1
|
Wang YY, Chen PW, Chen YH, Yeh MY. Research on advanced photoresponsive azobenzene hydrogels with push-pull electronic effects: a breakthrough in photoswitchable adhesive technologies. MATERIALS HORIZONS 2025; 12:227-237. [PMID: 39453280 DOI: 10.1039/d4mh01047g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Smart materials that adapt to various stimuli, such as light, hold immense potential across many fields. Photoresponsive molecules like azobenzenes, which undergo E-Z photoisomerization when exposed to light, are particularly valuable for applications in smart coatings, light-controlled adhesives, and photoresists in semiconductors and integrated circuits. Despite advances in using azobenzene moieties for stimuli-responsive adhesives, the role of push-pull electronic effects in regulating reversible adhesion remains largely unexplored. In this study, we investigate for the first time photo-controlled hydrogel adhesives of azobenzene with different push-pull electronic groups. We synthesized the monomers 4-methoxyazobenzene acrylate (ABOMe), azobenzene acrylate (ABH), and 4-nitroazobenzene acrylate (ABNO2), and examined their effects on reversible adhesion properties. By incorporating these azobenzene monomers into acrylamide, dialdehyde-functionalized poly(ethylene glycol), and [3-(methacryloylamino)propyl]-trimethylammonium chloride, we prepared ABOMe, ABH, and ABNO2 ionic hydrogels. Our research findings demonstrate that only the ABOMe ionic hydrogel exhibits reversible adhesion. This is due to its distinct transition state mechanism compared to ABH and ABNO2, which enables efficient E-Z photoisomerization and drives its reversible adhesion properties. Notably, the ABOMe ionic hydrogel reveals an outstanding skin adhesion strength of 360.7 ± 10.1 kPa, surpassing values reported in current literature. This exceptional adhesion is attributed to Schiff base reactions, monopole-quadrupole interactions, π-π interactions, and hydrogen bonding with skin amino acids. Additionally, the ABOMe hydrogel exhibits excellent reversible self-healing capabilities, significantly enhancing its potential for injectable medical applications. This research underscores the importance of integrating multifunctional properties into a single system, opening new possibilities for innovative and durable adhesive materials.
Collapse
Affiliation(s)
- Yun-Ying Wang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Peng-Wen Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Yu-Hsin Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.
| |
Collapse
|
2
|
Awaji AA, Alhamdi HW, Alshehri KM, Alfaifi MY, Shati AA, Elbehairi SEI, Radwan NAF, Hafez HS, Elshaarawy RFM, Welson M. Bio-molecular Fe(III) and Zn(II) complexes stimulate the interplay between PI3K/AKT1/EGFR inhibition and induce autophagy and apoptosis in epidermal skin cell cancer. J Inorg Biochem 2025; 262:112720. [PMID: 39243420 DOI: 10.1016/j.jinorgbio.2024.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the effectiveness and safety of a hybrid thiosemicarbazone ligand (HL) and its metal complexes (MnII-L, FeIII-L, NiII-HL, and ZnII-HL) against epidermoid carcinoma (A-431). The results indicated that FeIII-L is the most effective, with a high selectivity index of 8.01 and an IC50 of 17.49 ± 2.12 μM for FeIII-L. The study also revealed that the synthesized complexes effectively inhibited gene expression of the Phosphoinositide 3-kinases (PI3K), alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR2) axis mechanism (P < 0.0001). Additionally, these complexes trigger a chain of events that include the inhibition of proliferating cell nuclear antigen (PCNA), transforming growth factor β1 (TGF β1), and topoisomerase II, and leading to a decrease in epidermoid cell proliferation. Furthermore, the inhibitory activity also resulted in the upregulation of caspases 3 and 9, indicating the acceleration of apoptotic markers, and the down regulation of miRNA221, suggesting a decrease in epidermoid proliferation. Molecular modeling of FeIII-L revealed that it had the best binding energy -8.02 kcal/mol and interacted with five hydrophobic π-interactions with Val270, Gln79, Leu210, and Trp80 against AKT1. Furthermore, the binding orientation of FeIII-L with Topoisomerase II was found to be the most stable, with a binding energy -8.25 kcal/mol. This stability was attributed to the presence of five hydrophobic π-interactions with His759, Guanin13, Cytosin8, and Ala465, and numerous ionic interactions, which were more favorable than those of doxorubicin and etoposide for new regimens of chemotherapeutic activities against skin cancer.
Collapse
Affiliation(s)
- Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Heba W Alhamdi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia.
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia.
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Nancy A-F Radwan
- Zoology Department, Faculty of Science, Arish University, 45511 El Arish, Egypt.
| | - Hani S Hafez
- Zoology Department, Faculty of Science, Suez University 43533, Suez, Egypt.
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Mary Welson
- Zoology Department, Faculty of Science, Suez University 43533, Suez, Egypt
| |
Collapse
|
3
|
Glover H, Saßmannshausen T, Bertrand Q, Trabuco M, Slavov C, Bacchin A, Andres F, Kondo Y, Stipp R, Wranik M, Khusainov G, Carrillo M, Kekilli D, Nan J, Gonzalez A, Cheng R, Neidhart W, Weinert T, Leonarski F, Dworkowski F, Kepa M, Wachtveitl J, Hennig M, Standfuss J. Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography. Nat Commun 2024; 15:10837. [PMID: 39738009 DOI: 10.1038/s41467-024-55109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A2A receptor. For this, we designed seven photochemical affinity switches derived from the anti-Parkinson's drug istradefylline. In a rational approach based on UV/Vis spectroscopy, time-resolved absorption spectroscopy, differential scanning fluorimetry and cryo-crystallography, we identified compounds suitable for time-resolved serial crystallography. Our analysis of millisecond-scale dynamics revealed how trans-to-cis isomerization shifts selected istradefylline derivatives within the binding pocket. Depending on the chemical nature of the ligand, interactions between extracellular loops 2 and 3, acting as a lid on the binding pocket, are disrupted and rearrangement of the orthosteric binding pocket is invoked upon ligand dissociation. This innovative approach provides insights into GPCR dynamics at the atomic level, offering potential for developing novel pharmaceuticals.
Collapse
Affiliation(s)
- Hannah Glover
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
- Department of Chemistry, University of South Florida, Tampa, USA
| | | | - Fabio Andres
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | - Yasushi Kondo
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Robin Stipp
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | | | | | - Demet Kekilli
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Jie Nan
- MaxIV Laboratory, Lund University, Lund, Sweden
| | | | - Robert Cheng
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | | | | | | | | | - Michal Kepa
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
4
|
Zhang Y, Qiu Y, Karimi AB, Smith BR. Systematic review: Mechanisms of photoactive nanocarriers for imaging and therapy including controlled drug delivery. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-07014-z. [PMID: 39722062 DOI: 10.1007/s00259-024-07014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging. Furthermore, it highlights key challenges and future perspectives in the development of light-triggered DDS, emphasizing the potential of these systems to revolutionize targeted therapies. METHOD A systematic literature search was performed using Google Scholar as the primary database and information source. We searched the recently published literature (within 15 years) with the following keywords individually and in relevant combinations: light responsive, nanoparticle, drug release, mechanism, photothermal, photosensitization, photopolymerization, photocleavage, and photoisomerization. RESULTS We selected 117 scientific articles to assess the strength of evidence after screening titles and abstracts. We found that six mechanisms (photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement) have primarily been used for light-triggered drug release and categorized our review accordingly. Azobenzene/spiropyran-based derivatives and o-nitrobenzyl/Coumarin derivatives are often used for photoisomerization and photocleavage-enabled drug delivery, while free radical polymerization and cationic polymerization comprise two main mechanisms of photopolymerization. One hundred two is the primary active radical oxygen species employed for photosensitization, which is a key factor that impacts the therapeutic effects in Photodynamic therapy, but not in photothermal therapy. CONCLUSION The comprehensive review serves as a guiding compass for light-triggered DDS for biomedical applications. This rapidly advancing field is poised to generate breakthroughs for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunxiu Qiu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ali Bavandpour Karimi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Bhat R, Hegde V, Adimule V, Sharma V, Kumar P, Khatavi S, Nandi S, Keri R. Synthesis, Trans-Cis Photoisomerization, Fluorescence Decay Studies of Methoxy Ester Functionalized Alkoxy Side Chain Azobenzene Compounds and Their Photoluminescence Dynamics. J Fluoresc 2024:10.1007/s10895-024-04077-x. [PMID: 39714556 DOI: 10.1007/s10895-024-04077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024]
Abstract
In this study, a series of new methoxy ester functionalized core fluorinated, chloro-fluorinated azobenzene derivatives were synthesized. The molecular structures of the azobenzene derivatives (3a-3c and 4a-4c) were confirmed through various analytical methods, with variations in the alkoxy chain length on one end of the aromatic ring. Optical absorption studies of 3a, 3b revealed π-π* transitions around 368-392 nm. Further, polarizing optical microscope (POM) studies of 3a, 3b revealed birefringent textures, and their phase transitions were investigated using differential scanning colorimetry (DSC) studies. The trans-to-cis photoisomerization of 3a, 3b transpired over 3600s whereas, thermal back relaxation (cis-to-trans) isomerization took 0.75 h. Room temperature photoluminescence (RTPL) studies of 3a-3c and 4a-4c unveiled weak emission intensity peak at ~ 450 nm (blue region) when excited at 400 nm. Steady-state photoluminescence (SSPL) studies of 3a-3c, 4a-4c revealed a broad emission band in the violet region of the visible spectrum with significantly large Stokes shifts, indicating the presence of highly energized excited states and formation of additional energy levels during photoexcitation. Fluorescence decay (FLD) studies of 3a-3c, 4a-4c unveiled average lifetime (τ) dwells between 8.2 ps and 70.4 ps. The average lifetime (τ) was found to increase with the increase in the length of the alkoxy chain. Phosphorescence decay (PD) profiles of 3a-3c, 4a-4c showed average lifetime (τ) fluctuate around 373 ns to 463 ns. The obtained core fluorinated, chloro-fluorinated azobenzene derivatives having different lengths of the alkoxy side chain can find potential applications in optical storage and display technologies.
