1
|
Zhang C, Wang Y, Yu Y, Pang Y, Xiao X, Hao L. Overexpression of ST8Sia1 inhibits tumor progression by TGF-β1 signaling in rectal adenocarcinoma and promotes the tumoricidal effects of CD8 + T cells by granzyme B and perforin. Ann Med 2025; 57:2439539. [PMID: 39656552 PMCID: PMC11633436 DOI: 10.1080/07853890.2024.2439539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Rectal adenocarcinoma (READ) involves the dysregulated expression of alpha 2,8-Sialyltransferase1 (ST8Sia1) although its role during READ's progression is unclear. METHODS The mRNA level of ST8Sia1 was analyzed based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Tumor Immune Estimation Resource (TIMER) 2.0. Furthermore, the prognostic and significance of ST8Sia1 in READ was assessed through Kaplan-Meier curve, univariate, multivariate Cox regression, and receiver operating characteristic (ROC) methods. The role of ST8Sia1 in the READ immune microenvironment was explored using ESTIMATE analysis and TIMER databases. Furthermore, the expression of ST8Sia1 in tissues was analyzed using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting (WB), and immunohistochemistry (IHC). Perforin and Granzyme B secretion by CD8+ T cells, as well as tumor cell apoptosis, were detected after co-culturing CD8+ T cells with READ tumor cells and ST8Sia1-overexpression (ST8Sia1-OE) tumor cells. Furthermore, we examined the interaction between ST8Sia1 and TGF-β1 in READ cells. RESULTS ST8Sia1 exhibited excellent diagnostic capability for READ, with positive correlations to immune response and negative correlations to tumor purity. Increased levels of perforin and Granzyme B from CD8+ T cells were observed in vitro, enhancing tumor cell apoptosis. ST8Sia1 interacts with TGF-β1, mediating its inhibitory effects on READ development. CONCLUSIONS ST8Sia1 is a potential diagnostic biomarker and therapeutic target for READ, enhancing CD8+ T cell function and possibly improving patient outcomes through cellular immunotherapy.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yao Yu
- Department of General Pediatric Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Yanchao Pang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Xiao Xiao
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| | - Leilei Hao
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai City, Shandong Province, China
| |
Collapse
|
2
|
Zhang W, Zhang X, Teng F, Yang Q, Wang J, Sun B, Liu J, Zhang J, Sun X, Zhao H, Xie Y, Liao K, Wang X. Research progress and the prospect of using single-cell sequencing technology to explore the characteristics of the tumor microenvironment. Genes Dis 2025; 12:101239. [PMID: 39552788 PMCID: PMC11566696 DOI: 10.1016/j.gendis.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 11/19/2024] Open
Abstract
In precision cancer therapy, addressing intra-tumor heterogeneity poses a significant obstacle. Due to the heterogeneity of each cell subtype and between cells within the tumor, the sensitivity and resistance of different patients to targeted drugs, chemotherapy, etc., are inconsistent. Concerning a specific tumor type, many feasible treatments or combinations can be used by specifically targeting the tumor microenvironment. To solve this problem, it is necessary to further study the tumor microenvironment. Single-cell sequencing techniques can dissect distinct tumor cell populations by isolating cells and using statistical computational methods. This technology may assist in the selection of targeted combination therapy, and the obtained cell subset information is crucial for the rational application of targeted therapy. In this review, we summarized the research and application advances of single-cell sequencing technology in the tumor microenvironment, including the most commonly used single-cell genomic and transcriptomic sequencing, and their future development direction was proposed. The application of single-cell sequencing technology has been expanded to include epigenomics, proteomics, metabolomics, and microbiome analysis. The integration of these different omics approaches has significantly advanced the development of single-cell multiomics sequencing technology. This innovative approach holds immense potential for various fields, such as biological research and medical investigations. Finally, we discussed the advantages and disadvantages of using single-cell sequencing to explore the tumor microenvironment.
Collapse
Affiliation(s)
- Wenyige Zhang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xue Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Feifei Teng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qijun Yang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiayi Wang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bing Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jie Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingyan Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaomeng Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hanqing Zhao
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuxuan Xie
- The Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kaili Liao
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Yao Y, Lu Z, Fu Y, Li X. MnCO 3-Au nanoparticles to enable catalytic tumor inhibition with immune activation. J Mater Chem B 2024. [PMID: 39620992 DOI: 10.1039/d4tb02108h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Catalytic nanomedicine, activated by endogenous stimuli to enable specific tumor inhibition, has attracted extensive interest in recent years. However, its therapeutic outcomes are often restrained by the weakly acidic microenvironment and limited H2O2 endogenous content. Here, in this study, gold nanoparticles (AuNPs) with glucose oxidase-like activity are incorporated with biodegradable MnCO3 nanoparticles. AuNPs catalyze glucose oxidation to generate gluconic acid and H2O2, while MnCO3 is degraded by the generated gluconic acid as well as the acidic conditions in the tumor region to release Mn2+ and HCO3-. Then H2O2 can be catalyzed by Mn2+ and HCO3- to produce reactive oxygen species (ROS). The effective production of on-site H2O2 leads to promoted intracellular ROS and enhanced tumor inhibition. More importantly, the released Mn2+ ions not only act as a catalytic agent, but also serve as a stimulator of the cGAS-STING pathway to activate anti-tumor immune responses. The in vivo study confirms that MnCO3-Au promotes T cell infiltration in tumors and exhibits a synergistic tumor suppression effect. This study may provide an alternative protocol for combinational tumor therapy utilizing the dual roles of Mn2+ as an emerging catalytic agent as well as an immune agonist.
Collapse
Affiliation(s)
- Yingpei Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Zijie Lu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, P. R. China
| | - Yike Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
4
|
Shen YQ, Sun L, Wang SM, Zheng XY, Xu R. Exosomal integrins in tumor progression, treatment and clinical prediction (Review). Int J Oncol 2024; 65:118. [PMID: 39540373 PMCID: PMC11575930 DOI: 10.3892/ijo.2024.5706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Integrins are a large family of cell adhesion molecules involved in tumor cell differentiation, migration, proliferation and neovascularization. Tumor cell‑derived exosomes carry a large number of integrins, which are closely associated with tumor progression. As crucial mediators of intercellular communication, exosomal integrins have gained attention in the field of cancer biology. The present review examined the regulatory mechanisms of exosomal integrins in tumor cell proliferation, migration and invasion, and emphasized their notable roles in tumor initiation and progression. The potential of exosomal integrins as drug delivery systems in cancer treatment was explored. Additionally, the potential of exosomal integrins in clinical tumor prediction was considered, while summarizing their applications in diagnosis, prognosis assessment and treatment response prediction. Thus, the present review aimed to provide guidance and insights for future basic research and the clinical translation of exosomal integrins. The study of exosomal integrins is poised to offer new perspectives and methods for precise cancer treatment and clinical prediction.
Collapse
Affiliation(s)
- Yu-Qing Shen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Lei Sun
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Shi-Ming Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Xian-Yu Zheng
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| | - Rui Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
5
|
Yoshida C, Chang SS, Okamoto T, Inada R. Recurrence-free survival curve for pulmonary metastasectomy in colorectal cancer plateaus at 3 years. Updates Surg 2024; 76:2795-2803. [PMID: 38801601 DOI: 10.1007/s13304-024-01874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Pulmonary metastasectomy in colorectal cancer (CRC) has encouraging results; however, specific criteria for lung resection and the timing of resection remain undetermined. Therefore, in this study, we aimed to examine the long-term prognosis and 10-year survival rates and analyze poor prognostic factors in patients who underwent resection of pulmonary metastases from CRC. This retrospective, single-institution study included 156 patients with controlled primary CRC and metastases confined to the lungs or liver who underwent pulmonary metastasectomy between 2005 and 2022. Statistical analyses were conducted using the X2 and two-tailed Student's t test to compare variables. The receiver operating characteristic (ROC) curve was used to determine the appropriate cut-off point for tumor size as a predictive factor of survival. Recurrence-free survival (RFS) and overall survival (OS) were estimated using the Kaplan-Meier method, and non-parametric group comparisons were performed using log-rank tests. The 5- and 10-year OS rates were 67% and 59%, respectively. Further, there was no recurrence 38 months post-surgery, and the RFS curve plateaued. Moreover, by 88 months post-surgery, no deaths occurred, and the OS curve plateaued. Multivariate analysis revealed that a pulmonary metastatic tumor >14 mm and disease-free interval <2 years indicated poor prognosis. The RFS curve for pulmonary metastasectomy may plateau approximately 3 years after surgery. Pulmonary metastasectomy can achieve long-term survival in selected patients with CRC. Furthermore, surgical resection of recurrence after pulmonary metastasectomy may lead to better results. Thus, tumor size and disease-free interval may be independent prognostic factors.
Collapse
Affiliation(s)
- Chihiro Yoshida
- Department of General Thoracic Surgery, Kochi Health Sciences Center, 2125-1 Ike, Kochi City, Kochi, 781-8555, Japan.
| | - Sung Soo Chang
- Department of General Thoracic Surgery, Kochi Health Sciences Center, 2125-1 Ike, Kochi City, Kochi, 781-8555, Japan
| | - Taku Okamoto
- Department of General Thoracic Surgery, Kochi Health Sciences Center, 2125-1 Ike, Kochi City, Kochi, 781-8555, Japan
| | - Ryo Inada
- Department of Gastroenterological Surgery, Kochi Health Sciences Center, Kochi City, Kochi, Japan
| |
Collapse
|
6
|
Del Toro K, Sayaman R, Thi K, Licon-Munoz Y, Hines WC. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function. PLoS Biol 2024; 22:e3002820. [PMID: 39499736 PMCID: PMC11537416 DOI: 10.1371/journal.pbio.3002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 11/07/2024] Open
Abstract
A fundamental question in biology, central to our understanding of cancer and other pathologies, is determining how different cell types coordinate to form and maintain tissues. Recognizing the distinct features and capabilities of the cells that compose these tissues is critical. Unfortunately, the complexity of tissues often hinders our ability to distinguish between neighboring cell types and, in turn, scrutinize their transcriptomes and generate reliable and tractable cell models for studying their inherently different biologies. We have recently introduced a novel method that permits the identification and purification of the 12 cell types that compose the human breast-nearly all of which could be reliably propagated in the laboratory. Here, we explore the nature of these cell types. We sequence mRNAs from each purified population and investigate transcriptional patterns that reveal their distinguishing features. We describe the differentially expressed genes and enriched biological pathways that capture the essence of each cell type, and we highlight transcripts that display intriguing expression patterns. These data, analytic tools, and transcriptional analyses form a rich resource whose exploration provides remarkable insights into the inner workings of the cell types composing the breast, thus furthering our understanding of the rules governing normal cell and tissue function.
