1
|
Tao J, Gu Y, Zhou W, Wang Y. Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J Med Chem 2025; 281:116995. [PMID: 39481229 DOI: 10.1016/j.ejmech.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Antibody-drug conjugates (ADCs) enable the precise delivery of cytotoxic agents by conjugating small-molecule drugs with monoclonal antibodies (mAbs). Over recent decades, ADCs have demonstrated substantial clinical efficacy. However, conventional ADCs often encounter various clinical challenges, including suboptimal efficacy, significant adverse effects, and the development of drug resistance, limiting their broader clinical application. Encouragingly, a next-generation approach-dual-payload ADCs-has emerged as a pioneering strategy to address these challenges. Dual-payload ADCs are characterized by the incorporation of two distinct therapeutic payloads on the same antibody, enhancing treatment efficacy by promoting synergistic effects and reducing the risk of drug resistance. However, the synthesis of dual-payload ADCs is complex due to the presence of multiple functional groups on antibodies. In this review, we comprehensively summarize the construction strategies for dual-payload ADCs, ranging from the design of ADC components to orthogonal chemistry. The subsequent sections explore current challenges and propose prospective strategies, highlighting recent advancements in dual-payload ADC research, thereby laying the foundation for the development of next-generation ADCs.
Collapse
Affiliation(s)
- Junjie Tao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
2
|
Akram F, Ali AM, Akhtar MT, Fatima T, Shabbir I, Ul Haq I. The journey of antibody-drug conjugates for revolutionizing cancer therapy: A review. Bioorg Med Chem 2025; 117:118010. [PMID: 39586174 DOI: 10.1016/j.bmc.2024.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a powerful class of targeted cancer therapies that harness the specificity of monoclonal antibodies to deliver cytotoxic payloads directly to tumor cells, minimizing off-target effects. This review explores the advancements in ADC technologies, focusing on advancing next-generation ADCs with novel payloads, conjugation strategies, and enhanced pharmacokinetic profiles. In particular, we highlight innovative payloads, including microtubule inhibitors, spliceosome modulators, and RNA polymerase inhibitors, that offer new mechanisms of cytotoxicity beyond traditional apoptosis induction. Additionally, the introduction of sophisticated conjugation techniques, such as site-specific conjugation using engineered cysteines, enzymatic methods, and integration of non-natural amino acids, has greatly improved the homogeneity, efficacy, and safety of ADCs. Furthermore, the review delves into the mechanistic insights into ADC action, detailing the intracellular pathways that facilitate drug release and cell death, and discussing the significance of bioconjugation methods in optimizing drug-antibody ratios (DARs). The establishment of comprehensive databases like ADCdb, which catalog vital pharmacological and biological data for ADCs, is also explored as a critical resource for advancing ADC research and clinical application. Finally, the clinical landscape of ADCs is examined, with a focus on the evolution of FDA-approved ADCs, such as Gemtuzumab Ozogamicin and Trastuzumab Emtansine, as well as emerging candidates in ongoing trials. As ADCs continue to evolve, their potential to revolutionize cancer therapy remains immense, offering new hope for more effective and personalized treatment options. ADCs also offer a significant advancement in targeted cancer therapy by merging the specificity of monoclonal antibodies with cytotoxic potency of chemotherapeutic agents. Hence, this dual mechanism intensifies tumor selectivity while minimizing systemic toxicity, paving the way for more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Fatima Akram
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Amna Murrawat Ali
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Muhammad Tayyab Akhtar
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Taseer Fatima
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ifrah Shabbir
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Ikram Ul Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
3
|
Chang M, Xu H, Dong Y, Gnawali G, Bi F, Wang W. Dual-Performing Vinyltetrazine for Rapid, Selective Bioconjugation and Functionalization of Cysteine Proteins. ACS Chem Biol 2024. [PMID: 39707969 DOI: 10.1021/acschembio.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Although methods for Cys-specific bioconjugation and functionalization of proteins have been developed and widely utilized in biomolecule engineering and therapeutic development, reagents for this purpose are generally designed to accomplish bioconjugation only. Consequently, additional clickable groups must be attached to these reagents to accomplish functionalization. Herein, we describe a new, simple, dual-performing bioconjugation-functionalization reagent, VMeTz, which possesses an electron-withdrawing tetrazine (Tz) substituted vinyl (V) moiety to serve as both a Michael receptor for selective conjugation with Cys and a site for click with TCO derivatives to introduce functionality. Critically, VMeTz contains a methyl group that prevents the formation of multiple Tz-containing Cys-adducts. Reactions of VMeTz with Cys-containing peptides and proteins both in vitro and in live cells produce single stable Michael adducts with high selectivity. Moreover, the Cys-VMeTz peptide and protein conjugates undergo facile click reactions with TCO-functionalized reagents for labeling and protein profiling. Furthermore, VMeTz selectively activates and delivers the TCO-caged toxic substances Dox and PROTAC ARV-771 to cancer cells to produce therapeutic effects that are comparable to those of the parent drugs. Collectively, the studies demonstrate that VMeTz is a useful reagent for therapeutically significant Cys-specific protein bioconjugation and functionalization.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Fangchao Bi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Chang HP, Liu S, Shah DK. PK/PD Evaluation of Antibody-Drug Conjugates with Enhanced Immune Effector Functions. AAPS J 2024; 27:18. [PMID: 39702683 DOI: 10.1208/s12248-024-00998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Optimizing the interaction between antibody (mAb)-based therapeutics and immune effector functions (EFs) offers opportunities to improve the therapeutic window of these molecules. However, the role of EFs in antibody-drug conjugate (ADC) efficacy and toxicity remains unknown, with limited studies that have investigated how modulation of EF affects the pharmacology of ADCs. This study aimed to evaluate the effect of EF modulation on ADC efficacy using trastuzumab-vc-MMAE as a model ADC. A series of ADCs with enhanced or eradicated EF were synthesized through Fc engineering of the antibody. Cell-based assays confirmed that the alteration of EFs in ADCs did not change their in vitro potency, and the conjugation of vc-MMAE did not alter the trends in EFs modulation. Pharmacokinetic/pharmacodynamic (PK/PD) studies of Fc engineered ADCs were conducted in a syngeneic mouse system. The enhancement of EFs led to lower systemic exposure, faster clearance, and potentially enhanced tissue distribution and accumulation of ADCs. ADCs with enhanced EFs demonstrated improved efficacy in the syngeneic mouse tumor model, which was quantitatively confirmed by PK/PD modeling. The model indicated that EF enhancement was synergistic for ADC efficacy, whereas the complete removal of EF was less than additive. Our study suggests that developing ADCs with enhanced EF may improve the therapeutic effectiveness of ADCs, although the effect of this modification on ADC safety and extrapolation of our findings to other ADCs necessitates further investigation.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
5
|
Liu J, Yan Y, Zhang Y, Pan X, Xia H, Zhou J, Wan F, Huang X, Zhang W, Zhang Q, Chen B, Wang Y. Lysosome-Mitochondria Cascade Targeting Nanoparticle Drives Robust Pyroptosis for Cancer Immunotherapy. J Am Chem Soc 2024; 146:34568-34582. [PMID: 39639594 DOI: 10.1021/jacs.4c12264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The subcellular distribution of cargoes plays a crucial role in determining cell fate and therapeutic efficacy. However, achieving the precise delivery of therapeutics to specific intracellular targets remains a significant challenge. Here, we present a trimodular and acid/enzyme-gated nanoplatform (TAEN) that undergoes disassembly within acidic endosomes and then is cleaved by lysosomal cathepsin B to facilitate efficient and targeted transport of released cargoes into mitochondria compartments. By utilizing this nanovehicle, we successfully achieve selective sorting of photosensitizer molecules into mitochondria with a colocalization coefficient of up to 0.98, leading to the generation of reactive oxygen species stress specifically within the mitochondria for potent pyroptosis-based cancer therapy. The induction of mitochondrial stress triggers the intrinsic apoptotic pathway as well as caspase-3/gasdermin-E (GSDME) cascade, resulting in an enhanced cancer cell killing efficacy by nearly 2 orders of magnitude as compared to lysosomal stress. Furthermore, due to its superior capability to stimulate both innate and adaptive immune responses, our mitochondria-sorted nanophotosensitizer exhibits robust antitumor immune efficacy in multiple tumor-bearing mice models. This study not only provides insights into engineering nanomedicines for subcellular targeted delivery but also offers a valuable toolkit for advanced research in the field of nanobiology at subcellular resolution.
Collapse
Affiliation(s)
- Jianxiong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yimeng Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xingquan Pan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiayi Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyu Huang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Weiwei Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Chemical Biology Center, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| |
Collapse
|
6
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2024. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Yang EL, Wang WY, Liu YQ, Yi H, Lei A, Sun ZJ. Tumor-Targeted Catalytic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413210. [PMID: 39676382 DOI: 10.1002/adma.202413210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Cancer immunotherapy holds significant promise for improving cancer treatment efficacy; however, the low response rate remains a considerable challenge. To overcome this limitation, advanced catalytic materials offer potential in augmenting catalytic immunotherapy by modulating the immunosuppressive tumor microenvironment (TME) through precise biochemical reactions. Achieving optimal targeting precision and therapeutic efficacy necessitates a thorough understanding of the properties and underlying mechanisms of tumor-targeted catalytic materials. This review provides a comprehensive and systematic overview of recent advancements in tumor-targeted catalytic materials and their critical role in enhancing catalytic immunotherapy. It highlights the types of catalytic reactions, the construction strategies of catalytic materials, and their fundamental mechanisms for tumor targeting, including passive, bioactive, stimuli-responsive, and biomimetic targeting approaches. Furthermore, this review outlines various tumor-specific targeting strategies, encompassing tumor tissue, tumor cell, exogenous stimuli-responsive, TME-responsive, and cellular TME targeting strategies. Finally, the discussion addresses the challenges and future perspectives for transitioning catalytic materials into clinical applications, offering insights that pave the way for next-generation cancer therapies and provide substantial benefits to patients in clinical settings.