Collapse
Affiliation(s)
- Raveendra Bhat
- Centre for Nano and Material Sciences, Jain (Deemed-to-be) University, Jain Global Campus, Ramanagaram, Bangalore, 562112, Kanakpuram, Karnataka, India
- Aurigene Pharmaceutical Services Limited, 39-40, KIADB Industrial area, Electronics city Phase-2, Hosur Road, Bengaluru, 560100, Karnataka, India
| | - Venkatraman Hegde
- Centre for Nano and Material Sciences, Jain (Deemed-to-be) University, Jain Global Campus, Ramanagaram, Bangalore, 562112, Kanakpuram, Karnataka, India
- Aurigene Pharmaceutical Services Limited, 39-40, KIADB Industrial area, Electronics city Phase-2, Hosur Road, Bengaluru, 560100, Karnataka, India
| | - Vinayak Adimule
- Department of Chemistry, Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi, 590009, Karnataka, India.
| | - Vandna Sharma
- Centre for Liquid Crystal Research, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Patiala, 140401, Punjab, India
- Condensed Matter Physics Department, Jozef Stefan Institute, Jamova 39, Ljubljana, 1000, Slovenia
| | - Pankaj Kumar
- Centre for Liquid Crystal Research, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Patiala, 140401, Punjab, India.
| | - Santosh Khatavi
- Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi, 591156, Karnataka, India
| | - Santosh Nandi
- Department of Chemistry, KLE Technological University, Dr. M. S. Sheshgiri Campus, Udyambag, Belagavi, 590008, Karnataka, India
| | - Rangappa Keri
- Centre for Nano and Material Sciences, Jain (Deemed-to-be) University, Jain Global Campus, Ramanagaram, Bangalore, 562112, Kanakpuram, Karnataka, India.
| |
Collapse
|
6
|
Gallmetzer HG, Sangiogo Gil E, González L. Photoisomerization Dynamics of Azo-Escitalopram Using Surface Hopping and a Semiempirical Method. J Phys Chem B 2024. [PMID: 39707901 DOI: 10.1021/acs.jpcb.4c06924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The photoisomerization dynamics of azo-escitalopram, a synthetic photoswitchable inhibitor of the human serotonin transporter, is investigated in both gas-phase and water. We use the trajectory surface hopping method─as implemented in SHARC─interfaced with the floating occupation molecular orbital-configuration interaction semiempirical method to calculate on-the-fly energies, forces, and couplings. The inclusion of explicit water molecules is enabled using an electrostatic quantum mechanics/molecular mechanics framework. We find that the photoisomerization quantum yield of trans-azo-escitalopram is wavelength- and environment-dependent, with n → π* excitation yielding higher quantum yields than π → π* excitation. Additionally, we observe the formation of two distinct cis-isomers in the photoisomerization from the most thermodynamically stable trans-isomer, with formation rates influenced by both the excitation window and the surrounding environment. We predict longer excited-state lifetimes than those reported for azobenzene, suggesting that the escitalopram moiety contributes to prolonged lifetimes and slower torsional motions.
Collapse
Affiliation(s)
- Hans Georg Gallmetzer
- Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Eduarda Sangiogo Gil
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna Research Platform in Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
7
|
Peng YJ, Xu B, Rokita SE. Breaking the Myth of Enzymatic Azoreduction. ACS Chem Biol 2024. [PMID: 39707960 DOI: 10.1021/acschembio.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Flavin-dependent azoreductases have been applied to a wide range of tasks from decolorizing numerous azo dyes to releasing azo-conjugated prodrugs. A general narrative reiterated in much of the literature suggests that this enzyme promotes sequential reduction of both the azo-containing substrate and its corresponding hydrazo product to release the aryl amine components while consuming two equivalents of NAD(P)H. Indeed, such aryl amines can be formed by incubation of certain azo compounds with azoreductases, but the nature of the substrates capable of this apparent azo bond lysis remained unknown. We have now prepared a set of azobenzene derivatives and characterized their turnover and products after treatment with azoreductase from Escherichia coli to discover the structural basis regulating aryl amine formation. Without resonance donation by aryl substituents, reduction ceases at the hydrazo product. This indicates that azoreductases do not act on the hydrazo bond. Instead, aryl amine formation depends on a spontaneous hydrazo bond lysis that is promoted by resonance stabilization and subsequent reduction of the quinone-like intermediate by azoreductase. Experimental and computational approaches confirm the substituent dependence of this process. With knowledge of this requirement, full release of aryl amines from azo-conjugates can now be designed and applied with confidence.
Collapse
Affiliation(s)
- Yu-Ju Peng
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Bing Xu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Park S, Ji J, Pillai S, Fischer H, Rouillon J, Benitez-Martin C, Andréasson J, You JH, Choi JH. Layer-number-dependent photoswitchability in 2D MoS 2-diarylethene hybrids. NANOSCALE 2024. [PMID: 39696962 DOI: 10.1039/d4nr03631j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Molybdenum disulfide (MoS2) is a notable two-dimensional (2D) transition metal dichalcogenide (TMD) with properties ideal for nanoelectronic and optoelectronic applications. With growing interest in the material, it is critical to understand its layer-number-dependent properties and develop strategies for controlling them. Here, we demonstrate a photo-modulation of MoS2 flakes and elucidate layer-number-dependent charge transfer behaviors. We fabricated hybrid structures by functionalizing MoS2 flakes with a uniform layer of photochromic diarylethene (DAE) molecules that can switch between closed- and open-form isomers under UV and visible light, respectively. We discovered that the closed-form DAE quenches the photoluminescence (PL) of monolayer MoS2 when excited at 633 nm and that the PL fully recovers after DAE isomerization into the open-form. Similarly, the electric conductivity of monolayer MoS2 is drastically enhanced when interacting with the closed-form isomers. In contrast, photoinduced isomerization did not modulate the properties of the hybrids made of MoS2 bilayers and trilayers. Density functional theory (DFT) calculations revealed that a hole transfer from monolayer MoS2 to the closed-form isomer took place due to energy level alignments, but such interactions were prohibited with open-form DAE. Computational results also indicated negligible charge transfer at the hybrid interfaces with bilayer and trilayer MoS2. These findings highlight the critical role of layer-number-dependent interactions in MoS2-DAE hybrids, offering valuable insights for the development of advanced photoswitchable devices.
Collapse
Affiliation(s)
- Sewon Park
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Srajan Pillai
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Henry Fischer
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Jean Rouillon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Carlos Benitez-Martin
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jeong Ho You
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
9
|
Wójcik P, Khvorost T, Lao G, Zhu GZ, Macias A, Caram JR, Campbell WC, García-Garibay MA, Hudson ER, Alexandrova AN, Krylov AI. Photoswitching Molecules Functionalized with Optical Cycling Centers Provide a Novel Platform for Studying Chemical Transformations in Ultracold Molecules. J Phys Chem A 2024. [PMID: 39700511 DOI: 10.1021/acs.jpca.4c06320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A novel molecular structure that bridges the fields of molecular optical cycling and molecular photoswitching is presented. It is based on a photoswitching molecule azobenzene functionalized with one and two CaO- groups, which can act as optical cycling centers (OCCs). This paper characterizes the electronic structure of the resulting model systems, focusing on three questions: (1) how the electronic states of the photoswitch are impacted by a functionalization with an OCC; (2) how the states of the OCC are impacted by the scaffold of the photoswitch; and (3) whether the OCC can serve as a spectroscopic probe of isomerization. The experimental feasibility of the proposed design and the advantages that organic synthesis can offer in the further functionalization of this molecular scaffold are also discussed. This work brings into the field of molecular optical cycling a new dimension of chemical complexity intrinsic to only polyatomic molecules.
Collapse
Affiliation(s)
- Paweł Wójcik
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Taras Khvorost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Guanming Lao
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
| | - Guo-Zhu Zhu
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
| | - Antonio Macias
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Wesley C Campbell
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Challenge Institute for Quantum Computation, University of California, Los Angeles, California 90095, United States
| | - Miguel A García-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Eric R Hudson
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Challenge Institute for Quantum Computation, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Yang J, Wang S, Han Y, Dong Q, Ma W, Zhou H. Synergistic photocatalysis enables aerobic oxo-hydrazination of α-diazoacetates with azobenzenes. Chem Commun (Camb) 2024. [PMID: 39693102 DOI: 10.1039/d4cc05668j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A photocatalytic oxo-hydrazination of α-diazoacetates with azobenzenes has been developed. With air as an oxygen source, the reaction proceeded smoothly and afforded previously unknown N,N'-diarylhydrazino-containing oxoacetates. Mechanistically, the reaction is enabled by cooperation of photoredox catalysis, energy transfer photocatalysis and direct photoexcitation.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shengyu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yating Han
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Qi Dong
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Wantong Ma
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
11
|
Mayrhofer P, Anneser MR, Schira K, Sommer CA, Theobald I, Schlapschy M, Achatz S, Skerra A. Protein purification with light via a genetically encoded azobenzene side chain. Nat Commun 2024; 15:10693. [PMID: 39695158 DOI: 10.1038/s41467-024-55212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Affinity chromatography is the method of choice for the rapid purification of proteins from cell extracts or culture supernatants. Here, we present the light-responsive Azo-tag, a short peptide comprising p-(phenylazo)-L-phenylalanine (Pap), whose side chain can be switched from its trans-ground state to the metastable cis-configuration by irradiation with mild UV light. Since only trans-Pap shows strong affinity to α-cyclodextrin (α-CD), a protein exhibiting the Azo-tag selectively binds to an α-CD chromatography matrix under daylight or in the dark but elutes quickly under physiological buffer flow when illuminating the column at 355 nm. We demonstrate the light-controlled single-step purification - termed Excitography - of diverse proteins, including enzymes and antibody fragments, without necessitating competing agents or harsh buffer conditions as normally applied. While affinity chromatography has so far been governed by chemical interactions, introducing control by electromagnetic radiation as a physical principle adds another dimension to this widely applied separation technique.
