1
|
Chen X, Pang X, Zhao Y, Zhao X, Liu Y, Jing F, Yuan H, Chen X, Li T, Wang Y, Liu Y, Han J, Zhang J, Wang J, Zhang Z. 68Ga-DOTA-FAPI-04 and 18F-FDG PET/CT: a head-to-head comparison for peritoneal carcinomatosis diagnostic accuracy. Abdom Radiol (NY) 2025:10.1007/s00261-024-04653-6. [PMID: 39751881 DOI: 10.1007/s00261-024-04653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE The study aimed to compare the diagnostic accuracy of 68Ga-DOTA-FAPI-04 (68Ga-FAPI) and 18F-FDG PET/CT for peritoneal carcinomatosis (PC) in patients with various types of cancer. METHODS The study enrolled 113 patients with suspected peritoneal malignancy, each of whom underwent 68Ga-FAPI and 18F-FDG PET/CT scans. Lesions in all patients were confirmed through pathology or radiological follow-up. The evaluation and comparison of diagnostic performance, visual scores, maximum standardized uptake value (SUVmax), mean tumor-to-background ratio (TBR), and the peritoneal cancer index (PCI) score were conducted. RESULTS Compared to 18F-FDG, 68Ga-FAPI PET/CT presented higher sensitivity, negative predictive value, and accuracy for detecting PC on a patient-level (100% vs. 93.2%, 100% vs. 22.22% and 93.81% vs. 86.73%, respectively). Semi-quantitative evaluation revealed that 68Ga-FAPI PET/CT had significantly higher SUVmax and TBR for PC [(6.06 ± 3.04 vs. 4.82 ± 2.75, P = 0.001) and (8.50 ± 5.01 vs. 2.92 ± 1.67, P < 0.001)]. The PCI-FAPI score for PC was higher than the PCI-FDG score (11.28 ± 7.10 vs. 5.69 ± 5.15, P < 0.001). CONCLUSIONS 68Ga-FAPI has demonstrated superior diagnostic accuracy compared to 18F-FDG PET/CT in detecting PC with various types of cancer, particularly gastric cancer. Additionally, 68Ga-FAPI has shown significantly higher uptake and PCI score in PC compared to 18F-FDG, indicating its potential importance in clinical.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Xiao Pang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Yan Zhao
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| | - Yunuan Liu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Fenglian Jing
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Huiqing Yuan
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Xiaoshan Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Tianyue Li
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Yingchen Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Yali Liu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Zhaoqi Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
2
|
Ferreira LP, Jorge C, Henriques-Pereira M, Monteiro MV, Gaspar VM, Mano JF. Flow-on-repellent biofabrication of fibrous decellularized breast tumor-stroma models. BIOMATERIALS ADVANCES 2025; 166:214058. [PMID: 39442360 DOI: 10.1016/j.bioadv.2024.214058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
On-the-fly biofabrication of reproducible 3D tumor models at a pre-clinical level is highly desirable to level-up their applicability and predictive potential. Incorporating ECM biomolecular cues and its complex 3D bioarchitecture in the design stages of such in vitro platforms is essential to better recapitulate the native tumor microenvironment. To materialize these needs, herein we describe an innovative flow-on-repellent (FLORE) 3D extrusion bioprinting technique that leverages expedited and automatized bioink deposition onto a customized superhydrophobic printing bed. We demonstrate that this approach enables the rapid generation of quasi-spherical breast cancer-stroma hybrid models in a mode governed by surface wettability rather than bioink rheological features. For this purpose, an ECM-mimetic bioink comprising breast tissue-specific decellularized matrix in the form of microfiber bundles (dECM-μF) and photocrosslinkable hyaluronan (HAMA), was formulated to generate triple negative breast tumor-stroma models. Leveraging on the FLORE bioprinting approach, a rapid, automated, and reproducible fabrication of physiomimetic breast cancer hydrogel beads was successfully demonstrated. Hydrogel beads size with and without dECM-μF was easily tailored by modelling droplet deposition time on the superhydrophobic bed. Interestingly, in heterotypic breast cancer-stroma beads a self-arrangement of different cellular populations was observed, independent of dECM-μF inclusion, with CAFs clustering overtime within the fabricated models. Drug screening assays showed that the inclusion of CAFs and dECM-μF also impacted the overall response of these living constructs when incubated with gemcitabine chemotherapeutics, with dECM-μF integration promoting a trend for higher resistance in ECM-enriched models. Overall, we developed a rapid fabrication approach leveraging on extrusion bioprinting and superhydrophobic surfaces to process photocrosslinkable dECM bioinks and to generate increasingly physiomimetic tumor-stroma-matrix platforms for drug screening.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carole Jorge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Margarida Henriques-Pereira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Fan G, Dai L, Xie T, Li L, Tang L, Han X, Shi Y. Spatial analyses revealed CXCL5 and SLC6A14 as the markers of microvascular invasion in intrahepatic cholangiocarcinoma. Hepatol Commun 2025; 9:e0597. [PMID: 39670859 PMCID: PMC11637745 DOI: 10.1097/hc9.0000000000000597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is a critical prognostic factor in intrahepatic cholangiocarcinoma (ICC), strongly associated with postoperative recurrence. However, the phenotypic features and spatial organization of MVI remain inadequately understood. METHODS We performed a spatial transcriptomic analysis on 29,632 spots from six ICC samples, manually delineating MVI clusters using the cloupe software. Key biomarkers were identified and validated in an independent cohort of 135 ICC patients. Functional and survival analyses were conducted to assess clinical relevance, and cell-cell communication pathways were investigated. RESULTS MVI regions exhibited heightened proliferation, angiogenesis, and epithelial-mesenchymal transition, driven by increased expression of transcription factors SOX10, ZEB1, and SNAI2. CXCL5 and SLC6A14 were identified as potential MVI biomarkers and showed high expression in tumor-invasive areas. Serum CXCL5 demonstrated strong predictive power for vascular invasion (AUC = 0.92) and intrahepatic metastasis (AUC = 0.96). High expression of both CXCL5 and SLC6A14 was associated with the worst survival outcomes. MVI regions were enriched with immunosuppressive MRC1+ macrophages and exhibited elevated immune checkpoint expression, including HAVCR2 and TIGHT, indicative of immune resistance. Cell-cell communication analysis revealed CXCL5-CXCR2 and LGALS9-HAVCR2 as key ligand-receptor pairs contributing to the immunosuppressive microenvironment. CONCLUSIONS This study identifies CXCL5 and SLC6A14 as key biomarkers of MVI, highlighting their roles in tumor proliferation, immune resistance, and poor clinical outcomes. These findings provide valuable insights into the spatial organization of MVI and its contribution to ICC progression, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| | - Xiaohong Han
- Department of Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Chaoyang District, Beijing, China
| |
Collapse
|
4
|
Wang C, Dong D, Zhao N, Liu Y, Bai C, Hua J, Cui R, Wei X, Zhao T, Ji N, Yang S, Zhao J, Li H, Li Y. Tumor-derived CCL15 regulates RNA m 6A methylation in cancer-associated fibroblasts to promote hepatocellular carcinoma growth. Cancer Lett 2024:217420. [PMID: 39734010 DOI: 10.1016/j.canlet.2024.217420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy characterized by rapid growth. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) significantly influences HCC progression. CCL15, a CC chemokine family member, is predominantly expressed in HCC and strongly correlates with tumor size, indicating its critical role in HCC growth. However, previous studies suggest that CCL15 does not directly stimulate cancer cell proliferation. The specific role and mechanism of CCL15 in HCC proliferation remain unknown. Here, we identified that CCL15 was predominantly overexpressed by HCC cells through single-cell RNA sequencing data and immunofluorescence. We discovered that CCL15 promotes HCC growth by stimulating the crosstalk between HCC cells and CAFs via CCR1 signaling, as evidenced by co-culture assays, organoid models, and allograft models. Mechanistically, CCL15 induced the expression of FTO in CAFs through the STAT3 pathway. By m6A sequencing and RNA sequencing, we found that CEBPA mRNA, a transcription factor regulating CXCL5 expression, was a target of FTO. CXCL5, secreted by CAFs, activated the CXCR2 receptor on HCC cells and enhanced their proliferation. Notably, we found that interfering with CCL15 signaling using a neutralizing antibody attenuated HCC growth in heterotypic co-injection and patient-derived xenograft murine models. Finally, CXCL5 also upregulated CCL15 expression in HCC cells by modulating P53 expression through MDM2, forming a positive feedback loop. Our study unveiled CCL15 as a key mediator in HCC progression, facilitating communication between HCC cells and CAFs. This highlights a novel regulatory axis in HCC and suggests that targeting CCL15 could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Chaomin Wang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Na Zhao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Yang Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China; Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, P. R. China
| | - Changsen Bai
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Jialei Hua
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Ranliang Cui
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Ting Zhao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Ning Ji
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
| | - Shuaini Yang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Jie Zhao
- Department of kidney transplantation, Tianjin First Central Hospital, Tianjin, 300110, P. R. China.
| | - Huikai Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China; Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, P. R. China.
| | - Yueguo Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China.
| |
Collapse
|
5
|
Yang JP, Kulkarni NN, Yamaji M, Shiraishi T, Pham T, Do H, Aiello N, Shaw M, Nakamura T, Abiru A, Gavva NR, Horman SR. Unveiling immune cell response disparities in human primary cancer-associated fibroblasts between two- and three-dimensional cultures. PLoS One 2024; 19:e0314227. [PMID: 39700125 DOI: 10.1371/journal.pone.0314227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play pivotal roles in solid tumor initiation, growth, and immune evasion. However, the optimal biomimetic modeling conditions remain elusive. In this study, we investigated the effects of 2D and 3D culturing conditions on human primary CAFs integrated into a modular tumor microenvironment (TME). Using single-nucleus RNA sequencing (snRNAseq) and Proteomics' Proximity Extension Assays, we characterized CAF transcriptomic profiles and cytokine levels. Remarkably, when cultured in 2D, CAFs exhibited a myofibroblast (myCAF) subtype, whereas in 3D tumor spheroid cultures, CAFs displayed a more inflammatory (iCAF) pathological state. By integrating single-cell gene expression data with functional interrogations of critical TME-related processes [natural killer (NK)-mediated tumor killing, monocyte migration, and macrophage differentiation], we were able to reconcile form with function. In 3D TME spheroid models, CAFs enhance cancer cell growth and immunologically shield cells from NK cell-mediated cytotoxicity, in striking contrast with their 2D TME counterparts. Notably, 3D CAF-secreted proteins manifest a more immunosuppressive profile by enhancing monocyte transendothelial migration and differentiation into M2-like tumor-associated macrophages (TAMs). Our findings reveal a more immunosuppressive and clinically relevant desmoplastic TME model that can be employed in industrial drug discovery campaigns to expand the cellular target range of chemotherapeutics.