Collapse
Affiliation(s)
- En-Li Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Wu-Yin Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Ying-Qi Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
8
|
Zhang H, Guo L, Li X, Liu H, Zhao Z, Ji G, Huang Y, Wang X. A Modular Approach to Obtain HER2-Targeting DM1-Loaded Nanoparticles for Gastric Cancer Therapy. ACS OMEGA 2024; 9:48598-48606. [PMID: 39676924 PMCID: PMC11635515 DOI: 10.1021/acsomega.4c07442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Antibody-based tumor-targeting nanomedicines, despite their high efficacy, present significant challenges in preparation and long-term storage. We introduce a novel approach for the synthesis of durable, ready-to-use, antibody-coupled nanomedical drugs. Our research centers on the development of HER2-targeting DM1-loaded nanoparticles for gastric cancer treatment using a modular methodology. We synthesized Fc-PLG-Mal, conjugated DM1 through a "click" reaction, and subsequently bound the resultant compound with the HER2 antibody trastuzumab. The nanoparticles demonstrated a high drug loading content, stable particle size, and effective HER2 targeting. HER2-PLG-DM1 exhibited significant cytotoxicity against NCI-N87 gastric cancer cells, with an IC50 of 0.35 nM. Biodistribution revealed rapid and substantial tumor accumulation, 6-fold higher than that of nontargeting IgG-PLG-DM1. HER2-PLG-DM1 significantly inhibited tumor growth in NCI-N87 tumor-bearing mice, achieving a 90.8% tumor inhibition rate, and displayed dose-dependent effects without significant liver and kidney toxicity. These studies offer an efficient and stable method for the preparation of antibody-coupled drugs.
Collapse
Affiliation(s)
- Hui Zhang
- Department
of Clinical Laboratory Medicine, The Affiliated
Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Lijiao Guo
- Department
of Clinical Laboratory Medicine, The Affiliated
Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Xue Li
- Department
of Clinical Laboratory Medicine, The Affiliated
Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Hongtao Liu
- Jilin
Academy
of Chinese Medicine Sciences, Changchun, Jilin Province 130117, China
| | - Zibin Zhao
- Jilin
Academy
of Chinese Medicine Sciences, Changchun, Jilin Province 130117, China
| | - Guangling Ji
- Gastroenteric
Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin Province 130041, China
| | - Yue Huang
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Xiaodong Wang
- Gastroenteric
Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, Jilin Province 130041, China
| |
Collapse
|
9
|
Guo D, Lin Q, Liu N, Jin Q, Liu C, Wang Y, Zhu X, Zong L. Copper-based metal-organic framework co-loaded doxorubicin and curcumin for anti-cancer with synergistic apoptosis and ferroptosis therapy. Int J Pharm 2024; 666:124744. [PMID: 39317244 DOI: 10.1016/j.ijpharm.2024.124744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The combination of chemotherapy and ferroptosis therapy can greatly improve the efficiency of tumor treatment. However, ferroptosis-based therapy is limited by the unsatisfactory Fenton activity and insufficient H2O2 supply in tumor cells. In this work, a nano-drug delivery system Cur@DOX@MOF-199 NPs was constructed to combine ferroptosis and apoptosis by loading curcumin (Cur) and doxorubicin (DOX) based on the copper-based organic framework MOF-199. Cur@DOX@MOF-199 NPs decompose quickly by glutathione (GSH), releasing Cu2+, DOX and Cur. Cu2+ can deplete GSH while also being reduced to Cu+; DOX can induce apoptosis and simultaneously boost H2O2 production. Moreover, Cur enhanced the expression of intracellular heme oxygenase-1 (HO-1), for decomposing heme and releasing Fe2+, which further combined with Cu+ to catalyze H2O2 for hydroxyl radical (OH) generation, leading to the accumulation of lipid peroxide and ferroptosis. As a result, Cur@DOX@MOF-199 NPs exhibited significantly enhanced antitumor efficacy in MCF-7 tumor-bearing mouse model, suggesting this nano formulation is an excellent synergetic pathway for apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Ding Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yubo Wang
- Medical College, Guangxi University, Nanning 530004, PR China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Lili Zong
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
10
|
Peddio A, Pietroluongo E, Lamia MR, Luciano A, Caltavituro A, Buonaiuto R, Pecoraro G, De Placido P, Palmieri G, Bianco R, Giuliano M, Servetto A. DLL3 as a potential diagnostic and therapeutic target in neuroendocrine neoplasms: A narrative review. Crit Rev Oncol Hematol 2024; 204:104524. [PMID: 39326646 DOI: 10.1016/j.critrevonc.2024.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Neuroendocrine neoplasms (NENs) represent a diagnostic and therapeutic challenge, due to their heterogeneity and limited treatment options. Conventional imaging techniques and therapeutic strategies may become unreliable during follow-up, due to the tendency of these neoplasms to dedifferentiate over time. Therefore, novel diagnostic and therapeutic options are required for the management of NEN patients. Delta-like ligand 3 (DLL3), an inhibitory ligand of Notch receptor, has emerged as a potential target for novel diagnostic and therapeutic strategies in NENs, since overexpression of DLL3 has been associated with tumor progression, poor prognosis and dedifferentiation in several NENs. This narrative review examines the current evidence about DLL3, its structure, function and association with tumorigenesis in NENs. Ongoing studies exploring the role of DLL3 as an emerging diagnostic marker are reviewed. Promising therapeutic options, such as antibody-conjugated drugs, CAR-T cells and radioimmunoconjugates, are also discussed.
Collapse
Affiliation(s)
- Annarita Peddio
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Maria Rosaria Lamia
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Angelo Luciano
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Aldo Caltavituro
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Roberto Buonaiuto
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Giovanna Pecoraro
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Giovannella Palmieri
- Rare Tumors Coordinating Center of Campania Region (CRCTR), University Federico II, Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy.
| |
Collapse
|
11
|
Meyer ML, Peters S, Mok TS, Lam S, Yang PC, Aggarwal C, Brahmer J, Dziadziuszko R, Felip E, Ferris A, Forde PM, Gray J, Gros L, Halmos B, Herbst R, Jänne PA, Johnson BE, Kelly K, Leighl NB, Liu S, Lowy I, Marron TU, Paz-Ares L, Rizvi N, Rudin CM, Shum E, Stahel R, Trunova N, Bunn PA, Hirsch FR. Lung cancer research and treatment: global perspectives and strategic calls to action. Ann Oncol 2024; 35:1088-1104. [PMID: 39413875 DOI: 10.1016/j.annonc.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Lung cancer remains a critical public health issue, presenting multifaceted challenges in prevention, diagnosis, and treatment. This article aims to review the current landscape of lung cancer research and management, delineate the persistent challenges, and outline pragmatic solutions. MATERIALS AND METHODS Global experts from academia, regulatory agencies such as the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), the National Cancer Institute (NCI), professional societies, the pharmaceutical and biotech industries, and patient advocacy groups were gathered by the New York Lung Cancer Foundation to review the state of the art in lung cancer and to formulate calls to action. RESULTS Improving lung cancer management and research involves promoting tobacco cessation, identifying individuals at risk who could benefit from early detection programs, and addressing treatment-related toxicities. Efforts should focus on conducting well-designed trials to determine the optimal treatment sequence. Research into innovative biomarkers and therapies is crucial for more personalized treatment. Ensuring access to appropriate care for all patients, whether enrolled in clinical trials or not, must remain a priority. CONCLUSIONS Lung cancer is a major health burden worldwide, and its treatment has become increasingly complex over the past two decades. Improvement in lung cancer management and research requires unified messaging and global collaboration, expanded education, and greater access to screening, biomarker testing, treatment, as well as increased representativeness, participation, and diversity in clinical trials.
Collapse
Affiliation(s)
- M-L Meyer
- Icahn School of Medicine, Center for Thoracic Oncology, Tisch Cancer Institute at Mount Sinai, New York, USA. https://twitter.com/mayluciemeyer
| | - S Peters
- Department of Oncology, University Hospital (CHUV), Lausanne, Switzerland
| | - T S Mok
- State Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - S Lam
- Department of Integrative Oncology, BC Cancer and the University of British Columbia, Vancouver, Canada
| | - P-C Yang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - C Aggarwal
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - J Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Kimmel Cancer Center, Baltimore, USA
| | - R Dziadziuszko
- Medical University of Gdansk, Department of Oncology and Radiotherapy, Gdansk, Poland
| | - E Felip
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - A Ferris
- LUNGevity Foundation, Chicago, USA
| | - P M Forde
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Kimmel Cancer Center, Baltimore, USA
| | - J Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - L Gros
- Department of Radiology, Mount Sinai Hospital, New York, USA
| | - B Halmos
- Department of Oncology, MD Montefiore Einstein Comprehensive Cancer Center, New York, USA
| | - R Herbst
- Department of Medical Oncology, Yale Comprehensive Cancer Center, New Haven, USA
| | - P A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, USA
| | - B E Johnson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - K Kelly
- International Association for the Study of Lung Cancer, Denver, USA
| | - N B Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - S Liu
- Division of Medicine, Georgetown University, Washington, USA
| | - I Lowy
- Regeneron Pharmaceuticals, Inc., Tarrytown, USA
| | - T U Marron
- Early Phase Trials Unit and Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - L Paz-Ares
- Department of Oncology Hospital Universitario 12 de Octubre, Madrid, Spain
| | - N Rizvi
- Synthekine, Inc., Menlo Park, USA
| | - C M Rudin
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Shum
- Division of Medical Oncology, Department of Medicine, Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, USA
| | - R Stahel
- ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - N Trunova
- Global Medical Affairs, Genmab, Princeton
| | - P A Bunn
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, USA
| | - F R Hirsch
- Icahn School of Medicine, Center for Thoracic Oncology, Tisch Cancer Institute at Mount Sinai, New York, USA.
| |
Collapse
|
12
|
Li CL, Ma XY, Yi P. Bispecific Antibodies, Immune Checkpoint Inhibitors, and Antibody-Drug Conjugates Directing Antitumor Immune Responses: Challenges and Prospects. Cell Biochem Funct 2024; 42:e70011. [PMID: 39463028 DOI: 10.1002/cbf.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD-1, PD-L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD-1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD-L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody-drug conjugates (ADCs). The development of truly effective therapies for patients with treatment-resistant cancers can be achieved by optimizing the various components of ADCs.