Collapse
Affiliation(s)
- Peter Mayrhofer
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Markus R Anneser
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Kristina Schira
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Carina A Sommer
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Ina Theobald
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Martin Schlapschy
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Stefan Achatz
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
12
|
Josa-Culleré L, Aira Rodríguez C, Llebaria A. Hemithioindigo-based histone deacetylase inhibitors induce a light-dependent anticancer effect. Eur J Med Chem 2024; 279:116846. [PMID: 39270453 DOI: 10.1016/j.ejmech.2024.116846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Photoswitchable molecules exhibit light-dependent biological activity which allow us to control the therapeutic effect of drugs with high precision. Such molecules could solve some of the limitations of anticancer drugs by providing a localised effect in the tumour. Histone deacetylase inhibitors (HDACis) constitute a promising drug class for oncology whose application is often limited by a lack of selectivity. Herein, we developed photoswitchable HDACis based on a hemithioindigo scaffold. We established synthetic routes to access them and determined the optimal conditions for isomerisation and their thermal stability. We then optimised their enzyme activity through three rounds of re-design to identify examples that are up to 6-fold more active under illumination than in the dark. We also confirmed that our best derivative reduces the viability of HeLa cells only under illumination. All in all, we disclose a series of derivatives containing a hemithioindigo moiety, which display a light-dependent effect on both HDAC inhibition and cancer cell viability.
Collapse
Affiliation(s)
- Laia Josa-Culleré
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Carla Aira Rodríguez
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
13
|
Yang J, Wang C, Han Y, Huang B, Mei S, Chen DP, Zhou H. Decatungstate-Photocatalyzed Hydroamidomethylation of Azobenzenes with N, N-Dimethylamides. Org Lett 2024; 26:10165-10169. [PMID: 39561349 DOI: 10.1021/acs.orglett.4c03931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A photocatalytic hydroamidomethylation of azobenzenes with N,N-dimethylamides has been developed. Using tetrabutylammonium decatungstate (TBADT) as a photocatalyst, an array of azobenzenes and N,N-dimethylamides reacted smoothly under visible light irradiation, affording previously unreported N-amidomethyl-N,N'-diarylhydrazines in generally high yields. Mechanistic studies indicate that the reaction is enabled by TBADT-mediated hydrogen atom transfer (HAT) photocatalysis. This work is fundamentally different from the previously reported reaction of N,N-dimethylformamide with azobenzenes.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Yating Han
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Bao Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Shouying Mei
- College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China
| | - Dong-Ping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
14
|
Pedussaut L, Mahieu N, Chartier C, Rajeshkumar T, Tricoire M, Douair I, Casaretto N, Maron L, Danoun G, Nocton G. The photo-isomerization of the cyclononatetraenyl ligand and related rare earth complexes. Chem Sci 2024; 15:19273-19282. [PMID: 39568911 PMCID: PMC11575527 DOI: 10.1039/d4sc04767b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
The cyclononatetraenyl (Cnt) ligand is a large monoanionic ligand. It is easily synthesized by ring expansion after cyclopropanation of the cyclooctatetraenyl (Cot) ligand. The Cnt ligand can be reported as the cis-cis-cis-cis (cis) isomer, where the aromatic ring is flat, and all carbon atoms form a homogenous ring, and as the cis-cis-cis-trans (trans) isomer, where one carbon places itself inside the ring. The isomerization from the trans to the cis form has been reported numerous times in previous articles, but no quantitative analysis has been proposed due to contradictory data. This article proposes a detailed analysis involving light to rationalize this intrigue concerning isomerization. A careful synthesis at low temperatures and with light protection yields the ligand in its trans form (Cnt-trans). The controlled photo-isomerization of the Cnt-trans ligand is reported herein. A series of divalent or trivalent rare earth complexes, (Cnt)2Sm, and (Cot)(Cnt)Ln (Ln = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Er, Ho), which synthesis, solid-state X-ray diffraction and solution 1H NMR and UV-visible measurements, have been revised according to the synthesis using the Cnt-trans ligand. The photo-isomerization of the (Cnt-trans)2Sm evolves to the intermediate (Cnt-cis)(Cnt-trans)Sm and the (Cnt-cis)2Sm complex as the thermodynamical product. The photoisomerization of the trivalent (Cot)(Cnt)Ln complexes highlights the formation of a photostationary state (PSS) after several minutes of irradiation, in which both Cnt-trans and Cnt-cis ligands are present. The ratio of these two forms varies according to metal and irradiation wavelength: low-energy wavelengths favor the cis isomer, and high-energy wavelengths favor the trans isomer. DFT and TD-DFT were performed to provide a tentative orbital explanation.
Collapse
Affiliation(s)
- Lucie Pedussaut
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Nolwenn Mahieu
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Camille Chartier
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | | | - Maxime Tricoire
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Iskander Douair
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS Toulouse France
| | - Nicolas Casaretto
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Laurent Maron
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS Toulouse France
| | - Grégory Danoun
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| |
Collapse
|
15
|
Saßmannshausen T, Glover H, Trabuco M, Neidhart W, Cheng R, Hennig M, Slavov C, Standfuss J, Wachtveitl J. Kinetic Basis for the Design of Azobenzene-Based Photoswitchable A 2a Adenosine Receptor Ligands. J Am Chem Soc 2024; 146:32670-32677. [PMID: 39533779 DOI: 10.1021/jacs.4c11995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photoisomerization of ligands is a key process in the field of photopharmacology. Thus, the kinetics and efficiency of this initial photoreaction are of great importance but can be influenced by the molecular environment of the binding pocket and the resulting confinement of the reaction pathway. In this study, we investigated the photoisomerization of an azobenzene derivative of the anti-Parkinson's drug istradefylline. To identify the impact of the binding pocket, the ligand was examined in solution and bound to its target protein, the A2a adenosine receptor (A2aR), belonging to the family of G protein-coupled receptors (GPCRs). Although the overall efficiency of isomerization is reduced when the ligand is bound, the initial photoreaction experiences little influence from the binding pocket. However, protein-coupled motion promotes a longer-lived excited-state population and thus leads to a reduction in efficiency. The results provide the kinetic basis for a photoswitchable GPCR ligand and demonstrate the influence of the binding pocket on fundamental photochemistry.
Collapse
Affiliation(s)
- Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI 5234, Switzerland
| | - Matilde Trabuco
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Werner Neidhart
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Robert Cheng
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Michael Hennig
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Chavdar Slavov
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI 5234, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| |
Collapse
|
16
|
Sun HH, Zhou ZB, Fu Y, Qi QY, Wang ZX, Xu S, Zhao X. Azobenzene-Bridged Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Peroxide Production from Alkaline Water: One Atom Makes a Significant Improvement. Angew Chem Int Ed Engl 2024; 63:e202409250. [PMID: 39136238 DOI: 10.1002/anie.202409250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 10/17/2024]
Abstract
Covalent organic frameworks (COFs) have been demonstrated as promising photocatalysts for hydrogen peroxide (H2O2) production. However, the construction of COFs with new active sites, high photoactivity, and wide-range light absorption for efficient H2O2 production remains challenging. Herein, we present the synthesis of a novel azobenzene-bridged 2D COF (COF-TPT-Azo) with excellent performance on photocatalytic H2O2 production under alkaline conditions. Notably, although COF-TPT-Azo differs by only one atom (-N=N- vs. -C=N-) from its corresponding imine-linked counterpart (COF-TPT-TPA), COF-TPT-Azo exhibits a significantly narrower band gap, enhanced charge transport, and prompted photoactivity. Remarkably, when employed as a metal-free photocatalyst, COF-TPT-Azo achieves a high photocatalytic H2O2 production rate up to 1498 μmol g-1 h-1 at pH = 11, which is 7.9 times higher than that of COF-TPT-TPA. Further density functional theory (DFT) calculations reveal that the -N=N- linkages are the active sites for photocatalysis. This work provides new prospects for developing high-performance COF-based photocatalysts.