Collapse
Affiliation(s)
- Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rosalyn Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
7
|
Ponterio E, Haas TL, De Maria R. Oncolytic virus and CAR-T cell therapy in solid tumors. Front Immunol 2024; 15:1455163. [PMID: 39539554 PMCID: PMC11557337 DOI: 10.3389/fimmu.2024.1455163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Adoptive immunotherapy with T cells, genetically modified to express a tumor-reactive chimeric antigen receptor (CAR), is an innovative and rapidly developing life-saving treatment for cancer patients without other therapeutic opportunities. CAR-T cell therapy has proven effective only in hematological malignancies. However, although by now only a few clinical trials had promising outcomes, we predict that CAR-T therapy will eventually become an established treatment for several solid tumors. Oncolytic viruses (OVs) can selectively replicate in and kill cancer cells without harming healthy cells. They can stimulate an immune response against the tumor, because OVs potentially stimulate adaptive immunity and innate components of the host immune system. Using CAR-T cells along with oncolytic viruses may enhance the efficacy of CAR-T cell therapy in destroying solid tumors by increasing the tumor penetrance of T cells and reducing the immune suppression by the tumor microenvironment. This review describes recent advances in the design of oncolytic viruses and CAR-T cells while providing an overview of the potential combination of oncolytic virotherapy with CAR-T cells for solid cancers. In this review, we will focus on the host-virus interaction in the tumor microenvironment to reverse local immunosuppression and to develop CAR-T cell effector function.
Collapse
Affiliation(s)
- Eleonora Ponterio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tobias Longin Haas
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
- IIGM - Italian Institute for Genomic Medicine, Candiolo, TO, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionali, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli” - I.R.C.C.S., Rome, Italy
| |
Collapse
|
8
|
Li H, Fang R, Ma R, Long Y, He R, Lyu H, Chen L, Wen Y. Amphiregulin promotes activated regulatory T cell-suppressive function via the AREG/EGFR pathway in laryngeal squamous cell carcinoma. Head Face Med 2024; 20:62. [PMID: 39456084 PMCID: PMC11515249 DOI: 10.1186/s13005-024-00466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Activated regulatory T cells (aTregs) play a vital role in promoting a tumor immunosuppressive microenvironment in laryngeal squamous cell carcinoma (LSCC). However, the regulatory factors that induce the generation of aTregs are not clear. Herein, we investigated the effect of amphiregulin (AREG) on the production of aTregs in the tumor microenvironment of LSCC. METHODS Immunohistochemical (IHC) analysis was conducted to examine the expression of AREG and FOXP3, and their association with clinical parameters and patient outcomes was demonstrated. The expression level of EGFRs in three functional subsets of Tregs was assessed, and the induction of CD4+ T cells into aTregs in the presence or absence of AREG or Gefitinib was analyzed using flow cytometry. RESULTS Our results showed a higher expression level of AREG was significantly related to advanced clinical stage and worse survival, particularly with increased infiltration of Tregs in LSCC tumor tissue. The in vitro study showed that AREG significantly promoted the differentiation of aTregs, and enhanced the inhibitory effect of Tregs on T cell proliferation, which could be reversed by epidermal growth factor receptor (EGFR) inhibitors. In addition, we found that EGFR was highly expressed in aTregs, but not in other subsets of Tregs. It is suggested that AREG might induce aTregs, and enhance the immunosuppressive function of Tregs via the AREG/EGFR signal pathway. CONCLUSIONS Collectively, this study revealed the role and mechanism of AREG in negative immune regulation, and targeting AREG might be a novel immunotherapy for LSCC.
Collapse
Affiliation(s)
- Hang Li
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
- Department of Allergy, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R. China
| | - Ruihua Fang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Renqiang Ma
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Yudong Long
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Rui He
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Huanhuan Lyu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Lin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China
| | - Yihui Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-Sen University, 2nd Zhongshan Road 58#, Guangzhou, 510080, Guangdong, P.R. China.
| |
Collapse
|
9
|
Moni SS, Abdelwahab SI, Mohan S, Riadi Y, Elmobark ME, Areshyi RW, Sofyani HA, Halawi FA, Hakami MQ, Aljahdali IA, Oraibi B, Farasani A, Dawod OY, Alfaifi HA, Alzahrani AH, Jerah AA. Cetuximab-conjugated sodium selenite nanoparticles for doxorubicin targeted delivery against MCF-7 breast cancer cells. Nanomedicine (Lond) 2024; 19:2447-2462. [PMID: 39381998 PMCID: PMC11520552 DOI: 10.1080/17435889.2024.2403962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Aim: To develop and characterize doxorubicin-loaded sodium selenite nanoparticles (SSNP-DOX) and their surface attachment with cetuximab (mAb-SSNP-DOX).Methods: SSNP-DOX was formulated by gelation and then conjugated with cetuximab to form mAb-SSNP-DOX. Characterization included DLS, SEM, TEM, DSC, Raman spectroscopy and XRD. In vitro, the kinetics of doxorubicin release and cytotoxicity in MCF-7 breast cancer cells were investigated.Results: The zeta potential for SSNP-DOX and mAb-SSNP-DOX was -14.4 ± 10.1 mV and -27.5 ± 7.28 mV, with particle sizes of 181.3 nm and 227.5 nm, respectively. The formulation intensity was 89.7% for SSNP-DOX and 100% for mAb-SSNP-DOX, with PDI values of 0.419 and 0.251, respectively. SEM and TEM showed that mAb-SSNP-DOX was smooth and spherical. The DSC analysis revealed exothermic peaks at 102.44°C for SSNP-DOX and 144.21°C for mAb-SSNP-DOX, along with endothermic peaks at 269.19°C and 241.6°C, respectively. Raman spectroscopy showed a higher intensity for mAb-SSNP-DOX. The XRD study showed different peaks for each formulation. Both followed zero order kinetics for doxorubicin release. Cytotoxicity studies showed significant effects and high apoptosis in MCF-7 cells for both formulations.Conclusion: The mAb-SSNP-DOX showed promising properties, more effective doxorubicin release and higher cytotoxicity against breast cancer cells compared with SSNP-DOX.
Collapse
Affiliation(s)
- Sivakumar S Moni
- Department of Pharmaceutics, College of Parmacy, Jazan University, Jazan, 45142, Saudi Arabia
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
| | | | - Syam Mohan
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha University, Saveetha Institute of Medical & Technical Science, Saveetha Dental College, Chennai, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohamed Eltaib Elmobark
- Department of Pharmaceutics, College of Parmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Razan Willie Areshyi
- Pharm.D students, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hissah Ali Sofyani
- Pharm.D students, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fatma Ahmad Halawi
- Pharm.D students, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Manar Qasem Hakami
- Pharm.D students, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ieman A Aljahdali
- Department of Clinical Laboratory Sciences, Taif University, Taif, 11099, Saudi Arabia
| | - Bassem Oraibi
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdullah Farasani
- Health Research Centre, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Medical Laboratory Technology, College of Nursing & Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ogail Yousif Dawod
- Department of Physical Therapy, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hassan Ahmad Alfaifi
- Ministry of Health Pharmaceutical Care Administration (Jeddah Second Health Cluster), Jeddah, 21589, Saudi Arabia
| | - Amal Hamdan Alzahrani
- College of Pharmacy, Department of Pharmacology & Toxicology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed Ali Jerah
- Department of Medical Laboratory Technology, College of Nursing & Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
10
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
11
|
Li Z, Li J, Bai X, Huang X, Wang Q. Tumor microenvironment as a complex milieu driving cancer progression: a mini review. Clin Transl Oncol 2024:10.1007/s12094-024-03697-w. [PMID: 39342061 DOI: 10.1007/s12094-024-03697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024]
Abstract
It has been spotlighted that the Tumor Microenvironment (TME) is crucial for comprehending cancer progression and therapeutic resistance. Therefore, this comprehensive review elucidates the intricate architecture of the TME, which encompasses tumor cells, immune components, support cells, and a myriad of bioactive molecules. These constituents collectively foster dynamic interactions that underpin tumor growth, metastasis, and nuanced responses to anticancer therapies. Notably, the TME's role extends beyond mere physical support, serving as a critical mediator in cancer-cell evolution, immune modulation, and treatment outcomes. Innovations targeting the TME, including strategies focused on the vasculature, immune checkpoints, and T-cell therapies, have forged new pathways for clinical intervention. However, the heterogeneity and complexity of the TME present significant challenges, necessitating deeper exploration of its components and their interplay to enhance therapeutic efficacy. This review underscores the imperative for integrated research strategies that amalgamate insights from tumor biology, immunology, and systems biology. Such an approach aims to refine cancer treatments and improve patient prognoses by exploiting the TME's complexity.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Shanghai Research Institute of Stomatology, Shanghai, China.
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Jing Li
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary.
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
12
|
Giangreco G, Rullan A, Naito Y, Biswas D, Liu YH, Hooper S, Nenclares P, Bhide S, Chon U Cheang M, Chakravarty P, Hirata E, Swanton C, Melcher A, Harrington K, Sahai E. Cancer cell - Fibroblast crosstalk via HB-EGF, EGFR, and MAPK signaling promotes the expression of macrophage chemo-attractants in squamous cell carcinoma. iScience 2024; 27:110635. [PMID: 39262776 PMCID: PMC11387794 DOI: 10.1016/j.isci.2024.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/09/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Interactions between cells in the tumor microenvironment (TME) shape cancer progression and patient prognosis. To gain insights into how the TME influences cancer outcomes, we derive gene expression signatures indicative of signaling between stromal fibroblasts and cancer cells, and demonstrate their prognostic significance in multiple and independent squamous cell carcinoma cohorts. By leveraging information within the signatures, we discover that the HB-EGF/EGFR/MAPK axis represents a hub of tumor-stroma crosstalk, promoting the expression of CSF2 and LIF and favoring the recruitment of macrophages. Together, these analyses demonstrate the utility of our approach for interrogating the extent and consequences of TME crosstalk.