Collapse
Affiliation(s)
- Chen Lu Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yuan Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yi
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Thomas-Bonafos T, Pierga JY, Bidard FC, Cabel L, Kiavue N. Circulating tumor cells in breast cancer: clinical validity and utility. NPJ Breast Cancer 2024; 10:103. [PMID: 39613809 DOI: 10.1038/s41523-024-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/23/2024] [Indexed: 12/01/2024] Open
Abstract
Circulating tumor cells (CTCs) have been extensively studied in breast cancer (BC), with large studies establishing CTCs as a robust prognostic biomarker in early and metastatic breast cancer (MBC). Several phase II and phase III trials have investigated the clinical utility of CTCs in BC. Here, we outline the current landscape for the use of CTCs in the clinic at different stages of BC, focusing first on early BC, then on MBC, with a particular focus on interventional clinical trials based on CTCs.
Collapse
Affiliation(s)
- Thibault Thomas-Bonafos
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Jean Yves Pierga
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - François-Clément Bidard
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
- Université de Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, France
| | - Luc Cabel
- Institut Curie, Department of Medical Oncology, Paris, France
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France
| | - Nicolas Kiavue
- Institut Curie, Department of Medical Oncology, Paris, France.
- Circulating Tumor Biomarkers laboratory, Inserm CIC 1428, Department of Translational Research, Institut Curie, Paris, France.
| |
Collapse
|
14
|
Mortaja M, Cheng MM, Ali A, Lesperance J, Hingorani DV, Allevato MM, Dhawan K, Camargo MF, McKay RR, Adams SR, Gutkind JS, Advani SJ. Tumor-Targeted Cell-Penetrating Peptides Reveal That Monomethyl Auristatin E Temporally Modulates the Tumor Immune Microenvironment. Molecules 2024; 29:5618. [PMID: 39683778 DOI: 10.3390/molecules29235618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Chemotherapies remain standard therapy for cancers but have limited efficacy and cause significant side effects, highlighting the need for targeted approaches. In the progression of cancer, tumors increase matrix metalloproteinase (MMP) activity. Leveraging and therapeutically redirecting tumor MMPs through activatable cell-penetrating peptide (ACPP) technology offers new approaches for tumor-selective drug delivery and for studying how drug payloads engage the tumor immune microenvironment. ACPPs are biosensing peptides consisting of a drug-conjugated polycationic cell-penetrating peptide masked by an autoinhibitory polyanionic peptide through an interlinking peptide linker. Since tumors overexpress MMPs, ACPP tumor-targeting is achieved using an MMP cleavable linker. Monomethyl auristatin E (MMAE) is a potent anti-tubulin and common drug payload in antibody drug conjugates; however there are limited pre-clinical studies on how this clinically effective drug modulates the interplay of cancer cells and the immune system. Here, we report the versatility of ACPP conjugates in syngeneic murine cancer models and interrogate how MMAE temporally alters the tumor immune microenvironment. We show that cRGD-ACPP-MMAE preferentially delivered MMAE to tumors in murine models. Targeted cRGD-ACPP-MMAE demonstrated anti-tumor kill activity that activated the innate and adaptive arms of the immune system. Understanding how targeted MMAE engages tumors can optimize MMAE tumor kill activity and inform rational combinations with other cancer therapeutics.
Collapse
Affiliation(s)
- Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Marcus M Cheng
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alina Ali
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jacqueline Lesperance
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dina V Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mike M Allevato
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kanika Dhawan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria F Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Rana R McKay
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Istomina PV, Gorchakov AA, Paoin C, Yamabhai M. Phage display for discovery of anticancer antibodies. N Biotechnol 2024; 83:205-218. [PMID: 39186973 DOI: 10.1016/j.nbt.2024.08.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Antibodies and antibody-based immunotherapeutics are the mainstays of cancer immunotherapy. Expanding the repertoire of cancer-specific and cancer-associated epitopes targetable with antibodies represents an important area of research. Phage display is a powerful approach allowing the use of diverse antibody libraries to be screened for binding to a wide range of targets. In this review, we summarize the basics of phage display technology and highlight the advances in anticancer antibody identification and modification via phage display platform. Finally, we describe phage display-derived anticancer monoclonal antibodies that have been approved to date or are in clinical development.
Collapse
Affiliation(s)
- Polina V Istomina
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Andrey A Gorchakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Lavrentieva 8/2, Novosibirsk 630090, Russia
| | - Chatchanok Paoin
- Medical Oncology Division, Institute of Medicine, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
16
|
Gupta A, Michelini F, Shao H, Yeh C, Drago JZ, Liu D, Rosiek E, Romin Y, Ghafourian N, Thyparambil S, Misale S, Park W, de Stanchina E, Janjigian YY, Yaeger R, Li BT, Chandarlapaty S. EGFR-directed antibodies promote HER2 ADC internalization and efficacy. Cell Rep Med 2024; 5:101792. [PMID: 39437778 PMCID: PMC11604483 DOI: 10.1016/j.xcrm.2024.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Trastuzumab deruxtecan (T-DXd) is a human epidermal growth factor receptor 2 (HER2)-targeting antibody drug conjugate that has remarkable activity in HER2-positive cancers. However, the degree of benefit of T-DXd is not uniform among solid tumors even with high levels of HER2. Despite high HER2 expression, the HER2/T-DXd complex may not always undergo internalization and payload release dependent on the receptor's conformation and context. We hypothesize that epidermal growth factor receptor (EGFR), a dimerization partner of HER2, can modulate HER2 trafficking through endocytic pathways and affect T-DXd uptake. We demonstrate that elevated EGFR expression levels can promote EGFR/HER2 heterodimer formation and suppress T-DXd internalization and efficacy. Knockdown of EGFR expression or pharmacologic stimulation of EGFR endocytosis with EGFR monoclonal antibodies restores T-DXd trafficking and antitumor activity in EGFR-overexpressing cancers in vivo. Our results reveal EGFR overexpression to be a potential mechanism of resistance to T-DXd, which can be overcome by combination therapy strategies targeting EGFR.
Collapse
Affiliation(s)
- Avantika Gupta
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Flavia Michelini
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Shao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Celine Yeh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Dazhi Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Rosiek
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Sandra Misale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
Wang Y, Li G, Wang H, Qi Q, Wang X, Lu H. Targeted therapeutic strategies for Nectin-4 in breast cancer: Recent advances and future prospects. Breast 2024; 79:103838. [PMID: 39577073 PMCID: PMC11616553 DOI: 10.1016/j.breast.2024.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Nectin-4 is a cell adhesion molecule which has gained more and more attention as a therapeutic target in cancer recently. Overexpression of Nectin-4 has been observed in various tumors, including breast cancer, and is associated with tumor progression. Enfortumab vedotin(EV)is an antibody-drug conjugate (ADC) targeting Nectin-4, which has been approved by FDA for the treatment of urothelial carcinoma. Notably, Nectin-4 was also investigated as a target for breast cancer in preclinical and clinical settings. Nectin-4-targeted approaches, such as ADCs, oncolytic viruses, photothermal therapy and immunotherapy, have shown promising results in early-phase clinical trials. These therapies offer novel strategies for delivering targeted treatments to Nectin-4-expressing cancer cells, enhancing treatment efficacy and minimizing off-target effects. In conclusion, this review aims to provide an overview of the latest advances in understanding the role of Nectin-4 in breast cancer and discuss the future development prospects of Nectin-4 targeted agents.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Medical Oncology (Breast Cancer), Zhejiang Cancer Hospital, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Zhang Y, Wang L, Cao X, Song R, Yin S, Cheng Z, Li W, Shen K, Zhao T, Xu J, Liu S, Xie Q, Wu Y, Gao B, Guo Q, Wu J, Qiu X, Wang B, Zhang W, Yang T, Lu W, Zhu S. Evaluation of Double Self-Immolative Linker-Based Antibody-Drug Conjugate FDA022-BB05 with Enhanced Therapeutic Potential. J Med Chem 2024; 67:19852-19873. [PMID: 39444220 DOI: 10.1021/acs.jmedchem.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Typical antibody-drug conjugates (ADCs) with valine-alanine linkage, often conjugated with the amino group in payloads, face challenges when interacting with hydroxyl group-containing payloads. Herein, we introduced a transformative Val-Ala-based double self-immolative linker-payload platform, reshaping ADCs by optimizing hydroxyl group-containing payload integration. Utilizing this platform, FDA022-BB05 was successfully conjugated with the hydroxyl group-containing payload DXd using trastuzumab (FDA022) as the monoclonal antibody (mAb). FDA022-BB05 demonstrated enhanced stability, effective cathepsin B sensitivity, reduced cell proliferation, increased bystander killing, and targeted delivery. Notably, acute toxicity evaluations in diverse preclinical models indicated favorable safety profiles and tolerability, with a broad therapeutic index in HER2-positive and -negative xenografts. Overall, these compelling findings support the promising therapeutic potential of FDA022-BB05, emphasizing the significance of diverse linker-payload platform strategies. This ADC is a valuable addition to targeted cancer therapy development, currently advancing through phase I clinical trials.
Collapse
Affiliation(s)
- Yifan Zhang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Lei Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuemei Cao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Ruiwen Song
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Sicheng Yin
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Zhiyang Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Weinan Li
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Keyu Shen
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Teng Zhao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Jun Xu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Shuangxi Liu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Qian Xie
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Yinghan Wu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Bei Gao
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Qingsong Guo
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Jingsong Wu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Xuefei Qiu
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Baoxia Wang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Wenbo Zhang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Tong Yang
- R&D Department of Genetic Engineering, Shanghai Fudan-Zhangjiang Bio-Pharmaceutical Co., Ltd., Shanghai 201210, P. R. China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Shulei Zhu
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
19
|
Hamilton AK, Radaoui AB, Tsang M, Martinez D, Conkrite KL, Patel K, Sidoli S, Delaidelli A, Modi A, Rokita JL, Lane MV, Hartnett N, Lopez RD, Zhang B, Zhong C, Ennis B, Miller DP, Brown MA, Rathi KS, Raman P, Pogoriler J, Bhatti T, Pawel B, Glisovic-Aplenc T, Teicher B, Erickson SW, Earley EJ, Bosse KR, Sorensen PH, Krytska K, Mosse YP, Havenith KE, Zammarchi F, van Berkel PH, Smith MA, Garcia BA, Maris JM, Diskin SJ. A proteogenomic surfaceome study identifies DLK1 as an immunotherapeutic target in neuroblastoma. Cancer Cell 2024; 42:1970-1982.e7. [PMID: 39454577 PMCID: PMC11560519 DOI: 10.1016/j.ccell.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/14/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Cancer immunotherapies produce remarkable results in B cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor and normal tissues to identify biologically relevant cell surface immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer. Proteogenomic analyses reveal sixty high-confidence candidate immunotherapeutic targets, and we prioritize delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlates with a super-enhancer. Immunofluorescence, flow cytometry, and immunohistochemistry show robust cell surface expression of DLK1. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells results in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Since high DLK1 expression is found in several adult and pediatric cancers, our study demonstrates the utility of a proteogenomic approach and credentials DLK1 as an immunotherapeutic target.