Collapse
Affiliation(s)
- Hui-Hui Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Bei Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Qiao-Yan Qi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhen-Xue Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Shunqi Xu
- School of Energy and Environment, Southeast University, 211189, Nanjing, Jiangsu, China
| | - Xin Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
17
|
Gemen J, Stövesand B, Glorius F, Ravoo BJ. Surface Tension Manipulation with Visible Light through Sensitized Disequilibration of Photoswitchable Amphiphiles. Angew Chem Int Ed Engl 2024; 63:e202413209. [PMID: 39145431 DOI: 10.1002/anie.202413209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Azoarene isomerization lies at the heart of numerous applications, from catalysis or energy storage to photopharmacology. While efficient switching between their E and Z isomers predominantly relies on UV light, a recent study by Klajn and co-workers introduced visible light sensitization of E azoarenes and their subsequent isomerization as a tool coined disequilibration by sensitization under confinement (DESC) to obtain high yields of the Z isomer. This host-guest approach is, however, still constrained to minimally substituted azoarenes with limited applicability in advanced molecular systems. Herein, we expand DESC for the assembly of surfactants at the air-water interface. Leveraging our expertise with photoswitchable amphiphiles, we induce substantial alterations of the water surface tension through reversible arylazopyrazole isomerization. After studying the binding of charged surfactants to the host, we find that the surface activity differences upon visible light switching for both isomers are comparable to those obtained by UV light excitation. The method is demonstrated on a large concentration range and can be activated using green or red light, depending on the sensitizer chosen. The straightforward implementation of photoswitch sensitization in a complex molecular network showcases how DESC enables the improvement of existing systems and the development of novel applications driven by visible light.
Collapse
Affiliation(s)
- Julius Gemen
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Bastian Stövesand
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Frank Glorius
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
18
|
Yuan M, McNeece AJ, Dolgopolova EA, Wolfsberg L, Bowes EG, Batista ER, Yang P, Filatov A, Davis BL. Photoinduced Isomerization of [N 2] 2- in a Bimetallic Lutetium Complex. J Am Chem Soc 2024; 146:31074-31084. [PMID: 39482864 DOI: 10.1021/jacs.4c10950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The first lanthanide dinitrogen photoswitch [(C5Me4H)2(THF)Lu]2(μ-η2:η2-N2), 1, is reported. 1 is a unique example of controlled isomerization between side-on and end-on coordination modes of [N2]2- in a bimetallic lutetium dinitrogen complex that results in photochromism. Near-infrared light (NIR) was used to promote this effect, as evidenced by single X-ray diffraction (XRD) connectivity and Raman data, generating the [N2]2- end-on bound isomer, [(C5Me4H)2(THF)Lu]2(μ-η1:η1-N2), 2. Although different ligands and coordinating solvents were studied to replicate and control the optical properties in 1/2, only the original configuration with C5Me4H ligands and THF as the coordinating solvent worked. Supported by the first-principles calculations, the electronic structures along with the mechanistic details of the side-on to end-on isomerization were unraveled. Preliminary reactivity studies show that 2 formed with NIR light reacts with anthracene, generating dihydroanthracene and anthracene dimers, indicating new redox reaction pathways.
Collapse
Affiliation(s)
- Mingbin Yuan
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J McNeece
- MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ekaterina A Dolgopolova
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Laura Wolfsberg
- MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Eric G Bowes
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander Filatov
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Benjamin L Davis
- MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
19
|
Alhendal A, Rashad M, Alshatti L, Mouffouk F, Husain A, Alrashed A. Recoverable and reusable light-induced multi-arm azobenzenes-Fe 3O 4 hybrid sorbent for enrichment of phthalate plasticizer and utilized as a SALDI substrate for the detection of 2-naphthol. J Chromatogr A 2024; 1736:465418. [PMID: 39378620 DOI: 10.1016/j.chroma.2024.465418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
The construction, structural identifications along with compositional properties, using TEM, FT-IR, and XPS spectroscopies, of an innovative light-induced multi-arm azobenzenes based Fe3O4 magnetic nanoparticles (Azo-Fe3O4 MNPs) are being reported. Such organic (light-sensitive dendrimers-like structure), inorganic (magnet core), hybrid material has been applied as an efficient recoverable/reusable extractive sorbent for the detection of phthalate plasticizers from acetate buffer solution. The extraction study was controlled within consecutive procedures via UV-light exposure to achieve pore-size control which then further subjected for the evaluation of the analytes' retention, separation, and release as well as the detection of the phthalate pollutants using GCMS-. Various experimental conditions, such as time of extraction, salt concentration, pH, and desorption time, were studied and adjusted. Additionally, the extraction repeatability (RSD from 0.46 % to 6.12%, n = 5) of the studied sorbent was comparable to other published work. The linear range extended from 6.25 to 100 μg L-¹ and detection limits (LOD) within the range of 41- 150 ng L-1 were achieved, demonstrating good linearity with values ranging from 0.9992 to 0.9892. The inter-batch and intra-batch RSD ranged from 0.46 % to 6.12 %, respectively. Additionally, it provides effective detection of 2-naphthol when used as a SALDI substrate.
Collapse
Affiliation(s)
- Abdullah Alhendal
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Mohamed Rashad
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Laila Alshatti
- The Public Authority for Applied Education and Training, College of Nursing, General Science Department, State of Kuwait, P.O. Box 64923, 70466, Shuwaikh-B, Kuwait
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Ali Husain
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Abrar Alrashed
- Department of Chemistry, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
20
|
Xie Y, Li M, Ma Y, Lin F, Zhu H, Li W, Jiang S, Shen C, Jia Z, Zhang K. Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60132-60141. [PMID: 39441671 DOI: 10.1021/acsami.4c09801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N-/-NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g-1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.
Collapse
Affiliation(s)
- Yihui Xie
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Ming Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Fakun Lin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Hongbiao Zhu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Wenbiao Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Shangxu Jiang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Kai Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
- Shengzhou Innovation Research Institute, Zhejiang Sci-Tech University, Shengzhou 312400, P. R. China
| |
Collapse
|
21
|
Zhang L, Jeong S, Lee J, Kim J, Lee JS, Park J, Hong J, Eom JH, Kim H, Rhee YM, Lee H, Lee HS. Red Fluorescence from Organic Microdots: Leveraging Foldamer-Linked Azobenzene for Enhanced Stability and Intensity in Bioimaging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401480. [PMID: 38949050 DOI: 10.1002/smll.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Azobenzene, while relevant, has faced constraints in biological system applications due to its suboptimal quantum yield and short-wavelength emission. This study presents a pioneering strategy for fabricating organic microdots by coupling foldamer-linked azobenzene, resulting in robust fluorescence intensity and stability, especially in aggregated states, thereby showing promise for bioimaging applications. Comprehensive experimental and computational examinations elucidate the mechanisms underpinning enhanced photostability and fluorescence efficacy. In vitro and in vivo evaluations disclose that the external layer of cis-azo-foldamer microdots performs a self-sacrificial function during photo-bleaching. Consequently, these red-fluorescent microdots demonstrate extraordinary structural and photochemical stabilities over extended periods. The conjugation of a β-peptide foldamer to the azobenzene chromophore through a glycine linker instigates a blue-shifted and amplified π*-n transition. Molecular dynamics simulations reveal that the aggregated state of cis-azo-foldamers fortifies the stability of cis isomers, thereby augmenting fluorescence efficiency. This investigation furnishes crucial insights into conceptualizing novel, biologically inspired materials, promising stable and enduring imaging applications, and carries implications for diverse arenas such as medical diagnostics, drug delivery, and sensing technologies.
Collapse
Affiliation(s)
- Lianjin Zhang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seoneun Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeehee Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaewook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Seok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Hoon Eom
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee-Seung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
22
|
Bequet-Ermoy E, Silvestre V, Cuenot S, Ishow E. Reversible Light-Triggered Stretching of Small-Molecule Photochromic Organic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403912. [PMID: 38994656 DOI: 10.1002/smll.202403912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Functional organic nanomaterials are nowadays largely spread in the field of nanomedicine. In situ modulation of their morphology is thus expected to considerably impact their interactions with the surroundings. In this context, photoswitchable nanoparticles that are manufactured, amenable to extensive disassembling upon illumination in the visible, and reversible reshaping under UV exposure. Such reversibility turns to be strongly impaired for photochromic nanoparticles in close contact with a substrate. In situ atomic force microscopy investigations at the nanoscale actually reveal progressive disintegration of the organic nanoparticles under successive UV-vis cycles of irradiation, in the absence of intrinsic elastic forces. These results point out the dramatic interactions exerted by surfaces on the cohesion of non-covalently bonded organic nanoparticles. They invite to harness such systems, often used as biomarkers, to also serve as photoactivatable drug delivery nanocarriers.
Collapse
Affiliation(s)
| | | | - Stéphane Cuenot
- Institut des Matériaux de Nantes Jean Rouxel, CNRS, Nantes Université, IMN, Nantes, F-44000, France
| | - Eléna Ishow
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, F-44000, France
| |
Collapse
|
23
|
Hillel C, Rough S, Barrett CJ, Pietro WJ, Mermut O. A cautionary tale of basic azo photoswitching in dichloromethane finally explained. Commun Chem 2024; 7:250. [PMID: 39487336 PMCID: PMC11530702 DOI: 10.1038/s42004-024-01321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
Many studies of azobenzene photoswitches are carried out in polar aprotic solvents as a first principles characterization of thermal isomerization. Among the most convenient polar aprotic solvents are chlorinated hydrocarbons, such as DCM. However, studies of azobenzene thermal isomerization in such solvents have led to spurious, inconclusive, and irreproducible results, even when scrupulously cleaned and dried, a phenomenon not well understood. We present the results of a comprehensive investigation into the root cause of this problem. We explain how irradiation of an azopyridine photoswitch with UV in DCM acts not just as a trigger for photoisomerization, but protonation of the pyridine moiety through photodecomposition of the solvent. Protonation markedly accelerates the thermal isomerization rate, and DFT calculations demonstrate that the singlet-triplet rotation mechanism assumed for many azo photoswitches is surprisingly abolished. This study implies exploitative advantages of photolytically-generated protons and finally explains the warning against using chlorinated solvent with UV irradiation in isomerization experiments.