Collapse
Affiliation(s)
- Giovanni Giangreco
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Yutaka Naito
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, 72 Huntley Street, London WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Yun-Hsin Liu
- Bioinformatics Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pablo Nenclares
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Shreerang Bhide
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Maggie Chon U Cheang
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Probir Chakravarty
- Bioinformatics Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eishu Hirata
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Alan Melcher
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Kevin Harrington
- Department of Radiotherapy and Imaging, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Head and Neck Unit, The Royal Marsden Hospital, 203 Fulham Road, London SW3 6JJ, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
13
|
Dinić J, Jovanović Stojanov S, Dragoj M, Grozdanić M, Podolski-Renić A, Pešić M. Cancer Patient-Derived Cell-Based Models: Applications and Challenges in Functional Precision Medicine. Life (Basel) 2024; 14:1142. [PMID: 39337925 PMCID: PMC11433531 DOI: 10.3390/life14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (S.J.S.); (M.D.); (M.G.); (A.P.-R.)
| |
Collapse
|
14
|
Yang Z, Wang X, Fu Y, Wu W, Hu Z, Lin Q, Peng W, Pan Y, Wang J, Chen J, Hu D, Zhou Z, Xu L, Zhang Y, Hou J, Chen M. YTHDF2 in peritumoral hepatocytes mediates chemotherapy-induced antitumor immune responses through CX3CL1-mediated CD8 + T cell recruitment. Mol Cancer 2024; 23:186. [PMID: 39237909 PMCID: PMC11378438 DOI: 10.1186/s12943-024-02097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Peritumoral hepatocytes are critical components of the liver cancer microenvironment, However, the role of peritumoral hepatocytes in the local tumor immune interface and the underlying molecular mechanisms have not been elucidated. YTHDF2, an RNA N6-methyladenosine (m6A) reader, is critical for liver tumor progression. The function and regulatory roles of YTHDF2 in peritumoral hepatocytes are unknown. This study demonstrated that oxaliplatin (OXA) upregulated m6A modification and YTHDF2 expression in hepatocytes. Studies using tumor-bearing liver-specific Ythdf2 knockout mice revealed that hepatocyte YTHDF2 suppresses liver tumor growth through CD8+ T cell recruitment and activation. Additionally, YTHDF2 mediated the response to immunotherapy. Mechanistically, OXA upregulated YTHDF2 expression by activating the cGAS-STING signaling pathway and consequently enhanced the therapeutic outcomes of immunotherapeutic interventions. Ythdf2 stabilized Cx3cl1 transcripts in an m6A-dependent manner, regulating the interplay between CD8+ T cells and the progression of liver malignancies. Thus, this study elucidated the novel role of hepatocyte YTHDF2, which promotes therapy-induced antitumor immune responses in the liver. The findings of this study provide valuable insights into the mechanism underlying the therapeutic benefits of targeting YTHDF2.
Collapse
Affiliation(s)
- Zhenyun Yang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xin Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yizhen Fu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Weijie Wu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zili Hu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Qingyang Lin
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Wei Peng
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yangxun Pan
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Juncheng Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Jinbin Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Dandan Hu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhongguo Zhou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Li Xu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yaojun Zhang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China.
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau, SAR, China.
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
15
|
Ishii G. New insights into cancer pathology learned from the dynamics of cancer-associated fibroblasts. Pathol Int 2024; 74:493-507. [PMID: 38923250 DOI: 10.1111/pin.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Paget's "Seed and Soil" theory, proposed in 1889, emphasizes the importance of the microenvironment where cancer cells grow in metastatic sites. Over a century later, this concept remains a cornerstone in comprehending cancer biology and devising treatment strategies. The "Seed and Soil" theory, which initially explained how cancer spreads to distant organs, now also applies to the tumor microenvironment (TME) within primary tumors. This theory emphasizes the critical interaction between cancer cells ("seeds") and their surrounding environment ("soil") and how this interaction affects both tumor progression within the primary site and at metastatic sites. An important point to note is that the characteristics of the TME are not static but dynamic, undergoing substantial changes during tumor progression and after treatment with therapeutic drugs. Cancer-associated fibroblasts (CAFs), recognized as the principal noncancerous cellular component within the TME, play multifaceted roles in tumor progression including promoting angiogenesis, remodeling the extracellular matrix, and regulating immune responses. In this comprehensive review, we focus on the findings regarding how the dynamics of CAFs contribute to cancer progression and drug sensitivity. Understanding the dynamics of CAFs could provide new insights into cancer pathology and lead to important advancements in cancer research and treatment.
Collapse
Affiliation(s)
- Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
16
|
Ji Q, Li Z, Guo Y, Zhang X. S100A9, as a potential predictor of prognosis and immunotherapy response for GBM, promotes the malignant progression of GBM cells and migration of M2 macrophages. Aging (Albany NY) 2024; 16:11513-11534. [PMID: 39137310 PMCID: PMC11346789 DOI: 10.18632/aging.205949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 08/15/2024]
Abstract
In the past decades, the therapeutic effect of glioblastoma (GBM) has not been significantly improved. Generous evidence indicates that S100A9 has a wide range of functions in tumors, but its exploration in GBM is less. The purpose of this study is to conduct a comprehensive bioinformatics analysis and cytological experiment on S100A9 in GBM. The expression data and clinical data of GBM samples were downloaded from the public database, and comprehensive bioinformatics analysis was performed on S100A9 in GBM using R software. Wound healing assay and transwell assay were used to detect the migration activity of cells, and colony formation assay, EdU staining, and CCK-8 assay were used to detect the proliferation activity of cells. The effect of S100A9 on the migration activity of M2 macrophages was verified by the cell co-culture method. The protein expression was detected by western blotting and immunohistochemical staining. S100A9 is an independent prognostic factor in GBM patients and is related to poor prognosis. It can be used as an effective tool to predict the response of GBM patients to immune checkpoint inhibitors (ICIs). In addition, S100A9 can promote the malignant progression of GBM and the migration of M2 macrophages. On the whole, our study highlights the potential value of S100A9 in predicting prognosis and immunotherapeutic response in GBM patients. More importantly, S100A9 may promote the malignant progress of GBM by involving in some carcinogenic pathways and remodeling the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Zibo Li
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Yazhou Guo
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| | - Xiaoyang Zhang
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P.R. China
| |
Collapse
|
17
|
Wang D, Deng X, Wang J, Che S, Ma X, Zhang S, Dong Q, Huang C, Chen J, Shi C, Zhang MR, Hu K, Luo L, Xiao Z. Environmentally responsive hydrogel promotes vascular normalization to enhance STING anti-tumor immunity. J Control Release 2024; 372:403-416. [PMID: 38914207 DOI: 10.1016/j.jconrel.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The immunosuppressive microenvironment of malignant tumors severely hampers the effectiveness of anti-tumor therapy. Moreover, abnormal tumor vasculature interacts with immune cells, forming a vicious cycle that further interferes with anti-tumor immunity and promotes tumor progression. Our pre-basic found excellent anti-tumor effects of c-di-AMP and RRx-001, respectively, and we further explored whether they could be combined synergistically for anti-tumor immunotherapy. We chose to load these two drugs on PVA-TSPBA hydrogel scaffolds that expressly release drugs within the tumor microenvironment by in situ injection. Studies have shown that c-di-AMP activates the STING pathway, enhances immune cell infiltration, and reverses tumor immunosuppression. Meanwhile, RRx-001 releases nitric oxide, which increases oxidative stress injury in tumor cells and promotes apoptosis. Moreover, the combination of the two presented more powerful pro-vascular normalization and reversed tumor immunosuppression than the drug alone. This study demonstrates a new design option for anti-tumor combination therapy and the potential of tumor environmentally responsive hydrogel scaffolds in combination with anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Duo Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiujiao Deng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Pharmacy, The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinghao Wang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Pharmacy, The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuang Che
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiaocong Ma
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Radiology, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan 517000, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiu Dong
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Cuiqing Huang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Changzheng Shi
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, Science, National Institutes for Quantum Science and Technology, Chiba 2638555, Japan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Radiology, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan 517000, China.
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Leong SP. Immune responses and immunotherapeutic approaches in the treatment against cancer. Clin Exp Metastasis 2024; 41:473-493. [PMID: 39155358 PMCID: PMC11374840 DOI: 10.1007/s10585-024-10300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/15/2024] [Indexed: 08/20/2024]
Abstract
Cancer cells within a population are heterogeneous due to genomic mutations or epigenetic changes. The immune response to cancer especially the T cell repertoire within the cancer microenvionment is important to the control and growth of cancer cells. When a cancer clone breaks through the surveillance of the immune system, it wins the battle to overcome the host's immune system. In this review, the complicated profile of the cancer microenvironment is emphasized. The molecular evidence of immune responses to cancer has been recently established. Based on these molecular mechanisms of immune interactions with cancer, clinical trials based on checkpoint inhibition therapy against CTLA-4 and/or PD-1 versus PD-L1 have been successful in the treatment of melanoma, lung cancer and other types of cancer. The diversity of the T cell repertoire is described and the tumor infiltrating lymphocytes within the cancer may be expanded ex vivo and infused back to the patient as a treatment modality for adoptive immunotherapy.
Collapse
Affiliation(s)
- Stanley P Leong
- California Pacific Medical Center and Research Institute, University of California School of Medicine, San Francisco, USA.
| |
Collapse
|
19
|
Kyriazi AA, Karaglani M, Agelaki S, Baritaki S. Intratumoral Microbiome: Foe or Friend in Reshaping the Tumor Microenvironment Landscape? Cells 2024; 13:1279. [PMID: 39120310 PMCID: PMC11312414 DOI: 10.3390/cells13151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The role of the microbiome in cancer and its crosstalk with the tumor microenvironment (TME) has been extensively studied and characterized. An emerging field in the cancer microbiome research is the concept of the intratumoral microbiome, which refers to the microbiome residing within the tumor. This microbiome primarily originates from the local microbiome of the tumor-bearing tissue or from translocating microbiome from distant sites, such as the gut. Despite the increasing number of studies on intratumoral microbiome, it remains unclear whether it is a driver or a bystander of oncogenesis and tumor progression. This review aims to elucidate the intricate role of the intratumoral microbiome in tumor development by exploring its effects on reshaping the multileveled ecosystem in which tumors thrive, the TME. To dissect the complexity and the multitude of layers within the TME, we distinguish six specialized tumor microenvironments, namely, the immune, metabolic, hypoxic, acidic, mechanical and innervated microenvironments. Accordingly, we attempt to decipher the effects of the intratumoral microbiome on each specialized microenvironment and ultimately decode its tumor-promoting or tumor-suppressive impact. Additionally, we portray the intratumoral microbiome as an orchestrator in the tumor milieu, fine-tuning the responses in distinct, specialized microenvironments and remodeling the TME in a multileveled and multifaceted manner.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
20
|
Fukumoto K, Kanatani S, Jaremko G, West Z, Li Y, Takamatsu K, Al Rayyes I, Mikami S, Niwa N, Axelsson TA, Tanaka N, Oya M, Miyakawa A, Brehmer M, Uhlén P. Three-dimensional imaging of upper tract urothelial carcinoma improves diagnostic yield and accuracy. JCI Insight 2024; 9:e175751. [PMID: 39133649 PMCID: PMC11383588 DOI: 10.1172/jci.insight.175751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Upper tract urothelial carcinoma (UTUC) is a rare form of urothelial cancer with a high incidence of recurrence and a low survival rate. Almost two-thirds of UTUCs are invasive at the time of diagnosis; therefore, improving diagnostic methods is key to increasing survival rates. Histopathological analysis of UTUC is essential for diagnosis and typically requires endoscopy biopsy, tissue sectioning, and labeling. However, endoscopy biopsies are minute, and it is challenging to cut into thin sections for conventional histopathology; this complicates diagnosis. Here, we used volumetric 3-dimensional (3D) imaging to explore the inner landscape of clinical UTUC biopsies, without sectioning, revealing that 3D analysis of phosphorylated ribosomal protein S6 (pS6) could predict tumor grade and prognosis with improved accuracy. By visualizing the tumor vasculature, we discovered that pS6+ cells were localized near blood vessels at significantly higher levels in high-grade tumors than in low-grade tumors. Furthermore, the clustering of pS6+ cells was associated with shorter relapse-free survival. Our results demonstrate that 3D volume imaging of the structural niches of pS6 cells deep inside the UTUC samples improved diagnostic yield, grading, and prognosis prediction.