Collapse
Affiliation(s)
- Amber K Hamilton
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexander B Radaoui
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew Tsang
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Martinez
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Karina L Conkrite
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Khushbu Patel
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Apexa Modi
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maria V Lane
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas Hartnett
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Raphael D Lopez
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chuwei Zhong
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian Ennis
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel P Miller
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A Brown
- Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Komal S Rathi
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine and Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tricia Bhatti
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tina Glisovic-Aplenc
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Eric J Earley
- RTI International, Research Triangle Park, Durham, NC 27709, USA
| | - Kristopher R Bosse
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kateryna Krytska
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yael P Mosse
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M Maris
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sharon J Diskin
- Center for Childhood Cancer Research and Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Desai A, Subbiah V, Roy-Chowdhuri S, Sheshadri A, Deshmukh S, Peters S. Association of Antibody-Drug Conjugate (ADC) Target Expression and Interstitial Lung Disease (ILD) in Non-Small-Cell Lung Cancer (NSCLC): Association or Causation or Neither? Cancers (Basel) 2024; 16:3753. [PMID: 39594708 PMCID: PMC11591883 DOI: 10.3390/cancers16223753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide, despite advances in immune checkpoint inhibitors and targeted therapies. Antibody-drug conjugates (ADCs) represent a promising therapeutic approach by delivering cytotoxic agents specifically to cancer cells, potentially reducing harm to healthy tissues. This study aims to explore the effectiveness and challenges associated with ADCs in NSCLC, with a focus on drug-induced interstitial lung disease (D-ILD). METHODS A comprehensive literature review was conducted across MEDLINE (Ovid), Embase (Elsevier), CENTRAL (Cochrane Library), and other sources up to March 2023, to identify ADCs used in NSCLC treatment and their associated risk of D-ILD. The incidence of ILD was analyzed from clinical trial data, while ADC target expression was examined through RNA and protein levels in normal and tumor lung tissues. DISCUSSION Our findings highlight the therapeutic potential of ADCs in NSCLC, as evidenced by significant clinical outcomes. However, the occurrence of D-ILD presents a notable challenge, as its incidence was not directly correlated with the expression levels of the target antigens. This suggests that D-ILD may result from factors beyond antigen expression, including the cytotoxic payload and linker characteristics of ADCs. CONCLUSION ADCs offer a promising avenue for NSCLC treatment. Nonetheless, the risk of D-ILD necessitates a balanced approach in ADC development, focusing on optimizing linker and payload properties to mitigate this adverse effect. Further research is essential to better understand and manage D-ILD, ensuring the safe and effective use of ADCs in clinical practice.
Collapse
Affiliation(s)
- Aakash Desai
- Department of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, TN 37203, USA;
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sameer Deshmukh
- Department of Medicine, University of Alabama, Birmingham, AL 35294, USA;
| | - Solange Peters
- Department of Medical Oncology, Lausanne University, 1015 Lausanne, Switzerland;
| |
Collapse
|
21
|
Nain K, Sonar K, Sahoo S, Gupta JC, Grover S, Arulandu A, Talwar GP. Humanized recombinant immunotoxin targeting hCG demonstrates therapeutic potential for advanced stage difficult to treat cancers. J Drug Target 2024:1-14. [PMID: 39394941 DOI: 10.1080/1061186x.2024.2416247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024]
Abstract
We report the development of an immunotherapeutic molecule, a Humanized immunotoxin, for treating hCG-expressing advanced-stage cancers. PiPP, a high-affinity anti-hCG monoclonal antibody, is used in the immunotoxin for 'homing' hCG-positive cancer cells. The deimmunized (DI) form of α-Sarcin, a fungal-origin toxin that lacks functional T-cell epitopes, is used in the design to ensure minimal immunogenicity of the immunotoxin for repetitive use in humans. A single-chain variable fragment (scFv) of PiPP was constructed by linking the Humanized VH and VL regions of the antibody. The scFv part of the antibody was further linked to the toxin α-Sarcin (DI) at the gene level and expressed as a recombinant protein in E. coli. The immunotoxin was purified from the bacterial cell lysate and analysed for binding and cytotoxicity to hCG-secreting colorectal and pancreatic cancer cells. The results showed that the scFv(PiPP)-Sarcin immunotoxin was able to bind to colorectal and pancreatic cancer cells and killed approximately 85% of the cells. In vivo testing of the immunotoxin produced results similar to those of in vitro testing against colorectal adenocarcinoma-induced tumours. This immunotoxin could be a promising immunotherapeutic agent for treating colorectal, pancreatic and other terminal-stage hCG-expressing cancers.
Collapse
Affiliation(s)
- Kirti Nain
- Talwar Research Foundation, New Delhi, India
- Jamia Hamdard University, New Delhi, India
| | - Kritika Sonar
- Talwar Research Foundation, New Delhi, India
- Jamia Hamdard University, New Delhi, India
| | - Sibasis Sahoo
- Structural Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Arockiasamy Arulandu
- Structural Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - G P Talwar
- Talwar Research Foundation, New Delhi, India
| |
Collapse
|
22
|
Yang H, Zhang Z, Li J, Wang K, Zhu W, Zeng Y. The Dual Role of B Cells in the Tumor Microenvironment: Implications for Cancer Immunology and Therapy. Int J Mol Sci 2024; 25:11825. [PMID: 39519376 PMCID: PMC11546796 DOI: 10.3390/ijms252111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous tissue composed of various cell types, including tumor cells, stromal cells, and immune cells, as well as non-cellular elements. Given their pivotal role in humoral immunity, B cells have emerged as promising targets for anti-tumor therapies. The dual nature of B cells, exhibiting both tumor-suppressive and tumor-promoting functions, has garnered significant attention. Understanding the distinct effects of various B cell subsets on different tumors could pave the way for novel targeted tumor therapies. This review provides a comprehensive overview of the heterogeneous B cell subsets and their multifaceted roles in tumorigenesis, as well as the therapeutic potential of targeting B cells in cancer treatment. To develop more effective cancer immunotherapies, it is essential to decipher the heterogeneity of B cells and their roles in shaping the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China; (H.Y.); (Z.Z.); (J.L.); (K.W.); (W.Z.)
| |
Collapse
|
23
|
Fucà G, Sabatucci I, Paderno M, Lorusso D. The clinical landscape of antibody-drug conjugates in endometrial cancer. Int J Gynecol Cancer 2024; 34:1795-1804. [PMID: 39074933 DOI: 10.1136/ijgc-2024-005607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Clinical outcomes remain challenging in advanced or recurrent endometrial cancer due to tumor heterogeneity and therapy resistance. Antibody-drug conjugates are a novel class of cancer therapeutics, representing a promising treatment option for endometrial cancer. Antibody-drug conjugates consist of a high-affinity antibody linked to a cytotoxic payload through a stable linker. After binding to specific antigens on tumor cells, the drug is internalized, and the payload is released. In addition, the free intracellular drug may be released outside the target cell through a 'bystander effect' and kill neighboring cells, which is crucial in treating malignancies characterized by heterogeneous biomarker expression like endometrial cancer.This article aims to provide a comprehensive overview of the current clinical landscape of antibody-drug conjugates in the treatment of endometrial cancer. We conducted a thorough analysis of recent clinical trials focusing on efficacy, safety profiles, and the mechanisms by which antibody-drug conjugates target endometrial cancer. We focused particularly on the most promising antibody-drug conjugate targets in endometrial cancer under clinical investigation, such as human epidermal growth factor receptor 2 (HER2), folate receptor alpha (FRα), trophoblast cell-surface antigen-2 (TROP2), and B7-H4. We also briefly comment on the challenges, including the emergence of resistance mechanisms, and future development directions (especially agents targeting multiple antigens, combinatorial strategies, and sequential use of agents targeting the same antigen but using different payloads) in antibody-drug conjugate therapy for endometrial cancer.
Collapse
Affiliation(s)
- Giovanni Fucà
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | - Ilaria Sabatucci
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | | | - Domenica Lorusso
- Department of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
24
|
Webb J, Niu C, Ritter B, Albarghouthi M, Chen X, Wang C. Developing analytical ion exchange chromatography methods for antibody drug conjugates containing the hydrolysis-prone succinimide-thioether conjugation chemistry. J Pharm Sci 2024; 113:3279-3285. [PMID: 39182845 DOI: 10.1016/j.xphs.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Charge variants are one of the most important quality attributes for protein therapeutics, including antibody drug conjugates (ADCs). ADCs are conjugation products between monoclonal antibodies (mAbs) and highly potent payloads. After attaching a payload, the charge profile of a mAb can be modified due to the change in net charge or surface charge. In this study, we present a unique challenge of charge assay development that arises from a desirable engineering of ADCs that incorporates the hydrolysis-prone succinimide-thioether conjugation chemistry. This engineered hydrolysis at conjugation sites is usually not complete during conjugation process and continuously progressing during mild stress. This hydrolysis also creates a carboxylic functional group, which manifests as acidic peaks in the ADC charge profiles. As a result, ion exchange chromatograms become sensitive measurements of this hydrolysis, which often masks the charge profile change due to other important post-translational modifications. In this study, two approaches were explored to address this unique challenge: to remove the hydrolysis heterogeneity by incubating ADCs under high pH conditions to drive complete hydrolysis; and to analyze charge variants at the subunit level after IdeS digestion. Acceptable charge profiles and quantitative integration results were successfully obtained by both approaches.
