1
|
Rajavel A, Essakipillai N, Anbazhagan R, Ramakrishnan J, Venkataraman V, Natesan Sella R. Molecular profiling of blood plasma-derived extracellular vesicles derived from Duchenne muscular dystrophy patients through integration of FTIR spectroscopy and machine learning reveals disease signatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125236. [PMID: 39368178 DOI: 10.1016/j.saa.2024.125236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE To identify and monitor the FTIR spectral signatures of plasma extracellular vesicles (EVs) from Duchenne Muscular Dystrophy (DMD) patients at different stages with Healthy controls using machine learning models. MATERIALS AND METHODS Whole blood samples were collected from the DMD (n = 30) and Healthy controls (n = 12). EVs were extracted by the Total Exosome Isolation (TEI) Method and resuspended in 1XPBS. We characterize the morphology, size, particle count, and surface markers (CD9, Alix, and Flotillin) by HR-TEM, NTA, and Western Blot analysis. The mid-IR spectra were recorded from (4000-400 cm-1) by Bruker ALPHA II FTIR spectrometer model, which was equipped with an attenuated total reflection (ATR) module. Machine learning algorithms like Principal Component Analysis (PCA) and Random Forest (RF) for dimensionality reduction and classifying the two study groups based on the FTIR spectra. The model performance was evaluated by a confusion matrix and the sensitivity, specificity, and Receiver Operating Characteristic Curve (ROC) was calculated respectively. RESULTS Alterations in Amide I & II (1700-1470 cm-1) and lipid (3000-2800 cm-1) regions in FTIR spectra of DMD compared with healthy controls. The PCA-RF model classified correctly the two study groups in the range of 4000-400 cm-1 with a sensitivity of 20 %, specificity of 87.50 %, accuracy of 71.43 %, precision of 33.33 %, and 5-fold cross-validation accuracy of 82 %. We analyzed the ten different spectral regions which showed statistically significant at P < 0.01 except the Ester Acyl Chain region. CONCLUSION Our proof-of-concept study demonstrated distinct infrared (IR) spectral signatures in plasma EVs derived from DMD. Consistent alterations in protein and lipid configurations were identified using a PCA-RF model, even with a small clinical dataset. This minimally invasive liquid biopsy method, combined with automated analysis, warrants further investigation for its potential in early diagnosis and monitoring of disease progression in DMD patients within clinical settings.
Collapse
Affiliation(s)
- Archana Rajavel
- Membrane Protein Interaction Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Narayanan Essakipillai
- Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Ramajayam Anbazhagan
- Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Jayashree Ramakrishnan
- Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Viswanathan Venkataraman
- Department of Paediatrics Neurology, Apollo Children's Hospital, Thousands Lights, Chennai 600 006, Tamil Nadu, India
| | - Raja Natesan Sella
- Membrane Protein Interaction Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Potter RA, Moeller IH, Khan S, Haegel H, Hollenstein A, Steiner G, Wandel C, Murphy AP, Asher DR, Palatinsky E, Griffin DA, Mason S, Iannaccone ST, Zaidman CM, Rodino-Klapac LR. Immunologic investigations into transgene directed immune-mediated myositis following delandistrogene moxeparvovec gene therapy. Sci Rep 2025; 15:4. [PMID: 39747998 PMCID: PMC11696689 DOI: 10.1038/s41598-024-84077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Delandistrogene moxeparvovec is an rAAVrh74 vector-based gene transfer therapy that delivers a transgene encoding delandistrogene moxeparvovec micro-dystrophin, an engineered, functional form of dystrophin shown to stabilize or slow disease progression in DMD. It is approved in the US and in other select countries. Two serious adverse event cases of immune-mediated myositis (IMM) were reported in the phase Ib ENDEAVOR trial (NCT04626674). We hypothesized that immune responses to the micro-dystrophin transgene product may have mediated these IMM events. An interferon-gamma ELISpot assay was used to detect T cell responses to delandistrogene moxeparvovec micro-dystrophin peptide pools. ELISpot analysis suggested that IMM resulted from T cell-mediated responses directed against specific micro-dystrophin peptides corresponding to exons 8 and 9 (Case 1) and exon 8 (Case 2) of the DMD gene. In silico epitope mapping based on the patients' HLA-I alleles indicated greater probability for peptides derived from exons 8 and/or 9 to bind HLA-I, providing further evidence that peptides derived from corresponding micro-dystrophin regions may have higher immunogenic potential. Collectively, these data suggest that patients with DMD gene deletions involving exons 8 and/or 9 may be at increased risk of IMM following delandistrogene moxeparvovec micro-dystrophin gene therapy infusion.
Collapse
Affiliation(s)
| | | | - Sohrab Khan
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - Susan T Iannaccone
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, USA
| | - Craig M Zaidman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
3
|
Agrawal A, Clayton EL, Cavazos CL, Clayton BA, Rodney GG. Histone deacetylase 6 inhibition promotes microtubule acetylation and facilitates autophagosome-lysosome fusion in dystrophin-deficient mdx mice. Acta Physiol (Oxf) 2025; 241:e14243. [PMID: 39422111 DOI: 10.1111/apha.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
AIM Duchenne muscular dystrophy is a progressive muscle-wasting disease caused by mutations in the dystrophin gene. Despite progress in dystrophin-targeted gene therapies, it is still a fatal disease requiring novel therapeutics that can be used synergistically or alternatively to emerging gene therapy. Defective autophagy and disorganized microtubule networks contribute to dystrophic pathogenesis, yet the mechanisms by which microtubule alterations regulate autophagy remain elusive. The present study was designed to uncover possible mechanisms underpinning the role of microtubules in regulating autophagy in dystrophic mice. METHODS Mdx mice were also supplemented with Tubastatin A, a pharmacological inhibitor of histone deacetylase 6, and pathophysiology was assessed. Mdx mice with a genetic deletion of the Nox-2 scaffolding subunit p47phox were used to assess redox dependence on tubulin acetylation. RESULTS Our data show decreased acetylation of α-tubulin with enhanced histone deacetylase 6 expression. Tubastatin A increases tubulin acetylation and Q-SNARE complex formation but does not alter microtubule organization or density, indicating improved autophagosome-lysosome fusion. Tubastatin A increases the acetylation of peroxiredoxin and protects it from hyper-oxidation, hence modulating intracellular redox status in mdx mice. Tubastatin A reduces muscle damage and enhances force production. Genetic down regulation of Nox2 activity in the mdx mice promotes autophagosome maturation but not autolysosome formation. CONCLUSION Our data highlight that autophagy is differentially regulated by redox and acetylation in mdx mice. By improving autophagy through promoting tubulin acetylation, Tubastatin A decreases the dystrophic phenotype and improves muscle function, suggesting a great potential for clinical translation and treating dystrophic patients.
Collapse
Affiliation(s)
- Akanksha Agrawal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Erin L Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Courtney L Cavazos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin A Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Tang A, Yokota T. Is Duchenne gene therapy a suitable treatment despite its immunogenic class effect? Expert Opin Drug Saf 2024:1-17. [PMID: 39720847 DOI: 10.1080/14740338.2024.2447072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle weakness and eventual death due to cardiomyopathy or respiratory complications. Currently, there is no cure for DMD, with standard treatments primarily focusing on symptom management. Using immunosuppressive measures and optimized vector designs allows for gene therapies to better address the genetic cause of the disease. AREAS COVERED This review evaluates the efficacy and safety of emerging DMD gene therapies as of 2024. It also discusses the potential of utrophin upregulation, gene editing, and truncated dystrophin as therapeutic strategies. It highlights safety concerns associated with these therapies, including adverse events and patient deaths. A comprehensive overview of developments covers topics such as CRISPR-Cas9 therapies, micro-dystrophin, and the potential delivery of full-length dystrophin. EXPERT OPINION The FDA's recent approval of delandistrogene moxeparvovec (Elevidys) underscores the promise of gene replacement therapies for DMD patients. Understanding the mechanisms behind the adverse effects and excluding patients with specific pathogenic variants may enhance the safety profiles of these therapies. CRISPR/Cas9 therapies, while promising, face significant regulatory and safety challenges that hinder their clinical application. Optimal DMD therapies should target both skeletal and cardiac muscles to be effective.
Collapse
Affiliation(s)
- Annie Tang
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Ma W, Bi X, Jiang H, Wei Z, Zhang S. Annotating protein functions via fusing multiple biological modalities. Commun Biol 2024; 7:1705. [PMID: 39730886 DOI: 10.1038/s42003-024-07411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
Understanding the function of proteins is of great significance for revealing disease pathogenesis and discovering new targets. Benefiting from the explosive growth of the protein universal, deep learning has been applied to accelerate the protein annotation cycle from different biological modalities. However, most existing deep learning-based methods not only fail to effectively fuse different biological modalities, resulting in low-quality protein representations, but also suffer from the convergence of suboptimal solution caused by sparse label representations. Aiming at the above issue, we propose a multiprocedural approach for fusing heterogeneous biological modalities and annotating protein functions, i.e., MIF2GO (Multimodal Information Fusion to infer Gene Ontology terms), which sequentially fuses up to six biological modalities ranging from different biological levels in three steps, thus leading to powerful protein representations. Evaluation results on seven benchmark datasets show that the proposed method not only considerably outperforms state-of-the-art performance, but also demonstrates great robustness and generalizability across species. Besides, we also present biological insights into the associations between those modalities and protein functions. This research provides a robust framework for integrating multimodal biological data, offering a scalable solution for protein function annotation, ultimately facilitating advancements in precision medicine and the discovery of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenjian Ma
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Xiangpeng Bi
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Dubinin MV, Stepanova AE, Igoshkina AD, Mikheeva IB, Talanov EY, Cherepanova AA, Belosludtsev KN. Effect of 2-Aminoethoxydiphenyl Borate on the State of Skeletal Muscles in Dystrophin-Deficient mdx Mice. FRONT BIOSCI-LANDMRK 2024; 29:428. [PMID: 39735998 DOI: 10.31083/j.fbl2912428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE Ca2+ overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca2+ channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mdx mice. METHODS Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, mdx, mdx+3 mg/kg APB, mdx+10 mg/kg APB. APB was administered intraperitoneally daily for 28 days. Finally, we assessed the grip strength and hanging time of mice, the histology and ultrastructure of the quadriceps, as well as the parameters reflecting quadricep mitochondrial function. RESULTS 3 mg/kg APB was shown to reduce creatine kinase activity in the serum, intensity of degeneration and the level of fibrosis in the quadriceps of mdx mice, and improved tissue ultrastructure. However, this effect of APB was not sufficient to improve grip strength and hanging time of mdx mice. The effect of 3 mg/kg APB may be due to improve Ca2+ homeostasis in skeletal muscles, as evidenced by a trend toward decreased Ca2+ overload of quadricep mitochondria. High dose of APB (10 mg/kg body weight) showed less pronounced effect on the pathological phenotype of mdx mice. Moreover, 10 mg/kg APB disrupted the ultrastructure of the quadriceps and caused a decrease in grip strength in WT mice. CONCLUSIONS APB is able to improve the phenotype in mdx mouse DMD model. However, the effect of APB is quite limited, which may be due to its multitargeting of Ca2+ channels in the membranes of muscle fibers and intracellular organelles, differentially expressed in DMD.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia
| | - Anastasia E Stepanova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia
| | - Anastasia D Igoshkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia
| | - Irina B Mikheeva
- Laboratory of Experimental Neurobiology, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Eugeny Yu Talanov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Alena A Cherepanova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
7
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2024; 79:103464. [PMID: 39709790 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Awawdeh A, Tapia A, Alshawi SA, Dawodu O, Gaier SA, Specht C, Beaudoin JD, Tharp JM, Vargas-Rodriguez O. Efficient suppression of premature termination codons with alanine by engineered chimeric pyrrolysine tRNAs. Nucleic Acids Res 2024; 52:14244-14259. [PMID: 39558163 DOI: 10.1093/nar/gkae1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
Mutations that introduce premature termination codons (PTCs) within protein-coding genes are associated with incurable and severe genetic diseases. Many PTC-associated disorders are life-threatening and have no approved medical treatment options. Suppressor transfer RNAs (sup-tRNAs) with the capacity to translate PTCs represent a promising therapeutic strategy to treat these conditions; however, developing novel sup-tRNAs with high efficiency and specificity often requires extensive engineering and screening. Moreover, these efforts are not always successful at producing more efficient sup-tRNAs. Here we show that a pyrrolysine (Pyl) tRNA (tRNAPyl), which naturally translates the UAG stop codon, offers a favorable scaffold for developing sup-tRNAs that restore protein synthesis from PTC-containing genes. We created a series of rationally designed Pyl tRNAScaffold Suppressor-tRNAs (PASS-tRNAs) that are substrates of bacterial and human alanyl-tRNA synthetase. Using a PTC-containing fluorescent reporter gene, PASS-tRNAs restore protein synthesis to wild-type levels in bacterial cells. In human cells, PASS-tRNAs display robust and consistent PTC suppression in multiple reporter genes, including pathogenic mutations in the tumor suppressor gene BRCA1 associated with breast and ovarian cancer. Moreover, PTC suppression occurred with high codon specificity and no observed cellular dysregulation. Collectively, these results unveil a new class of sup-tRNAs with encouraging potential for tRNA-based therapeutic applications.