Collapse
Affiliation(s)
- Keishiro Fukumoto
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georg Jaremko
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Zoe West
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yue Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kimiharu Takamatsu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shuji Mikami
- Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital, Saitama, Japan
| | - Naoya Niwa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Ayako Miyakawa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Urology, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Marianne Brehmer
- Department of Urology and Department of Clinical Science and Education, Stockholm South General Hospital, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Sun S, Huang X, Yang N, Lei H, Pei Z, Han Z, Liu L, Gong F, Yu Q, Li J, Chen Y, Cheng L. Fluorinated Titanium Oxide (TiO 2-xF x) Nanospindles as Ultrasound-Triggered Pyroptosis Inducers to Boost Sonodynamic Immunotherapy. ACS NANO 2024. [PMID: 39010657 DOI: 10.1021/acsnano.4c05448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Pyroptosis is an inflammatory form of programmed cell death associated with the immune system that can be induced by reactive oxygen species (ROS). As a therapeutic strategy with better penetration depth, sonodynamic therapy (SDT) is expected to induce pyroptosis of cancer cells and boost the immune response. However, it is still a limited problem to precisely adjust the structure of sonosensitizers to exhibit satisfactory sono-catalytic properties. Herein, fluorinated titanium oxide (TiO2-xFx) sonosensitizers were developed to induce pyroptosis under ultrasound (US) to boost antitumor immune responses, enabling highly effective SDT. On the one hand, the introduction of F atoms significantly reduced the adsorption energy of TiO2-xFx for oxygen and water, which is conducive to the occurrence of sono-catalytic reactions. On the other hand, the process of F replacing O increased the oxygen vacancies of the sonosensitizer and shortened the band gap, which enabled powerful ROS generation ability under US stimulation. In this case, large amounts of ROS could effectively kill cancer cells by inducing mitochondrial damage and disrupting oxidative homeostasis, leading to significant cell pyroptosis. Moreover, SDT treatment with TiO2-xFx not only suppressed tumor proliferation but also elicited robust immune memory effects and hindered tumor recurrence. This work highlighted the importance of precisely regulating the structure of sonosensitizers to achieve efficient ROS generation for inducing pyroptosis, which sets the stage for the further development of SDT-immunotherapy.
Collapse
Affiliation(s)
- Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xuan Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhihui Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Qiao Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
22
|
Qiu L, Yang Z, Jia G, Liang Y, Du S, Zhang J, Liu M, Zhao X, Jiao S. Clinical significance and immune landscape of a novel immune cell infiltration-based prognostic model in lung adenocarcinoma. Heliyon 2024; 10:e33109. [PMID: 38988583 PMCID: PMC11234107 DOI: 10.1016/j.heliyon.2024.e33109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Tumor-infiltrating immune cells (TICs) play a central role in the tumor microenvironment, which can reflect the host anti-tumor immune response. However, few studies have explored TICs in predicting the prognosis of lung adenocarcinoma (LUAD). In our study, we enrolled 2470 LUAD patients from TCGA and GEO databases, and the normalized enrichment scores for 65 immune cell types were quantified for each patient. An immune-related risk score (IRRS) was built on the basis of 17 selected TICs using LASSO regression analysis, and the results showed that high-risk patients were correlated with shorter survival time for the LUAD cohorts. Correlation analyses between IRRS and clinical characteristics were also evaluated to validate the clinical use of IRRS. In addition, we analyzed the differences in the distribution of immune cell infiltration and immunoregulatory gene expression, which may facilitate individual immunotherapy. Based on the above result, we conclude that IRRS can act as a powerful predictor for risk stratification and prognosis prediction, and may facilitate the decision-making process for LUAD patients.
Collapse
Affiliation(s)
- Lupeng Qiu
- Department of Medical Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China
| | - Zizhong Yang
- School of Medicine, Nankai University, Tianjin, China
| | - Guhe Jia
- School of Medicine, Nankai University, Tianjin, China
| | - Yanjie Liang
- Department of Medical Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Sicheng Du
- Department of Medical Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China
| | - Jian Zhang
- Department of Medical Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Minglu Liu
- Department of Medical Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiao Zhao
- Department of Medical Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shunchang Jiao
- Department of Medical Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Ling QH, Lou ZC, Zhang L, Jin T, Dou WT, Yang HB, Xu L. Supramolecular cage-mediated cargo transport. Chem Soc Rev 2024; 53:6042-6067. [PMID: 38770558 DOI: 10.1039/d3cs01081c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A steady stream of material transport based on carriers and channels in living systems plays an extremely important role in normal life activities. Inspired by nature, researchers have extensively applied supramolecular cages in cargo transport because of their unique three-dimensional structures and excellent physicochemical properties. In this review, we will focus on the development of supramolecular cages as carriers and channels for cargo transport in abiotic and biological systems over the past fifteen years. In addition, we will discuss future challenges and potential applications of supramolecular cages in substance transport.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Zhen-Chen Lou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Tongxia Jin
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| |
Collapse
|
24
|
Molimard C, Dor F, Overs A, Monnien F, Gessain G, Kedochim L, D'Angelo F, Abad M, Heberle M, Derangère V, Ghiringhelli F, Vuitton L, Valmary-Degano S, Borg C, Lakkis Z, Bibeau F. Evaluation of immune infiltrate according to the HER2 status in colorectal cancer. Dig Liver Dis 2024; 56:853-860. [PMID: 37845155 DOI: 10.1016/j.dld.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND AND AIMS In colorectal cancer (CRC), HER2 targeting is a promising treatment and immune infiltrate is an important area of research and strategy. Data regarding HER2 status and immune infiltrate are lacking. The aim of this study was to compare the immune infiltrate between HER2 amplified and non-amplified categories in proficient MisMatchRepair (pMMR)/microsatellite stable (MSS) CRC. METHODS HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization were performed in a retrospective series of 654 CRC. Lymphocyte infiltrate was analysed by anti-CD3, CD8 and CD4 IHC and evaluated digitally using QuPath software. RESULTS Among the 654 CRC, we first observed a decreased CD3+ and CD8+ infiltrate between HER2 amplified (all IHC 3+ except one 2+) and non-amplified HER2 2+ IHC CRC (p = 0.059 and 0.072 respectively). A supplementary analysis of 258 pMMR/MSS CRC from the previous cohort, displaying all the IHC scores (0, 1+, 2+, 3+), showed a lower CD3+ infiltrate between HER2 amplified versus HER2 0 (p = 0.002), 1+ (p = 0.088) and non-amplified 2+ (p = 0.081) IHC cases. CONCLUSIONS Our original findings suggest that in pMMR/MSS CRC, the immune infiltrate is reduced in HER2 amplified versus other HER2 categories. These data might be useful for future strategies combining anti-HER2 treatments and immune checkpoint inhibitors and need to be confirmed in larger CRC cohorts.
Collapse
Affiliation(s)
- Chloé Molimard
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France.
| | - Fanny Dor
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Alexis Overs
- Department of Oncobiology, University Hospital of Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | | | - Loïs Kedochim
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Flavia D'Angelo
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Marine Abad
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| | - Morgane Heberle
- Department of Clinical Research, University Hospital of Besançon, Besançon, France
| | - Valentin Derangère
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - Lucine Vuitton
- Department of Gastroenterology, University Hospital of Besançon, Besançon, France
| | - Séverine Valmary-Degano
- University Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, CHU de Grenoble-Alpes, F-38000 Grenoble, France
| | - Christophe Borg
- Department of Oncology, University Hospital of Besançon, Besançon, France
| | - Zaher Lakkis
- Department of Digestive Surgery, University Hospital of Besançon, Besançon, France
| | - Fréderic Bibeau
- Department of Pathology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000 Besançon, France
| |
Collapse
|
25
|
Zhang X, Zhu R, Yu D, Wang J, Yan Y, Xu K. Single-cell RNA sequencing to explore cancer-associated fibroblasts heterogeneity: "Single" vision for "heterogeneous" environment. Cell Prolif 2024; 57:e13592. [PMID: 38158643 PMCID: PMC11056715 DOI: 10.1111/cpr.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a phenotypically and functionally heterogeneous stromal cell, are one of the most important components of the tumour microenvironment. Previous studies have consolidated it as a promising target against cancer. However, variable therapeutic efficacy-both protumor and antitumor effects have been observed not least owing to the strong heterogeneity of CAFs. Over the past 10 years, advances in single-cell RNA sequencing (scRNA-seq) technologies had a dramatic effect on biomedical research, enabling the analysis of single cell transcriptomes with unprecedented resolution and throughput. Specifically, scRNA-seq facilitates our understanding of the complexity and heterogeneity of diverse CAF subtypes. In this review, we discuss the up-to-date knowledge about CAF heterogeneity with a focus on scRNA-seq perspective to investigate the emerging strategies for integrating multimodal single-cell platforms. Furthermore, we summarized the clinical application of scRNA-seq on CAF research. We believe that the comprehensive understanding of the heterogeneity of CAFs form different visions will generate innovative solutions to cancer therapy and achieve clinical applications.
Collapse
Affiliation(s)
- Xiangjian Zhang
- The Dingli Clinical College of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of Surgical OncologyWenzhou Central HospitalWenzhouZhejiangChina
- The Second Affiliated Hospital of Shanghai UniversityWenzhouZhejiangChina
| | - Ruiqiu Zhu
- Interventional Cancer Institute of Chinese Integrative MedicinePutuo Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Die Yu
- Interventional Cancer Institute of Chinese Integrative MedicinePutuo Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Juan Wang
- School of MedicineShanghai UniversityShanghaiChina
| | - Yuxiang Yan
- The Dingli Clinical College of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of Surgical OncologyWenzhou Central HospitalWenzhouZhejiangChina
- The Second Affiliated Hospital of Shanghai UniversityWenzhouZhejiangChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| |
Collapse
|
26
|
Liu YB, Chen XY, Yu BX, Cen Y, Huang CY, Yan MY, Liu QQ, Zhang W, Li SY, Tang YZ. Chimeric Peptide-Engineered Self-Delivery Nanomedicine for Photodynamic-Triggered Breast Cancer Immunotherapy by Macrophage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309994. [PMID: 38095445 DOI: 10.1002/smll.202309994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Indexed: 05/30/2024]
Abstract
A systemic treatment strategy is urgently demanded to suppress the rapid growth and easy metastasis characteristics of breast cancer. In this work, a chimeric peptide-engineered self-delivery nanomedicine (designated as ChiP-CeR) for photodynamic-triggered breast cancer immunotherapy by macrophage polarization. Among these, ChiP-CeR is composed of the photosensitizer of chlorine e6 (Ce6) and the TLR7/8 agonist of lmiquimod (R837), which is further modified with tumor matrix targeting peptide (Fmoc-K(Fmoc)-PEG8-CREKA. ChiP-CeR is preferred to actively accumulate at the tumor site via specific recognition of fibronectin, which can eradicate primary tumor growth through photodynamic therapy (PDT). Meanwhile, the destruction of primary tumors would trigger immunogenic cell death (ICD) effects to release high-mobility group box-1(HMGB1) and expose calreticulin (CRT). Moreover, ChiP-CeR can also polarize M2-type tumor-associated macrophages (TAMs) into M1-type TAMs, which can activate T cell antitumor immunity in combination with ICD. Overall, ChiP-CeR possesses superior antitumor effects against primary and lung metastatic tumors, which provide an applicable nanomedicine and a feasible strategy for the systemic management of metastatic breast cancer.