Collapse
Affiliation(s)
- Jessica Webb
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Chendi Niu
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Benjamin Ritter
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Methal Albarghouthi
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Xiaoyu Chen
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA
| | - Chunlei Wang
- Department of Analytical Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
25
|
Zhang J, Yang H, Lu Y. Management of neurotoxic reactions induced by antibody-drug conjugates. Asia Pac J Oncol Nurs 2024; 11:100595. [PMID: 39582554 PMCID: PMC11582371 DOI: 10.1016/j.apjon.2024.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 11/26/2024] Open
Abstract
In recent years, many new antitumor drugs have been approved for clinical use. Among them, antibody-drug conjugates (ADCs) are an innovative drug group that combines the advantages of chemotherapy with a cytotoxic drug and targeted therapy with monoclonal antibodies. However, although ADCs provide survival benefits to patients, their special composition and mode of action also lead to specific adverse effects. Among the common adverse effects caused by ADCs, peripheral neuropathy (PN) affects patients' quality of life and also present significant challenges to clinical nursing. There are several guidelines and consensus for treating chemotherapy-induced peripheral neuropathy. However, there are no specific guidelines for managing PN caused by ADCs. Nurses play an important role in the prevention and management of PN, and their relevant knowledge and skills for symptom assessment, functional deficit screening, patient referral and advocacy, and patient education are indispensable. By combining Chinese and international guidelines, consensus, and related studies, this paper reviewed the occurrence and characteristics of ADC-induced PN and highlighted the principles of prevention, treatment, and nursing care to provide a reference for clinical nursing practice and improve the safety of ADCs for patients.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Breast Cancer Prevention and Treatment Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Yang
- Nursing Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuhan Lu
- Nursing Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
26
|
Colombo R, Tarantino P, Rich JR, LoRusso PM, de Vries EGE. The Journey of Antibody-Drug Conjugates: Lessons Learned from 40 Years of Development. Cancer Discov 2024; 14:2089-2108. [PMID: 39439290 DOI: 10.1158/2159-8290.cd-24-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Antibody-drug conjugates (ADC) represent one of the most rapidly expanding treatment modalities in oncology, with 11 ADCs approved by the FDA and more than 210 currently being tested in clinical trials. Spanning over 40 years, ADC clinical development has enhanced our understanding of the multifaceted mechanisms of action for this class of therapeutics. In this article, we discuss key insights into the toxicity, efficacy, stability, distribution, and fate of ADCs. Furthermore, we highlight ongoing challenges related to their clinical optimization, the development of rational sequencing strategies, and the identification of predictive biomarkers. Significance: The development and utilization of ADCs have allowed for relevant improvements in the prognosis of multiple cancer types. Concomitantly, the rise of ADCs in oncology has produced several challenges, including the prediction of their activity, their utilization in sequence, and minimization of their side effects, that still too often resemble those of the cytotoxic molecule that they carry. In this review, we retrace 40 years of development in the field of ADCs and delve deep into the mechanisms of action of these complex therapeutics and reasons behind the many achievements and failures observed in the field to date.
Collapse
Affiliation(s)
| | - Paolo Tarantino
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Jamie R Rich
- ADC Therapeutic Development, Zymeworks Inc., Vancouver, Canada
| | - Patricia M LoRusso
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
27
|
Tedeschini T, Campara B, Grigoletto A, Zanotto I, Cannella L, Gabbia D, Matsuno Y, Suzuki A, Yoshioka H, Armirotti A, De Martin S, Pasut G. Optimization of a pendant-shaped PEGylated linker for antibody-drug conjugates. J Control Release 2024; 375:74-89. [PMID: 39216599 DOI: 10.1016/j.jconrel.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this work, we conceived and developed antibody-drug conjugates (ADCs) that could efficiently release the drug after enzymatic cleavage of the linker moiety by tumoral proteases. The antibody-drug linkers we used are the result of a rational optimization of a previously reported PEGylated linker, PUREBRIGHT® MA-P12-PS, which showed excellent drug loading capacities but lacked an inbuilt drug discharge mechanism, thus limiting the potency of the resulting ADCs. To address this limitation, we chose to incorporate a protease-sensitive trigger into the linker to favor the release of a "PEGless" drug inside the tumor cells and, therefore, obtain potent ADCs. Currently, most marketed ADCs are based on the Val-Cit dipeptide followed by a self-immolative spacer for releasing the drug in its unmodified form. Here, we selected two untraditional peptide sequences, a Phe-Gly dipeptide and a Val-Ala-Gly tripeptide and placed one or the other in between the drug on one side (N-terminus) and the rest of the linker, including the PEG moiety, on the other side (C-terminus), without a self-immolative group. We found that both linkers responded to cathepsin B, a reference lysosomal enzyme, and liberated a PEG-free drug catabolite, as desired. We then used the two linkers to generate ADCs based on trastuzumab (a HER2-targeting antibody) and DM1 (a microtubule-targeted cytotoxic agent) with an average drug-to-antibody ratio (DAR) of 4 or 8. The ADCs showed restored cytotoxicity in vitro, which was proportional to the DM1 loading and generally higher for the ADCs bearing Val-Ala-Gly in their structure. In an ovarian cancer mouse model, the DAR 8 ADC based on Val-Ala-Gly behaved better than Kadcyla® (an approved ADC of DAR 3.5 used as control throughout this study), leading to a higher tumor volume reduction and more prolonged median survival. Taken together, our results depict a successful linker optimization process and encourage the application of the Val-Ala-Gly tripeptide as an alternative to other existing protease-sensitive triggers for ADCs.
Collapse
Affiliation(s)
- T Tedeschini
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy.
| | - B Campara
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - A Grigoletto
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - I Zanotto
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - L Cannella
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - D Gabbia
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - Y Matsuno
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - A Suzuki
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - H Yoshioka
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - A Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - S De Martin
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - G Pasut
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
28
|
Gang X, Yan J, Li X, Shi S, Xu L, Liu R, Cai L, Li H, Zhao M. Immune checkpoint inhibitors rechallenge in non-small cell lung cancer: Current evidence and future directions. Cancer Lett 2024; 604:217241. [PMID: 39260670 DOI: 10.1016/j.canlet.2024.217241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Immunotherapy, remarkably immune checkpoint inhibitors (ICIs), has significantly altered the treatment landscape for non-small cell lung cancer (NSCLC). Despite their success, the discontinuation of ICIs therapy may occur due to factors such as prior treatment completion, disease progression during ICIs treatment, or immune-related adverse events (irAEs). As numerous studies highlight the dynamic nature of immune responses and the sustained benefits of ICIs, ICIs rechallenge has become an attractive and feasible option. However, the decision-making process for ICIs rechallenge in clinical settings is complicated by numerous uncertainties. This review systematically analyses existing clinical research evidence, classifying ICIs rechallenge into distinct clinical scenarios, exploring methods to overcome ICIs resistance in rechallenge instances, and identifying biomarkers to select patients likely to benefit from rechallenge. By integrating recent studies and new technologies, we offer crucial recommendations for future clinical trial design and provide a practical guideline to maximize the therapeutic benefits of immunotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Xiaoyu Gang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jinshan Yan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ruotong Liu
- Clinical Medicine, Shenyang Medical College, Shenyang, 110001, China
| | - Lutong Cai
- Psychological Medicine, Shenyang Medical College, Shenyang, 110001, China
| | - Heming Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Guangdong Association of Clinical Trials (GACT)/Chinese Thoracic Oncology Group (CTONG) and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, 510000, China.
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
29
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024; 38:769-794. [PMID: 39453540 PMCID: PMC11530565 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
30
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024; 8:1347-1365. [PMID: 38951139 PMCID: PMC11646559 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Oh EL, Redfern A, Hayne D. An evaluation of durvalumab across the spectrum of urothelial carcinoma. Expert Rev Anticancer Ther 2024; 24:1101-1115. [PMID: 39290171 DOI: 10.1080/14737140.2024.2405104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Urothelial carcinoma is a common malignancy affecting the urinary system, with the spectrum of disease encompassing non-muscle invasive, muscle-invasive and metastatic disease. On a background of almost half a century of immunogenic management with BCG, various immune checkpoint inhibitors, including durvalumab, have now demonstrated clinical efficacy in the treatment of urothelial carcinoma. AREAS COVERED This article reviews the available literature on durvalumab in the treatment of urothelial carcinoma for all stages of the disease including mechanisms of action, pharmacokinetics, efficacy and safety and covers a broad portfolio of reported and ongoing trials. EXPERT OPINION The management of UC is rapidly evolving, which is reflected in the diverse range of upcoming pivotal trials incorporating durvalumab with additional immunomodulatory agents and therapeutics targeting key oncogenic pathways, each with the potential to change the standard of care. As the complexity of UC management increases, future efforts should be directed at identifying better predictive biomarkers and selecting rational synergistic combinations from the novel treatments available. This will allow the addressing of existing gaps, facilitate the exploitation of new techniques of treatment delivery and ultimately deliver more personalized and efficacious care to the individual patient.
Collapse
Affiliation(s)
- Ek Leone Oh
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Australia
| | - Andrew Redfern
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Australia
- Medical School, The University of Western Australia, Perth, Australia
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group, Sydney, Australia
| | - Dickon Hayne
- Medical School, The University of Western Australia, Perth, Australia
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group, Sydney, Australia
- Department of Urology, Fiona Stanley Hospital, Murdoch, Australia
| |
Collapse
|
32
|
Rahmani F, Ajoudanifar H, Arbab Soleimani N, Imani Fooladi AA. Targeted therapies in HER2-positive breast cancer with receptor-redirected Arazyme-linker-Herceptin as a novel fusion protein. Breast Cancer 2024; 31:1101-1113. [PMID: 39122876 DOI: 10.1007/s12282-024-01625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Targeted treatment of different types of cancers through highly expressed cancer cell surface receptors by fusion proteins is an efficient method for cancer therapy. The HER2 receptor is a member of the tyrosine kinase receptors family, which plays a notable role in breast cancer tumor development. About 25-30% of breast cancers overexpress human epidermal growth factor receptor 2 (HER2). METHODS In this study, we evaluated the particulars of a designed recombinant protein formed by HER2-specific Mab Herceptin linked with Arazyme on a HER2-overexpressing breast cancer cell line (SKBR3). Arazyme, a metalloprotease produced by Serratia proteamaculans was fused to the variable area of light and heavy chains of the Herceptin. The cytotoxic assay of the Arazyme-linker-Herceptin in the SKBR3 and MDA-MB-468 cells was evaluated by the MTT and flow cytometry techniques. The Caspase‑3 activity determination and adhesion assay were performed to evaluate the antitumor activity of the Arazyme-linker-Herceptin against SKBR3 cells. Furthermore, RT-PCR was used to measure the expression levels of the Bcl-2, Bax, MMP2, MMP9, and RIP3 genes. RESULTS The Arazyme-linker-Herceptin showed higher cytotoxicity in SKBR3 cells compared to MDA-MB-468 cells. In addition, flow cytometry results revealed that the Arazyme-linker-Herceptin can significantly induce apoptosis in the HER2-overexpressing breast cancer cell line (SKBR3), which was confirmed by Bax upregulation and the decrease in adhesion of tumor cells and MMP2/MMP9. CONCLUSION The findings of this study demonstrated that the Arazyme-linker-Herceptin induced apoptosis and decreased metastatic genes in SKBR3 cells; however, further research is required to confirm the effectiveness of the fusion protein.