Collapse
Affiliation(s)
- Jian-Ping Yang
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Nikhil Nitin Kulkarni
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Masashi Yamaji
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | | | - Thang Pham
- BioTuring, San Diego, California, United States of America
| | - Han Do
- BioTuring, San Diego, California, United States of America
| | - Nicole Aiello
- Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Michael Shaw
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | | | - Akiko Abiru
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Narender R Gavva
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Shane R Horman
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| |
Collapse
|
6
|
Cui C, Zhang H, Yang C, Yin M, Teng X, Yang M, Kong D, Zhang J, Peng W, Chu Z, Wang J, Sun Y, Kang L, Lyu B, Gao Q, Wu M, Wang Y, Li Y. Inhibition of JNK Signaling Overcomes Cancer-Associated Fibroblast-Mediated Immunosuppression and Enhances the Efficacy of Immunotherapy in Bladder Cancer. Cancer Res 2024; 84:4199-4213. [PMID: 39292817 DOI: 10.1158/0008-5472.can-24-0940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Currently, only 20% to 40% of patients with cancer benefit from immune checkpoint inhibitors. Understanding the mechanisms underlying the immunosuppressive tumor microenvironment (TME) and characterizing dynamic changes in the immunologic landscape during treatment are critical for improving responsiveness to immunotherapy. In this study, we identified JNK signaling in cancer-associated fibroblasts (CAF) as a regulator of the immunosuppressive TME. Single-cell RNA sequencing of bladder cancer samples treated with a JNK inhibitor revealed enhanced cytotoxicity and effector functions of CD8+ T cells. In untreated tumors, CAFs interacted frequently with CD8+ T cells and mediated their exhaustion. JNK inhibition abrogated the immunosuppression function of CAFs by downregulating the expression of thymic stromal lymphopoietin (TSLP), thereby restoring CD8+ T-cell cytotoxicity. In addition, blockade of CAF-derived TSLP in combination with anti-PD-1 treatment promoted tumor elimination by CD8+ T cells in vivo. Collectively, these results indicate that JNK signaling plays an important immunosuppressive role in the TME by promoting expression of TSLP in CAFs and suggest that inhibiting JNK signaling could be a promising immunotherapeutic strategy for cancer treatment. Significance: JNK signaling promotes the secretion of TSLP by bladder cancer-associated fibroblasts to impede CD8+ T-cell activity, which can be circumvented by combination treatment targeting JNK signaling and PD-1.
Collapse
Affiliation(s)
- Chengying Cui
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Haojie Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, China
| | - Congcong Yang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Mingwei Yin
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinkun Teng
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Miaomiao Yang
- The First Affiliated Hospital of Anhui Medical University, Pathology Center, Hefei, China
- Anhui Public Health Clinical Center, Pathology Center, Hefei, China
| | - Dejie Kong
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Jinzhi Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Weidong Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhimin Chu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Jingjing Wang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Yating Sun
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Liping Kang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Bin Lyu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Qian Gao
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Mingqing Wu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Yongqiang Wang
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
8
|
Saadh MJ, Allela OQB, Kareem RA, Chandra M, Malathi H, Nathiya D, Kapila I, Sameer HN, Hamad AK, Athab ZH, Adil M. Exosomal signaling in gynecologic cancer development: The role of cancer-associated fibroblasts. Pathol Res Pract 2024; 266:155766. [PMID: 39689399 DOI: 10.1016/j.prp.2024.155766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Gynecologic cancer, a prevalent and debilitating disease affecting women worldwide, is characterized by the uncontrolled proliferation of cells in the reproductive organs. The complex etiology of gynecologic cancer encompasses multiple subtypes, including cervical, ovarian, uterine, vaginal, and vulvar cancers. Despite optimal treatment strategies, which typically involve cytoreductive surgery and platinum-based chemotherapy, gynecologic cancer frequently exhibits recalcitrant relapse and poor prognosis. Recent studies have underscored the significance of the tumor microenvironment in ovarian carcinogenesis, particularly with regards to the discovery of aberrant genomic, transcriptomic, and proteomic profiles. Within this context, cancer-associated fibroblasts (CAFs) emerge as a crucial component of the stromal cell population, playing a pivotal role in oncogenesis and cancer progression. CAF-derived exosomes, small extracellular vesicles capable of conveying biological information between cells, have been implicated in a range of tumor-related processes, including tumorigenesis, cell proliferation, metastasis, drug resistance, and immune responses. Furthermore, aberrant expression of CAF-derived exosomal noncoding RNAs and proteins has been found to strongly correlate with clinical and pathological characteristics of gynecologic cancer patients. Our review provides a novel perspective on the role of CAF-derived exosomes in gynecologic cancer, highlighting their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ish Kapila
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
9
|
Wang H, Xiong A, Chen X, Guo J, Tang Z, Wu C, Ren S, Zhou C, Chen J, Hou L, Jiang T. CXCR1 + neutrophil infiltration orchestrates response to third-generation EGFR-TKI in EGFR mutant non-small-cell lung cancer. Signal Transduct Target Ther 2024; 9:342. [PMID: 39638994 PMCID: PMC11621634 DOI: 10.1038/s41392-024-02045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Although third-generation Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) is standard of care for patients with EGFR-mutant Non-small cell lung cancer (NSCLC), little is known about the predictors of response or resistance. Here, we integrated single-cell RNA (scRNA) sequencing, bulk RNA sequencing, multiplexed immunofluorescence and flow cytometry data from pretreatment and post-resistant tumor samples of EGFR-mutant NSCLC patients received third-generation EGFR-TKIs. We show that resistant samples had a markedly enriched CXCR1+ neutrophils infiltration (P < 0.01) than pretreatment samples, which were distinguished from other subtypes of neutrophils and displayed immunosupressive characteristics. Spatial analysis showed that increased CXCR1+ neutrophils predominantly infiltrated into the tumor core in resistant samples and the average distance of neutrophils to tumor cells markedly reduced from 33 to 19 μm. Deep analysis of scRNA and bulk RNA sequencing data revealed the increased interactions between CXCR1+ neutrophils and tumor cells and activated TNF-α/NF-κB signaling pathway in tumor cells of resistant samples. In vitro and in vivo experiments validated that CXCR1+ neutrophils resulted in resistance to third-generation EGFR-TKI via activating TNF-α/NF-κB signaling pathway in tumor cells. Importantly, patients with low pretreatment CXCR1+ neutrophil infiltration abundance had a dramatically longer progression-free survival (11.8 vs. 7.5 months; P = 0.019) and overall survival (33.0 vs. 23.5 months; P = 0.029) than those with high infiltration abundance. Collectively, these findings suggest that CXCR1+ neutrophils infiltration was associated with the efficacy of third-generation EGFR-TKI in patients with EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Junhong Guo
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
11
|
Lacina L, Kolář M, Pfeiferová L, Gál P, Smetana K. Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol 2024; 15:1403570. [PMID: 39676864 PMCID: PMC11638159 DOI: 10.3389/fimmu.2024.1403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
Collapse
Affiliation(s)
- Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc., Košice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| |
Collapse
|
12
|
Jiang Y, Fu Z, Chen Y, Jin Q, Yang Y, Lin Z, Li C, Gao Y, Dong Z, He Y, Mao X, He Y, Zhang Q, Zhang Q, Li N. Mapping and tracing Grem1 + stromal cells in an Apc Min/+ mouse utilizing cryopreserved intestinal sections prepared via modified Swiss-roll technique. iScience 2024; 27:111173. [PMID: 39563897 PMCID: PMC11574797 DOI: 10.1016/j.isci.2024.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/18/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024] Open
Abstract
Grem1+ cancer-associated fibroblasts (CAFs) are crucial in colorectal cancer (CRC) development, yet technical challenges have limited understanding of their origins, spatiotemporal distribution, and potential roles. Here, we devised a custom mold, optimizing the gut Swiss-roll technique to create a single cryopreserved slide for comprehensive staining. Our integrated approach uncovered a marked increase in Grem1+ CAFs within Apc Min/+ mouse tumors at 12 weeks, compared to normal mucosa. Subsequent lineage tracing in Grem1-CreER T2 ; R26-LSL-tdTomato; Apc Min/+ mice revealed that most Grem1+ CAFs infiltrating the tumor core originated from Grem1+ intestinal reticular stem cells (iRSCs). A minor subset of Grem1+ CAFs, located in the submucosa, retained characteristics of Grem1+ intestinal sub-epithelial myofibroblasts (ISEMFs). Altogether, CAFs derived from Grem1+ iRSCs may serve as a principal stromal cell type driving early-stage CRC progression, while Grem1+ ISEMFs contribute less from a more distant location. Hence, targeting Grem1+ CAFs presents an early and promising therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Youheng Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhang Fu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Geriatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfang Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qunlong Jin
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanming Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zerong Lin
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Changxue Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yunfei Gao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zepeng Dong
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yang He
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518107, China
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yulong He
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyuan Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Qi Zhang
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- China-UK Institute for Frontier Science, Shenzhen 518107, China
| |
Collapse
|
13
|
Song D, Wu Y, Li J, Liu J, Yi Z, Wang X, Sun J, Li L, Wu Q, Chen Y, Fang H, Luan T, Du H, Huang J, Peng W, Wei Y, Li F, Li Q, Zhang L, Zhu Y, Wan J, Ren G, Li H. Insulin-like growth factor 2 drives fibroblast-mediated tumor immunoevasion and confers resistance to immunotherapy. J Clin Invest 2024; 134:e183366. [PMID: 39545420 PMCID: PMC11563680 DOI: 10.1172/jci183366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
T cell exclusion is crucial in enabling tumor immune evasion and immunotherapy resistance. However, the key genes driving this process remain unclear. We uncovered a notable increase of insulin-like growth factor 2 (IGF2) in immune-excluded tumors, predominantly secreted by cancer-associated fibroblasts (CAFs). Using mice with systemic or fibroblast-specific deletion of IGF2, we demonstrated that IGF2 deficiency enhanced the infiltration and cytotoxic activity of CD8+ T cells, leading to a reduction in tumor burden. Integration of spatial and single-cell transcriptomics revealed that IGF2 promoted interaction between CAFs and T cells via CXCL12 and programmed death ligand 1 (PD-L1). Mechanistically, autocrine IGF2 activated PI3K/AKT signaling by binding to the IGF1 receptor (IGF1R) on CAFs, which was required for the immunosuppressive functions of CAFs. Furthermore, genetic ablation of IGF2 or targeted inhibition of the IGF2/IGF1R axis with the inhibitor linsitinib markedly boosted the response to immune checkpoint blockade. Clinically, elevated levels of IGF2 in tumors or plasma correlated with an adverse prognosis and reduced efficacy of anti-programmed death 1 treatment. Together, these results highlight the pivotal role of IGF2 in promoting CAF-mediated immunoevasion, indicating its potential as a biomarker and therapeutic target in immunotherapy.
