1
|
Yang L, Li Q, Ge Z, Fan C, Huang W. DNA Mechanics: From Single Stranded to Self-Assembled. NANO LETTERS 2024; 24:11768-11778. [PMID: 39259830 DOI: 10.1021/acs.nanolett.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
DNA encodes genetic information and forms various structural conformations with distinct physical, chemical, and biological properties. Over the past 30 years, advancements in force manipulation technology have enabled the precise manipulation of DNA at nanometer and piconewton resolutions. This mini-review discusses these force manipulation techniques for exploring the mechanical properties of DNA at the single-molecule level. We summarize the distinct mechanical features of different DNA forms while considering the impact of the force geometry. We highlight the role of DNA mechanics in origami structures that serve as self-assembled building blocks or mechanically responsive/active nanomachines. Accordingly, we emphasize how DNA mechanics are integral to the functionality of origami structures for achieving mechanical capabilities. Finally, we provide an outlook on the intrinsic mechanical properties of DNA, from single stranded to self-assembled higher-dimensional structures. This understanding is expected to inspire new design strategies in DNA mechanics, paving the way for innovative applications and technologies.
Collapse
Affiliation(s)
- Linfeng Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenmao Huang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Yu L, Chen L, Satyabola D, Prasad A, Yan H. NucleoCraft: The Art of Stimuli-Responsive Precision in DNA and RNA Bioengineering. BME FRONTIERS 2024; 5:0050. [PMID: 39290204 PMCID: PMC11407293 DOI: 10.34133/bmef.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Recent advancements in DNA and RNA bioengineering have paved the way for developing stimuli-responsive nanostructures with remarkable potential across various applications. These nanostructures, crafted through sophisticated bioengineering techniques, can dynamically and precisely respond to both physiological and physical stimuli, including nucleic acids (DNA/RNA), adenosine triphosphate, proteins, ions, small molecules, pH, light, and temperature. They offer high sensitivity and specificity, making them ideal for applications such as biomarker detection, gene therapy, and controlled targeted drug delivery. In this review, we summarize the bioengineering methods used to assemble versatile stimuli-responsive DNA/RNA nanostructures and discuss their emerging applications in structural biology and biomedicine, including biosensing, targeted drug delivery, and therapeutics. Finally, we highlight the challenges and opportunities in the rational design of these intelligent bioengineered nanostructures.
Collapse
Affiliation(s)
- Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Liangxiao Chen
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Deeksha Satyabola
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
3
|
Yu Z, Baptist AV, Reinhardt SCM, Bertosin E, Dekker C, Jungmann R, Heuer-Jungemann A, Caneva S. Compliant DNA Origami Nanoactuators as Size-Selective Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405104. [PMID: 39014922 DOI: 10.1002/adma.202405104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Biological nanopores crucially control the import and export of biomolecules across lipid membranes in cells. They have found widespread use in biophysics and biotechnology, where their typically narrow, fixed diameters enable selective transport of ions and small molecules, as well as DNA and peptides for sequencing applications. Yet, due to their small channel sizes, they preclude the passage of large macromolecules, e.g., therapeutics. Here, the unique combined properties of DNA origami nanotechnology, machine-inspired design, and synthetic biology are harnessed, to present a structurally reconfigurable DNA origami MechanoPore (MP) that features a lumen that is tuneable in size through molecular triggers. Controllable switching of MPs between 3 stable states is confirmed by 3D-DNA-PAINT super-resolution imaging and through dye-influx assays, after reconstitution of the large MPs in the membrane of liposomes via an inverted-emulsion cDICE technique. Confocal imaging of transmembrane transport shows size-selective behavior with adjustable thresholds. Importantly, the conformational changes are fully reversible, attesting to the robust mechanical switching that overcomes pressure from the surrounding lipid molecules. These MPs advance nanopore technology, offering functional nanostructures that can be tuned on-demand - thereby impacting fields as diverse as drug delivery, biomolecule sorting, and sensing, as well as bottom-up synthetic biology.