Collapse
Affiliation(s)
- Aya Awawdeh
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Alejandro Tapia
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Sarah A Alshawi
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Olabode Dawodu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Sarah A Gaier
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 64 Turner Street, London, E1 2AD, UK
| | - Caitlin Specht
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Jean-Denis Beaudoin
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Jeffery M Tharp
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
9
|
Wan L, Ge X, Xu Q, Huang G, Yang T, Campbell KP, Yan Z, Wu J. Structure and assembly of the dystrophin glycoprotein complex. Nature 2024:10.1038/s41586-024-08310-2. [PMID: 39663450 DOI: 10.1038/s41586-024-08310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
The dystrophin glycoprotein complex (DGC) has a crucial role in maintaining cell membrane stability and integrity by connecting the intracellular cytoskeleton with the surrounding extracellular matrix1-3. Dysfunction of dystrophin and its associated proteins results in muscular dystrophy, a disorder characterized by progressive muscle weakness and degeneration4,5. Despite the important roles of the DGC in physiology and pathology, its structural details remain largely unknown, hindering a comprehensive understanding of its assembly and function. Here we isolated the native DGC from mouse skeletal muscle and obtained its high-resolution structure. Our findings unveil a markedly divergent structure from the previous model of DGC assembly. Specifically, on the extracellular side, β-, γ- and δ-sarcoglycans co-fold to form a specialized, extracellular tower-like structure, which has a central role in complex assembly by providing binding sites for α-sarcoglycan and dystroglycan. In the transmembrane region, sarcoglycans and sarcospan flank and stabilize the single transmembrane helix of dystroglycan, rather than forming a subcomplex as previously proposed6-8. On the intracellular side, sarcoglycans and dystroglycan engage in assembly with the dystrophin-dystrobrevin subcomplex through extensive interaction with the ZZ domain of dystrophin. Collectively, these findings enhance our understanding of the structural linkage across the cell membrane and provide a foundation for the molecular interpretation of many muscular dystrophy-related mutations.
Collapse
Affiliation(s)
- Li Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofei Ge
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qikui Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tiandi Yang
- Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
- Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
10
|
Li Z, Wang X, Janssen JM, Liu J, Tasca F, Hoeben RC, Gonçalves MAFV. Precision genome editing using combinatorial viral vector delivery of CRISPR-Cas9 nucleases and donor DNA constructs. Nucleic Acids Res 2024:gkae1213. [PMID: 39657782 DOI: 10.1093/nar/gkae1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Genome editing based on programmable nucleases and donor DNA constructs permits introducing specific base-pair changes and complete transgenes or live-cell reporter tags at predefined chromosomal positions. A crucial requirement for such versatile genome editing approaches is, however, the need to co-deliver in an effective, coordinated and non-cytotoxic manner all the required components into target cells. Here, adenoviral (AdV) and adeno-associated viral (AAV) vectors are investigated as delivery agents for, respectively, engineered CRISPR-Cas9 nucleases and donor DNA constructs prone to homologous recombination (HR) or homology-mediated end joining (HMEJ) processes. Specifically, canonical single-stranded and self-complementary double-stranded AAVs served as sources of ectopic HR and HMEJ substrates, whilst second- and third-generation AdVs provided for matched CRISPR-Cas9 nucleases. We report that combining single-stranded AAV delivery of HR donors with third-generation AdV transfer of CRISPR-Cas9 nucleases results in selection-free and precise whole transgene insertion in large fractions of target-cell populations (i.e. up to 93%) and disclose that programmable nuclease-induced chromosomal breaks promote AAV transduction. Finally, besides investigating relationships between distinct AAV structures and genome-editing performance endpoints, we further report that high-fidelity CRISPR-Cas9 nucleases are critical for mitigating off-target chromosomal insertion of defective AAV genomes known to be packaged in vector particles.
Collapse
Affiliation(s)
- Zhen Li
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Xiaoling Wang
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Josephine M Janssen
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jin Liu
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Francesca Tasca
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Rob C Hoeben
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| |
Collapse
|
11
|
Bonato A, Raparelli G, Caruso M. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy. Front Physiol 2024; 15:1496870. [PMID: 39717824 PMCID: PMC11663947 DOI: 10.3389/fphys.2024.1496870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models. Therefore, remodeling skeletal muscle toward a slower, more oxidative phenotype may represent a relevant therapeutic approach to protect dystrophic muscles from deterioration and improve the effectiveness of gene and cell-based therapies. The resistance of slow, oxidative myofibers to DMD pathology is attributed, in part, to their higher expression of Utrophin; there are, however, other characteristics of slow, oxidative fibers that might contribute to their enhanced resistance to injury, including reduced contractile speed, resistance to fatigue, increased capillary density, higher mitochondrial activity, decreased cellular energy requirements. This review focuses on signaling pathways and regulatory factors whose genetic or pharmacologic modulation has been shown to ameliorate the dystrophic pathology in preclinical models of DMD while promoting skeletal muscle fiber transition towards a slower more oxidative phenotype.
Collapse
Affiliation(s)
| | | | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Monterotondo (RM), Italy
| |
Collapse
|
12
|
Moretti A, Kupatt C, Wolf E. Cellular pathophysiology of Duchenne muscular dystrophy: insights from a novel rhesus macaque model. Signal Transduct Target Ther 2024; 9:357. [PMID: 39643645 PMCID: PMC11624258 DOI: 10.1038/s41392-024-02061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024] Open
Affiliation(s)
- Alessandra Moretti
- Medical Department I, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, 81675, Munich, Germany
- DZHK (German Center of Cardiovascular Research), Munich Heart Alliance, 80336, Munich, Germany
| | - Christian Kupatt
- Medical Department I, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, 81675, Munich, Germany
- DZHK (German Center of Cardiovascular Research), Munich Heart Alliance, 80336, Munich, Germany
| | - Eckhard Wolf
- Gene Center and Center for Innovative Medical Models (CiMM), LMU Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377, Munich, Germany.
| |
Collapse
|
13
|
Venturiello D, Tiberi PG, Perulli F, Nardoianni G, Guida L, Barsali C, Terrone C, Cianca A, Lustri C, Sclafani M, Tini G, Barbato E, Musumeci B. Unveiling the Future of Cardiac Care: A Review of Gene Therapy in Cardiomyopathies. Int J Mol Sci 2024; 25:13147. [PMID: 39684857 DOI: 10.3390/ijms252313147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
For years, the treatment of many cardiomyopathies has been solely focused on symptom management. However, cardiomyopathies have a genetic substrate, and directing therapy towards the pathophysiology rather than the epiphenomenon of the disease may be a winning strategy. Gene therapy involves the insertion of genes or the modification of existing ones and their regulatory elements through strategies like gene replacement and gene editing. Recently, gene therapy for cardiac amyloidosis and Duchenne muscular dystrophy has received approval, and important clinical trials are currently evaluating gene therapy methods for rare heart diseases like Friedreich's Ataxia, Danon disease, Fabry disease, and Pompe Disease. Furthermore, favorable results have been noted in animal studies receiving gene therapy for hypertrophic, dilated, and arrhythmogenic cardiomyopathy. This review discusses gene therapy methods, ongoing clinical trials, and future goals in this area.
Collapse
Affiliation(s)
- Damiano Venturiello
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Pier Giorgio Tiberi
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Francesco Perulli
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Giulia Nardoianni
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Leonardo Guida
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Carlo Barsali
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Carlo Terrone
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Alessandro Cianca
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Camilla Lustri
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Matteo Sclafani
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6PY, UK
| | - Giacomo Tini
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Emanuele Barbato
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| | - Beatrice Musumeci
- Cardiology, Clinical and Molecular Medicine Department, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
14
|
Huang C, Gao Z, Zhang Y, Li G, Ge L. Treatment of giant fecalith colonic obstruction in a patient with Duchenne muscular dystrophy using endoscopic injection of hydrogen peroxide: a case report and literature review. Front Med (Lausanne) 2024; 11:1456246. [PMID: 39703526 PMCID: PMC11656305 DOI: 10.3389/fmed.2024.1456246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder primarily affecting cardiac and skeletal muscles, with gastrointestinal obstruction being an infrequent complication. Case report We present a 17-year-old boy with DMD (G-to-T transversion at c.4150 in the gene encoding dystrophin protein) who developed severe colonic obstruction due to fecal impaction. Abdominal computed tomography revealed an obstructing fecalith in the left colon (length: 39.5 cm, width: 18.3 cm, height: 12.7 cm). Despite the application of initial conservative measures including fasting, enemas, and fluid resuscitation, the obstruction persisted. Therefore, we performed manual disimpaction and endoscopic injection of hydrogen peroxide, effectively alleviating the obstruction. Discussion This case underscores the necessity of devising stage-specific, tailored strategies for the prevention and management of gastrointestinal complications in patients with DMD.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Colorectal Surgery, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Zhichao Gao
- Department of Neurosurgery, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Yuhang Zhang
- Department of Orthopedics, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Guofeng Li
- Department of Colorectal Surgery, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| | - Lida Ge
- Department of Hepatobiliary Surgery, First People’s Hospital of Xiaoshan District, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Romkes J, Bracht-Schweizer K, Widmer M, Sangeux M, Viehweger E. Upper body gait deviations in children with Duchenne muscular dystrophy. Clin Biomech (Bristol, Avon) 2024; 122:106402. [PMID: 39642681 DOI: 10.1016/j.clinbiomech.2024.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Duchenne muscular dystrophy is primarily a disease of progressive muscle degeneration affecting the whole body. It is important to preserve the patients' walking ability as long as possible. Inconclusive information on Duchenne muscular dystrophy gait pattern is available for the lower body and missing for the upper body. This study aimed to objectively investigate upper body gait deviations in a group of patients with Duchenne muscular dystrophy compared to typically developing peers. METHODS Kinematic data of twelve boys with Duchenne muscular dystrophy that underwent three-dimensional full-body gait analysis were investigated retrospectively. Data were compared to sixteen healthy children of same age at similar walking speed. Statistical tests included the student independent t-test (with Holm-Bonferroni correction), Hedges'g for effect size, and statistical non-parametric mapping two-sample t-test (with Bonferroni correction). FINDINGS Duchenne muscular dystrophy compared to the healthy group: In the sagittal plane, the thorax segment was more posteriorly tilted. In addition, the relative angle between pelvis and thorax segment showed more backwards lean with increased shoulder extension. In the frontal plane, the patients walked with increased shoulder abduction and took wider strides. In the transverse plane, thorax rotation was not different between groups. Thorax range of motion was increased in all three planes. INTERPRETATION Including the upper body gait kinematics, especially of the trunk, adds valuable objective information on the understanding of the Duchenne muscular dystrophy gait pattern. Our findings contribute to improved understanding of full-body gait compensations in this patient group.