Collapse
Affiliation(s)
- Daqiang Song
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology
| | - Jie Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhou Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, and
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liuying Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianxue Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tiankuo Luan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Breast and Thyroid Surgery, and
| | - Fan Li
- Department of Breast and Thyroid Surgery, and
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Department of Pathophysiology and
| | - Yong Zhu
- Research Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast and Thyroid Surgery, and
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Tian H, Zhu N, Wang H, Li Y, Yang Q, Chen H, Zhou Z, Tan J, Zheng H, Xie J, Li W, Liang M, Guo Z, Li Z. Self-Oxygenated Hydrogel Enhances Immune Cell Response and Infiltration Via Triggering Dual DNA Damage to Activate cGAS-STING and Inhibiting CAFs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403428. [PMID: 39051518 DOI: 10.1002/smll.202403428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer promise in breaking through the treatment and survival dilemma of triple-negative breast cancer (TNBC), yet only immunomodulatory subtype and ≈5% TNBC patients respond as monotherapy due to lack of effector immune cells (internal problem) and physical barrier (external limitation) formed by cancer-associated fibroblasts (CAFs). A hydrogel drug-delivery platform, ALG@TBP-2/Pt(0)/nintedanib (ALG@TPN), is designed to induce strong immune functions and the dual elimination of the internal and external tumor microenvironment (TME). Activated by white light, through type I and II photodynamic therapy (PDT), TBP-2 generates large amounts of reactive oxygen species (ROS) intracellularly, oxidizing mitochondrial DNA (mtDNA). The unique catalase activity of Pt(0) converts endogenous H2O2 to O2, reducing the anoxia-limiting PDT and enhancing ROS generation efficacy. Abundant ROS can oxidize Pt(0) to cytotoxic Pt(II), damaging the nuclear DNA (nDNA). Dual damage to mtDNA and nDNA might bi-directionally activate the cGAS/STING pathway and enhance the immune cell response. Besides, nintedanib demonstrates a significant inhibitory effect on CAFs, weakening the immune barrier and deepening immune cell infiltration. Overall, the study provides a self-oxygenating hydrogel with the "PDT/chemotherapy/anti-CAFs" effect, triggering the cGAS/STING pathway to reshape the TME. Both internal and external interventions increase anti-TNBC immune responses.
Collapse
Affiliation(s)
- Huiting Tian
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Nan Zhu
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haiting Wang
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Yanpo Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Qiuping Yang
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Haolin Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Zhongming Zhou
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Jianhui Tan
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Huihui Zheng
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Jiayi Xie
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Wei Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421008, China
| | - Min Liang
- Department of Oncology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhaoze Guo
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| |
Collapse
|
15
|
Yan H, Wang P, Zhou Q, Dong X, Wang Q, Yuan Z, Zhai B, Zhou Y. Eupafolin hinders cross-talk between gastric cancer cells and cancer-associated fibroblasts by abrogating the IL18/IL18RAP signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155984. [PMID: 39265444 DOI: 10.1016/j.phymed.2024.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 08/25/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are involved in the progression of gastric cancer (GC) as a critical component of the tumor microenvironment (TME), yet specific interventions remain limited. Natural products hold a promising application prospect in the field of anti-tumor in view of their high activity and ease of binding with biological macromolecules. However, the role of natural products in modulating the cross-talk between CAFs and GC cells has not been fully investigated. PURPOSE The aim of this study was to identify a potential therapeutic target in CAFs and then screen for natural small molecule drugs with anti-tumor activity against this target. METHODS Integrating bioinformatics analysis of public databases and experimental validation of human samples and cell lines to identify a candidate target in CAFs. Molecular docking and biolayer interferometry technique were utilized for screening potential natural small molecule drugs. The efficacy and underlying mechanisms of the candidates were explored in vitro and in vivo through techniques such as lentiviral infection, cell spheroids culture, immunoprecipitation and cells-derived xenografts. RESULTS IL18 receptor accessory protein (IL18RAP) was found to be overexpressed in CAFs derived from GC tissues and facilitated the protumor function of CAFs on GC. Based on virtual screening and experimental validation, we identified a natural product, eupafolin, that interfered with IL18 signaling. Phenotyping studies confirmed that the proliferation, spheroids formation and tumorigenesis of GC cells facilitated by CAFs were greatly attenuated by eupafolin both in vitro and in vivo. Mechanistically, eupafolin impeded the formation of IL18 receptor (IL18R) complex by directly binding to IL18RAP, thus blocking IL18-mediated nuclear factor kappa B (NF-κB) activation and reduced the synthesis and secretion of IL6 in CAFs. As a consequence, it inactivated signal transducer and activator of transcription 3 (STAT3) in GC cells. CONCLUSION This study provides new evidence that IL18 signaling regulates the cross-talk between GC cells and CAFs. And it highlights a novel pharmacological role of eupafolin in inhibiting IL18 signaling, thereby curbing the development of GC via modulating CAFs.
Collapse
Affiliation(s)
- Hui Yan
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Penggao Wang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiangyang Dong
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qionglin Wang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Bo Zhai
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Yang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
16
|
Zeng J, Nie Z, Shang Y, Mai J, Zhang Y, Yang Y, Xu C, Zhao J, Fan Z, Xiao J. CancerSCEM 2.0: an updated data resource of single-cell expression map across various human cancers. Nucleic Acids Res 2024:gkae954. [PMID: 39460627 DOI: 10.1093/nar/gkae954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The field of single-cell RNA sequencing (scRNA-seq) has advanced rapidly in the past decade, generating significant amounts of valuable data for researchers to study complex tumor profiles. This data is crucial for gaining innovative insights into cancer biology. CancerSCEM (https://ngdc.cncb.ac.cn/cancerscem) is a public resource that integrates, analyzes and visualizes scRNA-seq data related to cancer, and it provides invaluable support to numerous cancer-related studies. With CancerSCEM 2.0, scRNA-seq data have increased from 208 to 1466 datasets, covering tumor, matching-normal and peripheral blood samples across 127 research projects and 74 cancer types. The new version of this resource enhances transcriptome analysis by adding copy number variation evaluation, transcription factor enrichment, pseudotime trajectory construction, and diverse biological feature scoring. It also introduces a new cancer metabolic map at the single-cell level, providing an intuitive understanding of metabolic regulation across different cancer types. CancerSCEM 2.0 has a more interactive analysis platform, including four modules and 14 analytical functions, allowing researchers to perform cancer scRNA-seq data analyses in various dimensions. These enhancements are expected to expand the usability of CancerSCEM 2.0 to a broader range of cancer research and clinical applications, potentially revolutionizing our understanding of cancer mechanisms and treatments.
Collapse
Affiliation(s)
- Jingyao Zeng
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi Nie
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfei Shang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Mai
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yadong Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuntian Yang
- Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenle Xu
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingfa Xiao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Puebla-Osorio N, Fowlkes NW, Barsoumian HB, Xega K, Srivastava G, Kettlun-Leyton C, Nizzero S, Voss T, Riad TS, Wong C, Huang A, Hu Y, Mitchell J, Kim M, Rafiq Z, He K, Sezen D, Hsu E, Masrorpour F, Maleki A, Leuschner C, Cortez MA, Oertle P, Loparic M, Plodinec M, Markman JL, Welsh JW. Enhanced tumor control and survival in preclinical models with adoptive cell therapy preceded by low-dose radiotherapy. Front Oncol 2024; 14:1407143. [PMID: 39445067 PMCID: PMC11496962 DOI: 10.3389/fonc.2024.1407143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Effective infiltration of chimeric antigen receptor T (CAR-T) cells into solid tumors is critical for achieving a robust antitumor response and improving therapeutic outcomes. While CAR-T cell therapies have succeeded in hematologic malignancies, their efficacy in solid tumors remains limited due to poor tumor penetration and an immunosuppressive tumor microenvironment. This study aimed to evaluate the potential of low-dose radiotherapy (LDRT) administered before T-cell therapy to enhance the antitumor effect by promoting CAR-T cell infiltration. We hypothesized that combining LDRT with T-cell therapy would improve tumor control and survival compared to either treatment alone. Methods We investigated this hypothesis using two NSG mouse models bearing GSU or CAPAN-2 solid tumors. The mice were treated with engineered CAR-T cells targeting guanyl cyclase-C (GCC) or mesothelin as monotherapy or in combination with LDRT. Additionally, we extended this approach to a C57BL/6 mouse model implanted with MC38-gp100+ cells, followed by adoptive transfer of pmel+ T cells before and after LDRT. Tumor growth and survival outcomes were monitored in all models. Furthermore, we employed atomic force microscopy (AFM) in a small cohort to assess the effects of radiotherapy on tumor stiffness and plasticity, exploring the role of tumor nanomechanics as a potential biomarker for treatment efficacy. Results Our results demonstrated enhanced tumor control and prolonged survival in mice treated with LDRT followed by T-cell therapy across all models. The combination of LDRT with CAR-T or pmel+ T-cell therapy led to superior tumor suppression and survival compared to monotherapy, highlighting the synergistic impact of the combined approach. Additionally, AFM analysis revealed significant changes in tumor stiffness and plasticity in response to LDRT, suggesting that the nanomechanical properties of the tumor may be predictive of therapeutic response. Discussion The findings of this study highlight the transformative potential of incorporating LDRT as a precursor to adoptive T-cell therapy in solid tumors. By promoting CAR-T and pmel+ T-cell infiltration into the tumor microenvironment, LDRT enhanced tumor control and improved survival outcomes, offering a promising strategy to overcome the challenges associated with CAR-T therapy in solid tumors. Additionally, the changes in tumor nanomechanics observed through AFM suggest that tumor stiffness and plasticity could be biomarkers for predicting treatment outcomes. These results support further investigation into the clinical application of this combined approach to improve the efficacy of cell-based therapies in patients with solid tumors.
