affiliation(s)
- Xiaoyu Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Shanxiang Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Jiaqian Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Mingyang Ren
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Lab of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
44
|
Black Phosphorus Quantum Dots Enhance the Radiosensitivity of Human Renal Cell Carcinoma Cells through Inhibition of DNA-PKcs Kinase. Cells 2022; 11:cells11101651. [PMID: 35626687 PMCID: PMC9139844 DOI: 10.3390/cells11101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most aggressive urological malignancies and has a poor prognosis, especially in patients with metastasis. Although RCC is traditionally considered to be radioresistant, radiotherapy (RT) is still a common treatment for palliative management of metastatic RCC. Novel approaches are urgently needed to overcome radioresistance of RCC. Black phosphorus quantum dots (BPQDs) have recently received great attention due to their unique physicochemical properties and good biocompatibility. In the present study, we found that BPQDs enhance ionizing radiation (IR)-induced apoptotic cell death of RCC cells. BPQDs treatment significantly increases IR-induced DNA double-strand breaks (DSBs), as indicated by the neutral comet assay and the DSBs biomarkers γH2AX and 53BP1. Mechanistically, BPQDs can interact with purified DNA–protein kinase catalytic subunit (DNA-PKcs) and promote its kinase activity in vitro. BPQDs impair the autophosphorylation of DNA-PKcs at S2056, and this site phosphorylation is essential for efficient DNA DSBs repair and the release of DNA-PKcs from the damage sites. Consistent with this, BPQDs suppress nonhomologous end-joining (NHEJ) repair and lead to sustained high levels of autophosphorylated DNA-PKcs on the damaged sites. Moreover, animal experiments indicate that the combined approach with both BPQDs and IR displays better efficacy than monotreatment. These findings demonstrate that BPQDs have potential applications in radiosensitizing RCC cells.
Collapse
|
45
|
|
46
|
Song L, Chen B, Qin Z, Liu X, Guo Z, Lou H, Liu H, Sun W, Guo C, Li C. Temperature-Dependent CAT-Like RGD-BPNS@SMFN Nanoplatform for PTT-PDT Self-Synergetic Tumor Phototherapy. Adv Healthc Mater 2022; 11:e2102298. [PMID: 34918483 DOI: 10.1002/adhm.202102298] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/22/2021] [Indexed: 12/27/2022]
Abstract
Phototherapies such as photothermal therapy (PTT) and photodynamic therapy (PDT) are considered as alternatives for tumor remedies, because of their advantages of precise spatial orientation, minimally invasive, and nonradiative operation. However, most of phototherapeutic agents still suffer from low photothermal conversion efficacy and photodynamic performance, poor biocompatibility, and intratumor accumulation. Herein a biocompatible and target-deliverable PTT-PDT self-synergetic nanoplatform of RGD-BPNS@SMFN based on temperature-dependent catalase (CAT)-like behavior for tumor elimination is presented. The homogeneously dispersible nanoplatform is designed and fabricated through anchoring spherical manganese ferrite nanoparticles (SMFN) to black phosphorus nanosheets (BPNS), followed by arginine-glycine-aspartic acid (RGD) peptide modification. The nanoplatform exhibits excellent targeting ability and enhanced photonic response in comparison to plain BPNS and SMFN in vitro and in vivo. It is found that PTT and PDT have a self-synergetic behavior by means of the dual phototherapy mode interaction. The self-synergetic mechanism is mainly ascribed to PTT-promoted inherent CAT-like activity in the nanoplatform, which remodels the tumor hypoxia microenvironment and further ameliorates the PDT efficiency, providing promising high performance nanoplatform for synergetic dual mode phototherapy, enriching the design for the antitumor nanozyme.