Collapse
Affiliation(s)
- Jacqueline Romkes
- Centre for Clinical Movement Analysis, University of Basel Children's Hospital, Spitalstrasse 33, CH-4056 Basel, Switzerland.
| | - Katrin Bracht-Schweizer
- Centre for Clinical Movement Analysis, University of Basel Children's Hospital, Spitalstrasse 33, CH-4056 Basel, Switzerland.
| | - Michèle Widmer
- Department of Neuro-Orthopaedics, University of Basel Children's Hospital, Spitalstrasse 33, CH-4056 Basel, Switzerland.
| | - Morgan Sangeux
- Centre for Clinical Movement Analysis, University of Basel Children's Hospital, Spitalstrasse 33, CH-4056 Basel, Switzerland.
| | - Elke Viehweger
- Department of Neuro-Orthopaedics, University of Basel Children's Hospital, Spitalstrasse 33, CH-4056 Basel, Switzerland.
| |
Collapse
|
16
|
Radkowski P, Oniszczuk H, Opolska J, Podlińska I, Pawluczuk M, Onichimowski D. A Review of Muscle Relaxants in Anesthesia in Patients with Neuromuscular Disorders Including Guillain-Barré Syndrome, Myasthenia Gravis, Duchenne Muscular Dystrophy, Charcot-Marie-Tooth Disease, and Inflammatory Myopathies. Med Sci Monit 2024; 30:e945675. [PMID: 39618072 PMCID: PMC11623016 DOI: 10.12659/msm.945675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 12/08/2024] Open
Abstract
Anesthesia management in neuromuscular diseases (NMDs) is a complex challenge, requiring careful preoperative evaluation, tailored treatment strategies, and vigilant perioperative monitoring. This review examines the nuances of anesthesia in patients with NMD, addressing potential complications such as intubation difficulties, respiratory failure, and adverse effects of anesthetics and neuromuscular conduction blocking agents (NMBAs). Nondepolarizing NMBAs, including steroidal agents and benzylisoquinolines, are analyzed for their role, risks, and optimal use based on procedural requirements and patient characteristics. Challenges with depolarizing agents such as succinylcholine are highlighted, emphasizing the need for careful evaluation and monitoring to reduce the risk of adverse events such as malignant hyperthermia and hyperkalemia. The review highlights the role of reversal agents, particularly sugammadex, as a safer and more effective alternative to traditional acetylcholinesterase inhibitors such as neostigmine. Sugammadex reduces the risk of complications such as prolonged paralysis and respiratory failure in patients with NMD. In addition, anesthesia considerations tailored to specific NMDs, including Guillain-Barre syndrome, myasthenia gravis, Duchenne muscular dystrophy, Charcot-Marie-Tooth disease, and inflammatory myopathies are presented, including monitoring techniques and individualized approaches. Based on the available literature and the authors' clinical experience, this review aims to discuss the role of muscle relaxants in anesthesia in patients with the aforementioned neuromuscular disorders. This document uses the latest possible articles, covering items from 1992 to 2024.
Collapse
Affiliation(s)
- Paweł Radkowski
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Anaesthesiology and Intensive Care, Regional Specialist Hospital in Olsztyn, Olsztyn, Poland
- Department of Anaesthesiology and Intensive Care, Hospital zum Heiligen Geist in Fritzlar, Fritzlar, Germany
| | - Hubert Oniszczuk
- Faculty of Medicine, Medical University of Białystok, Białystok, Poland
| | - Justyna Opolska
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Podlińska
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Anaesthesiology and Intensive Care, Warmia and Mazury Lung Diseases Centre in Olsztyn, Olsztyn, Poland
| | - Mateusz Pawluczuk
- Faculty of Medicine, Medical University of Białystok, Białystok, Poland
| | - Dariusz Onichimowski
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Anaesthesiology and Intensive Care, Regional Specialist Hospital in Olsztyn, Olsztyn, Poland
| |
Collapse
|
17
|
Park SE, Kwon SJ, Kim SJ, Jeong JB, Kim MJ, Choi SJ, Oh SY, Ryu GH, Jeon HB, Chang JW. Anti-necroptotic effects of human Wharton's jelly-derived mesenchymal stem cells in skeletal muscle cell death model via secretion of GRO-α. PLoS One 2024; 19:e0313693. [PMID: 39621655 PMCID: PMC11611217 DOI: 10.1371/journal.pone.0313693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/29/2024] [Indexed: 01/06/2025] Open
Abstract
Human mesenchymal stem cells (hMSCs) have therapeutic applications and potential for use in regenerative medicine. However, the use of hMSCs in research and clinical medicine is limited by a lack of information pertaining to their donor-specific functional attributes. In this study, we compared the characteristics of same-donor derived placenta (PL) and Wharton's jelly (WJ)-derived hMSCs, we also compared their mechanism of action in a skeletal muscle disease in vitro model. The same-donor-derived hWJ- and hPL-MSCs exhibited typical hMSC characteristics. However, GRO-α was differentially expressed in hWJ- and hPL-MSCs. hWJ-MSCs, which secreted a high amount of GRO-α, displayed a higher ability to inhibit necroptosis in skeletal muscle cells than hPL-MSCs. This demonstrates the anti-necroptotic therapeutic effect of GRO-α in the skeletal muscle cell death model. Furthermore, GRO-α also exhibited the anti-necroptotic effect in a Duchenne muscular dystrophy (DMD) mouse model. Considering their potential to inhibit necroptosis in skeletal muscle cells, hWJ-MSCs and the derived GRO-α are novel treatment options for skeletal muscle diseases such as DMD.
Collapse
Affiliation(s)
- Sang Eon Park
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo Jin Kwon
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sun Jeong Kim
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jang Bin Jeong
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Min-Jeong Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Suk-joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo-young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyu Ha Ryu
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- The Office of R&D Strategy & Planning, Samsung Medical Center, Seoul, Republic of Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
18
|
Fausto LL, Alberti A, Kades G, de Carvalho RPD, Freiberger V, Ventura L, Dias P, Zanoni EM, Soares BH, Dutra ML, Martins DF, Comim CM. Effects of a Ketogenic Diet on the Assessment of Biochemical and Clinical Parameters in Duchenne Muscular Dystrophy: A Preclinical Investigation. Mol Neurobiol 2024; 61:10992-11011. [PMID: 38816675 DOI: 10.1007/s12035-024-04258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive skeletal muscle degeneration and systemic effects, including the central nervous system (CNS). This study aimed to assess the impact of a 14-day ketogenic diet (DCet) on biochemical and clinical parameters in a DMD mouse model. Young adult mice (50 days old) were fed DCet, while control groups received a standard diet. On the 14th day, memory and behavior tests were conducted, followed by biochemical evaluations of oxidative stress, inflammatory biomarkers, body weight, feed intake, and brain-derived neurotrophic factor (BDNF) levels. mdx + DCet mice showed reduced mass (0.2 g ± 2.49) and improved memory retention (p < 0.05) compared to controls. Oxidative damage in muscle tissue and CNS decreased, along with a significant cytokine level reduction (p <0.05). The protocol led to an increase in hippocampal BDNF and mitochondrial respiratory complex activity in muscle tissue and the central nervous system (CNS), while also decreasing creatine kinase activity only in the striatum. Overall, a 14-day DCet showed protective effects by improving spatial learning and memory through reductions in oxidative stress and immune response, as well as increases in BDNF levels, consistent with our study's findings.
Collapse
Affiliation(s)
- Lilian Leite Fausto
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Adriano Alberti
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil.
| | | | | | - Viviane Freiberger
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Leticia Ventura
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Paula Dias
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | | | | | - Matheus Luchini Dutra
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Daniel Fernandes Martins
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | - Clarissa Martinelli Comim
- Research Group in Neurodevelopment of Childhood and Adolescence, Laboratory of Experimental Neuroscience, Postgraduate Program in Health Sciences, University of South Santa Catarina, Avenida Pedra Branca, 25, Pedra Branca, Palhoça, SC, 88137-270, Brazil
| |
Collapse
|
19
|
Konieczny P. Systemic Treatment of Body-Wide Duchenne Muscular Dystrophy Symptoms. Clin Pharmacol Ther 2024; 116:1472-1484. [PMID: 38965715 DOI: 10.1002/cpt.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease that leads to premature death due to the loss of dystrophin. Current strategies predominantly focus on the therapeutic treatment of affected skeletal muscle tissue. However, certain results point to the fact that with successful treatment of skeletal muscle, DMD-exposed latent phenotypes in tissues, such as cardiac and smooth muscle, might lead to adverse effects and even death. Likewise, it is now clear that the absence of dystrophin affects the function of the nervous system, and that this phenotype is more pronounced when shorter dystrophins are absent, in addition to the full-length dystrophin that is present predominantly in the muscle. Here, I focus on the systemic aspects of DMD, highlighting the ubiquitous expression of the dystrophin gene in human tissues. Furthermore, I describe therapeutic strategies that have been tested in the clinic and point to unresolved questions regarding the function of distinct dystrophin isoforms, and the possibility of current therapeutic strategies to tackle phenotypes that relate to their absence.
Collapse
Affiliation(s)
- Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
20
|
Cox OH, Seifuddin F, Guo J, Pirooznia M, Boersma GJ, Wang J, Tamashiro KL, Lee RS. Implementation of the Methyl-Seq platform to identify tissue- and sex-specific DNA methylation differences in the rat epigenome. Epigenetics 2024; 19:2393945. [PMID: 39306700 PMCID: PMC11418217 DOI: 10.1080/15592294.2024.2393945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Epigenomic annotations for the rat lag far behind those of human and mouse, despite the rat's immense utility in pharmacological and behavioral studies and the need to understand their epigenetic mechanisms. We have designed a targeted-enrichment method followed by next-generation sequencing (Methyl-Seq) to identify DNA methylation (DNAm) signatures across the rat genome. The design reflected an attempt to create a more comprehensive investigation of the rat epigenome, as it included promoters, CpG islands, and island shores of all RefSeq genes. In this study, we implemented the rat Methyl-Seq platform and tested its ability to distinguish differentially methylated regions (DMRs) among three different tissue types, three distinct brain regions, and, in the hippocampus, between males and females. These comparisons yielded DNAm differences of differing magnitudes, many of which were independently validated by bisulfite pyrosequencing, including autosomal regions that were predicted to show the least degree of difference in DNAm between males and females. Quantitative reverse transcription PCR revealed that most genes associated with the DMRs showed tissue-, brain region-, and sex-specific differences in expression. In particular, we found evidence for sex-specific DNAm and expression differences at Tubb6, Lrrn2, Tex26, and Sox5l1, all of which play important roles in neurodevelopment and have been implicated in studies examining sex differences. Our results demonstrate the utility of the rat Methyl-Seq platform and suggest the presence of DNAm differences between the male and female hippocampus. The rat Methyl-Seq has the potential to provide epigenomic insights into pharmacological and behavioral studies performed in the rat.
Collapse
Affiliation(s)
- Olivia H. Cox
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Fayaz Seifuddin
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeffrey Guo
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mehdi Pirooznia
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gretha J. Boersma
- GGZ Drenthe Mental Health Institute, Department of Forensic Psychiatry, Assen, The Netherlands
| | - Josh Wang
- Agilent Technologies, Inc., Santa Clara, USA
| | - Kellie L.K. Tamashiro
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Richard S. Lee
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
21
|
Barrow P. Review of embryo-fetal developmental toxicity studies performed for pharmaceuticals approved by FDA in 2022 and 2023. Reprod Toxicol 2024; 130:108727. [PMID: 39332698 DOI: 10.1016/j.reprotox.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
92 novel drugs were approved by the FDA in 2022-2023. 48 of these approvals were for orphan indications. Embryofetal development (EFD) studies were conducted for 79 % of approvals. Rats and rabbits were the most common species used (77 % and 62 % of studies, respectively). For the testing of biopharmaceuticals, rodents were more often used (43 % of EFD studies) than non-human primates (29 %) and rabbits (29 %). Most (75 %) biopharmaceuticals intended to treat cancer were approved without EFD studies. Amongst the 41 drugs for which both rat and rabbit EFD studies were performed, the rabbit appeared more sensitive to both maternal toxicity and developmental toxicity (61 % and 63 % of drugs, respectively). Most drugs (76 %) showed more than a 2-fold difference in the LOAEL for developmental toxicity between the rat and rabbit. EFD studies were not required for drugs with a mode of action known to pose a clear hazard for pregnancy and further EFD studies were generally not performed when clinically relevant developmental effects had already been observed in one species or in a preliminary EFD study. Many drug labels showed minor deviations from the PLLR rule: the metric used to calculate exposure margins and the presence or absence of maternal toxicity were not always specified. These omissions, however, are of little significance for the prescriber. The five reviews in this series now show compiled information on EFD studies for all small molecule pharmaceuticals approved since 2014 and for all therapeutic monoclonal antibodies approved to date.