Collapse
Affiliation(s)
- Coral Hillel
- Department of Physics and Astronomy, York University, Toronto, ON, Canada
| | - Sara Rough
- Department of Physics and Astronomy, York University, Toronto, ON, Canada
| | - Christopher J Barrett
- Department of Physics and Astronomy, York University, Toronto, ON, Canada
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | | | - Ozzy Mermut
- Department of Physics and Astronomy, York University, Toronto, ON, Canada.
- Department of Chemistry, York University, Toronto, ON, Canada.
| |
Collapse
|
24
|
Rybak CJ, Fan C, Sharma P, Uyeda C. Dinickel-Catalyzed N=N Coupling Reactions for the Synthesis of Hindered Azoarenes. J Am Chem Soc 2024; 146:29720-29727. [PMID: 39419083 DOI: 10.1021/jacs.4c11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Azoarenes are the largest class of photoswitching molecules, and they have a broad range of applications in photopharmacology and materials science. Azoarenes possessing ortho-substitution often display improved properties, including isomerization under visible light irradiation, near-quantitative switching, and long thermal half-lives in the cis form. The synthesis of hindered ortho-substituted azoarenes is often low-yielding using established oxidative or reductive coupling methods. Here, we describe the design and synthesis of a new dinickel complex that catalyzes the dimerization of ortho-substituted aryl azides in high yield. Applications of this method in the synthesis of high-performance photoswitches, photoactive peptide cross-linkers, hindered diazocines, and main-chain azoarene polymers are described.
Collapse
Affiliation(s)
- Christopher J Rybak
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Chengyi Fan
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Parijat Sharma
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Ramos-Soriano J, Holbrow-Wilshaw M, Hunt E, Jiang YJ, Peñalver P, Morales JC, Galan MC. Probing the binding and antiparasitic efficacy of azobenzene G-quadruplex ligands to investigate G4 ligand design. Chem Commun (Camb) 2024; 60:11520-11523. [PMID: 39308448 PMCID: PMC11418008 DOI: 10.1039/d4cc03106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Novel strategies against parasitic infections are of great importance. Here, we describe a G4 DNA ligand with subnanomolar antiparasitic activity against T. brucei and a remarkable selectivity index (IC50 MRC-5/T. brucei) of 2285-fold. We also correlate the impact of small structural changes to G4 binding activity and antiparasitic activity.
Collapse
Affiliation(s)
| | | | - Eliza Hunt
- School of Chemistry, Cantock's Close, University of Bristol, BS8 1TS, UK
| | - Y Jennifer Jiang
- School of Chemistry, Cantock's Close, University of Bristol, BS8 1TS, UK
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| | - M Carmen Galan
- School of Chemistry, Cantock's Close, University of Bristol, BS8 1TS, UK
| |
Collapse
|
26
|
Dudek M, López-Pacios L, Sabouri N, Nogueira JJ, Martinez-Fernandez L, Deiana M. Harnessing Light for G-Quadruplex Modulation: Dual Isomeric Effects of an Ortho-Fluoroazobenzene Derivative. J Phys Chem Lett 2024; 15:9757-9765. [PMID: 39288355 PMCID: PMC11440583 DOI: 10.1021/acs.jpclett.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
G-quadruplexes (G4s) are important therapeutic and photopharmacological targets in cancer research. Small-molecule ligands targeting G4s offer a promising strategy to block DNA transactions and induce genetic instability in cancer cells. While numerous G4-ligands have been reported, relatively few examples exist of compounds whose G4-interactive binding properties can be modulated using light. Herein, we report the photophysical characterization of a novel ortho-fluoroazobenzene derivative, Py-Azo4F-3N, that undergoes reversible two-way isomerization upon visible light exposure. Using a combination of biophysical techniques, including affinity and selectivity assays, structural and computational analysis, and cytotoxicity experiments in cancer cell lines, we carefully characterized the G4-interactive binding properties of both isomers. We identify the trans isomer as the most promising form of interacting and stabilizing G4s, enhancing their ablation capability in cancer cells. Our research highlights the importance of light-responsive molecules in achieving precise control over G4 structures, demonstrating their potential in innovative anticancer strategies.
Collapse
Affiliation(s)
- Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Lucía López-Pacios
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Juan J Nogueira
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Lara Martinez-Fernandez
- Departamento de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC, 28006 Madrid, Spain
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
27
|
Kalapurakal RAM, Jha PK, Vashisth H. Theory and simulations of light-induced self-assembly in colloids with quantum chemistry derived empirical potentials. SOFT MATTER 2024; 20:7367-7378. [PMID: 39086325 DOI: 10.1039/d4sm00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Light-induced self-assembly (LISA) is a non-invasive method for tuning material properties. Photoresponsive ligands coated on the surfaces of nanoparticles are often used to achieve LISA. We report simulation studies for a photoresponsive ligand, azobenzene dithiol (ADT), which switches from a trans-to-cis configuration on exposure to ultraviolet light, allowing self-assembly in ADT-coated gold nanoparticles (NPs). This is attributed to a higher dipole moment of cis-ADT over trans-ADT which leads to a dipole-dipole attraction facilitating self-assembly. Singh and Jha [Comput. Theor. Chem., 2021, 1206, 113492] used quantum-chemistry calculations to quantify the interaction energy of a pair of ADT ligands in their cis and trans conformations. The interaction energy between ligands was fit to a potential energy function of the Lennard-Jones (LJ) form having distinct exponents for attractive and repulsive contributions. Using this generalized equation for the ligand-ligand interaction energy, we calculated the total effective interaction energy between a pair of cis as well as trans ADT-coated NPs. Specifically, we calculated the effective interaction energies between cis/trans-NPs using discrete as well as continuous approaches. Given the limitations of experiments in probing individual ligand conformations, we also studied the effect of varying the functional ligand length on the interaction energy between NPs and identified the optimal functional ligand length to capture the steric and conformational effects. Finally, using the effective interaction energy, we obtained a generalized potential energy function, which was applied in Langevin dynamics simulations to capture self-assembly in NPs.
Collapse
Affiliation(s)
| | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India.
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824, USA.
- Department of Chemistry, University of New Hampshire, Durham, NH 03824, USA
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH 03824, USA
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
28
|
Chocron L, Baggi N, Ribeiro E, Goetz V, Yu P, Nakatani K, Métivier R. Acid-sensitive photoswitches: towards catalytic on-demand release of stored light energy. Chem Sci 2024:d4sc04973j. [PMID: 39345771 PMCID: PMC11423652 DOI: 10.1039/d4sc04973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Photochromic compounds are promising for a variety of applications, including molecular solar thermal (MOST) energy storage. The energy release step and cyclability are critical issues to be addressed for the development of this technology. We report herein the synthesis and characterization of two diarylethene molecules featuring one (1) or two (2) pyridine groups as protonatable moieties. Upon UV irradiation, both molecules undergo a cyclization reaction from the open form (OF) to the closed form (CF). Both CF are stable for a few days in acetonitrile, and the addition of acid leads to a 600 (1) or 1500-fold (2) acceleration of the ring-opening reaction, even in catalytic amounts. A kinetic model is proposed to simulate the reaction, elucidating the contribution of each step to the kinetics and evidencing the importance of the kinetic control over the protonation thermodynamic equilibrium. Data fitting leads to the rates of elementary steps and turnover numbers (TON). Following a complete reaction cycle, neutralization of the acid by an equivalent amount of base allowed further cycles. This study represents a significant advancement in the cyclability and the control of the on-demand triggering of the energy-releasing ring-opening reaction of diarylethenes for future MOST applications.
Collapse
Affiliation(s)
- Léa Chocron
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - Nicolò Baggi
- Université Paris-Saclay, CNRS, ICMMO 91400 Orsay France
| | | | | | - Pei Yu
- Université Paris-Saclay, CNRS, ICMMO 91400 Orsay France
| | - Keitaro Nakatani
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| |
Collapse
|
29
|
Goual N, Métivier R, Laurent G, Retailleau P, Nakatani K, Xie J. Tuning the Thermal Stability of Tetra-o-chloroazobenzene Derivatives by Transforming Push-Pull to Push-Push Systems. Chemistry 2024; 30:e202401737. [PMID: 39224068 DOI: 10.1002/chem.202401737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 09/04/2024]
Abstract
Molecular photoswitches provide interesting tools to reversibly control various biological functions with light. Thanks to its small size and easy introduction into the biomolecules, azobenzene derivatives have been widely employed in the field of photopharmacology. All visible-light switchable azobenzenes with controllable thermostability are highly demanded. Based on the reported tetra-o-chloroazobenzenes, we synthesized push-pull systems, by introducing dialkyl amine and nitro groups as strong electron-donating and electron-withdrawing groups on the para-positions, and then transformed to push-push systems by a simple reduction step. The developed push-pull and push-push tetra-o-chloroazobenzene derivatives displayed excellent photoswitching properties, as previously reported. The half-life of the Z-isomers can be tuned from milliseconds for the push-pull system to several hours for the push-push system. The n-π* and π-π* transitions have better resolution in the push-push molecules, and excitation at different wavelengths can tune the E/Z ratio at the photostationary state. For one push-pull molecule, structure and absorption spectra obtained from theoretical calculations are compared with experimental data, along with data on the push-push counterpart.
Collapse
Affiliation(s)
- Nawel Goual
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Rémi Métivier
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Guillaume Laurent
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Pascal Retailleau
- University Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, 91198, France
| | - Keitaro Nakatani
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Juan Xie
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| |
Collapse
|
30
|
Camerin L, Maleeva G, Gomila AMJ, Suárez-Pereira I, Matera C, Prischich D, Opar E, Riefolo F, Berrocoso E, Gorostiza P. Photoswitchable Carbamazepine Analogs for Non-Invasive Neuroinhibition In Vivo. Angew Chem Int Ed Engl 2024; 63:e202403636. [PMID: 38887153 DOI: 10.1002/anie.202403636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.