Collapse
Affiliation(s)
- Nahum Puebla-Osorio
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristina Xega
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | | | - Claudia Kettlun-Leyton
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Tiffany Voss
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina Wong
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | - Ailing Huang
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yun Hu
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joylise Mitchell
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingee Kim
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zahid Rafiq
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kewen He
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Duygu Sezen
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Hsu
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aurian Maleki
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carola Leuschner
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Janet L. Markman
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | - James W. Welsh
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Arpinati L, Carradori G, Scherz-Shouval R. CAF-induced physical constraints controlling T cell state and localization in solid tumours. Nat Rev Cancer 2024; 24:676-693. [PMID: 39251836 DOI: 10.1038/s41568-024-00740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Solid tumours comprise cancer cells that engage in continuous interactions with non-malignant cells and with acellular components, forming the tumour microenvironment (TME). The TME has crucial and diverse roles in tumour progression and metastasis, and substantial efforts have been dedicated into understanding the functions of different cell types within the TME. These efforts highlighted the importance of non-cell-autonomous signalling in cancer, mediating interactions between the cancer cells, the immune microenvironment and the non-immune stroma. Much of this non-cell-autonomous signalling is mediated through acellular components of the TME, known as the extracellular matrix (ECM), and controlled by the cells that secrete and remodel the ECM - the cancer-associated fibroblasts (CAFs). In this Review, we delve into the complex crosstalk among cancer cells, CAFs and immune cells, highlighting the effects of CAF-induced ECM remodelling on T cell functions and offering insights into the potential of targeting ECM components to improve cancer therapies.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Carradori
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
19
|
Wang B, Pan Y, Xie Y, Wang C, Yang Y, Sun H, Yan Z, Cui Y, Li L, Zhou Y, Liu W, Pan Z. Metabolic and Immunological Implications of MME +CAF-Mediated Hypoxia Signaling in Pancreatic Cancer Progression: Therapeutic Insights and Translational Opportunities. Biol Proced Online 2024; 26:29. [PMID: 39342097 PMCID: PMC11438378 DOI: 10.1186/s12575-024-00254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Pancreatic cancer is a devastating malignancy with a high mortality rate, poor prognosis, and limited treatment options. The tumor microenvironment (TME) plays a crucial role in tumor progression and therapy resistance. Multiple subpopulations of cancer-associated fibroblasts (CAFs) within the TME can switch between different states, exhibiting both antitumorigenic and protumorigenic functions in pancreatic cancer. It seems that targeting fibroblast-related proteins and other stromal components is an appealing approach to combat pancreatic cancer. This study employed single-cell transcriptome sequencing to identify MME (Membrane Metalloendopeptidase)-expressing CAFs in pancreatic cancer. Systematic screening was conducted based on tumor differentiation, lymph node metastasis, and T-stage parameters to identify and confirm the existence of a subpopulation of fibroblasts termed MME+CAFs. Subsequent analyses included temporal studies, exploration of intercellular communication patterns focusing on the hypoxia signaling pathway, and investigation of MME+CAF functions in the pancreatic cancer microenvironment. The pathway enrichment analysis and clinical relevance revealed a strong association between high MME expression and glycolysis, hypoxia markers, and pro-cancer inflammatory pathways. The role of MME+CAFs was validated through in vivo and in vitro experiments, including high-throughput drug screening to evaluate potential targeted therapeutic strategies. Single-cell transcriptome sequencing revealed tumor-associated fibroblasts with high MME expression, termed MME+CAF, exhibiting a unique end-stage differentiation function in the TME. MME+CAF involvement in the hypoxia signaling pathway suggested the potential effects on pancreatic cancer progression through intercellular communication. High MME expression was associated with increased glycolysis, hypoxia markers (VEGF), and pro-cancer inflammatory pathways in pancreatic cancer patients, correlating with lower survival rates, advanced disease stage, and higher oncogene mutation rates. Animal experiments confirmed that elevated MME expression in CAFs increases tumor burden, promotes an immunosuppressive microenvironment, and enhances resistance to chemotherapy and immunotherapy. The developed MME+CAF inhibitor IOX2 (a specific prolyl hydroxylase-2 (PHD2) inhibitor), combined with AG (Paclitaxel + Gemcitabine) and anti-PD1 therapy, demonstrated promising antitumor effects, offering a translational strategy for targeting MME in CAFs of pancreatic cancer. The study findings highlighted the significant role of MME+CAF in pancreatic cancer progression by shaping the TME and influencing key pathways. Targeting MME presented a promising strategy to combat the disease, with potential implications for therapeutic interventions aimed at disrupting MME+CAF functions and enhancing the efficacy of pancreatic cancer treatments.
Collapse
Affiliation(s)
- Bin Wang
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Pan
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin, University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yongjie Xie
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Cong Wang
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yinli Yang
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Haiyan Sun
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhuchen Yan
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yameng Cui
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Ling Li
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yaoyao Zhou
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Weishuai Liu
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Pain Management, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Zhanyu Pan
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Integrative Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
20
|
Basurto-Lozada P, Vázquez-Cruz ME, Molina-Aguilar C, Jiang A, Deacon DC, Cerrato-Izaguirre D, Simonin-Wilmer I, Arriaga-González FG, Contreras-Ramírez KL, Dawson ET, Wong-Ramirez JRC, Ramos-Galguera JI, Álvarez-Cano A, García-Ortega DY, García-Salinas OI, Hidalgo-Miranda A, Cisneros-Villanueva M, Martínez-Said H, Arends MJ, Ferreira I, Tullett M, Olvera-León R, van der Weyden L, del Castillo Velasco Herrera M, Roldán-Marín R, Vidaurri de la Cruz H, Tavares-de-la-Paz LA, Hinojosa-Ugarte D, Belote RL, Bishop DT, Díaz-Gay M, Alexandrov LB, Sánchez-Pérez Y, In GK, White RM, Possik PA, Judson-Torres RL, Adams DJ, Robles-Espinoza CD. Ancestry and somatic profile predict acral melanoma origin and prognosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.21.24313911. [PMID: 39399030 PMCID: PMC11469390 DOI: 10.1101/2024.09.21.24313911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Acral melanoma, which is not ultraviolet (UV)-associated, is the most common type of melanoma in several low- and middle-income countries including Mexico. Latin American samples are significantly underrepresented in global cancer genomics studies, which directly affects patients in these regions as it is known that cancer risk and incidence may be influenced by ancestry and environmental exposures. To address this, here we characterise the genome and transcriptome of 128 acral melanoma tumours from 96 Mexican patients, a population notable because of its genetic admixture. Compared with other studies of melanoma, we found fewer frequent mutations in classical driver genes such as BRAF, NRAS or NF1. While most patients had predominantly Amerindian genetic ancestry, those with higher European ancestry had increased frequency of BRAF mutations and a lower number of structural variants. These BRAF-mutated tumours have a transcriptional profile similar to cutaneous non-volar melanocytes, suggesting that acral melanomas in these patients may arise from a distinct cell of origin compared to other tumours arising in these locations. KIT mutations were found in a subset of these tumours, and transcriptional profiling defined three expression clusters; these characteristics were associated with overall survival. We highlight novel low-frequency drivers, such as SPHKAP, which correlate with a distinct genomic profile and clinical characteristics. Our study enhances knowledge of this understudied disease and underscores the importance of including samples from diverse ancestries in cancer genomics studies.