Collapse
Affiliation(s)
- Yi-Bin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R.China
| | - Xia-Yun Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Bai-Xue Yu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Chu-Yu Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Meng-Yi Yan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qian-Qian Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, P. R.China
| |
Collapse
|
27
|
Saraiva-Santos T, Zaninelli TH, Pinho-Ribeiro FA. Modulation of host immunity by sensory neurons. Trends Immunol 2024; 45:381-396. [PMID: 38697871 DOI: 10.1016/j.it.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 05/05/2024]
Abstract
Recent studies have uncovered a new role for sensory neurons in influencing mammalian host immunity, challenging conventional notions of the nervous and immune systems as separate entities. In this review we delve into this groundbreaking paradigm of neuroimmunology and discuss recent scientific evidence for the impact of sensory neurons on host responses against a wide range of pathogens and diseases, encompassing microbial infections and cancers. These valuable insights enhance our understanding of the interactions between the nervous and immune systems, and also pave the way for developing candidate innovative therapeutic interventions in immune-mediated diseases highlighting the importance of this interdisciplinary research field.
Collapse
Affiliation(s)
- Telma Saraiva-Santos
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Tiago H Zaninelli
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Felipe A Pinho-Ribeiro
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
28
|
Sun J, Guo H, Nie Y, Zhou S, Zeng Y, Sun Y. Deciphering the heterogeneity dominated by tumor-associated macrophages for survival prognostication and prediction of immunotherapy response in lung adenocarcinoma. Sci Rep 2024; 14:9276. [PMID: 38653742 DOI: 10.1038/s41598-024-60132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a specific subset of macrophages that reside inside the tumor microenvironment. The dynamic interplay between TAMs and tumor cells plays a crucial role in the treatment response and prognosis of lung adenocarcinoma (LUAD). The study aimed to examine the association between TAMs and LUAD to advance the development of targeted strategies and immunotherapeutic approaches for treating this type of lung cancer. The study employed single-cell mRNA sequencing data to characterize the immune cell composition of LUAD and delineate distinct subpopulations of TAMs. The "BayesPrism" and "Seurat" R packages were employed to examine the association between these subgroups and immunotherapy and clinical features to identify novel immunotherapy biomarkers. Furthermore, a predictive signature was generated to forecast patient prognosis by examining the gene expression profile of immunotherapy-associated TAMs subsets and using 104 machine-learning techniques. A comprehensive investigation has shown the existence of a hitherto unidentified subgroup of TAMs known as RGS1 + TAMs, which has been found to have a strong correlation with the efficacy of immunotherapy and the occurrence of tumor metastasis in LUAD patients. CD83 was identified CD83 as a distinct biomarker for the expression of RGS1 + TAMs, showcasing its potential utility as an indicator for immunotherapeutic interventions. Furthermore, the prognostic capacity of the RTMscore signature, encompassing three specific mRNA (NR4A2, MMP14, and NPC2), demonstrated enhanced robustness when contrasted against the comprehensive collection of 104 features outlined in the published study. CD83 has potential as an immunotherapeutic biomarker. Meanwhile, The RTMscore signature established in the present study might be beneficial for survival prognostication.
Collapse
Affiliation(s)
- Jiazheng Sun
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hehua Guo
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Nie
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sirui Zhou
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulan Zeng
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yalu Sun
- Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
29
|
Tu L, Li C, Ding Q, Sharma A, Li M, Li J, Kim JS, Sun Y. Augmenting Cancer Therapy with a Supramolecular Immunogenic Cell Death Inducer: A Lysosome-Targeted NIR-Light-Activated Ruthenium(II) Metallacycle. J Am Chem Soc 2024; 146:8991-9003. [PMID: 38513217 DOI: 10.1021/jacs.3c13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Though immunogenic cell death (ICD) has garnered significant attention in the realm of anticancer therapies, effectively stimulating strong immune responses with minimal side effects in deep-seated tumors remains challenging. Herein, we introduce a novel self-assembled near-infrared-light-activated ruthenium(II) metallacycle, Ru1105 (λem = 1105 nm), as a first example of a Ru(II) supramolecular ICD inducer. Ru1105 synergistically potentiates immunomodulatory responses and reduces adverse effects in deep-seated tumors through multiple regulated approaches, including NIR-light excitation, increased reactive oxygen species (ROS) generation, selective targeting of tumor cells, precision organelle localization, and improved tumor penetration/retention capabilities. Specifically, Ru1105 demonstrates excellent depth-activated ROS production (∼1 cm), strong resistance to diffusion, and anti-ROS quenching. Moreover, Ru1105 exhibits promising results in cellular uptake and ROS generation in cancer cells and multicellular tumor spheroids. Importantly, Ru1105 induces more efficient ICD in an ultralow dose (10 μM) compared to the conventional anticancer agent, oxaliplatin (300 μM). In vivo experiments further confirm Ru1105's potency as an ICD inducer, eliciting CD8+ T cell responses and depleting Foxp3+ T cells with minimal adverse effects. Our research lays the foundation for the design of secure and exceptionally potent metal-based ICD agents in immunotherapy.
Collapse
Affiliation(s)
- Le Tu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Sector 82A, Mohali, Punjab 140306, India
| | - Meiqin Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
30
|
Huang R, Han B, Zhang Y, Yang J, Wang K, Liu X, Wang Z. Pathway-based stratification of gliomas uncovers four subtypes with different TME characteristics and prognosis. J Cell Mol Med 2024; 28:e18208. [PMID: 38613347 PMCID: PMC11015396 DOI: 10.1111/jcmm.18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 04/14/2024] Open
Abstract
Increasing evidences have found that the interactions between hypoxia, immune response and metabolism status in tumour microenvironment (TME) have clinical importance of predicting clinical outcomes and therapeutic efficacy. This study aimed to develop a reliable molecular stratification based on these key components of TME. The TCGA data set (training cohort) and two independent cohorts from CGGA database (validation cohort) were enrolled in this study. First, the enrichment score of 277 TME-related signalling pathways was calculated by gene set variation analysis (GSVA). Then, consensus clustering identified four stable and reproducible subtypes (AFM, CSS, HIS and GLU) based on TME-related signalling pathways, which were characterized by differences in hypoxia and immune responses, metabolism status, somatic alterations and clinical outcomes. Among the four subtypes, HIS subtype had features of immunosuppression, oxygen deprivation and active energy metabolism, resulting in a worst prognosis. Thus, for better clinical application of this acquired stratification, we constructed a risk signature by using the LASSO regression model to identify patients in HIS subtype accurately. We found that the risk signature could accurately screen out the patients in HIS subtype and had important reference value for individualized treatment of glioma patients. In brief, the definition of the TME-related subtypes was a valuable tool for risk stratification in gliomas. It might serve as a reliable prognostic classifier and provide rational design of individualized treatment, and follow-up scheduling for patients with gliomas.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Ying Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Jingchen Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Kuanyu Wang
- Department of Gamma Knife CenterBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Xing Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| |
Collapse
|
31
|
Wang ZT, Deng ZM, Dai FF, Yuan MQ, Liu SY, Li BS, Cheng YX. Tumor immunity: A brief overview of tumor‑infiltrating immune cells and research advances into tumor‑infiltrating lymphocytes in gynecological malignancies (Review). Exp Ther Med 2024; 27:166. [PMID: 38476909 PMCID: PMC10928974 DOI: 10.3892/etm.2024.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2024] Open
Abstract
Tumor immunity is a promising topic in the area of cancer therapy. The 'soil' function of the tumor microenvironment (TME) for tumor growth has attracted wide attention from scientists. Tumor-infiltrating immune cells in the TME, especially the tumor-infiltrating lymphocytes (TILs), serve a key role in cancer. Firstly, relevant literature was searched in the PubMed and Web of Science databases with the following key words: 'Tumor microenvironment'; 'TME'; 'tumor-infiltrating immunity cells'; 'gynecologic malignancies'; 'the adoptive cell therapy (ACT) of TILs'; and 'TIL-ACT' (https://pubmed.ncbi.nlm.nih.gov/). According to the title and abstract of the articles, relevant items were screened out in the preliminary screening. The most relevant selected items were of two types: All kinds of tumor-infiltrating immune cells; and advanced research on TILs in gynecological malignancies. The results showed that the subsets of TILs were various and complex, while each subpopulation influenced each other and their effects on tumor prognosis were diverse. Moreover, the related research and clinical trials on TILs were mostly concentrated in melanoma and breast cancer, but relatively few focused on gynecological tumors. In conclusion, the present review summarized the biological classification of TILs and the mechanisms of their involvement in the regulation of the immune microenvironment, and subsequently analyzed the development of tumor immunotherapy for TILs. Collectively, the present review provides ideas for the current treatment dilemma of gynecological tumor immune checkpoints, such as adverse reactions, safety, personal specificity and efficacy.
Collapse
Affiliation(s)
- Zi-Tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
32
|
Lu Z, Miao X, Zhang C, Sun B, Skardal A, Atala A, Ai S, Gong J, Hao Y, Zhao J, Dai K. An osteosarcoma-on-a-chip model for studying osteosarcoma matrix-cell interactions and drug responses. Bioact Mater 2024; 34:1-16. [PMID: 38173844 PMCID: PMC10761322 DOI: 10.1016/j.bioactmat.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Marrow niches in osteosarcoma (OS) are a specialized microenvironment that is essential for the maintenance and regulation of OS cells. However, existing animal xenograft models are plagued by variability, complexity, and high cost. Herein, we used a decellularized osteosarcoma extracellular matrix (dOsEM) loaded with extracellular vesicles from human bone marrow-derived stem cells (hBMSC-EVs) and OS cells as a bioink to construct a micro-osteosarcoma (micro-OS) through 3D printing. The micro-OS was further combined with a microfluidic system to develop into an OS-on-a-chip (OOC) with a built-in recirculating perfusion system. The OOC system successfully integrated bone marrow niches, cell‒cell and cell-matrix crosstalk, and circulation, allowing a more accurate representation of OS characteristics in vivo. Moreover, the OOC system may serve as a valuable research platform for studying OS biological mechanisms compared with traditional xenograft models and is expected to enable precise and rapid evaluation and consequently more effective and comprehensive treatments for OS.