Collapse
Affiliation(s)
- Paul Barrow
- Freelance Consultant, Aeschengraben 29, Basel CH-4051, Switzerland.
| |
Collapse
|
22
|
Amr K, Fahmy N, El-Kamah G. Genomic insights into Duchene muscular dystrophy: Analysis of 1250 patients reveals 30% novel genetic patterns and 6 novel variants. J Genet Eng Biotechnol 2024; 22:100436. [PMID: 39674649 PMCID: PMC11585756 DOI: 10.1016/j.jgeb.2024.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 12/16/2024]
Abstract
Duchenne muscular dystrophy (DMD/BMD) is the most common type of muscular dystrophy, together with Becker muscular dystrophy represent more than half of all cases. DMD is a single-gene, X-linked recessive disorder that predominantly affects boys, causing progressive muscle deterioration and eventually leading to fatal cardiopulmonary complications. This study aimed to implement a cost-effective molecular diagnostic method using the SALSA MLPA Kit (probe mixes 034 and 035) to screen a large group of Egyptian DMD patients. The study included 1250 clinically diagnosed DMD males, following complete family history, pedigree analyses and an accurate clinical examination and laboratory investigations mainly considering high levels of creatine phosphokinase (>2000 U/L). We also analysed the carrier status of 100 mothers of 100 probands to gauge the inherited mutation through their patients with familial disease. The negative results of MLPA were further analysed with NGS for ten patients and the results were validated for novel missense mutations, phenotype-genotype correlations were analysed using PolyPhen2 and mutation taster. Results SALSA MLPA analysis confirmed the diagnoses in 733/1250 (58.6 %) DMD patients and the remaining of 517/1250 (41.4%) were negative. DMD patients having large deletions were 632/1250 (50.6%) while duplications occurred in 101/1250 (8%). The most common single exon deletion was 45 (50/632, 7.9%). In addition, 163 different deletion and duplication patterns were characterized among positive MLPA analyses. 30% of our studied cohort exhibited new patterns of rearragements in addition to seven cases of double deletion and duplication rearrangements identified, within nine patients. Using NGS, for small mutations detection, revealed six novel and three previously reported mutations among screened ten patients. In conclusion, our findings expand the spectrum of known DMD mutations by offering an effective diagnostic method and identifying novel point mutations through NGS analysis. We recommend using NGS to uncover uncharacterized mutations in patients who test negative with MLPA, which could contribute to the treatment of DMD.
Collapse
Affiliation(s)
- Khalda Amr
- Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Egypt.
| | | | - Ghada El-Kamah
- Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Egypt.
| |
Collapse
|
23
|
Chen H, Lin C, Han Y, Huang Y, Liu Y, Hsu W, Tsai L, Lai H, Tsao Y, Huang H, Chen S. The Innovative Role of Nuclear Receptor Interaction Protein in Orchestrating Invadosome Formation for Myoblast Fusion. J Cachexia Sarcopenia Muscle 2024; 15:2559-2573. [PMID: 39323088 PMCID: PMC11634477 DOI: 10.1002/jcsm.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Nuclear receptor interaction protein (NRIP) is versatile and engages with various proteins to execute its diverse biological function. NRIP deficiency was reported to cause small myofibre size in adult muscle regeneration, indicating a crucial role of NRIP in myoblast fusion. METHODS The colocalization and interaction of NRIP with actin were investigated by immunofluorescence and immunoprecipitation assay, respectively. The participation of NRIP in myoblast fusion was demonstrated by cell fusion assay and time-lapse microscopy. The NRIP mutants were generated for mechanism study in NRIP-null C2C12 (termed KO19) cells and muscle-specific NRIP knockout (NRIP cKO) mice. A GEO profile database was used to analyse NRIP expression in Duchenne muscular dystrophy (DMD) patients. RESULTS In this study, we found that NRIP directly and reciprocally interacted with actin both in vitro and in cells. Immunofluorescence microscopy showed that the endogenous NRIP colocalized with components of invadosome, such as actin, Tks5, and cortactin, at the tips of cells during C2C12 differentiation. The KO19 cells were generated and exhibited a significant deficit in myoblast fusion compared with wild-type C2C12 cells (3.16% vs. 33.67%, p < 0.005). Overexpressed NRIP in KO19 cells could rescue myotube formation compared with control (3.37% vs. 1.00%, p < 0.01). We further confirmed that NRIP directly participated in cell fusion by using a cell-cell fusion assay. We investigated the mechanism of invadosome formation for myoblast fusion, which depends on NRIP-actin interaction, by analysing NRIP mutants in NRIP-null cells. Loss of actin-binding of NRIP reduced invadosome (enrichment ratio, 1.00 vs. 2.54, p < 0.01) and myotube formation (21.82% vs. 35.71%, p < 0.05) in KO19 cells and forced NRIP expression in KO19 cells and muscle-specific NRIP knockout (NRIP cKO) mice increased myofibre size compared with controls (over 1500 μm2, 61.01% vs. 20.57%, p < 0.001). We also found that the NRIP mRNA level was decreased in DMD patients compared with healthy controls (18 072 vs. 28 289, p < 0.001, N = 10 for both groups). CONCLUSIONS NRIP is a novel actin-binding protein for invadosome formation to induce myoblast fusion.
Collapse
Affiliation(s)
- Hsin‐Hsiung Chen
- Graduate Institute of Microbiology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Chia‐Yang Lin
- Graduate Institute of Microbiology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Ya‐Ju Han
- Graduate Institute of Microbiology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yun‐Hsin Huang
- Graduate Institute of Microbiology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yi‐Hsiang Liu
- Graduate Institute of Microbiology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Wan‐En Hsu
- Graduate Institute of Microbiology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Li‐Kai Tsai
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Hsing‐Jung Lai
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| | - Yeou‐Ping Tsao
- Department of OphthalmologyMackay Memorial HospitalTaipeiTaiwan
| | - Hsiang‐Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Show‐Li Chen
- Graduate Institute of Microbiology, College of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
24
|
Qin X, Li H, Zhao H, Xiang K, Liu S, Lou R, Liu P, Dai Y, Wang C, Zhang S. Prevalence of Neutralizing Antibodies Against AAV Serotypes 2 and 9 in Healthy Participants from Multiple Centers Across China and Patients with DMD/BMD. Hum Gene Ther 2024; 35:969-977. [PMID: 39607725 DOI: 10.1089/hum.2024.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
To facilitate adeno-associated virus (AAV)-mediated gene therapy in China, we conducted a study on the distribution of AAV-neutralizing antibodies (NAbs) in healthy subjects and in patients with Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD). A total of 352 healthy adult controls (ACs) from a national multicenter study, 100 schoolchild controls (SCs), and 281 patients with DMD/BMD from Peking Union Medical College Hospital were enrolled in this study. Cell-based inhibition assays were applied, and serum samples demonstrating 50% inhibition of infection were considered positive. The seroprevalence of AAV2 and AAV9 NAbs among the 733 participants was 86.1% and 56.3%, respectively. The AAV2 NAbs and AAV9 NAbs positivity rates in the AC, SC, and DMD/BMD groups were 97.4%/86.6%, 100.0%/17.0%, and 66.9%/32.4%, respectively. The seroprevalence of AAV NAbs gradually increased with age, especially in AAV9 NAbs. Females tended to have higher positivity rate than males. Over 85% of ACs had overlapping AAV9 and AAV2 infection. However, being positive for only AAV2 NAbs in the SC group was common, and 30.6% of patients with DMD/BMD were negative for both AAV2 and AAV9 NAbs. Our findings reveal that a significant proportion of patients with DMD/BMD were negative for AAV2 and AAV9 NAbs, which is the population that is most amenable to being treated with gene therapy.
Collapse
Affiliation(s)
- Xuzhen Qin
- Department of Laboratory Medicine, The Second Hospital of Shandong University, Ji'nan, China
- Department of Laboratory Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Huan Li
- Department of Pathogenic Biology, School of Basic Medicine, Peking University, Beijing, China
| | - Huiying Zhao
- Department of Laboratory Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Kuanhui Xiang
- Department of Pathogenic Biology, School of Basic Medicine, Peking University, Beijing, China
| | - Shihui Liu
- Department of Pathogenic Biology, School of Basic Medicine, Peking University, Beijing, China
| | - Ruolin Lou
- Department of Pathogenic Biology, School of Basic Medicine, Peking University, Beijing, China
| | - Peng Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Yi Dai
- Department of Neurology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Chuanxin Wang
- Department of Laboratory Medicine, The Second Hospital of Shandong University, Ji'nan, China
| | - Shuyang Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
25
|
Baine S, Wier C, Lemmerman L, Cooper-Olson G, Kempton A, Haile A, Endres J, Fedoce A, Nesbit E, Rodino-Klapac LR, Potter RA. Long-Term Survival and Myocardial Function Following Systemic Delivery of Delandistrogene Moxeparvovec in DMD MDX Rats. Hum Gene Ther 2024; 35:978-988. [PMID: 39607794 DOI: 10.1089/hum.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Delandistrogene moxeparvovec is a gene transfer therapy for Duchenne muscular dystrophy (DMD) that uses an adeno-associated viral vector to deliver a micro-dystrophin transgene to skeletal and cardiac muscle. This study evaluated the long-term survival and cardiac efficacy of delandistrogene moxeparvovec in a DMD-mutated (DMDMDX) rat model of DMD-related cardiomyopathy. DMDMDX male rats, aged 21-42 days, were injected with 1.33 × 1014 viral genomes/kilogram (vg/kg) delandistrogene moxeparvovec and followed for 12, 24, and 52 weeks. Ambulation was recorded via the Photobeam Activity System, whereas echocardiograms, cardiomyocyte contractility, calcium handling, and histological analysis of fibrosis were used to evaluate cardiac disease at 12-, 24-, and 52-weeks post-treatment. A separate cohort of rats was used to assess the impact of delandistrogene moxeparvovec on survival. Treatment with delandistrogene moxeparvovec extended median survival in DMDMDX rats to >25 months versus the 13-month median survival in saline-control-treated DMDMDX rats. Compared with saline control, delandistrogene moxeparvovec therapy elicited statistically significant improvements across cardiac parameters approaching wild-type values with additional benefits in mobility, histopathology, and fibrosis observed. Transgene expression was maintained up to >25 months and micro-dystrophin expression was broadly distributed across skeletal and cardiac muscle. Taken together, these findings demonstrate long-term cardiac efficacy and improved survival following delandistrogene moxeparvovec treatment in DMDMDX rats.