Collapse
Affiliation(s)
- Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Martha Estefania Vázquez-Cruz
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Christian Molina-Aguilar
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Amanda Jiang
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Dekker C. Deacon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Dennis Cerrato-Izaguirre
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Irving Simonin-Wilmer
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Fernanda G. Arriaga-González
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Kenya L. Contreras-Ramírez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | | | - J. Rene C. Wong-Ramirez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johana Itzel Ramos-Galguera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Alethia Álvarez-Cano
- Surgical Oncology, Christus Muguerza Alta Especialidad, Monterrey, Nuevo Leon, Mexico
| | - Dorian Y. García-Ortega
- Surgical Oncology, Skin, Soft Tissue & Bone Tumors Department, National Cancer Institute, Mexico City, Mexico
| | - Omar Isaac García-Salinas
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Héctor Martínez-Said
- Surgical Oncology, Skin, Soft Tissue & Bone Tumors Department, National Cancer Institute, Mexico City, Mexico
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ingrid Ferreira
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mark Tullett
- Department of histopathology, University Hospitals Sussex, St Richard hospital, Spitalfield lane, Chichester
| | - Rebeca Olvera-León
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | | | - Rodrigo Roldán-Marín
- Dermato-Oncology Clinic, Research Division, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Helena Vidaurri de la Cruz
- Pediatric Dermatology Service, General Hospital of Mexico Dr. Eduardo Liceaga, Ministry of Health. Mexico City, Mexico
| | | | | | - Rachel L. Belote
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, United States
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Gino K. In
- University of Southern California, Keck School of Medicine, Norris Comprehensive Cancer Center, Division of Oncology, Los Angeles, CA, USA
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Patrícia A. Possik
- Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - David J. Adams
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
21
|
Sun M, Bai J, Wang H, Li M, Zhou L, Li S. Unraveling the relationship between anoikis-related genes and cancer-associated fibroblasts in liver hepatocellular carcinoma. Heliyon 2024; 10:e35306. [PMID: 39165997 PMCID: PMC11334810 DOI: 10.1016/j.heliyon.2024.e35306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
This study intended to determine the molecular subtypes of liver hepatocellular carcinoma (LIHC) on the strength of anoikis-related genes (ARGs) and to assess their prognostic value and prospective relationship with immune cell infiltration and cancer-associated fibroblasts (CAFs). Univariate Cox regression analysis yielded 66 prognosis-related ARGs and classified LIHC into two distinct subtypes, with subtype A demonstrating overexpression of most prognosis-related ARGs and a significant survival disadvantage. Furthermore, a reliable prediction model was developed using ARGs to evaluate the risk of LIHC patients. This model served as an independent prognostic indicator and a quantitative tool for clinical prognostic prediction. Additionally, subtype-specific differences in immune cell infiltration were observed, and the risk score was potentially linked to immune-related characteristics. Moreover, the study identified a significant association between CAF score and LIHC prognosis, with a low CAF score indicating a favorable patient prognosis. In conclusion, this study reveals the molecular mechanisms underlying the development and progression of LIHC and identifies potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Meng Sun
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jiangtao Bai
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Haisong Wang
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Mei Li
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Long Zhou
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Shanfeng Li
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
22
|
He H, Chen S, Yu Y, Fan Z, Qian Y, Dong Y, Song Y, Zhong C, Sun X, Cao Q, Li S, Huang W, Li W, Zhuang M, Yang J, Wang X, Wang J, Wu D, Wang H, Wen W. Comprehensive single-cell analysis deciphered microenvironmental dynamics and immune regulator olfactomedin 4 in pathogenesis of gallbladder cancer. Gut 2024; 73:1529-1542. [PMID: 38719336 PMCID: PMC11347255 DOI: 10.1136/gutjnl-2023-331773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/20/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Elucidating complex ecosystems and molecular features of gallbladder cancer (GBC) and benign gallbladder diseases is pivotal to proactive cancer prevention and optimal therapeutic intervention. DESIGN We performed single-cell transcriptome analysis on 230 737 cells from 15 GBCs, 4 cholecystitis samples, 3 gallbladder polyps, 5 gallbladder adenomas and 16 adjacent normal tissues. Findings were validated through large-scale histological assays, digital spatial profiler multiplexed immunofluorescence (GeoMx), etc. Further molecular mechanism was demonstrated with in vitro and in vivo studies. RESULTS The cell atlas unveiled an altered immune landscape across different pathological states of gallbladder diseases. GBC featured a more suppressive immune microenvironment with distinct T-cell proliferation patterns and macrophage attributions in different GBC subtypes. Notably, mutual exclusivity between stromal and immune cells was identified and remarkable stromal ecosystem (SC) heterogeneity during GBC progression was unveiled. Specifically, SC1 demonstrated active interaction between Fibro-iCAF and Endo-Tip cells, correlating with poor prognosis. Moreover, epithelium genetic variations within adenocarcinoma (AC) indicated an evolutionary similarity between adenoma and AC. Importantly, our study identified elevated olfactomedin 4 (OLFM4) in epithelial cells as a central player in GBC progression. OLFM4 was related to T-cell malfunction and tumour-associated macrophage infiltration, leading to a worse prognosis in GBC. Further investigations revealed that OLFM4 upregulated programmed death-ligand 1 (PD-L1) expression through the MAPK-AP1 axis, facilitating tumour cell immune evasion. CONCLUSION These findings offer a valuable resource for understanding the pathogenesis of gallbladder diseases and indicate OLFM4 as a potential biomarker and therapeutic target for GBC.
Collapse
Affiliation(s)
- Huisi He
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuzhen Chen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yong Yu
- Department I of Biliary Tract Surgery, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhecai Fan
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Youwen Qian
- Department of Pathology, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yaping Dong
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuting Song
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Caiming Zhong
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaojuan Sun
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shiyao Li
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Weihan Huang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenxin Li
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Mingzhu Zhuang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xianming Wang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqian Wang
- Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co Ltd, Shenzhen, China
| | - Dongfang Wu
- Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co Ltd, Shenzhen, China
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun-Yat-sen University, Guangzhou, China
| | - Hongyang Wang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
23
|
Chen M, Chen F, Gao Z, Li X, Hu L, Yang S, Zhao S, Song Z. CAFs and T cells interplay: The emergence of a new arena in cancer combat. Biomed Pharmacother 2024; 177:117045. [PMID: 38955088 DOI: 10.1016/j.biopha.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuying Yang
- Department of intensive medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
24
|
Zhu H, Jin RU. The role of the fibroblast in Barrett's esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol 2024; 40:319-327. [PMID: 38626060 PMCID: PMC11155289 DOI: 10.1097/mog.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
PURPOSE OF REVIEW Barrett's esophagus (BE) is the number one risk factor for developing esophageal adenocarcinoma (EAC), a deadly cancer with limited treatment options that has been increasing in incidence in the US. In this report, we discuss current studies on the role of mesenchyme and cancer-associated fibroblasts (CAFs) in BE and EAC, and we highlight translational prospects of targeting these cells. RECENT FINDINGS New insights through studies using single-cell RNA sequencing (sc-RNA seq) have revealed an important emerging role of the mesenchyme in developmental signaling and cancer initiation. BE and EAC share similar stromal gene expression, as functional classifications of nonepithelial cells in BE show a remarkable similarity to EAC CAFs. Several recent sc-RNA seq studies and novel organoid fibroblast co-culture systems have characterized the subgroups of fibroblasts in BE and EAC, and have shown that these cells can directly influence the epithelium to induce BE development and cancer progression. Targeting the CAFs in EAC with may be a promising novel therapeutic strategy. SUMMARY The fibroblasts in the surrounding mesenchyme may have a direct role in influencing altered epithelial plasticity during BE development and progression to EAC.
Collapse
Affiliation(s)
- Huili Zhu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
25
|
Xu J, Lu W, Wei X, Zhang B, Yang H, Tu M, Chen X, Wu S, Guo T. Single-cell transcriptomics reveals the aggressive landscape of high-grade serous carcinoma and therapeutic targets in tumor microenvironment. Cancer Lett 2024; 593:216928. [PMID: 38714290 DOI: 10.1016/j.canlet.2024.216928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
High-grade serous carcinoma (HGSC) is characterized by early abdominal metastasis, leading to a dismal prognosis. In this study, we conducted single-cell RNA sequencing on 109,573 cells from 34 tumor samples of 18 HGSC patients, including both primary tumors and their metastatic sites. Our analysis revealed a distinct S100A9+ tumor cell subtype present in both primary and metastatic sites, strongly associated with poor overall survival. This subtype exhibited high expression of S100A8, S100A9, ADGRF1, CEACAM6, CST6, NDRG2, MUC4, PI3, SDC1, and C15orf48. Individual knockdown of these ten marker genes, validated through in vitro and in vivo models, significantly inhibited ovarian cancer growth and invasion. Around S100A9+ tumor cells, a population of HK2+_CAF was identified, characterized by activated glycolysis metabolism, correlating with shorter overall survival in patients. Notably, similar to CAFs, immunosuppressive tumor-associated macrophage (TAM) subtypes underwent glycolipid metabolism reprogramming via PPARgamma regulation, promoting tumor metastasis. These findings shed light on the mechanisms driving the aggressiveness of HGSC, offering crucial insights for the development of novel therapeutic targets against this formidable cancer.
Collapse
Affiliation(s)
- Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China
| | - Xinyi Wei
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Bo Zhang
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Haihua Yang
- Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Mengyan Tu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xin Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Shenglong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Tianchen Guo
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
26
|
Devarasou S, Kang M, Shin JH. Biophysical perspectives to understanding cancer-associated fibroblasts. APL Bioeng 2024; 8:021507. [PMID: 38855445 PMCID: PMC11161195 DOI: 10.1063/5.0199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The understanding of cancer has evolved significantly, with the tumor microenvironment (TME) now recognized as a critical factor influencing the onset and progression of the disease. This broader perspective challenges the traditional view that cancer is primarily caused by mutations, instead emphasizing the dynamic interaction between different cell types and physicochemical factors within the TME. Among these factors, cancer-associated fibroblasts (CAFs) command attention for their profound influence on tumor behavior and patient prognoses. Despite their recognized importance, the biophysical and mechanical interactions of CAFs within the TME remain elusive. This review examines the distinctive physical characteristics of CAFs, their morphological attributes, and mechanical interactions within the TME. We discuss the impact of mechanotransduction on CAF function and highlight how these cells communicate mechanically with neighboring cancer cells, thereby shaping the path of tumor development and progression. By concentrating on the biomechanical regulation of CAFs, this review aims to deepen our understanding of their role in the TME and to illuminate new biomechanical-based therapeutic strategies.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| |
Collapse
|
27
|
Qin Q, Yu R, Eriksson JE, Tsai HI, Zhu H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma therapy: Challenges and opportunities. Cancer Lett 2024; 591:216859. [PMID: 38615928 DOI: 10.1016/j.canlet.2024.216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.