Collapse
Affiliation(s)
- Zuyan Lu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - XiangWan Miao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Chenyu Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - JiaNing Gong
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Pezeshki A, Cheville JC, Florio AB, Leibovich BC, Vasmatzis G. Evaluation of tumor response to immune checkpoint inhibitors by a 3D immunotumoroid model. Front Immunol 2024; 15:1356144. [PMID: 38605943 PMCID: PMC11007648 DOI: 10.3389/fimmu.2024.1356144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background Only 20 percent of renal and bladder cancer patients will show a significant response to immune checkpoint inhibitor (ICI) therapy, and no test currently available accurately predicts ICI response. Methods We developed an "immunotumoroid" cell model system that recapitulates the tumor, its microenvironment, and necessary immune system components in patient-derived spheroids to enable ex vivo assessment of tumor response to ICI therapy. Immunotumoroids were developed from surgically resected renal cell carcinomas and bladder carcinomas selected for high tumor-infiltrating lymphocytes (TILs) and survived more than a month without media exchange. Immunohistochemistry was used to detect immune and non-immune cells in cryopreserved source tumors and the resulting immunotumoroids. Immunotumoroid response to ICIs (nivolumab, pembrolizumab, and durvalumab) and chemotherapy (cisplatin, gemcitabine, and paclitaxel) was monitored in real-time with Cytotox Red staining in an Incucyte device, and the immunotumoroid response was compared to retrospective clinical drug responses. Results Six of the 13 cases tested grew viable immunotumoroid models, with failed cases attributed to extensive tumor tissue necrosis or excess lymphocytes preventing spheroid formation. One successfully cultured case was excluded from the study due to low TIL infiltration (<5%) in the primary tumor sample. The five remaining models contained immune cells (CD4+ and CD8+ T cells, and macrophages), non-immune cells (fibroblasts), and tumor cells. Chemotherapy and ICI drugs were tested in immunotumoroids from 5 cases and compared to clinical outcomes where data was available. Four/five models showed cell killing in response to chemotherapy and two/five showed sensitivity to ICI. In three cases, the immunotumoroid model accurately predicted the patient's clinical response or non-response to ICIs or chemotherapy. Conclusion Our immunotumoroid model replicated the multicellular nature of the tumor microenvironment sufficiently for preclinical ICI screening. This model could enable valuable insights into the complex interactions between cancer cells, the immune system, and the microenvironment. This is a feasibility study on a small number of cases, and additional studies with larger case numbers are required including correlation with clinical response.
Collapse
Affiliation(s)
- Abdulmohammad Pezeshki
- Biomarker Discovery, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - John C. Cheville
- Biomarker Discovery, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Angela B. Florio
- Biomarker Discovery, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - George Vasmatzis
- Biomarker Discovery, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
34
|
Wang Z, Kirkwood KL, Wang Y, Du W, Lin S, Zhou W, Yan C, Gao J, Li Z, Sun C, Liu F. Analysis of the effect of CCR7 on the microenvironment of mouse oral squamous cell carcinoma by single-cell RNA sequencing technology. J Exp Clin Cancer Res 2024; 43:94. [PMID: 38539232 PMCID: PMC10976828 DOI: 10.1186/s13046-024-03013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Studies have shown that CCR7, an important inflammatory factor, can promote the proliferation and metastasis of oral squamous cell carcinoma (OSCC), but its role in the tumor microenvironment (TME) remains unclear. This paper explores the role of CCR7 in the TME of OSCC. METHODS In this work, we constructed CCR7 gene knockout mice and OSCC mouse models. Single-cell RNA sequencing (scRNA-seq) and bioinformatics were used to analyze the differences in the OSCC microenvironment between three CCR7 gene knockout mice (KO) and three wild-type mice (WT). Immunohistochemistry, immunofluorescence staining, and flow cytometry were used to analyze the expression of key genes in significantly different cell types between the KO and WT groups. An in vitro experiment was used to verify the effect of CCR7 on M2 macrophage polarization. RESULTS In the mouse OSCC models, the tumor growth rate in the KO group was significantly lower than that in the WT group. Eight main cell types (including tumor cells, fibroblasts, macrophages, granulocytes, T cells, endothelial cells, monocytes, and B cells) were identified by Seurat analysis. The scRNA-seq results showed that the proportion of tumor cells was lower, but the proportion of inflammatory cells was significantly higher in the KO group than in the WT group. CellPhoneDB analysis results indicated a strong interaction relationship between tumor cells and macrophages, T cells, fibroblasts, and endothelial cells. Functional enrichment results indicated that the expression level of the Dusp1 gene in the KO group was generally higher than that in the WT group in various cell types. Macrophage subclustering results indicated that the proportion of M2 macrophages in the KO group was lower than that in the WT group. In vitro experimental results showed that CCR7 can promote M2 macrophage polarization, thus promoting the proliferation, invasion and migration of OSCC cells. CONCLUSIONS CCR7 gene knockout can significantly inhibit the growth of mouse oral squamous cell carcinoma by promoting the polarization of M2 macrophages.
Collapse
Affiliation(s)
- Zengxu Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, NY, Buffalo, 14214-8006, USA
| | - Yao Wang
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Weidong Du
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Shanfeng Lin
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Wanhang Zhou
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Cong Yan
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Jiaxing Gao
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Zhenning Li
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Changfu Sun
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China
| | - Fayu Liu
- Department of Oral Maxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 117 Nanjing North Road, Heping District, Shenyang, Liaoning, 110002, People's Republic of China.
| |
Collapse
|
35
|
Aragón-Franco R, Ruiz-Manzano RA, Nava-Castro KE, Del Rìo Araiza VH, Garay-Canales CA, Pérez-Torres A, Chacón-Salinas R, Girón-Pérez MI, Morales-Montor J. Convergence between helminths and breast cancer: intratumoral injection of the excretory/secretory antigens of the human parasite Toxocara canis (EST) increase lung macro and micro metastasis. Front Immunol 2024; 15:1332933. [PMID: 38576624 PMCID: PMC10993691 DOI: 10.3389/fimmu.2024.1332933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Worldwide, breast cancer is the most important cancer in incidence and prevalence in women. Different risk factors interact to increase the probability of developing it. Biological agents such as helminth parasites, particularly their excretory/secretory antigens, may play a significant role in tumor development. Helminths and their antigens have been recognized as inducers or promoters of cancer due to their ability to regulate the host's immune response. Previously in our laboratory, we demonstrated that chronic infection by Toxocara canis increases the size of mammary tumors, affecting the systemic response to the parasite. However, the parasite does not invade the tumor, and we decided to study if the excretion/secretion of antigens from Toxocara canis (EST) can affect the progression of mammary tumors or the pathophysiology of cancer which is metastasis. Thus, this study aimed to determine whether excretion/secretion T. canis antigens, injected directly into the tumor, affect tumor growth and metastasis. Methods We evaluated these parameters through the monitoring of the intra-tumoral immune response. Results Mice injected intratumorally with EST did not show changes in the size and weight of the tumors; although the tumors showed an increased microvasculature, they did develop increased micro and macro-metastasis in the lung. The analysis of the immune tumor microenvironment revealed that EST antigens did not modulate the proportion of immune cells in the tumor, spleen, or peripheral lymph nodes. Macroscopic and microscopic analyses of the lungs showed increased metastasis in the EST-treated animals compared to controls, accompanied by an increase in VEGF systemic levels. Discussion Thus, these findings showed that intra-tumoral injection of T. canis EST antigens promote lung metastasis through modulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Raúl Aragón-Franco
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Ciudad de México, Mexico
| | - Rocío Alejandra Ruiz-Manzano
- Laboratorio de Neuroinmunoendocrinología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karen Elizabeth Nava-Castro
- Laboratorio de Biología y Química Atmosférica, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Víctor Hugo Del Rìo Araiza
- Laboratorio de Interacciones Endocrinoinmunitarias en Enfermedades Parasitarias, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Angelica Garay-Canales
- Laboratorio de Neuroinmunoendocrinología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Armando Pérez-Torres
- Departamento de Biologia Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Romel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Ciudad de México, Mexico
| | - Manuel Iván Girón-Pérez
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Jorge Morales-Montor
- Laboratorio de Neuroinmunoendocrinología, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
36
|
Benedetti F, Mongodin EF, Badger JH, Munawwar A, Cellini A, Yuan W, Silvestri G, Kraus CN, Marini S, Rathinam CV, Salemi M, Tettelin H, Gallo RC, Zella D. Bacterial DnaK reduces the activity of anti-cancer drugs cisplatin and 5FU. J Transl Med 2024; 22:269. [PMID: 38475767 PMCID: PMC10935962 DOI: 10.1186/s12967-024-05078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jonathan H Badger
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Cellini
- Pathology Biorepository Shared Service, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giovannino Silvestri
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Simone Marini
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Chozha V Rathinam
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert C Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Davide Zella
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Benedetti F, Silvestri G, Denaro F, Finesso G, Contreras-Galindo R, Munawwar A, Williams S, Davis H, Bryant J, Wang Y, Radaelli E, Rathinam CV, Gallo RC, Zella D. Mycoplasma DnaK expression increases cancer development in vivo upon DNA damage. Proc Natl Acad Sci U S A 2024; 121:e2320859121. [PMID: 38412130 PMCID: PMC10927570 DOI: 10.1073/pnas.2320859121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Well-controlled repair mechanisms are involved in the maintenance of genomic stability, and their failure can precipitate DNA abnormalities and elevate tumor risk. In addition, the tumor microenvironment, enriched with factors inducing oxidative stress and affecting cell cycle checkpoints, intensifies DNA damage when repair pathways falter. Recent research has unveiled associations between certain bacteria, including Mycoplasmas, and various cancers, and the causative mechanism(s) are under active investigation. We previously showed that Mycoplasma fermentans DnaK, an HSP70 family chaperone protein, hampers the activity of proteins like PARP1 and p53, crucial for genomic integrity. Moreover, our analysis of its interactome in human cancer cell lines revealed DnaK's engagement with several components of DNA-repair machinery. Finally, in vivo experiments performed in our laboratory using a DnaK knock-in mouse model generated by our group demonstrated that DnaK exposure led to increased DNA copy number variants, indicative of genomic instability. We present here evidence that expression of DnaK is linked to increased i) incidence of tumors in vivo upon exposure to urethane, a DNA damaging agent; ii) spontaneous DNA damage ex vivo; and iii) expression of proinflammatory cytokines ex vivo, variations in reactive oxygen species levels, and increased β-galactosidase activity across tissues. Moreover, DnaK was associated with increased centromeric instability. Overall, these findings highlight the significance of Mycoplasma DnaK in the etiology of cancer and other genetic disorders providing a promising target for prevention, diagnostics, and therapeutics.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Giovannino Silvestri