Collapse
Affiliation(s)
- Luisa Camerin
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Doctorate program in organic chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Department of Pharmaceutical Sciences, University of Milan, Milan, 20133, Italy
| | - Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, SW120BZ, United Kingdom
| | - Ekin Opar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Teamit Institute, Partnerships, Barcelona Health Hub, Barcelona, 08025, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
31
|
Samal PP, Maiti A, Patel S, Paul H, Chandra G, Mishra P, Daschakraborty S, Nayak A. Quantifying Hydrogen-Bonding Interactions in the Self-Assembly of Photoresponsive Azobenzene Amphiphiles at the Air-Water Interface. J Phys Chem Lett 2024; 15:9193-9200. [PMID: 39213655 DOI: 10.1021/acs.jpclett.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amphiphilic azobenzene molecules offer ample scope to design functional supramolecular systems in an aqueous medium that can be controlled by light. Despite their widespread applications in photopharmacology and optoelectronics, the self-assembly pathways and energy landscapes of these systems are not well understood. Here, we report combined molecular dynamics (MD) simulation and surface manometry studies on a specially designed alkylated, meta-substituted azobenzene derivative to quantify the hydrogen-bonding interactions in the self-assembled monolayers of its photoisomers. The z-density profile, radial distribution function, order parameters, and hydrogen bond analyzed using MD simulations corroborated the experimental observations of changes in surface pressure, dipole moment, and thickness of the monolayers. Even a small change in the number of hydrogen bonds in the molecule-molecule and molecule-water interactions causes significant changes in the monolayer properties. These results are fundamentally important for engineering photoresponsive molecules with tailored properties for applications in targeted drug delivery and other industrial applications.
Collapse
Affiliation(s)
| | - Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, India 801103
| | - Samridhi Patel
- Department of Chemistry, Central University of South Bihar, Gaya, India 824236
| | - Himangshu Paul
- Department of Physics, Indian Institute of Technology Patna, Bihta, India 801103
| | - Girish Chandra
- Department of Chemistry, Central University of South Bihar, Gaya, India 824236
| | - Puneet Mishra
- Department of Physics, Central University of South Bihar, Gaya, India 824236
| | | | - Alpana Nayak
- Department of Physics, Indian Institute of Technology Patna, Bihta, India 801103
| |
Collapse
|
32
|
Schatz D, Baumert ME, Kersten MC, Schneider FM, Nielsen MB, Hansmann MM, Wegner HA. para-Aminoazobenzenes-Bipolar Redox-Active Molecules. Angew Chem Int Ed Engl 2024; 63:e202405618. [PMID: 38869230 DOI: 10.1002/anie.202405618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Azobenzenes (ABs) are versatile compounds featured in numerous applications for energy storage systems, such as solar thermal storages or phase change materials. Additionally, the reversible one-electron reduction of these diazenes to the nitrogen-based radical anion has been used in battery applications. Although the oxidation of ABs is normally irreversible, 4,4'-diamino substitution allows a reversible 2e- oxidation, which is attributed to the formation of a stable bis-quinoidal structure. Herein, we present a system that shows a bipolar redox behaviour. In this way, ABs can serve not only as anolytes, but also as catholytes. The resulting redox potentials can be tailored by suitable amine- and ring-substitution. For the first time, the solid-state structure of the oxidized form could be characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center of Materials Research (ZfM/LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| | - Marcel E Baumert
- Faculty of Chemistry and Chemical Biology (CCB), Technical University of Dortmund, Otto-Hahn Str. 6., 44227, Dortmund, Germany
| | - Marie C Kersten
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center of Materials Research (ZfM/LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| | - Finn M Schneider
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center of Materials Research (ZfM/LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| | | | - Max M Hansmann
- Faculty of Chemistry and Chemical Biology (CCB), Technical University of Dortmund, Otto-Hahn Str. 6., 44227, Dortmund, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center of Materials Research (ZfM/LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| |
Collapse
|
33
|
Liang S, Yuan C, Nie C, Liu Y, Zhang D, Xu WC, Liu C, Xu G, Wu S. Photocontrolled Reversible Solid-Fluid Transitions of Azopolymer Nanocomposites for Intelligent Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408159. [PMID: 39082060 DOI: 10.1002/adma.202408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Indexed: 10/04/2024]
Abstract
Intelligent polymer nanocomposites are multicomponent and multifunctional materials that show immense potential across diverse applications. However, to exhibit intelligent traits such as adaptability, reconfigurability and dynamic properties, these materials often require a solvent or heating environment to facilitate the mobility of polymer chains and nanoparticles, rendering their applications in everyday settings impractical. Here intelligent azopolymer nanocomposites that function effectively in a solvent-free, room-temperature environment based on photocontrolled reversible solid-fluid transitions via switching flow temperatures (Tfs) are shown. A range of nanocomposites is synthesized through the grafting of Au nanoparticles, Au nanorods, quantum dots, or superparamagnetic nanoparticles with photoresponsive azopolymers. Leveraging the reversible cis-trans photoisomerization of azo groups, the azopolymer nanocomposites transition between solid (Tf above room temperature) and fluid (Tf below room temperature) states. Such photocontrolled reversible solid-fluid transitions empower the rewriting of nanopatterns, correction of nanoscale defects, reconfiguration of complex multiscale structures, and design of intelligent optical devices. These findings highlight Tf-switchable polymer nanocomposites as promising candidates for the development of intelligent nanomaterials operative in solvent-free, room-temperature conditions.
Collapse
Affiliation(s)
- Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chenrui Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yazhi Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dachuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chengwei Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guofeng Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
34
|
Vautrin L, Lambert A, Mahdhaoui F, El Abed R, Boubaker T, Ingrosso F. Structural and Electronic Properties of Novel Azothiophene Dyes: A Multilevel Study Incorporating Explicit Solvation Effects. Molecules 2024; 29:4053. [PMID: 39274901 PMCID: PMC11397383 DOI: 10.3390/molecules29174053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Among azobenzene derivatives, azothiophenes represent a relatively recent family of compounds that exhibit similar characteristics as dyes and photoreactive systems. Their technological applications are extensive thanks to the additional design flexibility conferred by the heteroaromatic ring. In this study, we present a comprehensive investigation of the structural and electronic properties of novel dyes derived from 3-thiophenamine, utilizing a multilevel approach. We thoroughly examined the potential energy surfaces of the E and Z isomers for three molecules, each bearing different substituents on the phenyl ring at the para position relative to the diazo group. This exploration was conducted through quantum chemistry calculations at various levels of theory, employing a continuum solvent model. Subsequently, we incorporated an explicit solvent (a dimethyl sulfoxide-water mixture) to simulate the most stable isomers using classical molecular dynamics, delivering a clear picture of the local solvation structure and intermolecular interactions. Finally, a hybrid quantum mechanics/molecular mechanics (QM/MM) approach was employed to accurately describe the evolution of the solutes' properties within their environment, accounting for finite temperature effects.
Collapse
Affiliation(s)
- Laura Vautrin
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, F-54000 Nancy, France
| | - Alexandrine Lambert
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, F-54000 Nancy, France
| | - Faouzi Mahdhaoui
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, F-54000 Nancy, France
| | - Riad El Abed
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11SE39), Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
| | - Taoufik Boubaker
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11SE39), Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'Environnement, Monastir 5019, Tunisia
| | - Francesca Ingrosso
- Université de Lorraine and CNRS, Laboratoire de Physique et Chimie Théoriques UMR 7019, F-54000 Nancy, France
| |
Collapse
|
35
|
Tian X, Zhao X, Wang Z, Shi Y, Li Z, Qiu J, Wang H, Zhang S, Wang J. Efficient Capture and Low Energy Release of NH 3 by Azophenol Decorated Photoresponsive Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202406855. [PMID: 38871653 DOI: 10.1002/anie.202406855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
In NH3 capture technologies, the desorption process is usually driven by high temperature and low pressure (such as 150-200 °C under vacuum), which accounts for intensive energy consumption and CO2 emission. Developing light responsive adsorbent is promising in this regard but remains a great challenge. Here, we for the first time designed and synthesized a light responsive azophenol-containing covalent organic framework (COF), COF-HNU38, to address this challenge. We found that at 25 °C and 1.0 bar, the cis -COF exhibited a NH3 uptake capacity of 7.7 mmol g-1 and a NH3/N2 selectivity of 158. In the adsorbed NH3, about 29.0 % could be removed by vis-light irradiated cis-trans isomerization at 25 °C, and the remaining NH3 might be released at 25 °C under vacuum. Almost no decrease in adsorption capacity was observed after eight adsorption-desorption cycles. As such, an efficient NH3 capture and low energy release strategy was established thanks to the multiple hydrogen bond interactions (which are strong in total but weak in individuals) between NH3 and the smart COF, as well as the increased polarity and number of hydrogen bond sites after the trans-cis isomerization.