Collapse
Affiliation(s)
- Farideh Rahmani
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hatef Ajoudanifar
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Udofa E, Sankholkar D, Mitragotri S, Zhao Z. Antibody drug conjugates in the clinic. Bioeng Transl Med 2024; 9:e10677. [PMID: 39545074 PMCID: PMC11558205 DOI: 10.1002/btm2.10677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 11/17/2024] Open
Abstract
Antibody-drug conjugates (ADCs), chemotherapeutic agents conjugated to an antibody to enhance their targeted delivery to tumors, represent a significant advancement in cancer therapy. ADCs combine the precise targeting capabilities of antibodies and the potent cell-killing effects of chemotherapy, allowing for enhanced cytotoxicity to tumors while minimizing damage to healthy tissues. Here, we provide an overview of the current clinical landscape of ADCs, highlighting 11 U.S. Food and Drug Administration (FDA)-approved products and discussing over 500 active clinical trials investigating newer ADCs. We also discuss some key challenges associated with the clinical translation of ADCs and highlight emerging strategies to overcome these hurdles. Our discussions will provide useful guidelines for the future development of safer and more effective ADCs for a broader range of indications.
Collapse
Affiliation(s)
- Edidiong Udofa
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| |
Collapse
|
34
|
Vasic V, Dickopf S, Spranger N, Rosenberger RS, Fischer M, Mayer K, Larraillet V, Bates JA, Maier V, Sela T, Nussbaum B, Duerr H, Dengl S, Brinkmann U. Generation of binder-format-payload conjugate-matrices by antibody chain-exchange. Nat Commun 2024; 15:9406. [PMID: 39477939 PMCID: PMC11525586 DOI: 10.1038/s41467-024-53730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The generation of antibody-drug conjugates with optimal functionality depends on many parameters. These include binder epitope, antibody format, linker composition, conjugation site(s), drug-to-antibody ratio, and conjugation method. The production of matrices that cover all possible parameters is a major challenge in identifying optimal antibody-drug conjugates. To address this bottleneck, we adapted our Format Chain Exchange technology (FORCE), originally established for bispecific antibodies, toward the generation of binder-format-payload matrices (pair-FORCE). Antibody derivatives with exchange-enabled Fc-heterodimers are combined with payload-conjugated Fc donors, and subsequent chain-exchange transfers payloads to antibody derivatives in different formats. The resulting binder-format-conjugate matrices can be generated with cytotoxic payloads, dyes, haptens, and large molecules, resulting in versatile tools for ADC screening campaigns. We show the relevance of pair-FORCE for identifying optimal HER2-targeting antibody-drug conjugates. Analysis of this matrix reveals that the notion of format-defines-function applies not only to bispecific antibodies, but also to antibody-drug conjugates.
Collapse
Affiliation(s)
- Vedran Vasic
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
- Veraxa Biotech, Heidelberg, Germany
| | - Nadine Spranger
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
- Institute of Molecular Immunology, School of Medicine and Health, Technical University Munich (TUM), Munich, Germany
| | - Rose-Sophie Rosenberger
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Michaela Fischer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Vincent Larraillet
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Jack A Bates
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Verena Maier
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Tatjana Sela
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Bianca Nussbaum
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Harald Duerr
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Dengl
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
35
|
Kumar MS, Deshmukh S, Bhanushali C, Boumber Y, Riess J, Naqash AR, Subbiah V, Desai A. Biomarker Landscape of Antibody Drug Conjugates (ADCs) and Bispecific Antibodies in Clinical Trials for Lung Cancer. Clin Lung Cancer 2024:S1525-7304(24)00222-5. [PMID: 39592292 DOI: 10.1016/j.cllc.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Affiliation(s)
| | - Sameer Deshmukh
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, AL, USA
| | | | - Yanis Boumber
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Johnathan Riess
- Division of Hematology and Oncology, UC Davis Medical Center, Sacramento, CA, USA
| | | | | | - Aakash Desai
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
36
|
Halder D, Abdelgawwad AMA, Francés-Monerris A. Cobaltabis(dicarbollide) Interaction with DNA Resolved at the Atomic Scale. J Med Chem 2024; 67:18194-18203. [PMID: 39382948 DOI: 10.1021/acs.jmedchem.4c01426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Boron neutron capture therapy represents a promising avenue for cancer treatment that requires nontoxic drugs with a high boron content efficiently distributed into cancerous cells. The metallacarborane o-cobaltabis(dicarbollide) ([COSAN]-) fulfills these requirements and constitutes an attractive candidate. Nevertheless, the interaction of this promising drug with nucleic acids, the assumed target of the biological damage, is poorly understood since contradictory results are reported in the literature. This work establishes the DNA/[COSAN]- interaction strength, mechanism, and time scale at the atomistic level by using a combination of microsecond-molecular dynamics and hybrid quantum mechanics/molecular mechanics simulations and by quantifying the absolute binding free energy. Results show that the DNA/[COSAN]- interaction is highly dependent on the ionic strength of the medium. A relatively weak DNA major groove binding (ΔGbind= -2.49 kcal/mol) driven mostly by dihydrogen B-H···H-N bonding is observed in the simulations only at a high NaCl concentration, whereas DNA intercalation mode is deemed highly unlikely.
Collapse
Affiliation(s)
- Debabrata Halder
- Institut de Ciència Molecular, Universitat de València, P.O. Box 22085, València46071, Spain
| | | | | |
Collapse
|
37
|
Watanabe T, Arashida N, Fujii T, Shikida N, Ito K, Shimbo K, Seki T, Iwai Y, Hirama R, Hatada N, Nakayama A, Okuzumi T, Matsuda Y. Exo-Cleavable Linkers: Enhanced Stability and Therapeutic Efficacy in Antibody-Drug Conjugates. J Med Chem 2024; 67:18124-18138. [PMID: 39410752 PMCID: PMC11513888 DOI: 10.1021/acs.jmedchem.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Antibody-drug conjugates (ADCs) combine cytotoxic payloads with monoclonal antibodies through chemical linkers. Finding linkers that both enhance circulatory stability and enable effective tumor payload release remains a challenge. The conventional valine-citrulline (Val-Cit) linker is associated with several inherent drawbacks, including hydrophobicity-induced aggregation, a limited drug-antibody ratio (DAR), and premature payload release. This study introduces an exolinker approach, repositioning the cleavable peptide linker at the exo position of the p-aminobenzylcarbamate moiety, as an advancement over conventional linear linkers. This design, which incorporates hydrophilic glutamic acid, addresses the limitations of the Val-Cit platform and improves the ADC in vivo profiles. In vitro and in vivo evaluations showed that exolinker ADCs reduced premature payload release, increased drug-to-antibody ratios, and avoided significant aggregation, even with hydrophobic payloads. Furthermore, the payload remained stably attached to the ADC even in the presence of enzymes like carboxylesterases and human neutrophil elastase, indicating the potential for a favorable safety profile.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Naoko Arashida
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
- Ajinomoto
Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Tomohiro Fujii
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Natsuki Shikida
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kenichiro Ito
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutaka Shimbo
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Takuya Seki
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yusuke Iwai
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Ryusuke Hirama
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Noriko Hatada
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Akira Nakayama
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tatsuya Okuzumi
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto
Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| |
Collapse
|
38
|
Bian DJH, Cohen SF, Lazaratos AM, Bouganim N, Dankner M. Antibody-Drug Conjugates for the Treatment of Non-Small Cell Lung Cancer with Central Nervous System Metastases. Curr Oncol 2024; 31:6314-6342. [PMID: 39451775 PMCID: PMC11506643 DOI: 10.3390/curroncol31100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Antibody-drug conjugates (ADCs) represent an emerging class of targeted anticancer agents that have demonstrated impressive efficacy in numerous cancer types. In non-small cell lung cancer (NSCLC), ADCs have become a component of the treatment armamentarium for a subset of patients with metastatic disease. Emerging data suggest that some ADCs exhibit impressive activity even in central nervous system (CNS) metastases, a disease site that is difficult to treat and associated with poor prognosis. Herein, we describe and summarize the existing evidence surrounding ADCs in NSCLC with a focus on CNS activity.
Collapse
Affiliation(s)
- David J. H. Bian
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Sara F. Cohen
- Department of Anatomy & Cell Biology, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Anna-Maria Lazaratos
- Faculté de Médecine, Université de Montreal. Montreal, QC H3A 1G1, Canada;
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nathaniel Bouganim
- Department of Oncology, McGill University Health Centre, Montreal, QC H3A 1G1, Canada;
| | - Matthew Dankner
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
39
|
Dong Y, Zhang Z, Luan S, Zheng M, Wang Z, Chen Y, Chen X, Tong A, Yang H. Novel bispecific antibody-drug conjugate targeting PD-L1 and B7-H3 enhances antitumor efficacy and promotes immune-mediated antitumor responses. J Immunother Cancer 2024; 12:e009710. [PMID: 39357981 PMCID: PMC11448212 DOI: 10.1136/jitc-2024-009710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) offer a promising approach, combining monoclonal antibodies with chemotherapeutic drugs to target cancer cells effectively while minimizing toxicity. METHODS This study examined the therapeutic efficacy and potential mechanisms of a bispecific ADC (BsADC) in laryngeal squamous cell carcinoma. This BsADC selectively targets the immune checkpoints programmed cell death ligand-1 (PD-L1) and B7-H3, and the precise delivery of the small-molecule toxin monomethyl auristatin E. RESULTS Our findings demonstrated that the BsADC outperformed its bispecific antibody and PD-L1 or B7-H3 ADC counterparts, particularly in terms of in vitro/in vivo tumor cytotoxicity, demonstrating remarkable immune cytotoxicity. Additionally, we observed potent activation of tumor-specific immunity and significant induction of markers of immunogenic cell death (ICD) and potential endoplasmic reticulum stress. CONCLUSION In conclusion, this novel BsADC, through immune checkpoint inhibition and promotion of ICD, amplified durable tumor immune cytotoxicity, providing novel insights and potential avenues for future cancer treatments and overcoming resistance.