Collapse
Affiliation(s)
- Ze Yu
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Anna V Baptist
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany
- Germany and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
| | - Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany
- Germany and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
| | - Eva Bertosin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany
- Germany and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
- Faculty of Physics, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
| | - Amelie Heuer-Jungemann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Bavaria, Germany
- Germany and Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Bavaria, Germany
| | - Sabina Caneva
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
4
|
Fang Z, Jiang J, Wu M. An emerging artificial nanomachine: a nanoengine with a reversible clutch. Signal Transduct Target Ther 2024; 9:210. [PMID: 39183207 PMCID: PMC11345422 DOI: 10.1038/s41392-024-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/20/2024] [Accepted: 06/30/2024] [Indexed: 08/27/2024] Open
Affiliation(s)
- Ziqi Fang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jianxin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.
| | - Min Wu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
5
|
Schaffter SW, Kengmana E, Fern J, Byrne SR, Schulman R. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes. ACS Synth Biol 2024; 13:1964-1977. [PMID: 38885464 PMCID: PMC11613775 DOI: 10.1021/acssynbio.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Bacteriophage RNA polymerases, in particular T7 RNA polymerase (RNAP), are well-characterized and popular enzymes for many RNA applications in biotechnology both in vitro and in cellular settings. These monomeric polymerases are relatively inexpensive and have high transcription rates and processivity to quickly produce large quantities of RNA. T7 RNAP also has high promoter-specificity on double-stranded DNA (dsDNA) such that it only initiates transcription downstream of its 17-base promoter site on dsDNA templates. However, there are many promoter-independent T7 RNAP transcription reactions involving transcription initiation in regions of single-stranded DNA (ssDNA) that have been reported and characterized. These promoter-independent transcription reactions are important to consider when using T7 RNAP transcriptional systems for DNA nanotechnology and DNA computing applications, in which ssDNA domains often stabilize, organize, and functionalize DNA nanostructures and facilitate strand displacement reactions. Here we review the existing literature on promoter-independent transcription by bacteriophage RNA polymerases with a specific focus on T7 RNAP, and provide examples of how promoter-independent reactions can disrupt the functionality of DNA strand displacement circuit components and alter the stability and functionality of DNA-based materials. We then highlight design strategies for DNA nanotechnology applications that can mitigate the effects of promoter-independent T7 RNAP transcription. The design strategies we present should have an immediate impact by increasing the rate of success of using T7 RNAP for applications in DNA nanotechnology and DNA computing.
Collapse
Affiliation(s)
- Samuel W Schaffter
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eli Kengmana
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joshua Fern
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shane R Byrne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Ma C, Li S, Zeng Y, Lyu Y. DNA-Based Molecular Machines: Controlling Mechanisms and Biosensing Applications. BIOSENSORS 2024; 14:236. [PMID: 38785710 PMCID: PMC11117991 DOI: 10.3390/bios14050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The rise of DNA nanotechnology has driven the development of DNA-based molecular machines, which are capable of performing specific operations and tasks at the nanoscale. Benefitting from the programmability of DNA molecules and the predictability of DNA hybridization and strand displacement, DNA-based molecular machines can be designed with various structures and dynamic behaviors and have been implemented for wide applications in the field of biosensing due to their unique advantages. This review summarizes the reported controlling mechanisms of DNA-based molecular machines and introduces biosensing applications of DNA-based molecular machines in amplified detection, multiplex detection, real-time monitoring, spatial recognition detection, and single-molecule detection of biomarkers. The challenges and future directions of DNA-based molecular machines in biosensing are also discussed.