Collapse
Affiliation(s)
- Stephen Baine
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Chris Wier
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Luke Lemmerman
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | | - Amber Kempton
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Alex Haile
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Julian Endres
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | | - Ellyn Nesbit
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
26
|
Oh DH. Mechanism of Genome Editing Tools and Their Application on Genetic Inheritance Disorders. Glob Med Genet 2024; 11:319-329. [PMID: 39583120 PMCID: PMC11405120 DOI: 10.1055/s-0044-1790558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
In the fields of medicine and bioscience, gene editing is increasingly recognized as a promising therapeutic approach for treating pathogenic variants in humans and other living organisms. With advancements in technology and knowledge, it is now understood that most genetic defects are caused by single-base pair variants. The ability to substitute genes using genome editing tools enables scientists and doctors to cure genetic diseases and disorders. Starting with CRISPR (clustered regularly interspaced short palindromic repeats)/Cas, the technology has evolved to become more efficient and safer, leading to the development of base and prime editors. Furthermore, various approaches are used to treat genetic disorders such as hemophilia, cystic fibrosis, and Duchenne muscular dystrophy. As previously mentioned, most genetic defects leading to specific diseases are caused by single-base pair variants, which can occur at many locations in corresponding gene, potentially causing the same disease. This means that, even when using the same genome editing tool, results in terms of editing efficiency or treatment effectiveness may differ. Therefore, different approaches may need to be applied to different types of diseases. Prevalently, due to the safety of adeno-associated virus (AAV) vectors in gene therapy, most clinical trials of gene therapy are based on AAV delivery methods. However, despite their safety and nonintegration into the host genome, their limitations, such as confined capacity, dosage-dependent viral toxicity, and immunogenicity, necessitate the development of new approaches to enhance treatment effects. This review provides the structure and function of each CRISPR-based gene editing tool and focuses on introducing new approaches in gene therapy associated with improving treatment efficiency.
Collapse
Affiliation(s)
- Dae Hwan Oh
- Institute of Green Manufacturing Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Yoon JA, Lee H, Lee IS, Song YS, Lee BJ, Kim SY, Shin YB. Muscle Pathology Associated With Cardiac Function in Duchenne Muscular Dystrophy. Ann Rehabil Med 2024; 48:405-412. [PMID: 39676600 DOI: 10.5535/arm.240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVE To compare the progression of muscle fibrosis of various site and its relation between cardiac deterioration in Duchenne muscular dystrophy (DMD). In this study aimed to examine the associations between echocardiogram-based cardiac function indices and fibrosis of the abdominal and lower extremity muscles in patients with DMD to facilitate early detection of cardiac dysfunction and identify its predictors. METHODS Twenty-one patients with DMD patients were enrolled in the study. The association between cardiac dysfunction and fibrosis of the abdominal and lower extremity muscles was determined by analyzing the echocardiography and elastography. Non-parametric Spearman rank correlation coefficients were used to examine the pairwise relationships between cardiac function and muscle elasticity. RESULTS All patients were male and non-ambulant. Their mean age was 18.45±4.28 years. The strain ratios of the abdominal muscle and quadriceps muscles were significantly higher than those of the medial gastrocnemius. The strain ratio of the rectus abdominis muscle has a significant negative correlation with left ventricular ejection fraction. Cardiac function and valvular insufficiency were not significantly correlated with muscle strain ratio. According to the result of our study, the only skeletal muscle which showed significant correlation with cardiac dysfunction was degree abdominal muscle fibrosis. CONCLUSION The degree of fibrosis of respiratory muscles was also significantly associated with cardiac dysfunction; therefore, it can be used as a predictor of cardiac dysfunction in patients with DMD in clinical practice.
Collapse
Affiliation(s)
- Jin A Yoon
- Department of Rehabilitation Medicine, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Heirim Lee
- Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - In Sook Lee
- Department of Radiology, Pusan National University Hospital, Biomedical Research Institute, Busan, Korea
| | - You Seon Song
- Department of Radiology, Pusan National University Hospital, Biomedical Research Institute, Busan, Korea
| | - Byeong-Ju Lee
- Department of Rehabilitation Medicine, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Soo-Yeon Kim
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Reserch Institute of Convergence for Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yong Beom Shin
- Department of Rehabilitation Medicine, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| |
Collapse
|
28
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
29
|
Ahmad M, ElRasoul A, Sedayou R, Tamboosi M, Mahroos H, Alrashed S, Tunkar M, Alzahrani F, Alharbi M, Aljehani M, Alahmari M, Alqarni K, Gashlan M, Yilmaz BS, Alshaikh NM. Safety and effectiveness of ataluren in patients with Duchenne muscular dystrophy: single-center experience from Saudi Arabia. J Int Med Res 2024; 52:3000605241305252. [PMID: 39719075 DOI: 10.1177/03000605241305252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a rare X-linked neurodegenerative disorder caused by mutations in the DMD gene. This study examined the efficacy and safety of ataluren, the first oral treatment for DMD with nonsense mutations (nmDMD), in patients in the Middle East. METHODS This retrospective longitudinal study assessed the outcomes of seven boys with nmDMD who received treatment with ataluren and follow-up at a single center since 2016. RESULTS The median patient age at treatment initiation was 8.04 years (range: 3.3-9.92), and the median duration of exposure was 3.95 years (interquartile range = 4.42 years). Five patients were still ambulatory at the last follow-up. Ataluren was more effective in individuals with baseline 6-min walking distance (6MWD) ≥300 m, as these patients had smaller declines in 6MWD and North Star Ambulatory Assessment scores. Pulmonary function was well preserved in all patients, with no patients having forced vital capacity <60% at their last follow-up. Six patients maintained normal cardiac function, whereas one patient developed heart failure before starting ataluren treatment. CONCLUSIONS Our results demonstrated both the efficacy and safety of ataluren. Early initiation of ataluren treatment delayed the loss of ambulation and cardiorespiratory milestones.
Collapse
Affiliation(s)
- Mushtaha Ahmad
- Department of Pediatrics, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Alaa ElRasoul
- Department of Pediatrics, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Raneem Sedayou
- Rehabilitation Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Mohammed Tamboosi
- Rehabilitation Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hanan Mahroos
- Rehabilitation Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Shaimaa Alrashed
- Rehabilitation Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Mariam Tunkar
- Rehabilitation Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Faisal Alzahrani
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Mohammed Alharbi
- Pharmaceutical Department, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Mona Aljehani
- Pharmaceutical Department, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Mousa Alahmari
- Pharmaceutical Department, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Khalid Alqarni
- Pharmaceutical Department, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Maha Gashlan
- Department of Pediatrics, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | | | - Nahla M Alshaikh
- Department of Pediatrics, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Bayazit MB, Henderson D, Nguyen KT, Reátegui E, Tawil R, Flanigan KM, Harper SQ, Saad NY. Identification of disease-specific extracellular vesicle-associated plasma protein biomarkers for Duchenne Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.29.24317861. [PMID: 39649602 PMCID: PMC11623727 DOI: 10.1101/2024.11.29.24317861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Objective Reliable, circulating biomarkers for Duchenne, Becker and facioscapulohumeral muscular dystrophies (DBMD and FSHD) remain unvalidated. Here, we investigated the plasma extracellular vesicle (EV) proteome to identify disease-specific biomarkers that could accelerate therapy approvals. Methods We extracted EVs from the plasma of DBMD and FSHD patients and healthy controls using size-exclusion chromatography, conducted mass spectrometry on the extracted EV proteins, and performed comparative analysis to identify disease-specific biomarkers. We correlated the levels of these biomarkers with clinical outcome measures and confounding factors. Results The muscle-associated proteins PYGM, MYOM3, FLNC, MYH2 and TTN were exclusively present in DBMD EVs. PYGM, MYOM3, and TTN negatively correlated with age. PYGM and MYOM3 levels were elevated in patients without cardiomyopathy, and PYGM levels were specifically elevated in ambulatory DMD patients. On the other hand, female FSHD patients displayed significantly higher MBL2 and lower GPLD1 levels. However, male FSHD patients exhibited higher C9 and lower C4BPB levels. Additionally, desmosome proteins JUP and DSP were uniquely found in FSHD males. MBL2 positively correlated with age and C4BPB negatively correlated with FSHD severity in male patients. Interpretation Our findings underscore the sensitivity of analyzing circulating EV content to identify disease-specific protein biomarkers for DBMD and FSHD. Our results also emphasize the potential of EV-based biomarker discovery as a promising approach to monitor disease progression as well as effectiveness of therapies in muscular dystrophy, potentially contributing to their approval. Further research with larger cohorts is needed to validate these biomarkers and explore their clinical implications.
Collapse
|
31
|
Fang P, Han J, An D, Bu Y, Ji G, Liu M, Deng J, Guo M, Han X, Wu H, Ma S, Song X. Research hotspots and trends for Duchenne muscular dystrophy: a machine learning bibliometric analysis from 2004 to 2023. Front Immunol 2024; 15:1429609. [PMID: 39669562 PMCID: PMC11634759 DOI: 10.3389/fimmu.2024.1429609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Aims The aim of this study was to conduct a bibliometric analysis of the relevant literature on Duchenne muscular dystrophy (DMD) to ascertain its current status, identify key areas of research and demonstrate the evolution of the field. Methods The analysis sourced documents from the Science Citation Index Expanded in the Web of Science core collection, utilizing CiteSpace software and an online bibliometric platform to analyze collaborative networks among authors, institutions and countries, and to map out the research landscape through journal and reference evaluations. Keyword analyses, including clustering and emergent term identification, were conducted, alongside the development of knowledge maps. Results The study included 9,277 documents, indicating a rising publication trend in the field. The Institut National de la Santé et de la Recherche Médicale emerged as the top publishing institution, with Francesco Muntoni as the most prolific author. The United States dominated in publication output, showcasing significant leadership. The keyword analysis highlighted 786 key emergent terms, primarily focusing on the mechanisms, diagnostics and treatment approaches in DMD. Conclusion The field of DMD research is experiencing robust growth, drawing keen interest globally. A thorough analysis of current research and trends is essential for advancing knowledge and therapeutic strategies in this domain.
Collapse
Affiliation(s)
- Pingping Fang
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Handan Central Hospital, Handan, Hebei, China
| | - Jingzhe Han
- Department of Neurology, Hengshui People’s Hospital, Hengshui, Hebei, China
| | - Di An
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yi Bu
- Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mingjuan Liu
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinliang Deng
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xu Han
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaojuan Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Clinical Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
32
|
McDonald CM, Elkins JS, Dharmarajan S, Gooch K, Ciobanu T, Lansdall CJ, Murphy AP, McDougall F, Mercuri EM, Audhya I. Caregiver Global Impression Observations from EMBARK: A Phase 3 Study Evaluating Delandistrogene Moxeparvovec in Ambulatory Patients with Duchenne Muscular Dystrophy. Neurol Ther 2024:10.1007/s40120-024-00685-8. [PMID: 39589719 DOI: 10.1007/s40120-024-00685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a rare, progressive, debilitating neuromuscular disease. The early childhood onset and debilitating nature of the disease necessitate decades of caretaking for most patients. Caregivers have a critical role in evaluating patients' physical functioning and/or response to treatment. Using DMD-specific caregiver-reported scales, the impact of delandistrogene moxeparvovec gene therapy on caregivers' perceived change in patient disease status or severity was evaluated using the Caregiver Global Impression of Change and Severity (CaGI-C and CaGI-S, respectively). METHODS In the Phase 3 randomized, double-blind, placebo-controlled trial (EMBARK; NCT05096221), the CaGI-C at week 52 and change from baseline to week 52 in CaGI-S were evaluated in a post hoc analysis. The CaGI-C assesses caregivers' impressions of change in DMD symptoms, physical ability, ability to perform daily activities, and overall health. The CaGI-S evaluates current severity of DMD symptoms, physical ability, ability to perform activities of daily living, and overall health. Data were evaluated using multi-domain responder index (MDRI) and ordinal regression analyses. RESULTS MDRI analyses across all four CaGI-C items yielded a treatment difference of 1.7 (95% confidence interval [CI]: 0.90-2.5) favoring delandistrogene moxeparvovec; a treatment difference of 1.1 (95% CI 0.30-1.9) was observed for the CaGI-S favoring delandistrogene moxeparvovec. After adjusting for age, ordinal regression analysis showed a nominally significant increase in the odds of achieving a better rating for delandistrogene moxeparvovec-treated patients on all four CaGI-C items (≥ 3.8-fold increase). After adjusting for baseline severity and age, ordinal regression analysis showed a nominally significant increase in the odds of improvement on all four CaGI-S items (≥ 2.2-fold increase). CONCLUSION These exploratory findings captured by caregiver-reported outcomes add to the totality of evidence that supports the clinical benefits of delandistrogene moxeparvovec for patients with DMD. TRIAL REGISTRATION NUMBER ClinicalTrials.gov identifier, NCT05096221.