Collapse
Affiliation(s)
- Qin Qin
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI-20520 Finland
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
28
|
Liu Y, Han X, Han Y, Bi J, Wu Y, Xiang D, Zhang Y, Bi W, Xu M, Li J. Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene 2024; 907:148286. [PMID: 38367852 DOI: 10.1016/j.gene.2024.148286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Osteosarcoma (OS), with a peak incidence during the adolescent growth spurt, is correlated with poor prognosis for its high malignancy. The tumor microenvironment (TME) is highly complicated, with frequent interactions between tumor and stromal cells. The cancer-associated fibroblasts (CAFs) in the TME have been considered to actively involve in the progression, metastasis, and drug resistance of OS. This study aimed to characterize cellular heterogeneity and molecular characterization in CAFs subtypes and explore the potential targeting therapeutic strategies to improve the prognosis of OS patients. METHODS The single-cell atlas of human OS tumor lesions were constructed from the GEO database. Then significant marker genes and potential biological functions for each CAFs subtype were identified and explored using the Seurat R package. Next, by performing the survival analyses and constructing the risk scores for CAFs subtypes, we aimed to identify and characterize the prognostic values of specific marker genes and different CAFs subtypes. Furthermore, we explored the therapeutic targets and innovative drugs targeting different CAFs subtypes based on the GDSC database. Finally, prognoses related CAFs subtypes were further validated through immunohistochemistry (IHC) on clinical OS specimens. RESULTS Overall, nine main cell clusters and five subtypes of CAFs were identified. The differentially expressed marker genes for each CAFs clusters were then identified. Moreover, through Gene Ontology (GO) enrichment analysis, we defined the CAFs_2 (upregulated CXCL14 and C3), which was closely related to leukocyte migration and chemotaxis, as inflammatory CAFs (iCAFs). Likewise, we defined the CAFs_4 (upregulated CD74, HLA-DRA and HLA-DRB1), which was closely related to antigen process and presentation, as antigen-presenting CAFs (apCAFs). Furthermore, Kaplan-Meier analyses showed that CAFs_2 and CAFs_4 were correlated with poor clinical prognosis of OS patients. Meanwhile, therapeutic drugs targeting CAFs_2 and CAFs_4, such as 17-AAG/Docetaxel/Bleomycin and PHA-793887/NG-25/KIN001-102, were also explored, respectively. Finally, IHC assay confirmed the abundant CAFs_2 and CAFs_4 subtypes infiltration in the OS microenvironment compared with adjacent tissues. CONCLUSION Our study revealed the diversity, complexity, and heterogeneity of CAFs in OS, and complemented the single-cell atlas in OS TME.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, Yunnan, China; Chinese PLA Spinal Cord Injury Treatment Center, Kunming, Yunnan 650032, China
| | - Xinli Han
- School of Medicine, Nankai University, Tianjin 300074, China
| | - Yuchen Han
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Jingyou Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yanan Wu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Dongquan Xiang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yinglong Zhang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Wenzhi Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; School of Medicine, Nankai University, Tianjin 300074, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Meng Xu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China.
| | - Jianxiong Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
29
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
30
|
Natesh NR, Mogha P, Chen A, Antonia SJ, Varghese S. Differential roles of normal and lung cancer-associated fibroblasts in microvascular network formation. APL Bioeng 2024; 8:016120. [PMID: 38524671 PMCID: PMC10959556 DOI: 10.1063/5.0188238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Perfusable microvascular networks offer promising three-dimensional in vitro models to study normal and compromised vascular tissues as well as phenomena such as cancer cell metastasis. Engineering of these microvascular networks generally involves the use of endothelial cells stabilized by fibroblasts to generate robust and stable vasculature. However, fibroblasts are highly heterogenous and may contribute variably to the microvascular structure. Here, we study the effect of normal and cancer-associated lung fibroblasts on the formation and function of perfusable microvascular networks. We examine the influence of cancer-associated fibroblasts on microvascular networks when cultured in direct (juxtacrine) and indirect (paracrine) contacts with endothelial cells, discovering a generative inhibition of microvasculature in juxtacrine co-cultures and a functional inhibition in paracrine co-cultures. Furthermore, we probed the secreted factors differential between cancer-associated fibroblasts and normal human lung fibroblasts, identifying several cytokines putatively influencing the resulting microvasculature morphology and functionality. These findings suggest the potential contribution of cancer-associated fibroblasts in aberrant microvasculature associated with tumors and the plausible application of such in vitro platforms in identifying new therapeutic targets and/or agents that can prevent formation of aberrant vascular structures.
Collapse
Affiliation(s)
- Naveen R. Natesh
- Department of Biomedical Engineering, Duke University, 203 Research Drive, MSRB1 Room No. 381, Durham, North Carolina 27710, USA
| | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University, 200 Trent Drive, Durham, North Carolina 27710, USA
| | - Alan Chen
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | - Scott J. Antonia
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | | |
Collapse
|
31
|
Zhi Y, Wang Q, Zi M, Zhang S, Ge J, Liu K, Lu L, Fan C, Yan Q, Shi L, Chen P, Fan S, Liao Q, Guo C, Wang F, Gong Z, Xiong W, Zeng Z. Spatial Transcriptomic and Metabolomic Landscapes of Oral Submucous Fibrosis-Derived Oral Squamous Cell Carcinoma and its Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306515. [PMID: 38229179 PMCID: PMC10966560 DOI: 10.1002/advs.202306515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/19/2023] [Indexed: 01/18/2024]
Abstract
In South and Southeast Asia, the habit of chewing betel nuts is prevalent, which leads to oral submucous fibrosis (OSF). OSF is a well-established precancerous lesion, and a portion of OSF cases eventually progress to oral squamous cell carcinoma (OSCC). However, the specific molecular mechanisms underlying the malignant transformation of OSCC from OSF are poorly understood. In this study, the leading-edge techniques of Spatial Transcriptomics (ST) and Spatial Metabolomics (SM) are integrated to obtain spatial location information of cancer cells, fibroblasts, and immune cells, as well as the transcriptomic and metabolomic landscapes in OSF-derived OSCC tissues. This work reveals for the first time that some OSF-derived OSCC cells undergo partial epithelial-mesenchymal transition (pEMT) within the in situ carcinoma (ISC) region, eventually acquiring fibroblast-like phenotypes and participating in collagen deposition. Complex interactions among epithelial cells, fibroblasts, and immune cells in the tumor microenvironment are demonstrated. Most importantly, significant metabolic reprogramming in OSF-derived OSCC, including abnormal polyamine metabolism, potentially playing a pivotal role in promoting tumorigenesis and immune evasion is discovered. The ST and SM data in this study shed new light on deciphering the mechanisms of OSF-derived OSCC. The work also offers invaluable clues for the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Yuan Zhi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Qian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Moxin Zi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Shanshan Zhang
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Keyue Liu
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Linsong Lu
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Qijia Yan
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Lei Shi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Songqing Fan
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| |
Collapse
|
32
|
Wang W, Li T, Xie Z, Zhao J, Zhang Y, Ruan Y, Han B. Integrating single-cell and bulk RNA sequencing data unveils antigen presentation and process-related CAFS and establishes a predictive signature in prostate cancer. J Transl Med 2024; 22:57. [PMID: 38221616 PMCID: PMC10789066 DOI: 10.1186/s12967-023-04807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/14/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are heterogeneous and can influence the progression of prostate cancer in multiple ways; however, their capacity to present and process antigens in PRAD has not been investigated. In this study, antigen presentation and process-related CAFs (APPCAFs) were identified using bioinformatics, and the clinical implications of APPCAF-related signatures in PRAD were investigated. METHODS SMART technology was used to sequence the transcriptome of primary CAFs isolated from patients undergoing different treatments. Differential expression gene (DEG) screening was conducted. A CD4 + T-cell early activation assay was used to assess the activation degree of CD4 + T cells. The datasets of PRAD were obtained from The Cancer Genome Atlas (TCGA) database and NCBI Gene Expression Omnibus (GEO), and the list of 431 antigen presentation and process-related genes was obtained from the InnateDB database. Subsequently, APP-related CAFs were identified by nonnegative matrix factorization (NMF) based on a single-cell seq (scRNA) matrix. GSVA functional enrichment analyses were performed to depict the biological functions. A risk signature based on APPCAF-related genes (APPCAFRS) was developed by least absolute shrinkage and selection operator (LASSO) regression analysis, and the independence of the risk score as a prognostic factor was evaluated by univariate and multivariate Cox regression analyses. Furthermore, a biochemical recurrence-free survival (BCRFS)-related nomogram was established, and immune-related characteristics were assessed using the ssGSEA function. The immune treatment response in PRAD was further analyzed by the Tumor Immune Dysfunction and Exclusion (TIDE) tool. The expression levels of hub genes in APPCAFRS were verified in cell models. RESULTS There were 134 upregulated and 147 downregulated genes, totaling 281 differentially expressed genes among the primary CAFs. The functions and pathways of 147 downregulated DEGs were significantly enriched in antigen processing and presentation processes, MHC class II protein complex and transport vesicle, MHC class II protein complex binding, and intestinal immune network for IgA production. Androgen withdrawal diminished the activation effect of CAFs on T cells. NMF clustering of CAFs was performed by APPRGs, and pseudotime analysis yielded the antigen presentation and process-related CAF subtype CTSK + MRC2 + CAF-C1. CTSK + MRC2 + CAF-C1 cells exhibited ligand‒receptor connections with epithelial cells and T cells. Additionally, we found a strong association between CTSK + MRC2 + CAF-C1 cells and inflammatory CAFs. Through differential gene expression analysis of the CTSK + MRC2 + CAF-C1 and NoneAPP-CAF-C2 subgroups, 55 significant DEGs were identified, namely, APPCAFRGs. Based on the expression profiles of APPCAFRGs, we divided the TCGA-PRAD cohort into two clusters using NMF consistent cluster analysis, with the genetic coefficient serving as the evaluation index. Four APPCAFRGs, THBS2, DPT, COL5A1, and MARCKS, were used to develop a prognostic signature capable of predicting BCR occurrence in PRAD patients. Subsequently, a nomogram with stability and accuracy in predicting BCR was constructed based on Gleason grade (p = n.s.), PSA (p < 0.001), T stage (p < 0.05), and risk score (p < 0.01). The analysis of immune infiltration showed a positive correlation between the abundance of resting memory CD4 + T cells, M1 macrophages, resting dendritic cells, and the risk score. In addition, the mRNA expression levels of THBS2, DPT, COL5A1, and MARCKS in the cell models were consistent with the results of the bioinformatics analysis. CONCLUSIONS APPCAFRS based on four potential APPCAFRGs was developed, and their interaction with the immune microenvironment may play a crucial role in the progression to castration resistance of PRAD. This novel approach provides valuable insights into the pathogenesis of PRAD and offers unexplored targets for future research.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Tiewen Li
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhiwen Xie
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jing Zhao