Collapse
Affiliation(s)
- Luping Song
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, P. R. China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, Jiangsu, 215009, P. R. China
| | - Zhiguo Qin
- Nanjing Medical University, The First Clinical Medical College, Jiangsu Province Hospital, Guangzhou Road 300, Nanjing, Jiangsu, 210029, P. R. China
| | - Xin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Zhanhang Guo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Hongchao Lou
- Department of Geriatrics, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu Province, 215028, P. R. China
| | - Hui Liu
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, P. R. China
| | - Wei Sun
- Key Lab of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Lab of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, Jiangsu, 215009, P. R. China
| | - Changming Li
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, P. R. China.,Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, Jiangsu, 215009, P. R. China.,Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
47
|
Li Y, Zhang P, Tang BZ, Boraschi D. Editorial: Immunological Effects of Nano-Imaging Materials. Front Immunol 2022; 13:886415. [PMID: 35401571 PMCID: PMC8988128 DOI: 10.3389/fimmu.2022.886415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Yang Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- *Correspondence: Yang Li, ; Diana Boraschi,
| | - Pengfei Zhang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- *Correspondence: Yang Li, ; Diana Boraschi,
| |
Collapse
|
48
|
|
49
|
Lin Z, Deng Q, Fang Q, Li X, Liu X, Wang J, Chen S, Huang X, Yang L, Miao Y, Yu XY. Black Phosphorus nanoparticles for dual therapy of non-small cell lung cancer. J Drug Target 2022; 30:614-622. [PMID: 35078385 DOI: 10.1080/1061186x.2022.2032093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lung cancer remains one of the leading causes of death in humans. Gefitinib is an inhibitor of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) commonly used to suppress tumor growth. However, constantly use of gefitinib results in drug-resistance, reduced efficacy, and undesired side effects. To circumvent these drawbacks, targeted and photothermal therapies have emerged as effective strategies. Herein, we are first to adopt a black phosphorus nanoparticle-based novel delivering strategy by combining gefitinib and cancer cytomembrane to treat non-small cell lung cancer (NSCLC). In these gefitinib-containing nano-carrier, cyanine5 (Cy5) biotin-labeled black phosphorus was incorporated with cancer membrane and then consist of a nanomaterial (BPGM), which enabled to deliver gefitinib to the tumors effectively. The combination of BPGM showed reinforcing effects to suppress NSCLC cells and xenograft tumors without apparent adverse effects both in vitro and in vivo. BPGM facilitated the delivery of gefitinib to tumor tissue and extended its retention time within tumors. These studies thus suggest that black phosphorus may serve as novel delivery strategy for lung cancer.
Collapse
Affiliation(s)
- Zhongxiao Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436.,School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences & the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Qi Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoyan Liu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, No.58, Pu Yu Dong Road, Shanghai 200011, China
| | - Jianglin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Sheng Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Xiaotao Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Langyu Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Yingling Miao
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology & National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436
| |
Collapse
|
50
|
Zhu H, Li Z, Ye E, Leong DT. Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60351-60361. [PMID: 34874695 DOI: 10.1021/acsami.1c17608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition-metal dichalcogenide (TMD)-based nanomaterials have been extensively explored for the photonic therapy. To the best of our knowledge, near-infrared (NIR) light is a requirement for the photothermal therapy (PTT) to achieve the feature of deep-tissue penetration, whereas no obvious absorption peaks existing in the NIR region for existing TMD nanomaterials limit their therapeutic efficacy. As one category of TMD nanomaterials, ruthenium sulfide-based nanomaterials have been less exploited in biomedical applications including tumor therapy so far. Here, we develop a facile biomineralization-assisted bottom-up strategy to synthesize oxygenic hybrid ruthenium sulfide nanoclusters (RuSx NCs) by regulating the oxygen amounts and sulfur defects for the optimized PTT. By regulating the increasing initial molar ratios of Ru to S, RuSx NCs with small sizes were endowed with increasing oxygen contents and sulfur defects, leading to the photothermal conversion efficiency (PCE) increasing from 32.8 to 41.9%, which were higher than that of most small-sized inorganic photothermal nanoagents. In contrast to commercial indocyanine green, these RuSx NCs exhibited higher photostability under NIR laser irradiation. The high PCE and superior photostability allowed RuSx NCs to effectively and completely ablate cancer cells. Thus, the proposed defect engineering strategy endows RuSx NCs with an excellent photothermal effect for the PTT of tumors of living mice, which also proves the potential of further exploring the properties of RuSx NCs for future biomedical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|