Collapse
Affiliation(s)
- Craig M McDonald
- University of California, 4860 Y St #1700, Sacramento, CA, 95819, USA.
| | - Jacob S Elkins
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA
| | - Sai Dharmarajan
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA
| | - Katherine Gooch
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA
| | | | | | | | | | - Eugenio M Mercuri
- Pediatric Neurology Institute, Catholic University and Nemo Pediatrico, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Ivana Audhya
- Sarepta Therapeutics, Inc., 215 First Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
33
|
Marcella BM, Hockey BL, Braun JL, Whitley KC, Geromella MS, Baranowski RW, Watson CJF, Silvera S, Hamstra SI, Wasilewicz LJ, Crozier RWE, Marais AAT, Kim KH, Lee G, Vandenboom R, Roy BD, MacNeil AJ, MacPherson REK, Fajardo VA. GSK3 inhibition improves skeletal muscle function and whole-body metabolism in male mouse models of Duchenne muscular dystrophy. Nat Commun 2024; 15:10210. [PMID: 39587049 PMCID: PMC11589163 DOI: 10.1038/s41467-024-53886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Inhibiting glycogen synthase kinase 3 (GSK3) improves muscle function, metabolism, and bone health in many diseases and conditions; however, whether GSK3 should be targeted for Duchenne muscular dystrophy (DMD), a severe muscle wasting disorder with no cure, remains unknown. Here, we show the effects of GSK3 inhibition in male DBA/2J (D2) and C57BL/10 (C57) mdx mice. Treating D2 mdx mice with GSK3 inhibitors alone or in combination with aerobic exercise improves muscle strength, endurance, and morphology, attenuates the hypermetabolic phenotype, and enhances insulin sensitivity. GSK3 inhibition in C57 mdx mice also improves muscle fatigue resistance and increases cage ambulation. Moreover, muscle-specific GSK3 knockdown in mdx mice augments muscle force production and endurance. In both mdx strains, GSK3 inhibition increases bone mineral content and density. Overall, these improvements to muscle, metabolic, and bone health with GSK3 inhibition in mdx mice may have clinical implications for patients with DMD, where the current standard of care, glucocorticoids, delay the loss of ambulation but increase the risk for insulin resistance and osteoporosis. Along with our observation of lowered β-catenin content in DMD myoblasts, a known cellular target for GSK3, this study provides ample evidence in support of inhibiting GSK3 for this disease.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/pathology
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Mice, Inbred mdx
- Mice, Inbred C57BL
- Mice
- Disease Models, Animal
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3/antagonists & inhibitors
- Muscle Strength/drug effects
- Mice, Inbred DBA
- Physical Conditioning, Animal
- Bone Density/drug effects
- Insulin Resistance
Collapse
Affiliation(s)
- Bianca M Marcella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Briana L Hockey
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
| | - Kennedy C Whitley
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Mia S Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Ryan W Baranowski
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Colton J F Watson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Sebastian Silvera
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Luc J Wasilewicz
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Amélie A T Marais
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Kun Ho Kim
- Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gabsang Lee
- Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rene Vandenboom
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Adam J MacNeil
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
34
|
Leckie J, Zia A, Yokota T. An Updated Analysis of Exon-Skipping Applicability for Duchenne Muscular Dystrophy Using the UMD-DMD Database. Genes (Basel) 2024; 15:1489. [PMID: 39596689 PMCID: PMC11593839 DOI: 10.3390/genes15111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Antisense oligonucleotide (ASO)-mediated exon-skipping is an effective approach to restore the disrupted reading frame of the dystrophin gene for the treatment of Duchenne muscular dystrophy (DMD). Currently, four FDA-approved ASOs can target three different exons, but these therapies are mutation-specific and only benefit a subset of patients. Understanding the broad applicability of exon-skipping approaches is essential for prioritizing the development of additional therapies with the greatest potential impact on the DMD population. This review offers an updated analysis of all theoretical exon-skipping strategies and their applicability across the patient population, with a specific focus on DMD-associated mutations documented in the UMD-DMD database. Unlike previous studies, this approach leverages the inclusion of phenotypic data for each mutation, providing a more comprehensive and clinically relevant perspective. METHODS The theoretical applicability of all single and double exon-skipping strategies, along with multi exon-skipping strategies targeting exons 3-9 and 45-55, was evaluated for all DMD mutations reported in the UMD-DMD database. RESULTS Single and double exon-skipping approaches were applicable for 92.8% of large deletions, 93.7% of small lesions, 72.4% of duplications, and 90.3% of all mutations analyzed. Exon 51 was the most relevant target and was applicable for 10.6% of all mutations and 17.2% of large deletions. Additionally, two multi-exon-skipping approaches, targeting exons 45-55 and 3-9, were relevant for 70.6% of large deletions and 19.2% of small lesions. CONCLUSIONS Current FDA-approved ASOs were applicable to 27% of the UMD-DMD population analyzed, leaving a significant portion of patients without access to exon-skipping therapies. The clinical translation of alternative approaches is critical to expanding the accessibility of these therapies for the DMD population.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Abdullah Zia
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada (A.Z.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
35
|
Riddell DO, Hildyard JC, Harron RC, Wells DJ, Piercy RJ. Identification of reference microRNAs in skeletal muscle of a canine model of Duchenne muscular dystrophy. Wellcome Open Res 2024; 9:362. [PMID: 39649621 PMCID: PMC11621615 DOI: 10.12688/wellcomeopenres.22481.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by mutations in the dystrophin gene. DE50-MD dogs are an animal model of DMD used as a final translational model for evaluation of promising treatments. MicroRNA (miR) expressions in the muscle of DE50-MD dogs represent potential biomarkers, but stable reference miRs must first be identified. The aim of this paper was to establish a panel of reference miRs for WT and DE50-MD dogs over a range of ages and muscle groups. Methods RNA was extracted from WT and DE50-MD dog (N=6 per genotype) vastus lateralis muscle samples collected longitudinally at 3, 6, 9, 12, 15 and 18 months of age, and from muscles collected post-mortem (N=3 per genotype; cranial tibial, semimembranosus, lateral triceps and diaphragm). 87 RNAs were quantified in a subset of 6-month-old WT and DE50-MD muscles (N=4 per genotype) using the QIAcuity miFinder panel. GeNorm, BestKeeper and Normfinder were used to identify a candidate panel of the 8 most stable small RNAs, which were then quantified in all RNA samples, alongside the commonly used reference RNA snRNA U6. Results The most stable miRs of this subset were used to normalise quantities of dystromiRs miR-1, miR-133a and miR-206, and fibromiR miR-214. MicroRNAs miR-191, let-7b, miR-125a and miR-15a were the most stable miRs tested, while snRNA U6 performed poorly. DystromiR expression, normalised to the geometric mean of the panel of reference miRs, was lower for miR-1 and miR-133a in DE50-MD compared to WT muscles, while miR-206 levels did not significantly differ between genotypes. FibromiR miR-214 was 2- to 4-fold higher in DE50-MD versus WT muscles. Conclusions A normalisation factor derived from miR-191, let-7b, miR-125a and miR-15a is suitable for normalising miR expression data from WT and DE50-MD muscle over a range of ages and muscle types.
Collapse
Affiliation(s)
- Dominique O. Riddell
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - John C.W. Hildyard
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Rachel C.M. Harron
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Dominic J. Wells
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| |
Collapse
|
36
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
MESH Headings
- Naphthoquinones/administration & dosage
- Naphthoquinones/pharmacology
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Mice
- Administration, Oral
- Mice, Inbred mdx
- Oxidation-Reduction/drug effects
- Signal Transduction/drug effects
- Disease Models, Animal
- Drosophila melanogaster
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Oxidative Stress/drug effects
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Male
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
37
|
Ghosh A, Banerjee A, Gupta S, Sinha S. A Unified Phosphoramidite Platform for the Synthesis of Morpholino Oligonucleotides and Diverse Chimeric Backbones. J Am Chem Soc 2024. [PMID: 39561294 DOI: 10.1021/jacs.4c09510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Phosphorodiamidate Morpholino Oligonucleotides (PMOs) have been well established in the milieu of FDA-approved oligonucleotide-based drugs in the past decade. Given their relevance in antisense therapeutics, a DNA/RNA synthesizer-compatible modular synthesis protocol of PMOs is long awaited to explore next-generation PMO chimeras with other therapeutically proven oligonucleotide backbones. Herein, we demonstrate a streamlined 5' → 3'phosphoramidite approach for the synthesis of PMOs using tert-butyl-protected 5'-tBu-morpholino phosphoramidites, which were synthesized from 5'-OH morpholino monomers derived from commercially available ribonucleosides. 2-Cyanoethyl (CE)-protected 5'-CE-morpholino phosphoramidites were also synthesized to generate thiophosphoramidate (TMO) and phosphoramidate (MO) morpholino oligonucleotides. Full-length PMOs and TMOs in exceptional overall yields were obtained with operational simplicity and compatibility with automated DNA/RNA synthesizers utilizing controlled pore glass (CPG) as the solid support and CH3CN as the solvent. Importantly, this method has opened the possibility of designing various biologically relevant ASO design modalities, such as PMO-TMO and PMO-MO, which were inaccessible otherwise. Moreover, DNA nucleotides were also incorporated to generate PMO-psDNA and PMO-DNA using commercially available 5'-DNA phosphoramidites. The biophysical properties of all synthesized oligonucleotides were analyzed using UV melting and circular dichroism studies. The serum interaction profile and innate immune response of the PS-modified polythymidine oligonucleotides were analyzed and it was found that the mixed backbone oligonucleotides had a balanced profile compared to fully charged or neutral extremities. Overall, the synthesis is amenable to fast generation of various types of PMO chimeras for biological screening, which will expedite their therapeutic exploration and transition to clinic.
Collapse
Affiliation(s)
- Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Arpan Banerjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
38
|
Upadhyay V, Ray S, Panja S, Saviola AJ, Maluf NK, Mallela KMG. Biophysical characterization of the dystrophin C-terminal domain: Dystrophin interacts differentially with dystrobrevin isoforms. J Biol Chem 2024; 300:108002. [PMID: 39551137 DOI: 10.1016/j.jbc.2024.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) gene encodes dystrophin, a large multidomain protein. Its nonfunctionality leads to dystrophinopathies like DMD and Becker muscular dystrophy, for which no cure is yet available. A few therapies targeted towards specific mutations can extend the lifespan of patients, although with limited efficacy and high costs, emphasizing the need for more general treatments. Dystrophin's complex structure with poorly understood domains and the presence of multiple isoforms with varied expression patterns in different tissues pose challenges in therapeutic development. The C-terminal (CT) domain of dystrophin is less understood in terms of its structure-function, although it has been shown to perform important functional roles by interacting with another cytosolic protein, dystrobrevin. Dystrophin and dystrobrevin stabilize the sarcolemma membrane by forming a multiprotein complex called dystrophin-associated glycoprotein complex that is destabilized in DMD. Dystrobrevin has two major isoforms, alpha and beta, with tissue-specific expression patterns. Here, we characterize the CT domain of dystrophin and its interactions with the two dystrobrevin isoforms. We show that the CT domain is nonglobular and shows reversible urea denaturation as well as thermal denaturation. It interacts with dystrobrevin isoforms differentially, with differences in binding affinity and the mode of interaction. We further show that the amino acid differences in the CT region of dystrobrevin isoforms contribute to these differences. These results have implications for the stability of dystrophin-associated glycoprotein complex in different tissues and explain the differing symptoms associated with DMD patients affecting organs beyond the skeletal muscles.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shashikant Ray
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
39
|
Liu Z, Guo D, Wang D, Zhou J, Chen Q, Lai J. Prime editing: A gene precision editing tool from inception to present. FASEB J 2024; 38:e70148. [PMID: 39530600 DOI: 10.1096/fj.202401692r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Genetic mutations significantly contribute to the onset of diseases, with over half of the cases caused by single-nucleotide mutations. Advances in gene editing technologies have enabled precise editing and correction of mutated genes, offering effective treatment methods for genetic disorders. CRISPR/Cas9, despite its power, poses risks of inducing gene mutations due to DNA double-strand breaks (DSB). The advent of base editing (BE) and prime editing (PE) has mitigated these risks by eliminating the hazards associated with DNA DSBs, allowing for more precise gene editing. This breakthrough lays a solid foundation for the clinical application of gene editing technologies. This review discusses the principles, development, and applications of PE gene editing technology in various genetic mutation-induced diseases.