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD21251
| | - Giovanni Finesso
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Arshi Munawwar
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Sumiko Williams
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biology, Morgan State University, Baltimore, MD21251
| | - Harry Davis
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joseph Bryant
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Yin Wang
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Surgery, School of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Enrico Radaelli
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Chozha V. Rathinam
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
38
|
Srivastava A, Srivastava S. Multiomics data identifies RSPO2 as a prognostic biomarker in human tumors associated with pan-cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:469-499. [PMID: 38448143 DOI: 10.1016/bs.apcsb.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
RSPO2 protein may provide valuable insights into the mechanism underlying various types of tumorigenesis. The role of RSPO2 in pan-cancer has not been reported so far. Therefore, this study aimed to provide a comprehensive analysis of RSPO2 from a pan-cancer perspective employing multiomics data. The expression profile and function of RSPO2 across different tumors were investigated using various web-based tools UALCAN, GEPIA, TIMER, Human Protein Atlas, cBioPortal, TISIDB, STRING, and Metascape to interpret the expression profile, promoter methylation status, genomic alterations, survival analysis, protein-protein interaction, correlation with immune cell subtypes, tumor immune microenvironment and enrichment analysis. Comprehensive pan-cancer analysis indicated that RSPO2 was significantly downregulated in eleven and upregulated in five tumor types compared to normal tissues, validation results further suggest RSPO2 was downregulated in most of the tumors. The protein level expression of RSPO2 was mostly low in malignant tissues. We found that RSPO2 was significantly related to individual pathological stages in BLCA, COAD, LUAD and LUSC. Prognostic analysis indicates that the high RSPO2 expression was significantly correlated with the poor prognosis in BRCA, KICH, KIRP, READ, and UCES. Furthermore, RSPO2 is frequently amplified, exhibits hypermethylated promoter in most cancers, and is associated with immune subtypes, molecular subtypes and immune cell infiltration. Finally, enrichment analysis showed that RSPO2 is involved in the regulation of the canonical Wnt pathway and neuronal development. The overall comprehensive pan-cancer analysis affirms that RSPO2 could be a promising diagnostic and prognostic biomarker and latent therapy target in the future.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
39
|
Fernandes S, Cassani M, Cavalieri F, Forte G, Caruso F. Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305769. [PMID: 38054651 PMCID: PMC10885677 DOI: 10.1002/advs.202305769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Indexed: 12/07/2023]
Abstract
The application of lipid-based nanoparticles for COVID-19 vaccines and transthyretin-mediated amyloidosis treatment have highlighted their potential for translation to cancer therapy. However, their use in delivering drugs to solid tumors is limited by ineffective targeting, heterogeneous organ distribution, systemic inflammatory responses, and insufficient drug accumulation at the tumor. Instead, the use of lipid-based nanoparticles to remotely activate immune system responses is an emerging effective strategy. Despite this approach showing potential for treating hematological cancers, its application to treat solid tumors is hampered by the selection of eligible targets, tumor heterogeneity, and ineffective penetration of activated T cells within the tumor. Notwithstanding, the use of lipid-based nanoparticles for immunotherapy is projected to revolutionize cancer therapy, with the ultimate goal of rendering cancer a chronic disease. However, the translational success is likely to depend on the use of predictive tumor models in preclinical studies, simulating the complexity of the tumor microenvironment (e.g., the fibrotic extracellular matrix that impairs therapeutic outcomes) and stimulating tumor progression. This review compiles recent advances in the field of antitumor lipid-based nanoparticles and highlights emerging therapeutic approaches (e.g., mechanotherapy) to modulate tumor stiffness and improve T cell infiltration, and the use of organoids to better guide therapeutic outcomes.
Collapse
Affiliation(s)
- Soraia Fernandes
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Marco Cassani
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM)International Clinical Research Centre (ICRC)St. Anne HospitalBrno656 91Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonSE5 9NUUK
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
40
|
Ding G, Wang T, Tang G, Zou Q, Wu G, Wu J. A novel prognostic predictor of immune microenvironment and therapeutic response in clear cell renal cell carcinoma based on angiogenesis-immune-related gene signature. Heliyon 2024; 10:e23503. [PMID: 38170124 PMCID: PMC10758882 DOI: 10.1016/j.heliyon.2023.e23503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC), the most common type of RCC, typically produces no symptoms initially. Patients with ccRCC are at increased risk of developing advanced metastatic disease due to the absence of dependable and effective prognostic biomarkers. Therefore, it is particularly urgent to find optimal stratification of patients with ccRCC to distinguish the clinical benefits of different malignant degrees. Angiogenesis has a profound impact on the malignant behavior of renal cancer cells, and anti-angiogenic drugs have been applied to metastatic renal cancer patients. Moreover, immune function dysregulation is also a significant factor in tumorigenesis. We aim to construct a predictive model that combines angiogenesis and immune-related genes (AIRGs) to aid clinicians in predicting ccRCC prognosis. Methods We gathered transcriptome and clinicopathology data from two datasets, the E-MTAB-1980 dataset and the Cancer Genome Atlas (TCGA). We utilized consensus clustering to find new molecular subgroups. A predictive model for the prognosis of angiogenesis-immune-associated genes (AIRGs) was conducted by the lasso and multivariate Cox regression analysis. The signature's predictive ability was then tested in different datasets. Meticulous scrutiny and comprehensive assessment were undertaken, both internally and externally, to establish the prognostic model. Analyses of immunogenomics were carried out to examine the relationship between risk scores and clinical/immune features, including immune cell infiltration, genomic alterations, and response to targeted and immunotherapy therapy. Results Our prognostic signature, comprising 4 AIRGs, stood as an independent prognostic factor for ccRCC, while risk scores emerged as a novel indicator for forecasting overall survival. Risk scores exhibited significant associations with various immunophenotypic factors, such as oncogenic pathways, antitumor response, different immune cell infiltration, antitumor immunity, and response to targeted and immunotherapy therapy. Conclusions AIRGs-based prognostic prediction model could effectively predict immunotherapy responses and survival outcomes of ccRCC.
Collapse
Affiliation(s)
| | | | | | - Qingsong Zou
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Gang Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| |
Collapse
|
41
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
42
|
Chen M, Xiao L, Jia H, Wang S, Jiang X, Lei X, Zhai Q, Lang J. Stereotactic ablative radiotherapy and FAPα-based cancer vaccine suppresses metastatic tumor growth in 4T1 mouse breast cancer. Radiother Oncol 2023; 189:109946. [PMID: 37806560 DOI: 10.1016/j.radonc.2023.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/09/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND AND PURPOSE This study tested the hypothesis that a novel combination of stereotactic ablation radiotherapy (SABR) and a cancer vaccine against fibroblast activation protein-alpha (FAPα) can suppress established tumor growth and impede potential metastasis. METHODS The poorly immunogenic metastatic mouse mammary carcinoma 4T1 was used as a model. Mice were randomly assigned to five treatment groups: (1) untreated control, (2) FAPα-based cancer vaccine, (3) SABR, (4) SABR + pCDH (lentiviral control vector), (5) SABR + FAPα-based cancer vaccine (SABR/FAPα-Vax). FAPα-based cancer vaccine were administered subcutaneously every week for a total of three treatments. SABR was delivered to the primary tumor by 3 × 8 Gy after the first vaccination. RESULTS Consistent with the poorly immunogenic nature of 4T1, tumor-bearing mice receiving FAPα-based cancer vaccine or SABR monotherapy showed a modest reduction in tumor volume and increased animal lifespan. In contrast, SABR/FAPα-Vax was well-tolerated, significantly reduced tumor burden, and increased survival compared to monotherapy. The increased survival correlated with inhibition of extracellular matrix (ECM) production, tumor vascularization and lymphangiogenesis. SABR/FAPα-Vax also resulted in an abscopal effect capable of eliminating lung metastases. SABR/FAPα-Vax recruited and activated CD8 + T cells to attack tumor cells and FAPα + stromal cells, and initiated suppressor cell reprogramming, including facilitating macrophage polarization toward an anti-tumor (M1) state, as well as depleting myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). CONCLUSION These findings provide a novel therapeutic combination of radiation and FAPα-based cancer vaccine with promising results against poorly immunogenic metastatic cancer. This study may pave the way to overcome the therapeutic resistance caused by FAPα + CAFs.
Collapse
Affiliation(s)
- Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ling Xiao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Hongyuan Jia
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shubin Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiao Jiang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Institute of Isotope, China Institute of Atomic Energy, Beijing, China.
| | - Xudan Lei
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiming Zhai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
43
|
Yin Z, Wang L. Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med 2023; 55:1058-1069. [PMID: 36908260 PMCID: PMC10795639 DOI: 10.1080/07853890.2023.2180155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Tumour-associated endothelial cells (TECs) are a critical stromal cell type in the tumour microenvironment and play central roles in tumour angiogenesis. Notably, TECs have phenotypic plasticity, as they have the potential to transdifferentiate into cells with a mesenchymal phenotype through a process termed endothelial-to-mesenchymal transition (EndoMT). Many studies have reported that EndoMT influences multiple malignant biological properties of tumours, such as abnormal angiogenesis and tumour metabolism, growth, metastasis and therapeutic resistance. Thus, the value of targeting EndoMT in tumour treatment has received increased attention. In this review, we comprehensively explore the phenomenon of EndoMT in the tumour microenvironment and identify influencing factors and molecular mechanisms responsible for EndoMT induction. Furthermore, the pathological functions of EndoMT in tumour progression and potential therapeutic strategies for targeting EndoMT in tumour treatment are also discussed to highlight the pivotal roles of EndoMT in tumour progression and therapy.