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Bangmin Han
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
33
|
Papadas A, Huang Y, Cicala A, Dou Y, Fields M, Gibbons A, Hong D, Lagal DJ, Quintana V, Rizo A, Zomalan B, Asimakopoulos F. Emerging roles for tumor stroma in antigen presentation and anti-cancer immunity. Biochem Soc Trans 2023; 51:2017-2028. [PMID: 38031753 PMCID: PMC10754280 DOI: 10.1042/bst20221083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Advances in immunotherapy in the last decade have revolutionized treatment paradigms across multiple cancer diagnoses. However, only a minority of patients derive durable benefit and progress with traditional approaches, such as cancer vaccines, remains unsatisfactory. A key to overcoming these barriers resides with a deeper understanding of tumor antigen presentation and the complex and dynamic heterogeneity of tumor-infiltrating antigen-presenting cells (APCs). Reminiscent of the 'second touch' hypothesis proposed by Klaus Ley for CD4+ T cell differentiation, the acquisition of full effector potential by lymph node- primed CD8+ T cells requires a second round of co-stimulation at the site where the antigen originated, i.e. the tumor bed. The tumor stroma holds a prime role in this process by hosting specialized APC niches, apparently distinct from tertiary lymphoid structures, that support second antigenic touch encounters and CD8+ T cell effector proliferation and differentiation. We propose that APC within second-touch niches become licensed for co-stimulation through stromal-derived instructive signals emulating embryonic or wound-healing provisional matrix remodeling. These immunostimulatory roles of stroma contrast with its widely accepted view as a physical and functional 'immune barrier'. Stromal control of antigen presentation makes evolutionary sense as the host stroma-tumor interface constitutes the prime line of homeostatic 'defense' against the emerging tumor. In this review, we outline how stroma-derived signals and cells regulate tumor antigen presentation and T-cell effector differentiation in the tumor bed. The re-definition of tumor stroma as immune rheostat rather than as inflexible immune barrier harbors significant untapped therapeutic opportunity.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Yun Huang
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Yaling Dou
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Matteo Fields
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alicia Gibbons
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Duncan Hong
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Daniel J. Lagal
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Victoria Quintana
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Alejandro Rizo
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Brolyn Zomalan
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, U.S.A
- Moores Cancer Center, University of California San Diego (UCSD), La Jolla, CA, U.S.A
| |
Collapse
|
34
|
Wang G, Zhang H, Shen X, Jin W, Wang X, Zhou Z. Characterization of cancer-associated fibroblasts (CAFs) and development of a CAF-based risk model for triple-negative breast cancer. Cancer Cell Int 2023; 23:294. [PMID: 38007443 PMCID: PMC10676599 DOI: 10.1186/s12935-023-03152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023] Open
Abstract
Triple-negative breast Cancer (TNBC) is a highly malignant cancer with unclear pathogenesis. Within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) vitally influence tumor onset and progression. Thus, this research aimed to identify distinct subgroups of CAF using single-cell and TNBC-related information from the GEO and TCGA databases, respectively. The primary aim was to establish a novel predictive model based on the CAF features and their clinical relevance. Moreover, the CAFs were analyzed for their immune characteristics, response to immunotherapy, and sensitivity to different drugs. The developed predictive model demonstrated significant effectiveness in determining the prognosis of patients with TNBC, TME, and the immune landscape of the tumor. Of note, the expression of GPR34 was significantly higher in TNBC tissues compared to that in other breast cancer (non-TNBC) tissues, indicating that GPR34 plays a crucial role in the onset and progression of TNBC. In summary, this research has yielded a novel predictive model for TNBC that holds promise for the accurate prediction of prognosis and response to immunotherapy in patients with TNBC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Hao Zhang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
35
|
Zhang X, Feng R, Guo J, Pan L, Yao Y, Gao J. Integrated single-cell and bulk RNA sequencing analysis identifies a neoadjuvant chemotherapy-related gene signature for predicting survival and therapy in breast cancer. BMC Med Genomics 2023; 16:300. [PMID: 37996875 PMCID: PMC10666338 DOI: 10.1186/s12920-023-01727-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) is a well-established treatment modality for locally advanced breast cancer (BC). However, it can also result in severe toxicities while controlling tumors. Therefore, reliable predictive biomarkers are urgently needed to objectively and accurately predict NAC response. In this study, we integrated single-cell and bulk RNA-seq data to identify nine genes associated with the prognostic response to NAC: NDRG1, CXCL14, HOXB2, NAT1, EVL, FBP1, MAGED2, AR and CIRBP. Furthermore, we constructed a prognostic risk model specifically linked to NAC. The clinical independence and generalizability of this model were effectively demonstrated. Additionally, we explore the underlying cancer hallmarks and microenvironment features of this NAC response-related risk score, and further assess the potential impact of risk score on drug response. In summary, our study constructed and validated a nine-gene signature associated with NAC prognosis, which was accomplished through the integration of single-cell and bulk RNA data. The results of our study are of crucial significance in the prediction of the efficacy of NAC in BC, and may have implications for the clinical management of this disease.
Collapse
Affiliation(s)
- Xiaojun Zhang
- General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China.
| | - Ran Feng
- General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Junbin Guo
- Yangquan Coal Industry (Group) General Hospital, Yangquan, Shanxi, 045008, China
| | - Lihui Pan
- General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Yarong Yao
- General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Jinnan Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
36
|
Zhang S, Yang H, Wang M, Mantovani D, Yang K, Witte F, Tan L, Yue B, Qu X. Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. Innovation (N Y) 2023; 4:100503. [PMID: 37732016 PMCID: PMC10507240 DOI: 10.1016/j.xinn.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Bacterial infectious diseases are one of the leading causes of death worldwide. Even with the use of multiple antibiotic treatment strategies, 4.95 million people died from drug-resistant bacterial infections in 2019. By 2050, the number of deaths will reach 10 million annually. The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants. In addition, the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the long-term treatment of chronic bacterial infections. The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells. Therefore, there is an urgent need for effective alternatives to treat bacterial infections. Accordingly, the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest; however, a comprehensive review of their research progress is lacking. In this review, we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection. First, we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections. Then, we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages. Moreover, we discuss biomaterial-mediated bacterial vaccines' potential applications and challenges for activating innate and adaptive immune memory. This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Minqi Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charite Medical University, Assmannshauser Strasse 4–6, 14197 Berlin, Germany
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
37
|
Zhao M, Yan CY, Wei YN, Zhao XH. Breaking the mold: Overcoming resistance to immune checkpoint inhibitors. Antiviral Res 2023; 219:105720. [PMID: 37748652 DOI: 10.1016/j.antiviral.2023.105720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Immune checkpoint blockade-based therapies are effective against a sorts of cancers. However, drug resistance is a problem that cannot be ignored. This review intends to elucidate the mechanisms underlying drug tolerance induced by PD-1/PD-L1 inhibitors, as well as to outline proposed mechanism-based combination therapies and small molecule drugs that target intrinsic immunity and immune checkpoints. According to the differences of patients and types of cancer, the optimization of individualized combination therapy will help to enhance PD-1/PD-L1-mediated immunoregulation, reduce chemotherapy resistance, and provide new ideas for chemotherapy-resistant cancer.
Collapse
Affiliation(s)
- Menglu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China.
| |
Collapse
|
38
|
Ma C, Yang C, Peng A, Sun T, Ji X, Mi J, Wei L, Shen S, Feng Q. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer 2023; 22:170. [PMID: 37833788 PMCID: PMC10571470 DOI: 10.1186/s12943-023-01876-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population that plays a crucial role in remodeling the tumor microenvironment (TME). Here, through the integrated analysis of spatial and single-cell transcriptomics data across six common cancer types, we identified four distinct functional subgroups of CAFs and described their spatial distribution characteristics. Additionally, the analysis of single-cell RNA sequencing (scRNA-seq) data from three additional common cancer types and two newly generated scRNA-seq datasets of rare cancer types, namely epithelial-myoepithelial carcinoma (EMC) and mucoepidermoid carcinoma (MEC), expanded our understanding of CAF heterogeneity. Cell-cell interaction analysis conducted within the spatial context highlighted the pivotal roles of matrix CAFs (mCAFs) in tumor angiogenesis and inflammatory CAFs (iCAFs) in shaping the immunosuppressive microenvironment. In patients with breast cancer (BRCA) undergoing anti-PD-1 immunotherapy, iCAFs demonstrated heightened capacity in facilitating cancer cell proliferation, promoting epithelial-mesenchymal transition (EMT), and contributing to the establishment of an immunosuppressive microenvironment. Furthermore, a scoring system based on iCAFs showed a significant correlation with immune therapy response in melanoma patients. Lastly, we provided a web interface ( https://chenxisd.shinyapps.io/pancaf/ ) for the research community to investigate CAFs in the context of pan-cancer.
Collapse
Affiliation(s)
- Chenxi Ma
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Ai Peng
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Tianyong Sun
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Xiaoli Ji
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Jinan, Shandong, China
| | - Jun Mi
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Li Wei
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Song Shen
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Qiang Feng
- Department of Human Microbiome and Periodontology and Implantology and Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
39
|
Liu T, Long K, Zhu Z, Song Y, Chen C, Xu G, Ke X. Roles of circRNAs in regulating the tumor microenvironment. Med Oncol 2023; 40:329. [PMID: 37819576 PMCID: PMC10567871 DOI: 10.1007/s12032-023-02194-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
CircRNAs, a type of non-coding RNA widely present in eukaryotic cells, have emerged as a prominent focus in tumor research. However, the functions of most circRNAs remain largely unexplored. Known circRNAs exert their regulatory roles through various mechanisms, including acting as microRNA sponges, binding to RNA-binding proteins, and functioning as transcription factors to modulate protein translation and coding. Tumor growth is not solely driven by gene mutations but also influenced by diverse constituent cells and growth factors within the tumor microenvironment (TME). As crucial regulators within the TME, circRNAs are involved in governing tumor growth and metastasis. This review highlights the role of circRNAs in regulating angiogenesis, matrix remodeling, and immunosuppression within the TME. Additionally, we discuss current research on hypoxia-induced circRNAs production and commensal microorganisms' impact on the TME to elucidate how circRNAs influence tumor growth while emphasizing the significance of modulating the TME.