Collapse
Affiliation(s)
- Xiaoxin Tian
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan, 453003, P. R. China
| | - Xiao Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhenzhen Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemistry and Molecular Sciences, Longzihu New Energy Laboratory, Henan University, Zhengzhou, Henan, 450000, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education (China), School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
36
|
Liu M, Wu B, Baryshnikov GV, Shen S, Sun H, Gu X, Ågren H, Xu Y, Zou Q, Qu DH, Zhu L. Photo-controlled order-to-order host-guest self-assembly transfer for an afterglow effect with water resistance. Chem Sci 2024; 15:12569-12579. [PMID: 39118609 PMCID: PMC11304790 DOI: 10.1039/d4sc03451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Due to the general incompleteness of photochemical reactions, the photostationary structure in traditional photo-controlled host-guest self-assembly transfer is usually disordered or irregular. This fact readily affects the photoregulation or improvement of related material properties. Herein, a photoexcitation-induced aggregation molecule, hydroxyl hexa(thioaryl)benzene (HB), was grafted into β-cyclodextrin to form a host-guest system. Upon irradiation, the excited state conformational change of HB can drive an order-to-order phase transition of the system, enabling the transfer of the initial linear nanostructure to a photostationary worm-like nanostructure with orderliness and crystallinity capability. Along with the photoexcitation-controlled phase transition, an afterglow effect was obtained from the films prepared by doping the host-guest system into poly(vinyl alcohol). The afterglow effect had a superior water resistance, which successfully overcame the general sensitivity of doped materials with the afterglow effect to water vapor. These results are expected to provide new insights for pushing forward chemical self-assembly from the light perspective, towards materials with superior and stable properties under light treatment.
Collapse
Affiliation(s)
- Mouwei Liu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Bin Wu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Glib V Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University Norrköping 60174 Sweden
| | - Shen Shen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Hao Sun
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Xinyan Gu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University Box 516 Uppsala SE-751 20 Sweden
| | - Yifei Xu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Liangliang Zhu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| |
Collapse
|
37
|
Li A, Gao A, Chen K, Li H. Electrochemical Cyclization of o-Aminyl Azobenzenes: Roles of Aldehydes in N-N Bond Cleavage. Org Lett 2024; 26:6324-6329. [PMID: 39038427 DOI: 10.1021/acs.orglett.4c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Direct functionalization of azobenzenes provides an approach to obtaining valuable molecules in synthetic chemistry. However, an efficient method for the cleavage of the N═N bond of azobenzenes, which is a key process for this transformation, is still lacking. We herein disclose an electrochemical reduction-induced cyclization of azobenzenes with aldehydes via N═N bond cleavage. This electrochemical cyclization of azobenzenes proceeds well in the absence of any transition metals or external chemical oxidants, leading to the formation of N-protected benzimidazoles in moderate to good yields.
Collapse
Affiliation(s)
- Anni Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Anna Gao
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Kangjia Chen
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
38
|
Delattre V, Goual N, Retailleau P, Marinetti A, Voituriez A. Synthesis of Halogenated Dibenzo[1,2,6]triazonines and Late-Stage Functionalization of the Triazonine Ring. J Org Chem 2024; 89:10939-10945. [PMID: 39037737 DOI: 10.1021/acs.joc.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Dibenzotriazonine represent a new class of nine-membered cyclic azobenzenes with a nitrogen atom embedded in the bridging chain. To enable future applications of this photoactive backbone, we propose in this study the synthesis of mono- and dihalogenated triazonines, that allow the late-stage introduction of different functionalized aryl groups and heteroatoms (N, O, and P) via palladium-catalyzed reactions. Indeed, different diphenylphosphoryl-triazonines were synthesized with functional groups such as aniline or phenol. Bis(diphenylphosphoryl)phenyl mono- and bis-carbamate-triazonines were also isolated in good yields.
Collapse
Affiliation(s)
- Vincent Delattre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Nawel Goual
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| |
Collapse
|
39
|
Kuntze K, Isokuortti J, van der Wal JJ, Laaksonen T, Crespi S, Durandin NA, Priimagi A. Detour to success: photoswitching via indirect excitation. Chem Sci 2024; 15:11684-11698. [PMID: 39092110 PMCID: PMC11290455 DOI: 10.1039/d4sc02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Photoswitchable molecules that undergo nanoscopic changes upon photoisomerisation can be harnessed to control macroscopic properties such as colour, solubility, shape, and motion of the systems they are incorporated into. These molecules find applications in various fields of chemistry, physics, biology, and materials science. Until recently, research efforts have focused on the design of efficient photoswitches responsive to low-energy (red or near-infrared) irradiation, which however may compromise other molecular properties such as thermal stability and robustness. Indirect isomerisation methods enable photoisomerisation with low-energy photons without altering the photoswitch core, and also open up new avenues in controlling the thermal switching mechanism. In this perspective, we present the state of the art of five indirect excitation methods: two-photon excitation, triplet sensitisation, photon upconversion, photoinduced electron transfer, and indirect thermal methods. Each impacts our understanding of the fundamental physicochemical properties of photochemical switches, and offers unique application prospects in biomedical technologies and beyond.
Collapse
Affiliation(s)
- Kim Kuntze
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Jussi Isokuortti
- Department of Chemistry, University of Texas at Austin Austin TX USA
| | - Jacob J van der Wal
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
- Faculty of Pharmacy, University of Helsinki Helsinki Finland
| | - Stefano Crespi
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Nikita A Durandin
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| |
Collapse
|
40
|
Zhang ZY, Dong D, Bösking T, Dang T, Liu C, Sun W, Xie M, Hecht S, Li T. Solar Azo-Switches for Effective E→Z Photoisomerization by Sunlight. Angew Chem Int Ed Engl 2024; 63:e202404528. [PMID: 38722260 DOI: 10.1002/anie.202404528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.
Collapse
Affiliation(s)
- Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongfang Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tom Bösking
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, 52056, Aachen, Germany
| | - Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhao Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjin Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Stefan Hecht
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, 52056, Aachen, Germany
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
41
|
Dang T, Zhang ZY, Li T. Visible-Light-Activated Heteroaryl Azoswitches: Toward a More Colorful Future. J Am Chem Soc 2024; 146:19609-19620. [PMID: 38991225 DOI: 10.1021/jacs.4c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Azobenzenes (Ph-N═N-Ph) are known as the most widely studied molecular photoswitches, and the recent rise of azoheteroarenes (Het-N═N-Ph or Het-N═N-Het) offers great opportunities to advance this already mature field. A common limitation is that azo-switches generally require harmful UV light for activation, which hinders their application across various fields. Despite great efforts in developing visible-light azobenzenes over the past few decades, the potential of visible-light heteroaryl azoswitches remains largely unexplored. This Perspective summarizes the state-of-the-art advancements in visible-light heteroaryl azoswitches, covering molecular design strategies, the structure-property relationship, and potential applications. We highlight the distinctive advantages of azoheteroarenes over azobenzenes in the research and development of visible-light switches. Furthermore, we discuss the opportunities and challenges in this emerging field and propose potential solutions to address crucial issues such as spectral red-shift and thermal half-life. Through this Perspective paper, we aim to provide inspiration for further exploration in this field, in anticipation of the growing prosperity and bright future of visible-light azoheteroarene photoswitches.
Collapse
Affiliation(s)
- Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
de Moura CEV, Sokolov AY. Efficient Spin-Adapted Implementation of Multireference Algebraic Diagrammatic Construction Theory. I. Core-Ionized States and X-ray Photoelectron Spectra. J Phys Chem A 2024; 128:5816-5831. [PMID: 38962857 DOI: 10.1021/acs.jpca.4c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
We present an efficient implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for simulating core-ionized states and X-ray photoelectron spectra (XPS). Taking advantage of spin adaptation, automatic code generation, and density fitting, our implementation can perform calculations for molecules with more than 1500 molecular orbitals, incorporating static and dynamic correlation in the ground and excited electronic states. We demonstrate the capabilities of MR-ADC methods by simulating the XPS spectra of substituted ferrocene complexes and azobenzene isomers. For the ground electronic states of these molecules, the XPS spectra computed using the extended second-order MR-ADC method (MR-ADC(2)-X) are in a very good agreement with available experimental results. We further show that MR-ADC can be used as a tool for interpreting or predicting the results of time-resolved XPS measurements by simulating the core ionization spectra of azobenzene along its photoisomerization, including the XPS signatures of excited states and the minimum energy conical intersection. This work is the first in a series of publications reporting the efficient implementations of MR-ADC methods.
Collapse
Affiliation(s)
- Carlos E V de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
43
|
Martin CR, Thaggard GC, Lehman-Andino I, Mollinedo E, Rai BK, Page MA, Taylor-Pashow K, Shustova NB. Photochromic Ln-MOFs: A Platform for Metal-Photoswitch Cooperativity. Inorg Chem 2024; 63:12810-12817. [PMID: 38935401 DOI: 10.1021/acs.inorgchem.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Optoelectronic devices based on lanthanide-containing materials are an emergent area of research due to imminent interest in a new generation of diode materials, optical and magnetic sensors, and ratiometric thermometers. Tailoring material properties through the employment of photo- or thermochromic moieties is a powerful approach that requires a deep fundamental understanding of possible cooperativity between lanthanide-based metal centers and integrated switchable units. In this work, we probe this concept through the synthesis, structural analysis, and spectroscopic characterization of novel photochromic lanthanide-based metal-organic materials containing noncoordinatively integrated photoresponsive 4,4'-azopyridine between lanthanide-based metal centers. As a result, a photophysical material response tailored on demand through the incorporation of photochromic compounds within a rigid matrix was investigated. The comprehensive analysis of photoresponsive metal-organic materials includes single-crystal X-ray diffraction and diffuse reflectance spectroscopic studies that provide guiding principles necessary for understanding photochromic unit-lanthanide-based metal-organic framework (MOF) cooperativity. Furthermore, steady-state and time-resolved diffuse reflectance spectroscopic studies revealed a rapid rate of photoresponsive moiety attenuation upon its integration within the rigid matrix of lanthanide-based MOFs in comparison with that in solution, highlighting a unique role and synergy that occurred between stimuli-responsive moieties and the lanthanide-based MOF platform, allowing for tunability and control of material photoisomerization kinetics.