Collapse
Affiliation(s)
- Zhihao Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Dawei Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Jinglin Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, Fuzhou, PR China
| | - Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, PR China
| |
Collapse
|
40
|
Goey AKL, Mukashyaka MC, Patel Y, Rodino-Klapac LR, East L. Characterization of Nonclinical Drug Metabolism and Pharmacokinetic Properties of Phosphorodiamidate Morpholino Oligonucleotides, a Novel Drug Class for Duchenne Muscular Dystrophy. Drug Metab Dispos 2024; 52:1396-1406. [PMID: 39516029 DOI: 10.1124/dmd.124.001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
Eteplirsen, golodirsen, and casimersen are phosphorodiamidate morpholino oligomers (PMOs) that are approved in the United States for the treatment of patients with Duchenne muscular dystrophy (DMD) with mutations in the DMD gene that are amenable to exon 51, 53, and 45 skipping, respectively. Here we report a series of in vivo and in vitro studies characterizing the drug metabolism and pharmacokinetic (DMPK) properties of these three PMOs. Following a single intravenous dose, plasma exposure was consistent for all three PMOs in mouse, rat, and nonhuman primate (NHP), and plasma half-lives were similar for eteplirsen (2.0-4.1 h) and golodirsen (2.1-8.7 h) across species and more variable for casimersen (3.2-18.1 h). Plasma protein binding was low (<40%) for all three PMOs in mouse, rat, NHP, and human and was largely concentration independent. In the mdx mouse model of DMD, following a single intravenous injection, extensive biodistribution was observed in the target skeletal muscle tissues and the kidney for all three PMOs; consistent with the latter finding, the predominant route of elimination was renal. In vitro studies using liver microsomes showed no evidence of hepatic metabolism, and none of the PMOs were identified as inhibitors or inducers of the human cytochrome P450 enzymes or membrane drug transporters tested at clinically relevant concentrations. These findings suggest that key DMPK features are consistent for eteplirsen, golodirsen, and casimersen and provide evidence for the concept of a PMO drug class with potential application to novel exon-skipping drug candidates. SIGNIFICANCE STATEMENT: The PMOs eteplirsen, golodirsen, and casimersen share similar absorption, distribution, metabolism, and excretion and DMPK properties, which provides evidence for the concept of a PMO treatment class. A PMO drug class may support a platform approach to enhance understanding of the pharmacokinetic and pharmacodynamic behavior of these molecules. The grouping of novel agent series into platforms could be beneficial in the development of drug candidates for populations in which traditional clinical trials are not feasible.
Collapse
Affiliation(s)
| | | | - Yogesh Patel
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts
| | | | - Lilly East
- Sarepta Therapeutics, Inc., Cambridge, Massachusetts
| |
Collapse
|
41
|
Ge L, Yang Y, Yang Y, Chen Y, Tao N, Zhang L, Zhao C, Zhang X. DMD mutations in pediatric patients with phenotypes of Duchenne/Becker muscular dystrophy. Open Med (Wars) 2024; 19:20240916. [PMID: 39588385 PMCID: PMC11587917 DOI: 10.1515/med-2024-0916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2023] [Accepted: 02/05/2024] [Indexed: 11/27/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are common X-inherited neuromuscular diseases. The genetic diagnosis has been used as the diagnostic choice for DMD/BMD. The study subjects consisted of 37 patients from Southwest China. Peripheral blood was collected for the extraction of genomic DNA. DMD mutation was sequenced using the next-generation sequencing approach. The detected mutation was validated using the multiplex ligation-dependent probe amplification or Sanger sequencing methods. Variation annotation and pathogenicity prediction were performed using the online databases. Pathogenic mutations were identified 3 splicing site, 7 single nucleotide, 1 indel, 23 deletion, and 3 duplication mutations. Novel DMD variants were discovered, including two novel splicing variations (c.1890 + 1G>T; c.1923 + 1G>A), one missense mutation (c.1946G>T), one nonsense mutation (c.7441G>T), one indel mutation (INDEL EX20), and one duplication mutation (DUP EX75-78). The current study provides mutation information of DMD for the genetic diagnosis of DMD/BMD.
Collapse
Affiliation(s)
- Liping Ge
- Department of Endosecretory Genetic and Metabolic Diseases, Kunming Children’s Hospital, Kunming650000, China
| | - Yang Yang
- Department of Endosecretory Genetic and Metabolic Diseases, Kunming Children’s Hospital, Kunming650000, China
| | - Yanfei Yang
- The Special Wards, Kunming Children’s Hospital, Kunming650000, Yunnan Province, China
| | - Yanfei Chen
- Department of Cardiovascular Internal Medicine, Kunming Children’s Hospital, Yunnan Province, Kunming650000, China
| | - Na Tao
- Department of Endosecretory Genetic and Metabolic Diseases, Kunming Children’s Hospital, Kunming650000, China
| | - Liping Zhang
- Medical Department, Kunming Children’s Hospital, Kunming650000, China
| | - Canmiao Zhao
- Department of Endosecretory Genetic and Metabolic Diseases, Kunming Children’s Hospital, Kunming650000, China
| | - Xing Zhang
- Department of Cardiovascular Internal Medicine, Kunming Children’s Hospital, Yunnan Province, Kunming650000, China
| |
Collapse
|
42
|
Funato M, Iwata R, Ando T, Takeuchi M, Horibe Y, Funato T, Oota J, Uno R, Yumioka M, Kondo E, Katoyama M, Ito C, Kato Y, Yamada Y, Kusukawa T. Safety and efficacy of viltolarsen treatment in patients with Duchenne muscular dystrophy: A retrospective study with 3-year follow-up. Brain Dev 2024; 47:104297. [PMID: 39549635 DOI: 10.1016/j.braindev.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a hereditary neuromuscular disorder characterized by severe, progressive muscle wasting. Viltolarsen, a formulation consisting of exon 53-skipping antisense oligonucleotides of the dystrophin gene, has been indicated for some patients with DMD. However, reports describing the efficacy and safety of viltolarsen treatment in patients with DMD, particularly those comparing patients receiving viltolarsen with age- and time-period-matched controls, are limited. This study aimed to confirm the safety and efficacy of viltolarsen treatment in patients with DMD. METHODS We retrospectively reviewed real-world data of patients with DMD aged 6-19 years who started viltolarsen treatment between July 2020 and February 2021 and compared them with age- and time-period-matched patients with DMD who did not receive viltolarsen. RESULTS Five patients received viltolarsen treatment for over 3 years. Three of the four patients who received viltolarsen once weekly maintained motor function, while one ambulatory patient showed remarkably slow motor function decline. Conversely, eight of nine patients who did not receive viltolarsen and one patient who underwent intermittent viltolarsen treatment showed motor function deterioration. Two patients showed significant treatment-related adverse events, namely swelling of the dorsal surface of the right hand due to extravasation of viltolarsen in one patient and axillary lymph node enlargement due to frequent intravenous infusion in another patient. None of the patients discontinued viltolarsen. CONCLUSIONS Viltolarsen was a safe and effective treatment for patients with DMD, and the findings highlighted the importance of once-weekly and uninterrupted viltolarsen treatment. The distinct safety and efficacy of viltolarsen require further investigation using a large number of cases and a long follow-up period.
Collapse
Affiliation(s)
- Michinori Funato
- Department of Pediatric Neurology, NHO Nagara Medical Center, Gifu, Japan.
| | - Reina Iwata
- Department of Pharmacy, NHO Nagara Medical Center, Gifu, Japan
| | | | - Motohiro Takeuchi
- Department of Pediatrics, NHO Tsuruga Medical Center, Tsuruga, Japan
| | | | | | - Junko Oota
- Department of Nursing, NHO Nagara Medical Center, Gifu, Japan
| | - Ryoya Uno
- Department of Rehabilitation, NHO Nagara Medical Center, Gifu, Japan
| | - Misaki Yumioka
- Department of Rehabilitation, NHO Nagara Medical Center, Gifu, Japan
| | - Emi Kondo
- Department of Rehabilitation, NHO Nagara Medical Center, Gifu, Japan
| | - Miho Katoyama
- Department of Rehabilitation, NHO Nagara Medical Center, Gifu, Japan
| | - Chie Ito
- Department of Rehabilitation, NHO Nagara Medical Center, Gifu, Japan
| | - Yoshiko Kato
- Department of Rehabilitation, NHO Nagara Medical Center, Gifu, Japan
| | - Yuji Yamada
- Department of Rehabilitation, NHO Nagara Medical Center, Gifu, Japan
| | | |
Collapse
|
43
|
Ren S, Fu X, Guo W, Bai R, Li S, Zhang T, Liu J, Wang Z, Zhao H, Suo S, Zhang W, Jia M, Ji W, Hu P, Chen Y. Profound cellular defects attribute to muscular pathogenesis in the rhesus monkey model of Duchenne muscular dystrophy. Cell 2024; 187:6669-6686.e16. [PMID: 39305903 DOI: 10.1016/j.cell.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 11/17/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by mutations in the DMD gene. Muscle fibers rely on the coordination of multiple cell types for repair and regenerative capacity. To elucidate the cellular and molecular changes in these cell types under pathologic conditions, we generated a rhesus monkey model for DMD that displays progressive muscle deterioration and impaired motor function, mirroring human conditions. By leveraging these DMD monkeys, we analyzed freshly isolated muscle tissues using single-cell RNA sequencing (scRNA-seq). Our analysis revealed changes in immune cell landscape, a reversion of lineage progressing directions in fibrotic fibro-adipogenic progenitors (FAPs), and TGF-β resistance in FAPs and muscle stem cells (MuSCs). Furthermore, MuSCs displayed cell-intrinsic defects, leading to differentiation deficiencies. Our study provides important insights into the pathogenesis of DMD, offering a valuable model and dataset for further exploration of the underlying mechanisms, and serves as a suitable platform for developing and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Shuaiwei Ren
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Xin Fu
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Wenting Guo
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Raoxian Bai
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Sheng Li
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China; Southwest United Graduate School, 650092 Kunming, China
| | - Jie Liu
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China
| | - Hui Zhao
- Guangzhou Laboratory, 510005 Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, 510005 Guangzhou, China
| | | | - Weikang Zhang
- Guangzhou Laboratory, 510005 Guangzhou, China; College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Minzhi Jia
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031 Shanghai, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China.
| | - Ping Hu
- Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Guangzhou Laboratory, 510005 Guangzhou, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, 510005 Guangzhou, China; The Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China.