Collapse
Affiliation(s)
- Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
44
|
Chen H, Zhang Y, Chen X, Xu R, Zhu Y, He D, Cheng Y, Wang Z, Qing X, Cao K. Hypoxia is correlated with the tumor immune microenvironment: Potential application of immunotherapy in bladder cancer. Cancer Med 2023; 12:22333-22353. [PMID: 38063246 PMCID: PMC10757107 DOI: 10.1002/cam4.6617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/31/2023] Open
Abstract
OBJECTIVE Hypoxia, which can considerably affect the tumor microenvironment, hinders the use of immunotherapy in bladder cancer (BLCA). Therefore, we aimed to identify reliable hypoxia-related biomarkers to guide clinical immunotherapy in BLCA. METHODS Using data downloaded from TCGA-BLCA cohort, we determined BLCA subtypes which divide 408 samples into different subtypes. Tumor immune infiltration levels of two clusters were quantified using ssGSEA, MCPcounter, EPIC, ESTIMATE, and TIMER algorithms. Next, we constructed a hypoxia score based on the expression of hypoxia-related genes. The IMvigor210 cohort and SubMap analysis were used to predict immunotherapeutic responses in patients with different hypoxia scores. Hub genes were screened using cytoscape, immunohistochemistry (IHC), and multispectral immunofluorescence were used to detect the spatial distribution of immune markers. RESULTS Patients with BLCA were categorized into cluster1 (n = 227) and Cluster2 (n = 181). Immune infiltration and expression of immune markers were higher in Cluster1. Immune infiltration was also more obvious in the high-hypoxia score group which related to a better predicted response to immunotherapy. IHC, and multispectral immunofluorescence confirmed the importance of TLR8 in immune infiltration and immune phenotype. CONCLUSIONS BLCA subtype can evaluate the infiltration of immune cells in the tumor microenvironment of different patients. Hypoxia score in this study could effectively predict immunotherapeutic responses in patients with BLCA. TLR8 may be a potential target for clinical immunotherapy.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yao Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Runshi Xu
- Department of Pathology, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Department of Respiration, The Second People's Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, China
| | - YaXin Cheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Qing
- Department of Otolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Jin T, Wang W, Ge L, Li X, Ge M. The expression of two immunosuppressive SIGLEC family molecules in papillary thyroid cancer and their effect on prognosis. Endocrine 2023; 82:590-601. [PMID: 37480496 DOI: 10.1007/s12020-023-03452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND The thyroid cancer (THCA) subtype that occurs more frequently is papillary thyroid cancer (PTC). Despite a favorable postoperative outcome, traditional antitumor therapy does not offer ideal results for patients with metastasis, relapse, and radioiodine resistance. Recent studies demonstrated the remarkable effects of immune checkpoint inhibitors on solid tumors, of which the immunoglobulin superfamily member SIGLEC10 and SIGLEC15 act as novel immunotherapy targets for tumors. Nevertheless, their role in PTC prognosis is still indefinite. METHODS Immunohistochemistry was utilized to examine the expression of SIGLEC10 and SIGLEC15 in 244 PTC tissue specimens. Then the expression correlation between the two was analyzed in normal tissues (NT), tumor cells (TC), and tumor stroma (TS), respectively. Subsequently, the retrospective data on patients with PTC were collected to examine whether the two immunosuppressive SIGLEC family members could affect their prognosis. RESULTS We confirmed that TC expressed higher levels of SIGLEC10 than NT. However, SIGLEC10 was down-regulated in TS and predicted poor outcomes. Meanwhile, down-regulation of SIGLEC15 expression was observed in both TC and TS, indicating a favorable prognosis. PTC patients with both SIGLEC10-SIGLEC15+ expression in TC and TS had a significantly higher recurrence risk. The expression of SIGLEC10 in TS and SIGLEC15 in TC or TS was an independent predictor of PFS, and a positive correlation was shown between SIGLEC10 and SIGLEC15 expression in TS. CONCLUSIONS Therefore, our results indicate that SIGLEC10 and SIGLEC15 may be applied as significant prognostic markers for PTC and attractive targets for THCA immunotherapy.
Collapse
Affiliation(s)
- Tiefeng Jin
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Wei Wang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Li
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
46
|
Wang Z, Yang L, Wang W, Zhou H, Chen J, Ma Z, Wang X, Zhang Q, Liu H, Zhou C, Guo Z, Zhang X. Comparative immunological landscape between pre- and early-stage LUAD manifested as ground-glass nodules revealed by scRNA and scTCR integrated analysis. Cell Commun Signal 2023; 21:325. [PMID: 37957625 PMCID: PMC10644515 DOI: 10.1186/s12964-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/16/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mechanism underlying the malignant progression of precancer to early-stage lung adenocarcinoma (LUAD) as well as their indolence nature remains elusive. METHODS Single-cell RNA sequencing (scRNA) with simultaneous T cell receptor (TCR) sequencing on 5 normal lung tissues, 3 precancerous and 4 early-stage LUAD manifested as pulmonary ground-glass nodules (GGNs) were performed. RESULTS Through this integrated analysis, we have delineated five key modules that drive the malignant progression of early-stage LUAD in a disease stage-dependent manner. These modules are related to cell proliferation and metabolism, immune response, mitochondria, cilia, and cell adhesion. We also find that the tumor micro-environment (TME) of early-stage LUAD manifested as GGN are featured with regulatory T (Tregs) cells accumulation with three possible origins, and loss-functional state (decreased clonal expansion and cytotoxicity) of CD8 + T cells. Instead of exhaustion, the CD8 + T cells are featured with a shift to memory phenotype, which is significantly different from the late stage LUAD. Furthermore, we have identified monocyte-derived macrophages that undergo a lipid-phenotype transition and may contribute to the suppressive TME. Intense interaction between stromal cells, myeloid cells including lipid associated macrophages and LAMP3 + DCs, and lymphocytes were also characterized. CONCLUSIONS Our work provides new insight into the molecular and cellular mechanism underlying malignant progression of LUAD manifested as GGN, and pave way for novel immunotherapies for GGN. Video Abstract.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Wenqiang Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Huanhuan Zhou
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeheng Ma
- Department of Thoracic Surgery Department, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Xiaoyan Wang
- Department of Pathological Department, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Haiyang Liu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Chao Zhou
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Zhiping Guo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China.
- Henan Provincial Key Laboratory of Chronic Diseases and Health Management, Zhengzhou, 450003, Henan, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
47
|
Alqurashi H, Alsharief M, Perciato ML, Raven B, Ren K, Lambert DW. Message in a bubble: the translational potential of extracellular vesicles. J Physiol 2023; 601:4895-4905. [PMID: 37795936 PMCID: PMC10952456 DOI: 10.1113/jp282047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-enclosed vesicles released by cells into the extracellular milieu. They are found in all body fluids and contain a variety of functional cargo including DNA, RNA, proteins, glycoproteins and lipids, able to provoke phenotypic responses in cells, both locally and at distant sites. They are implicated in a wide array of physiological and pathological processes and hence have attracted considerable attention in recent years as potential therapeutic targets, drug delivery vehicles and biomarkers of disease. In this review we summarise the major functions of EVs in health and disease and discuss their translational potential, highlighting opportunities of - and challenges to - capitalising on our rapidly increasing understanding of EV biology for patient benefit.
Collapse
Affiliation(s)
- H. Alqurashi
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- College of DentistryKing Faisal UniversitySaudi Arabia
| | - M. Alsharief
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - M. L. Perciato
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - B. Raven
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- Healthy Lifespan InstituteUniversity of SheffieldSheffieldUK
| | - K. Ren
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - D. W. Lambert
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- Healthy Lifespan InstituteUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
48
|
Zhang D, Sun R, Di C, Li L, Zhao F, Han Y, Zhang W. Microdissection of cancer-associated fibroblast infiltration subtypes unveils the secreted SERPINE2 contributing to immunosuppressive microenvironment and immuotherapeutic resistance in gastric cancer: A large-scale study integrating bulk and single-cell transcriptome profiling. Comput Biol Med 2023; 166:107406. [PMID: 37729702 DOI: 10.1016/j.compbiomed.2023.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
In the era of immunotherapy, the suboptimal response rate and the development of acquired resistance among the initial beneficiaries continue to present significant challenges across multiple malignancies, including gastric cancer (GC). Considering that the interactions of tumor stroma, especially the cancer-associated fibroblasts (CAFs), with immune and tumor cells, play indispensable roles in tumor progression, tumor microenvironment remodeling and therapeutic responsiveness, in-depth exploration on the roles of CAFs and pivotal mediators of their functions may provide novel clues to increase the effectiveness of current immunotherapeutic drugs and further achieve synergistic antitumor response. Herein, through the consensus clustering of canonical biomarkers, three GC subclasses with different abundance of CAFs were virtually microdissected in four integrated bulk cohorts encompassing 2148 GC patients from 11 independent datasets. An extensive immunogenomic analysis revealed that tumors with high CAFs infiltration were characterized with unfavorable outcomes, aggressive phenotypes, decreased tumor immunogenicity, high risk of immune evasion and thus immunotherapeutic resistance. By leveraging large-scale single-cell transcriptomic profiling, a series of CAF-secreted proteins were identified, among which the SERPINE2 was confirmed to be restrictively enriched in stromal fibroblasts of GC tissues and contribute to promoting a protumor milieu and fostering an immunosuppressive microenvironment via bioinformatics computations and tissue microarray analysis. Moreover, pan-cancer investigations generalized the immunological roles of SERPINE2, especially in pan-gastrointestinal malignancies, with multiple real-world immunotherapy cohorts further confirming its implications on predicting immunotherapeutic efficacy. In conclusion, these findings suggest that the CAF-derived SERPINE2 is a promising immune-oncology target with therapeutic implications to further synergize the immunotherapeutic combinations.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Breast and Thyroid Surgery, General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Breast and Thyroid Surgery, General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China.
| | - Rui Sun
- Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Chenyu Di
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Li
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Han
- Department of Pathology, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - Wenjie Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250011, China; Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250011, China.
| |
Collapse
|
49
|
Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol 2023; 14:1285540. [PMID: 37965341 PMCID: PMC10641410 DOI: 10.3389/fimmu.2023.1285540] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
50
|
Stringer BW, De Silva MI, Greenberg Z, Noreña Puerta A, Adams R, Milky B, Zabolocki M, van den Hurk M, Ebert LM, Fairly Bishop C, Conn SJ, Kichenadasse G, Michael MZ, Ormsby RJ, Poonoose S, Bardy C. Human cerebrospinal fluid affects chemoradiotherapy sensitivities in tumor cells from patients with glioblastoma. SCIENCE ADVANCES 2023; 9:eadf1332. [PMID: 37878712 PMCID: PMC10599627 DOI: 10.1126/sciadv.adf1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
Cancers in the central nervous system resist therapies effective in other cancers, possibly due to the unique biochemistry of the human brain microenvironment composed of cerebrospinal fluid (CSF). However, the impact of CSF on cancer cells and therapeutic efficacy is unknown. Here, we examined the effect of human CSF on glioblastoma (GBM) tumors from 25 patients. We found that CSF induces tumor cell plasticity and resistance to standard GBM treatments (temozolomide and irradiation). We identified nuclear protein 1 (NUPR1), a transcription factor hampering ferroptosis, as a mediator of therapeutic resistance in CSF. NUPR1 inhibition with a repurposed antipsychotic, trifluoperazine, enhanced the killing of GBM cells resistant to chemoradiation in CSF. The same chemo-effective doses of trifluoperazine were safe for human neurons and astrocytes derived from pluripotent stem cells. These findings reveal that chemoradiation efficacy decreases in human CSF and suggest that combining trifluoperazine with standard care may improve the survival of patients with GBM.
Collapse
Affiliation(s)
- Brett W. Stringer
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Manam Inushi De Silva
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Zarina Greenberg
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Alejandra Noreña Puerta
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Robert Adams
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bridget Milky
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael Zabolocki
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mark van den Hurk
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Lisa M. Ebert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Christine Fairly Bishop
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Medical Centre, SA Health, Adelaide, SA, Australia
| | - Simon J. Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ganessan Kichenadasse
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Medical Centre, SA Health, Adelaide, SA, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Medical Centre, SA Health, Adelaide, SA, Australia
| | - Rebecca J. Ormsby
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Santosh Poonoose
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|