Collapse
Affiliation(s)
- Yijun Dong
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Meijun Zheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Scheuher B, Ghusinga KR, McGirr K, Nowak M, Panday S, Apgar J, Subramanian K, Betts A. Towards a platform quantitative systems pharmacology (QSP) model for preclinical to clinical translation of antibody drug conjugates (ADCs). J Pharmacokinet Pharmacodyn 2024; 51:429-447. [PMID: 37787918 DOI: 10.1007/s10928-023-09884-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/16/2023] [Indexed: 10/04/2023]
Abstract
A next generation multiscale quantitative systems pharmacology (QSP) model for antibody drug conjugates (ADCs) is presented, for preclinical to clinical translation of ADC efficacy. Two HER2 ADCs (trastuzumab-DM1 and trastuzumab-DXd) were used for model development, calibration, and validation. The model integrates drug specific experimental data including in vitro cellular disposition data, pharmacokinetic (PK) and tumor growth inhibition (TGI) data for T-DM1 and T-DXd, as well as system specific data such as properties of HER2, tumor growth rates, and volumes. The model incorporates mechanistic detail at the intracellular level, to account for different mechanisms of ADC processing and payload release. It describes the disposition of the ADC, antibody, and payload inside and outside of the tumor, including binding to off-tumor, on-target sinks. The resulting multiscale PK model predicts plasma and tumor concentrations of ADC and payload. Tumor payload concentrations predicted by the model were linked to a TGI model and used to describe responses following ADC administration to xenograft mice. The model was translated to humans and virtual clinical trial simulations were performed that successfully predicted progression free survival response for T-DM1 and T-DXd for the treatment of HER2+ metastatic breast cancer, including differential efficacy based upon HER2 expression status. In conclusion, the presented model is a step toward a platform QSP model and strategy for ADCs, integrating multiple types of data and knowledge to predict ADC efficacy. The model has potential application to facilitate ADC design, lead candidate selection, and clinical dosing schedule optimization.
Collapse
Affiliation(s)
- Bruna Scheuher
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
- DMPK and Modeling, Takeda, Boston, MA, United States
| | | | - Kimiko McGirr
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
| | | | - Sheetal Panday
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
| | - Joshua Apgar
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
| | - Kalyanasundaram Subramanian
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA
- Differentia Bio, Pleasanton, California, United States
| | - Alison Betts
- Applied BioMath, 561 Virginia Road, Concord, MA, 01742, USA.
- DMPK and Modeling, Takeda, Boston, MA, United States.
| |
Collapse
|
41
|
Mathiot L, Baldini C, Letissier O, Hollebecque A, Bahleda R, Gazzah A, Smolenschi C, Sakkal M, Danlos FX, Henon C, Beshiri K, Goldschmidt V, Parisi C, Patrikidou A, Michot JM, Marabelle A, Postel-Vinay S, Bernard-Tessier A, Loriot Y, Ponce S, Champiat S, Ouali K. Exploring the Role of Target Expression in Treatment Efficacy of Antibody-Drug Conjugates (ADCs) in Solid Cancers: A Comprehensive Review. Curr Oncol Rep 2024; 26:1236-1248. [PMID: 39066847 DOI: 10.1007/s11912-024-01576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs) offer a promising path for cancer therapy, leveraging the specificity of monoclonal antibodies and the cytotoxicity of linked drugs. The success of ADCs hinges on precise targeting of cancer cells based on protein expression levels. This review explores the relationship between target protein expression and ADC efficacy in solid tumours, focusing on results of clinical trials conducted between January 2019 and May 2023. RECENT FINDINGS We hereby highlight approved ADCs, revealing their effectiveness even in low-expressing target populations. Assessing target expression poses challenges, owing to variations in scoring systems and biopsy types. Emerging methods, like digital image analysis, aim to standardize assessment. The complexity of ADC pharmacokinetics, tumour dynamics, and off-target effects emphasises the need for a balanced approach. This review underscores the importance of understanding target protein dynamics and promoting standardized evaluation methods in shaping the future of ADC-based cancer therapies.
Collapse
Affiliation(s)
- Laurent Mathiot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Octave Letissier
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Antoine Hollebecque
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Rastislav Bahleda
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Anas Gazzah
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Cristina Smolenschi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Madona Sakkal
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - François-Xavier Danlos
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Villejuif, France
- Centre d'Investigations Cliniques Biothérapies Pour Une Immunisation in Situ (BIOTHERIS), INSERM, CIC1428, Villejuif, France
| | - Clémence Henon
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Kristi Beshiri
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Vincent Goldschmidt
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Claudia Parisi
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Anna Patrikidou
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Jean-Marie Michot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Sophie Postel-Vinay
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | | | - Yohann Loriot
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U981, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
| | - Stéphane Champiat
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France
- Institut National de La Santé Et de La Recherche Médicale (INSERM) U1015, Villejuif, France
- Centre d'Investigations Cliniques Biothérapies Pour Une Immunisation in Situ (BIOTHERIS), INSERM, CIC1428, Villejuif, France
| | - Kaïssa Ouali
- Drug Development Department, Gustave Roussy Cancer Campus, Villejuif Cedex, France.
| |
Collapse
|
42
|
Chen R, Ren Z, Bai L, Hu X, Chen Y, Ye Q, Hu Y, Shi J. Novel antibody-drug conjugates based on DXd-ADC technology. Bioorg Chem 2024; 151:107697. [PMID: 39121594 DOI: 10.1016/j.bioorg.2024.107697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
In recent years, antibody-drug conjugate (ADC) technology, which uses monoclonal antibodies (mAbs) to specifically deliver effective cytotoxic payloads to tumor cells, has become a promising method of tumor targeted therapy. ADCs are a powerful class of biopharmaceuticals that link antibodies targeting specific antigens and small molecule drugs with potent cytotoxicity via a linker, thus enabling selective destruction of cancer cells while minimizing systemic toxicity. DXd is a topoisomerase I inhibitor that induces DNA damage leading to cell cycle arrest, making it an option for ADC payloads. The DXd-ADC technology, developed by Daiichi Sankyo, is a cutting-edge platform that produces a new generation of ADCs with improved therapeutic metrics and has shown significant therapeutic potential in various types of cancer. This review provides a comprehensive assessment of drugs developed with DXd-ADC technology, with a focus on mechanisms of action, pharmacokinetics studies, preclinical data, and clinical outcomes for DS-8201a, U3-1402, DS-1062a, DS-7300a, DS-6157a, and DS-6000a. By integrating existing data, we aim to provide valuable insights into the current therapeutic status and future prospects of these novel agents.
Collapse
Affiliation(s)
- Rong Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhiwen Ren
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefang Hu
- Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture, Academy of Agricultural Planning and Engineering Mara, Beijing 100121, China
| | - Yuchen Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qiang Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yuan Hu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
43
|
Garrigos L, Camacho D, Perez-Garcia JM, Llombart-Cussac A, Cortes J, Antonarelli G. Sacituzumab govitecan for hormone receptor-positive HER2-negative advanced breast cancer. Expert Rev Anticancer Ther 2024; 24:949-958. [PMID: 39210557 DOI: 10.1080/14737140.2024.2392775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Initial treatment for hormone-receptor positive (HR+)/human epidermal growth factor receptor 2 negative (HER2-) advanced breast cancer (ABC) typically involves endocrine therapy (ET) combined with different targeted agents. When hormonal therapies fail, until recently, the only option available was chemotherapy (ChT), presenting a significant therapeutic challenge. However, the recent introduction of antibody-drug conjugates (ADCs) has provided new treatment alternatives in this context. Sacituzumab govitecan (SG), a novel trophoblast cell-surface antigen 2 (Trop-2)-targeting ADC, has been evaluated following disease progression to ET and ChT in HR+/HER2- ABC. AREAS COVERED This review examines the latest clinical trials, including phase I/II and III studies and evaluates the impact of SG on HR+/HER2- ABC. The literature search focused on clinical outcomes, particularly regarding efficacy and safety, comparing them with traditional ChT. EXPERT OPINION SG has demonstrated to be an effective treatment for patients with HR+/HER2- ABC after progression to ET and cyclin-dependent kinase 4/6 inhibitors (CDKi) in any setting, and at least two ChT-containing regimens in the advanced setting. With a manageable toxicity profile, SG represents a significant advancement in the treatment landscape for this patient population. However, further research is essential to optimize its application and establish long-term benefits.
Collapse
Affiliation(s)
- Laia Garrigos
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
| | - Daniela Camacho
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
| | - José Manuel Perez-Garcia
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co, Sao Paulo, NJ, USA
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co, Sao Paulo, NJ, USA
- Hospital Arnau de Vilanova, Universidad Católica de Valencia, Valencia, Spain
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Hospital, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co, Sao Paulo, NJ, USA
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
- IOB Institute of Oncology Madrid, Hospital Beata María Ana, Madrid, Spain
| | - Gabriele Antonarelli
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
44
|
Wu S, Xu J, Ma Y, Liang G, Wang J, Sun T. Advances in the mechanism of CDK4/6 inhibitor resistance in HR+/HER2- breast cancer. Ther Adv Med Oncol 2024; 16:17588359241282499. [PMID: 39371618 PMCID: PMC11450575 DOI: 10.1177/17588359241282499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Among women, breast cancer is the most prevalent form of a malignant tumour. Among the subtypes of breast cancer, hormone receptor (HR) positive and human epidermal growth factor receptor (HER2) negative kinds make up the biggest proportion. The advent of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, which are dependent on cell cycle proteins, has greatly enhanced the prognosis of patients with advanced HR+/HER2- breast cancer. This is a specific treatment that stops the growth of cancer cells by preventing them from dividing. Nevertheless, the drug resistance of the disease unavoidably impacts the effectiveness of treatment and the prognosis of patients. This report provides a thorough analysis of the current research advancements about the resistance mechanism of CDK4/6 inhibitors in HR+/HER2- breast cancer. It presents an in-depth discussion from numerous viewpoints, such as aberrant cell cycle regulation and changes in signalling pathways. In response to the drug resistance problem, subsequent treatment strategies are also being explored, including switching to other CDK4/6 inhibitor drugs, a combination of novel endocrine therapeutic agents, an optimal combination of targeted therapies and switching to chemotherapy. An in-depth study of the resistance mechanism can assist in identifying creative tactics that can overcome or postpone drug resistance, alleviate the problem of restricted treatment strategies following drug resistance and enhance the prognosis of patients.