Collapse
Affiliation(s)
- Corey R Martin
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Eduardo Mollinedo
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Binod K Rai
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Matthew A Page
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | | | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
44
|
Stindt CN, Crespi S, Feringa BL. Synthesis of Styrylbenzazole Photoswitches and Evaluation of their Photochemical Properties. Chemistry 2024; 30:e202401409. [PMID: 38761405 DOI: 10.1002/chem.202401409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Styrylbenzazoles form a promising yet under-represented class of photoswitches that can perform a light-driven E-Z isomerization of the central alkene double bond without undergoing irreversible photocyclization, typical of the parent stilbene. In this work, we report the synthesis and photochemical study of 23 styrylbenzazole photoswitches. Their thermal stabilities, quantum yields, maximum absorption wavelengths and photostationary state (PSS) distributions can be tuned by changing the benzazole heterocycle and the substitution pattern on the aryl ring. In particular, we found that push-pull systems show large redshifts of the maximum absorption wavelengths and the highest quantum yields, whereas ortho-substituted styrylbenzazole photoswitches exhibit the most favorable PSS ratios. Taking advantage of both design principles, we produced 2,6-dimethyl-4-(dimethylamino)-styrylbenzothiazole, a thermally stable and efficient P-type photoswitch which displays negative photochromism upon irradiation with visible light up to 470 nm to obtain a near-quantitative isomerization with a very high quantum yield of 59 %. Furthermore, 4-hydroxystyrylbenzoxazole was demonstrated to be a pH-sensitive switch which exhibits a 100 nm redshift upon deprotonation. Ortho-methylation of its benzothiazole analogue improved the obtained PSS ratio in its deprotonated state from E : Z=53 : 47 to E : Z=18 : 82. We anticipate that this relatively unexplored class of photoswitches will form a valuable expansion of the current family of photoswitches.
Collapse
Affiliation(s)
- Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Present address: Ångström Laboratory, Department of Chemistry, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
45
|
Grewal S, Srivastava A, Singh S, Venkataramani S. Structure-property relationship in functionalized azobenzene photoswitches and their supramolecular behavior. Photochem Photobiol 2024; 100:1100-1115. [PMID: 38561925 DOI: 10.1111/php.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
Herein, we report the design, synthesis, and supramolecular behavior of 30 structurally diverse photoresponsive azobenzene molecular systems. To establish structure-property relationships, azobenzenes appended with N-picolinyl and/or N-benzyl groups tethered directly through carboxamides or via triazolylmethyl carboxamide linkages were explored. We have evaluated the photoswitching characteristics and thermal stability of the Z isomers through systematic studies. All the targets were also screened for their aggregation behavior and supramolecular aspects. Among all the derivatives, a few carboxamide-based systems formed microcrystals upon aggregation, showing light responsiveness. In contrast, the derivatives tethered via triazolylmethyl carboxamide linkage exhibited hydrogel formation with excellent water-absorbing capacity. All supramolecular aspects of the morphology of the microcrystal and hydrogel states and their stimuli-responsiveness have been studied using spectroscopy and various microscopic techniques.
Collapse
Affiliation(s)
- Surbhi Grewal
- Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Anjali Srivastava
- Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Sapna Singh
- Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| |
Collapse
|
46
|
Khan A. Cleavable azobenzene linkers for the design of stimuli-responsive materials. Chem Commun (Camb) 2024; 60:6591-6602. [PMID: 38872512 DOI: 10.1039/d4cc02311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The azo linkage (NN) is one of the very few functional groups in organic chemistry that exhibits sensitivity towards thermal, chemical, photochemical, and biological stimuli. Consequently, this property has given rise to a distinct class of responsive materials. For example, thermal sensitivity has led to generation of free radical initiators useful in curing and polymerization applications. Chemically-induced cleavage has aided the development of self-immolative polymers and reactive scaffolds for proteomics applications. Photo-isomerization capability has given rise to photo-responsive systems. Azobenzene cleavage in biologically reducing environments, such as that of the colon, and under tumor hypoxia conditions has led to diagnostic, therapeutic, and delivery materials. Such conditions have also allowed for control over formation (assembly) and disruption (disassembly) of micellar nanoparticles. The aim of this review article is to look beyond the prevalent photosensitivity aspect of the aromatic azo compounds and draw attention to the azo scission reaction as a trigger of the change in the structure and properties of organic materials. Thus, the main discussion begins with the mechanism of the reductive cleavage. Then, its application in the design of molecules that can be activated as drugs and fluorescent sensors, (nano)materials with potential to release active substances, and polymers with side-chain and main-chain self-immolative capacity is discussed. Finally, the status and future challenges in this field are discussed.
Collapse
Affiliation(s)
- Anzar Khan
- National Institute for Research and Development of Isotopic and Molecular Technologies - INCDTIM, 67-103 Donat Street, 400293 Cluj-Napoca, Romania.
| |
Collapse
|
47
|
Shu Y, Luo Y, Wei H, Peng L, Liang J, Zhai B, Ding L, Fang Y. Fabrication of Large-Area Multi-Stimulus Responsive Thin Films via Interfacially Confined Irreversible Katritzky Reaction. Angew Chem Int Ed Engl 2024; 63:e202402453. [PMID: 38622832 DOI: 10.1002/anie.202402453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 μm and an area up to 50 cm2. The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.
Collapse
Affiliation(s)
- Yuanhong Shu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hexi Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jingjing Liang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
48
|
Yin C, Liu L, Zhang Z, Du Y, Wang Y. Photo-Induced Geometry and Polarity Gradients in Covalent Organic Frameworks Enabling Fast and Durable Molecular Separations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309329. [PMID: 38221705 DOI: 10.1002/smll.202309329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Azobenzene, which activates its geometric and chemical structure under light stimulation enables noninvasive control of mass transport in many processes including membrane separations. However, producing azobenzene-decorated channels that have precise size tunability and favorable pore wall chemistry allowing fast and durable permeation to solvent molecules, remains a great challenge. Herein, an advanced membrane that comprises geometry and polarity gradients within covalent organic framework (COF) nanochannels utilizing photoisomerization of azobenzene groups is reported. Such functional variations afford reduced interfacial transfer resistance and enhanced solvent-philic pore channels, thus creating a fast solvent transport pathway without compromising selectivity. Moreover, the membrane sets up a densely covered defense layer to prevent foulant adhesion and the accumulation of cake layer, contributing to enhanced antifouling resistance to organic foulants, and a high recovery rate of solvent permeance. More importantly, the solvent permeance displays a negligible decline throughout the long-term filtration for over 40 days. This work reports the geometry and polarity gradients in COF channels induced by the conformation change of branched azobenzene groups and demonstrates the strong capability of this conformation change in realizing fast and durable molecular separations.
Collapse
Affiliation(s)
- Congcong Yin
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Lin Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Ya Du
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| | - Yong Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P. R. China
| |
Collapse
|
49
|
Ma Z, Wu J, Tan Y, Tan C. Azobenzene-Based Conjugated Polymers: Synthesis, Properties, and Biological Applications. Macromol Rapid Commun 2024; 45:e2400048. [PMID: 38521990 DOI: 10.1002/marc.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Conjugated polymers (CPs) have been developed quickly as an emerging functional material with applications in optical and electronic devices, owing to their highly electron-delocalized backbones and versatile side groups for facile processibility, high mechanical strength, and environmental stability. CPs exhibit multistimuli responsive behavior and fluorescence quenching properties by incorporating azobenzene functionality into their molecular structures. Over the past few decades, significant progress has been made in developing functional azobenzene-based conjugated polymers (azo-CPs), utilizing diverse molecular design strategies and synthetic pathways. This article comprehensively reviews the rapidly evolving research field of azo-CPs, focusing on the structural characteristics and synthesis methods of general azo-CPs, as well as the applications of charged azo-CPs, specifically azobenzene-based conjugated polyelectrolytes (azo-CPEs). Based on their molecular structures, azo-CPs can be broadly categorized into three primary types: linear CPs with azobenzene incorporated into the side chain, linear CPs with azobenzene integrated into the main chain, and branched CPs containing azobenzene moieties. These systems are promising for biomedical applications in biosensing, bioimaging, targeted protein degradation, and cellular apoptosis.
Collapse
Affiliation(s)
- Zhuang Ma
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jiatao Wu
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
50
|
Kumar Gaur A, Gupta D, Narayanan Nampoothiry D, Velloth A, Kaur R, Kaur N, Venkataramani S. Azopyridinium Ionic Photoswitches: Tuning Half-Lives of Z Isomers from Seconds to Days in Water. Chemistry 2024:e202401239. [PMID: 38818941 DOI: 10.1002/chem.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Herein, we describe water-soluble heteroaryl azopyridinium ionic photoswitches (HAPIPs). We aim to combine variations in five-membered heterocycles, their substitutions, N-alkyl groups at pyridinium nitrogen, the position of pyridinium center relative to azo group, counterions, and solvents, in achieving better photoswitching. Through these studies, we successfully tuned the half-life of Z isomers of the resultant HAPIPs between seconds to days in water. Extensive spectroscopic studies and density functional theory (DFT) computations unravelled the factors responsible for thermal relaxation behavior. Considering the versatility of these photoswitches, the tunability of half-lives and photoswitching in aqueous medium allows the scope of applications in several fields.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Dhanyaj Narayanan Nampoothiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Ramanpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Navneet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| |
Collapse
|