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, 650500 Kunming, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Yunnan Key Laboratory of Primate Biomedical Research, 650500 Kunming, China; Southwest United Graduate School, 650092 Kunming, China.
| |
Collapse
|
44
|
Boccanegra B, Lenti R, Mantuano P, Conte E, Tulimiero L, Piercy RJ, Cappellari O, Hildyard JCW, De Luca A. Determination of qPCR reference genes suitable for normalizing gene expression in a novel model of Duchenne muscular dystrophy, the D2-mdx mouse. PLoS One 2024; 19:e0310714. [PMID: 39535998 PMCID: PMC11560031 DOI: 10.1371/journal.pone.0310714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a X-linked neuromuscular disorder arising from mutations in the dystrophin gene, leading to a progressive muscle wasting and disability. Currently there is no universal therapy, and there is thus a strong interest in preclinical studies for finding novel treatments. The most widely used and characterized mouse model for DMD is the C57BL/10ScSn-Dmdmdx/J (BL10-mdx), but this model exhibits mild pathology and does not replicate key features of human disease. The D2.B10-Dmdmdx/J (D2-mdx) mouse is a more recent model which seems to better mimics the complex human DMD phenotype. However, the D2-mdx mouse remains less extensively characterised than its BL10-mdx counterpart. Quantitative PCR analysis of gene expression is an important tool to monitor disease progression and evaluate therapeutic efficacy, but measurements must be normalised to stably expressed reference genes, which should ideally be determined and validated empirically. We examined gene expression in the gastrocnemius (GC), diaphragm (DIA) and heart in the D2-mdx mouse, the BL10-mdx mouse, and appropriate strain-matched wild-type controls (D2-wt and BL10-wt), from 4 to 52 weeks of age, using a large panel of candidate references (ACTB, AP3D1, CSNK2A2, GAPDH, HPRT1, PAK1IP1, RPL13A, SDHA, and in the heart, also HTATSF1 and HMBS). Data was analyzed using GeNorm, Bestkeeper, deltaCt and Normfinder algorithms to identify stable references under multiple possible scenarios. We show that CSNK2A2, AP3D1 and ACTB represent strong universal reference genes in both GC and DIA, regardless of age, muscle type, strain and genotype, while HTATSF1 and SDHA are optimal for the heart. GAPDH, HPRT1 and RPL13A were conversely revealed to be poor references, showing tissue-, age- or disease-specific changes in expression. Our results illustrate the importance of determining appropriate reference genes for specific comparative scenarios, but also reconfirm that universal panels can nevertheless be identified for normalising gene expression studies in even complex pathological states.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Lenti
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Lisamaura Tulimiero
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Richard J. Piercy
- Department of Clinical Sciences and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, United Kingdom
| | - Ornella Cappellari
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - John C. W. Hildyard
- Department of Clinical Sciences and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, United Kingdom
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
45
|
Brown A, Morris B, Kamau JK, Rakoczy RJ, Finck BN, Wyatt CN, Ren H. Lipin1 as a therapeutic target for respiratory insufficiency of duchenne muscular dystrophy. Front Physiol 2024; 15:1477976. [PMID: 39600918 PMCID: PMC11588688 DOI: 10.3389/fphys.2024.1477976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
In Duchenne muscular dystrophy (DMD), diaphragm muscle dysfunction results in respiratory insufficiency which is a leading cause of death in patients. Mutations to the dystrophin gene result in myocyte membrane instability, contributing to the structural deterioration of the diaphragm muscle tissues. With previous works suggesting the importance of lipin1 for maintaining skeletal muscle membrane integrity, we explored the roles of lipin1 in the dystrophic diaphragm. We found that the protein expression levels of lipin1 were reduced by 60% in the dystrophic diaphragm. While further knockdown of lipin1 in the dystrophic diaphragm leads to increased necroptosis, restoration of lipin1 in the dystrophic diaphragm results in reduced inflammation and fibrosis, decreased myofiber death, and improved respiratory function. Our results demonstrated that lipin1 restoration improved respiratory function by enhancing membrane integrity and suggested that lipin1 could be a potential therapeutic target for preventing respiratory insufficiency and respiratory failure in DMD. Continued investigation is required to better understand the mechanisms behind these findings, and to determine the role of lipin1 in maintaining muscle membrane stability.
Collapse
Affiliation(s)
- Alexandra Brown
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Brooklyn Morris
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - John Karanja Kamau
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Ryan J. Rakoczy
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, United States
| | - Brian N. Finck
- Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Christopher N. Wyatt
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, United States
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| |
Collapse
|
46
|
Capelletti S, García Soto SC, Gonçalves MAFV. On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies. Mol Ther 2024; 32:3793-3807. [PMID: 39169620 PMCID: PMC11573585 DOI: 10.1016/j.ymthe.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The repurposing of RNA-programmable CRISPR systems from genome editing into epigenome editing tools is gaining pace, including in research and development efforts directed at tackling human disorders. This momentum stems from the increasing knowledge regarding the epigenetic factors and networks underlying cell physiology and disease etiology and from the growing realization that genome editing principles involving chromosomal breaks generated by programmable nucleases are prone to unpredictable genetic changes and outcomes. Hence, engineered CRISPR systems are serving as versatile DNA-targeting scaffolds for heterologous and synthetic effector domains that, via locally recruiting transcription factors and chromatin remodeling complexes, seek interfering with loss-of-function and gain-of-function processes underlying recessive and dominant disorders, respectively. Here, after providing an overview about epigenetic drugs and CRISPR-Cas-based activation and interference platforms, we cover the testing of these platforms in the context of molecular therapies for muscular dystrophies. Finally, we examine attributes, obstacles, and deployment opportunities for CRISPR-based epigenetic modulating technologies.
Collapse
Affiliation(s)
- Sabrina Capelletti
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Sofía C García Soto
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
47
|
Jepsen WM, Fazenbaker A, Ramsey K, Bonfitto A, Naymik M, Turner B, Sloan J, Tiwari N, Bernes SM, Neilson DE, Sanchez-Castillo M, Huentelman MJ, Narayanan V. Duchenne Muscular Dystrophy in Two Half-Brothers Due to Inherited 306 Kb Inverted Insertion of 10p15.1 into Intron 44 of the Dp427m Transcript of the DMD Gene. Int J Mol Sci 2024; 25:11922. [PMID: 39595988 PMCID: PMC11593467 DOI: 10.3390/ijms252211922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disorder caused by the absence of a fully functional dystrophin protein in myocytes. In skeletal muscle, the lack of dystrophin ultimately results in muscle wasting and the replacement of myocytes with fatty or fibrous tissues. In the heart, cardiomyocytes eventually fail and cause fatal cardiomyopathy. We present a case of a male patient and his younger brother with a maternally inherited inverted insertion of approximately 306 kb of chromosome 10 in the deep intronic region between exons 44 and 45 of the DMD gene, leading to Duchenne muscular dystrophy. Chromosomal microarray, comprehensive muscular dystrophy genetic testing, and whole exome sequencing were negative. Targeted transcriptome RNA sequencing at an external lab showed no aberrant splicing. Research whole genome sequencing identified the copy number gain and insertion. Subsequent reanalysis of the RNA sequencing data showed possible aberrant splicing involving DMD exons 44-45, and research RNA sequencing revealed a fusion between the DMD gene on the minus strand of chromosome X and the PFKFB3 gene on the plus strand of chromosome 10. We demonstrate that whole genome sequencing can be valuable for identifying intronic events in the DMD gene previously undetected or not reported by traditional clinical testing.
Collapse
Affiliation(s)
- Wayne M. Jepsen
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | | | - Keri Ramsey
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Anna Bonfitto
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Marcus Naymik
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Bryce Turner
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Jennifer Sloan
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | | | | | | | - Meredith Sanchez-Castillo
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Matt J. Huentelman
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (W.M.J.)
| |
Collapse
|
48
|
Zhang W, Bai L, Xu W, Liu J, Chen Y, Lin W, Lu H, Wang B, Luo B, Peng G, Zhang K, Shen C. Sirt6 Mono-ADP-Ribosylates YY1 to Promote Dystrophin Expression for Neuromuscular Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406390. [PMID: 39387251 PMCID: PMC11600243 DOI: 10.1002/advs.202406390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The degeneration of the neuromuscular junction (NMJ) and the decline in motor function are common features of aging, but the underlying mechanisms have remained largely unclear. This study reveals that Sirt6 is reduced in aged mouse muscles. Ablation of Sirt6 in skeletal muscle causes a reduction of Dystrophin levels, resulting in premature NMJ degeneration, compromised neuromuscular transmission, and a deterioration in motor performance. Mechanistic studies show that Sirt6 negatively regulates the stability of the Dystrophin repressor YY1 (Yin Yang 1). Specifically, Sirt6 mono-ADP-ribosylates YY1, causing its disassociation from the Dystrophin promoter and allowing YY1 to bind to the SMURF2 E3 ligase, leading to its degradation. Importantly, supplementation with nicotinamide mononucleotide (NMN) enhances the mono-ADP-ribosylation of YY1 and effectively delays NMJ degeneration and the decline in motor function in elderly mice. These findings provide valuable insights into the intricate mechanisms underlying NMJ degeneration during aging. Targeting Sirt6 could be a potential therapeutic approach to mitigate the detrimental effects on NMJ degeneration and improve motor function in the elderly population.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Lei Bai
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Wentao Xu
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jun Liu
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Yi Chen
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Weiqiang Lin
- Department of NephrologyCenter for Regeneration and Aging MedicineThe Fourth Affiliated Hospital of School of Medicine and International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwuChina
| | - Huasong Lu
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Binwei Wang
- Department of PharmacologyNanjing University of Chinese MedicineNanjingChina
| | - Benyan Luo
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Guoping Peng
- Department of NeurobiologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseMOE Joint International Research Laboratory of Pancreatic DiseasesFirst Affiliated HospitalHangzhou310006China
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated HospitalZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismInstitute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang UniversityNanhu Brain‐Computer Interface InstituteHangzhouChina
| |
Collapse
|
49
|
Qaisar R. The emerging roles of necroptosis in skeletal muscle health and disease. Pflugers Arch 2024; 476:1645-1651. [PMID: 39037477 DOI: 10.1007/s00424-024-02994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Necroptosis is a regulated form of cell death with implications in various physiological and pathological processes in multiple tissues. However, the relevant findings from post-mitotic tissues, such as skeletal muscle, are scarce. This review summarizes the potential contributions of necroptosis to skeletal muscle health and diseases. It first discusses the physiological roles of necroptosis in muscle regeneration and development. It then summarizes the contributions of necroptosis to the pathogenesis of multiple muscle diseases, including muscular dystrophies, inflammatory myopathies, cachexia, and neuromuscular disorders. Lastly, it unravels the gaps in our understanding and therapeutic challenges of inhibiting necroptosis as a potential intervention for muscle diseases. Specifically, the findings from the transgenic animal models and the use of pharmacological inhibitors of necroptosis are discussed with relevance to improving the structure and/or function of skeletal muscle in various diseases. Recent developments from experimental animal models and clinical data are presented to discuss the roles of necroptosis in skeletal muscle health and diseases.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
50
|
Yan D, Li Q, Chuang YW, Lu CH, Yang AP, Lin CW, Shieh JY, Weng WC, Tsui PH. Ultrasound attenuation imaging as a strategy for evaluation of early and late ambulatory functions in Duchenne muscular dystrophy. Med Phys 2024; 51:8074-8086. [PMID: 39236300 DOI: 10.1002/mp.17389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder that leads to mobility loss and life-threatening cardiac or respiratory complications. Quantitative ultrasound (QUS) envelope statistics imaging, which characterizes fat infiltration and fibrosis in muscles, has been extensively used for DMD evaluations. PURPOSE Notably, changes in muscle microstructures also result in acoustic attenuation, potentially serving as another crucial imaging biomarker for DMD. Expanding upon the reference frequency method (RFM), this study contributes to the field by introducing the robust RFM (RRFM) as a novel approach for ultrasound attenuation imaging in DMD. METHODS The RRFM algorithm was developed using an iterative reweighted least squares technique. We conducted standard phantom measurements with a clinical ultrasound system equipped with a linear array transducer to assess the improvement in attenuation estimation bias by RRFM. Additionally, 161 DMD patients, included in both a validation dataset (n = 130) and a testing dataset (n = 31), underwent ultrasound scanning of the gastrocnemius for RRFM-based attenuation imaging. The diagnostic performances for ambulatory functions and discrimination between early and late ambulatory stages were evaluated and compared with those of QUS envelope statistics imaging (involving Nakagami distribution, homodyned K distribution, and entropy values) using the area under the receiver operating characteristic curve (AUROC). RESULTS The results indicated that the RRFM method more closely matched the actual attenuation properties of the phantom, reducing measurement bias by 50% compared to conventional RFM. The AUROCs for RRFM-based attenuation imaging, used to discriminate between early and late ambulatory stages, were 0.88 and 0.92 for the validation and testing datasets, respectively. These performances significantly surpassed those of QUS envelope statistics imaging (p < 0.05). CONCLUSIONS Ultrasound attenuation imaging employing RRFM may serve as a sensitive tool for evaluating the progression of ambulatory function deterioration, offering substantial potential for the health management and follow-up care of DMD patients.
Collapse
Affiliation(s)
- Dong Yan
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Qiang Li
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Ya-Wen Chuang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hao Lu
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ai-Ping Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Chia-Wei Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jeng-Yi Shieh
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|