Collapse
Affiliation(s)
- Tao Liu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Kaijun Long
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Zhengfeng Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
40
|
Campomenosi P, Mortara L, Bassani B, Valli R, Porta G, Bruno A, Acquati F. The Potential Role of the T2 Ribonucleases in TME-Based Cancer Therapy. Biomedicines 2023; 11:2160. [PMID: 37626657 PMCID: PMC10452627 DOI: 10.3390/biomedicines11082160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, there has been a growing interest in developing innovative anticancer therapies targeting the tumor microenvironment (TME). The TME is a complex and dynamic milieu surrounding the tumor mass, consisting of various cellular and molecular components, including those from the host organism, endowed with the ability to significantly influence cancer development and progression. Processes such as angiogenesis, immune evasion, and metastasis are crucial targets in the search for novel anticancer drugs. Thus, identifying molecules with "multi-tasking" properties that can counteract cancer cell growth at multiple levels represents a relevant but still unmet clinical need. Extensive research over the past two decades has revealed a consistent anticancer activity for several members of the T2 ribonuclease family, found in evolutionarily distant species. Initially, it was believed that T2 ribonucleases mainly acted as anticancer agents in a cell-autonomous manner. However, further investigation uncovered a complex and independent mechanism of action that operates at a non-cell-autonomous level, affecting crucial processes in TME-induced tumor growth, such as angiogenesis, evasion of immune surveillance, and immune cell polarization. Here, we review and discuss the remarkable properties of ribonucleases from the T2 family in the context of "multilevel" oncosuppression acting on the TME.
Collapse
Affiliation(s)
- Paola Campomenosi
- Laboratory of Molecular Genetics, Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
- Genomic Medicine Research Center, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (R.V.); (G.P.)
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Via Monte Generoso 71, 21100 Varese, Italy;
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy;
| | - Roberto Valli
- Genomic Medicine Research Center, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (R.V.); (G.P.)
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Giovanni Porta
- Genomic Medicine Research Center, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (R.V.); (G.P.)
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Antonino Bruno
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Via Monte Generoso 71, 21100 Varese, Italy;
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy;
| | - Francesco Acquati
- Genomic Medicine Research Center, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy; (R.V.); (G.P.)
- Human Genetics Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
41
|
Pleshkan VV, Zinovyeva MV, Antonova DV, Alekseenko IV. Spheroids of FAP-Positive Cell Lines as a Model for Screening Drugs That Affect FAP Expression. Biomedicines 2023; 11:2017. [PMID: 37509656 PMCID: PMC10377737 DOI: 10.3390/biomedicines11072017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Fibroblast activation protein has a unique expression profile that manifests mainly in wounds and tumors, which anticipates it as an encouraging and selective target for anticancer therapy. However, research of the therapeutic potential of FAP is limited both by legal restraints when working in vivo and by the difficulty of obtaining standardized primary cultures of FAP-positive cancer-associated fibroblasts due to their high heterogeneity. We found that 3D spheroids of FAP-positive cell lines could serve as robust and convenient models of FAP expression, in contrast to monolayers. By exposing such spheroids to various factors and compounds, it is possible to study changes in FAP expression, which are easily detected by confocal microscopy. FAP expression increases under the influence of the TGFβ, does not depend on pH, and decreases during hypoxia and starvation. We believe that the proposed model could be used to organize large-scale high-throughput screening of drugs that target FAP expression.
Collapse
Affiliation(s)
- Victor V Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Marina V Zinovyeva
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dina V Antonova
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Irina V Alekseenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
- Laboratory of Epigenetics, Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of the Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
42
|
O’Connor RA, Martinez BR, Koppensteiner L, Mathieson L, Akram AR. Cancer-associated fibroblasts drive CXCL13 production in activated T cells via TGF-beta. Front Immunol 2023; 14:1221532. [PMID: 37520560 PMCID: PMC10373066 DOI: 10.3389/fimmu.2023.1221532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Tumour-reactive T cells producing the B-cell attractant chemokine CXCL13, in solid tumours, promote development of tertiary lymphoid structures (TLS) and are associated with improved prognosis and responsiveness to checkpoint immunotherapy. Cancer associated fibroblasts are the dominant stromal cell type in non-small cell lung cancer (NSCLC) where they co-localise with T cells and can influence T cell activation and exhaustion. We questioned whether CAF directly promote CXCL13-production during T cell activation. Methods We characterised surface markers, cytokine production and transcription factor expression in CXCL13-producing T cells in NSCLC tumours and paired non-cancerous lung samples using flow cytometry. We then assessed the influence of human NSCLC-derived primary CAF lines on T cells from healthy donors and NSCLC patients during activation in vitro measuring CXCL13 production and expression of cell-surface markers and transcription factors by flow cytometry. Results CAFs significantly increased the production of CXCL13 by both CD4+ and CD8+ T cells. CAF-induced CXCL13-producing cells lacked expression of CXCR5 and BCL6 and displayed a T peripheral helper cell phenotype. Furthermore, we demonstrate CXCL13 production by T cells is induced by TGF-β and limited by IL-2. CAF provide TGF-β during T cell activation and reduce availability of IL-2 both directly (by reducing the capacity for IL-2 production) and indirectly, by expanding a population of activated Treg. Inhibition of TGF-β signalling prevented both CAF-driven upregulation of CXCL13 and Treg expansion. Discussion Promoting CXCL13 production represents a newly described immune-regulatory function of CAF with the potential to shape the immune infiltrate of the tumour microenvironment both by altering the effector-function of tumour infiltrating T-cells and their capacity to attract B cells and promote TLS formation.
Collapse
Affiliation(s)
- Richard A. O’Connor
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Begoña Roman Martinez
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Lilian Koppensteiner
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Layla Mathieson
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
44
|
Sulaiman R, De P, Aske JC, Lin X, Dale A, Gaster K, Espaillat LR, Starks D, Dey N. A CAF-Based Two-Cell Hybrid Co-Culture Model to Test Drug Resistance in Endometrial Cancers. Biomedicines 2023; 11:biomedicines11051326. [PMID: 37238998 DOI: 10.3390/biomedicines11051326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The management of advanced or recurrent endometrial cancers presents a challenge due to the development of resistance to treatments. The knowledge regarding the role of the tumor microenvironment (TME) in determining the disease's progression and treatment outcome has evolved in recent years. As a TME component, cancer-associated fibroblasts (CAFs) are essential in developing drug-induced resistance in various solid tumors, including endometrial cancers. Hence, an unmet need exists to test the role of endometrial CAF in overcoming the roadblock of resistance in endometrial cancers. We present a novel tumor-TME two-cell ex vivo model to test CAF's role in resisting the anti-tumor drug, paclitaxel. Endometrial CAFs, both NCAFs (tumor-adjacent normal-tissue-derived CAFs) and TCAFs (tumor-tissue-derived CAFs) were validated by their expression markers. Both TCAFs and NCAFs expressed positive markers of CAF, including SMA, FAP, and S100A4, in varying degrees depending on the patients, while they consistently lacked the negative marker of CAF, EpCAM, as tested via flow cytometry and ICC. CAFs expressed TE-7 and immune marker, PD-L1, via ICC. CAFs better resisted the growth inhibitory effect of paclitaxel on endometrial tumor cells in 2D and 3D formats compared to the resistance of the tumoricidal effect of paclitaxel in the absence of CAFs. TCAF resisted the growth inhibitory effect of paclitaxel on endometrial AN3CA and RL-95-2 cells in an HyCC 3D format. Since NCAF similarly resisted the growth inhibitor action of paclitaxel, we tested NCAF and TCAF from the same patient to demonstrate the protective action of NCAF and TCAF in resisting the tumoricidal effect of paclitaxel in AN3CA in both 2D and 3D matrigel formats. Using this hybrid co-culture CAF and tumor cells, we established a patient-specific, laboratory-friendly, cost-effective, and time-sensitive model system to test drug resistance. The model will help test the role of CAFs in developing drug resistance and contribute to understanding tumor cell-CAF dialogue in gynecological cancers and beyond.
Collapse
Affiliation(s)
- Raed Sulaiman
- Department of Pathology, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Pradip De
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
- Viecure, Greenwood Village, CO 80111, USA
| | - Jennifer C Aske
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Adam Dale
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Kris Gaster
- Assistant VP Outpatient Cancer Clinics, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Luis Rojas Espaillat
- Department of Gynecologic Oncology, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - David Starks
- Department of Gynecologic Oncology, Avera Research Institute, Sioux Falls, SD 57105, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Research Institute, Sioux Falls, SD 57105, USA
- Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD 57105, USA
| |
Collapse
|
45
|
Badve SS, Gökmen-Polar Y. Targeting the Tumor-Tumor Microenvironment Crosstalk. Expert Opin Ther Targets 2023; 27:447-457. [PMID: 37395003 DOI: 10.1080/14728222.2023.2230362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Cancer development and progression is a complex process influenced by co-evolution of the cancer cells and their microenvironment. However, traditional anti-cancer therapy is mostly targeted toward cancer cells. To improve the efficacy of cancer drugs, the complex interactions between the tumor (T) and the tumor microenvironment (TME) should be considered while developing therapeutics. AREAS COVERED The present review article will discuss the components of T-TME as well as the potential to co-target these two distinct elements. We document that these approaches have resulted in success in preventing tumor progression and metastasis, albeit in animal models in some cases. Lastly, it is important to consider the tissue context and tumor type as these could significantly modify the role of these molecules/pathways and hence the overall likelihood of response. Furthermore, we discuss the potential strategies to target the components of tumor microenvironment in anti-cancer therapy. PubMed and ClinicalTrials.gov was searched through May 2023. EXPERT OPINION The tumor-tumor microenvironment cross talk and heterogeneity are major mechanisms conferring resistance to standard of care. Better understanding of the tissue specific T-TME interactions and dual targeting has the promise of improving cancer control and clinical outcomes.
Collapse
Affiliation(s)
- Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|