Collapse
Affiliation(s)
- Sijia Wu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Junnan Xu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yiwen Ma
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Guilian Liang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Jiaxing Wang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Tao Sun
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, China
| |
Collapse
|
45
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
46
|
Wehrmüller JE, Frei JC, Hechler T, Kulke M, Pahl A, Béhé M, Schibli R, Spycher PR. Site-Specific Modification of Native IgGs with Flexible Drug-Load. Chembiochem 2024:e202400511. [PMID: 39305147 DOI: 10.1002/cbic.202400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Indexed: 11/08/2024]
Abstract
Homogeneous, site-specifically conjugated antibodies have shown to result in antibody-drug conjugates (ADCs) with improved efficacy and tolerability compared to stochastically conjugated ADCs. However, precisely controlling the drug load as well as attaching multiple payload moieties to the antibody remains challenging. Here, we demonstrate the simple and direct modification of native IgG-antibodies at the residue glutamine 295 (Q295) without the need for any protein engineering with flexible drug-to-antibody ratios of one or multiple payloads. The conjugation is enabled through short, positively charged lysine containing peptides and native, commercially available microbial transglutaminase. In proof-of-concept studies, HER2-targeting ADCs based on trastuzumab were generated with drug-to-antibody ratios (DARs) of 2 and 4 of the same or different payloads using orthogonal conjugation chemistries. Quantitative biodistribution studies performed with 111In-radiolabeled conjugates showed high tumour uptake and low accumulation of radioactivity in non-targeted tissues. A single dose study of trastuzumab conjugated to the highly potent payload α-Amanitin demonstrated complete and long-lasting tumour remission and was well-tolerated at all dose levels tested.
Collapse
Affiliation(s)
- Jöri E Wehrmüller
- Center for Radiopharmaceutical Science, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Julia C Frei
- Center for Radiopharmaceutical Science, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Torsten Hechler
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526, Ladenburg, Germany
| | - Michael Kulke
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526, Ladenburg, Germany
| | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Gregor-Mendel-Straße 22, 68526, Ladenburg, Germany
| | - Martin Béhé
- Center for Radiopharmaceutical Science, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Science, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Philipp R Spycher
- Center for Radiopharmaceutical Science, ETH-PSI-USZ, Paul Scherrer Institute, 5232, Villigen-PSI, Switzerland
- Araris Biotech AG, Riedhofstrasse 11, 8804, Au ZH, Switzerland
| |
Collapse
|
47
|
Xu L, Xie Y, Gou Q, Cai R, Bao R, Huang Y, Tang R. HER2-targeted therapies for HER2-positive early-stage breast cancer: present and future. Front Pharmacol 2024; 15:1446414. [PMID: 39351085 PMCID: PMC11439691 DOI: 10.3389/fphar.2024.1446414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Breast cancer (BC) has the second highest incidence among cancers and is the leading cause of death among women worldwide. The human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 20%-30% of BC patients. The development of HER2-targeted drugs, including monoclonal antibodies (mAbs), tyrosine kinase inhibitors (TKIs) and antibody-drug conjugates (ADCs), has improved the operation rate and pathological remission rate and reduced the risk of postoperative recurrence for HER2-positive early-stage BC (HER2+ EBC) patients. This review systematically summarizes the mechanisms, resistance, therapeutic modalities and safety of HER2-targeted drugs and helps us further understand these drugs and their use in clinical practice for patients with HER2+ EBC.
Collapse
Affiliation(s)
- Luying Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Xie
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Cai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Bao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruisi Tang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Smidt JM, Märcher A, Skaanning MK, El-Chami K, Teodori L, Omer M, Kjems J, Gothelf KV. Dual-Targeting of the HER2 Cancer Receptor with an Antibody-Directed Enzyme and a Nanobody-Guided MMAE Prodrug Scaffold. Chembiochem 2024; 25:e202400437. [PMID: 38945824 DOI: 10.1002/cbic.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Antibody-enzyme conjugates have shown potential as tissue-specific prodrug activators by antibody-directed enzyme prodrug therapy (ADEPT), but the approach met challenges clinically due to systemic drug release. Here, we report a novel dual-targeting ADEPT system (DuADEPT) which is based on active cancer receptor targeting of both a trastuzumab-sialidase conjugate (Tz-Sia) and a highly potent sialidase-activated monomethyl auristatin E (MMAE) prodrug scaffold. The scaffold is based on a four-way junction of the artificial nucleic acid analog acyclic (L)-threoninol nucleic acid ((L)-aTNA) which at the ends of its four arms carries one nanobody targeting HER2 and three copies of the prodrug. Dual-targeting of the constructs to two proximal epitopes of HER2 was shown by flow cytometry, and a dual-targeted enzymatic drug release assay revealed cytotoxicity upon prodrug activation specifically for HER2-positive cancer cells. The specific delivery and activation of prodrugs in this way could potentially be used to decrease systemic side effects and increase drug efficacy, and utilization of Tz-Sia provides an opportunity to combine the local chemotherapeutic effect of the DuADEPT with an anticancer immune response.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Anders Märcher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Mads Koch Skaanning
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kassem El-Chami
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
49
|
Alkhawaja B, Abuarqoub D, Al-natour M, Alshaer W, Abdallah Q, Esawi E, Jaber M, Alkhawaja N, Ghanim BY, Qinna N, Watts AG. Facile Rebridging Conjugation Approach to Attain Monoclonal Antibody-Targeted Nanoparticles with Enhanced Antigen Binding and Payload Delivery. Bioconjug Chem 2024; 35. [PMID: 39254438 PMCID: PMC11487529 DOI: 10.1021/acs.bioconjchem.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Adopting conventional conjugation approaches to construct antibody-targeted nanoparticles (NPs) has demonstrated suboptimal control over the binding orientation and the structural stability of monoclonal antibodies (mAbs). Hitherto, the developed antibody-targeted NPs have shown proof of concept but lack product homogeneity, batch-to-batch reproducibility, and stability, precluding their advancement toward the clinic. To circumvent these limitations and advance toward clinical application, herein, a refined approach based on site-specific construction of mAb-immobilized NPs will be appraised. Initially, the conjugation of atezolizumab (anti-PDL1 antibody, Amab) with polymeric NPs was developed using bis-haloacetamide (BisHalide) rebridging chemistry, followed by click chemistry (NP-Fab BisHalide Ab and NP-Fc BisHalide Ab). For comparison purposes, mAb-immobilized NPs developed utilizing conventional conjugation methods, namely, N-hydroxysuccinimide (NHS) coupling and maleimide chemistry (NP-NHS Ab and NP-Mal Ab), were included. Next, flow cytometry and confocal microscopy experiments evaluated the actively targeted NPs (loaded with fluorescent dye) for cellular binding and uptake. Our results demonstrated the superior and selective binding and uptake of NP-Fab BisHalide Ab and NP-Fc BisHalide Ab into EMT6 cells by 19-fold and 13-fold, respectively. To evaluate the PDL1-dependent cell uptake and the selectivity of the treatments, a blocking step of the PDL1 receptor with Amab was performed prior to incubation with NP-Fab BisHalide Ab and NP-Fc BisHalide Ab. To our delight, the binding and uptake of fluorescent NPs were reduced significantly by 3-fold for NP-Fab BisHalide Ab, demonstrating the PDL1-mediated uptake. Moreover, NP-Fab BisHalide Ab and NP-Fc BisHalide Ab were entrapped with the paclitaxel payload, and their cytotoxicity was evaluated. They showed significant enhancements compared to free paclitaxel and NP-NHS Ab. Overall, this work will provide a facile conjugation method that could be implemented to actively target NPs with a plethora of therapeutic mAbs approved for various malignancies.
Collapse
Affiliation(s)
- Bayan Alkhawaja
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Duaa Abuarqoub
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Mohammad Al-natour
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Walhan Alshaer
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Qasem Abdallah
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Ezaldeen Esawi
- Cell
Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Malak Jaber
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Nour Alkhawaja
- Faculty
of Pharmacy and Medical Sciences, University
of Petra, Amman 11196, Jordan
| | - Bayan Y. Ghanim
- University
of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Nidal Qinna
- University
of Petra Pharmaceutical Center, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Andrew G. Watts
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
50
|
Taylor C, Patterson KM, Friedman D, Bacot SM, Feldman GM, Wang T. Mechanistic Insights into the Successful Development of Combination Therapy of Enfortumab Vedotin and Pembrolizumab for the Treatment of Locally Advanced or Metastatic Urothelial Cancer. Cancers (Basel) 2024; 16:3071. [PMID: 39272928 PMCID: PMC11393896 DOI: 10.3390/cancers16173071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of an antibody backbone that recognizes and binds to a target antigen expressed on tumor cells and a small molecule chemotherapy payload that is conjugated to the antibody via a linker. ADCs are one of the most promising therapeutic modalities for the treatment of various cancers. However, many patients have developed resistance to this form of therapy. Extensive efforts have been dedicated to identifying an effective combination of ADCs with other types of anticancer therapies to potentially overcome this resistance. A recent clinical study demonstrated that a combination of the ADC enfortumab vedotin (EV) with the immune checkpoint inhibitor (ICI) pembrolizumab can achieve remarkable clinical efficacy as the first-line therapy for the treatment of locally advanced or metastatic urothelial carcinoma (la/mUC)-leading to the first approval of a combination therapy of an ADC with an ICI for the treatment of cancer patients. In this review, we highlight knowledge and understanding gained from the successful development of EV and the combination therapy of EV with ICI for the treatment of la/mUC. Using urothelial carcinoma as an example, we will focus on dissecting the underlying mechanisms necessary for the development of this type of combination therapy for a variety of cancers.
Collapse
Affiliation(s)
- Caroline Taylor
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kamai M Patterson
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Devira Friedman
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Silvia M Bacot
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Gerald M Feldman
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tao Wang
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|