Collapse
Affiliation(s)
- Chunran Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Shiquan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
- Furong Laboratory, Changsha 410082, China
| |
Collapse
|
7
|
Rothfischer F, Vogt M, Kopperger E, Gerland U, Simmel FC. From Brownian to Deterministic Motor Movement in a DNA-Based Molecular Rotor. NANO LETTERS 2024; 24:5224-5230. [PMID: 38640250 PMCID: PMC11066961 DOI: 10.1021/acs.nanolett.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Molecular devices that have an anisotropic periodic potential landscape can be operated as Brownian motors. When the potential landscape is cyclically switched with an external force, such devices can harness random Brownian fluctuations to generate a directed motion. Recently, directed Brownian motor-like rotatory movement was demonstrated with an electrically switched DNA origami rotor with designed ratchet-like obstacles. Here, we demonstrate that the intrinsic anisotropy of DNA origami rotors is also sufficient to result in motor movement. We show that for low amplitudes of an external switching field, such devices operate as Brownian motors, while at higher amplitudes, they behave deterministically as overdamped electrical motors. We characterize the amplitude and frequency dependence of the movements, showing that after an initial steep rise, the angular speed peaks and drops for excessive driving amplitudes and frequencies. The rotor movement can be well described by a simple stochastic model of the system.
Collapse
Affiliation(s)
- Florian Rothfischer
- Department of Bioscience,
TUM School of Natural Sciences, Technical
University Munich, D-85748 Garching, Germany
| | - Matthias Vogt
- Department of Bioscience,
TUM School of Natural Sciences, Technical
University Munich, D-85748 Garching, Germany
| | - Enzo Kopperger
- Department of Bioscience,
TUM School of Natural Sciences, Technical
University Munich, D-85748 Garching, Germany
| | - Ulrich Gerland
- Department of Bioscience,
TUM School of Natural Sciences, Technical
University Munich, D-85748 Garching, Germany
| | - Friedrich C. Simmel
- Department of Bioscience,
TUM School of Natural Sciences, Technical
University Munich, D-85748 Garching, Germany
| |
Collapse
|
8
|
Du J, Kong Y, Wen Y, Shen E, Xing H. HUH Endonuclease: A Sequence-specific Fusion Protein Tag for Precise DNA-Protein Conjugation. Bioorg Chem 2024; 144:107118. [PMID: 38330720 DOI: 10.1016/j.bioorg.2024.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Synthetic DNA-protein conjugates have found widespread applications in diagnostics and therapeutics, prompting a growing interest in developing chemical biology methodologies for the precise and site-specific preparation of covalent DNA-protein conjugates. In this review article, we concentrate on techniques to achieve precise control over the structural and site-specific aspects of DNA-protein conjugates. We summarize conventional methods involving unnatural amino acids and self-labeling proteins, accompanied by a discussion of their potential limitations. Our primary focus is on introducing HUH endonuclease as a novel generation of fusion protein tags for DNA-protein conjugate preparation. The detailed conjugation mechanisms and structures of representative endonucleases are surveyed, showcasing their advantages as fusion protein tag in sequence selectivity, biological orthogonality, and no requirement for DNA modification. Additionally, we present the burgeoning applications of HUH-tag-based DNA-protein conjugates in protein assembly, biosensing, and gene editing. Furthermore, we delve into the future research directions of the HUH-tag, highlighting its significant potential for applications in the biomedical and DNA nanotechnology fields.
Collapse
Affiliation(s)
- Jiajun Du
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Enxi Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China.
| |
Collapse
|
9
|
Korosec CS, Unksov IN, Surendiran P, Lyttleton R, Curmi PMG, Angstmann CN, Eichhorn R, Linke H, Forde NR. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle. Nat Commun 2024; 15:1511. [PMID: 38396042 PMCID: PMC10891099 DOI: 10.1038/s41467-024-45570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.
Collapse
Affiliation(s)
- Chapin S Korosec
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
| | - Ivan N Unksov
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Pradheebha Surendiran
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Roman Lyttleton
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher N Angstmann
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ralf Eichhorn
- Nordita, Royal Institute of Technology and Stockholm University, 106 91, Stockholm, Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE - 22100, Lund, Sweden.
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
10
|
Mathur D. Powering a DNA origami nanoengine with chemical fuel. NATURE NANOTECHNOLOGY 2024; 19:143-144. [PMID: 38123702 DOI: 10.1038/s41565-023-01573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|