1
|
Li Y, Wang L, Guo Y, Zhou J, Zhang N, He X, Wang Y, Zhu W, Wang M, Zhu H, Ding Z, Wu Y, Zhang T, Pan Q, Feng Y, Lin Z, Mao A, Zhang Y, Wang Y, Zhang B, Huang Y, Zhao Y, Wang L. Laparoscopic versus open surgery for liver resection: a multicenter cohort study. Sci Rep 2024; 14:26410. [PMID: 39488564 DOI: 10.1038/s41598-024-76260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
The relative risk and benefits of Laparoscopic liver resection (LLR) are still controversial. This study aimed to evaluate perioperative and survival outcomes for three primary malignant liver tumors related outcomes following LLR. Data from three Homogeneous-High-Volume-Expert-Centers were collected. Multivariable logistic regression analysis was performed for the association between LLR, and major complications defined as Clavien-Dindo Classification grade ≥ II. Multivariable Cox proportional hazards regression was used to explore the impact of LLR on primary malignant liver tumor survival. Overall, 5886 patients underwent liver resection, of which 1991 underwent LLR. After adjusting for covariables, LLR had significantly lower rate of CDC grade ≥ II (OR = 0.56, 95% CI: 0.48-0.67, P < 0.001). Interaction analysis showed that LLR had significant association with sex, drinking status, history of abdominal surgery, and platelet count (all P < 0.05). The overall survival for each primary malignant liver tumor shown potential risk but without significantly different between LLR and OLR (all P > 0.05). LLR was associated with lower rate of major complications, especially in women, non-drinkers, those without a history of abdominal surgery, and those with normal platelet. For primary malignant liver tumors, the survival outcomes did not differ significantly between LLR and OLR.
Collapse
Affiliation(s)
- Yesheng Li
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Hepatobiliary Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Longrong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yibin Guo
- Department of Health Statistics, Naval Medical University, Shanghai, 200433, China
| | - Jiamin Zhou
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xigan He
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Miao Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hongxu Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zhiwen Ding
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yibin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ti Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Qi Pan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yun Feng
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zhenhai Lin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yongfa Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Bin Zhang
- Research Center of Digestive Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| | - Yangqing Huang
- Department of Hepatobiliary Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Yiming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
2
|
Huang S, Nie X, Pu K, Wan X, Luo J. A flexible deep learning framework for liver tumor diagnosis using variable multi-phase contrast-enhanced CT scans. J Cancer Res Clin Oncol 2024; 150:443. [PMID: 39361193 PMCID: PMC11450020 DOI: 10.1007/s00432-024-05977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Liver cancer is a significant cause of cancer-related mortality worldwide and requires tailored treatment strategies for different types. However, preoperative accurate diagnosis of the type presents a challenge. This study aims to develop an automatic diagnostic model based on multi-phase contrast-enhanced CT (CECT) images to distinguish between hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and normal individuals. METHODS We designed a Hierarchical Long Short-Term Memory (H-LSTM) model, whose core components consist of a shared image feature extractor across phases, an internal LSTM for each phase, and an external LSTM across phases. The internal LSTM aggregates features from different layers of 2D CECT images, while the external LSTM aggregates features across different phases. H-LSTM can handle incomplete phases and varying numbers of CECT image layers, making it suitable for real-world decision support scenarios. Additionally, we applied phase augmentation techniques to process multi-phase CECT images, improving the model's robustness. RESULTS The H-LSTM model achieved an overall average AUROC of 0.93 (0.90, 1.00) on the test dataset, with AUROC for HCC classification reaching 0.97 (0.93, 1.00) and for ICC classification reaching 0.90 (0.78, 1.00). Comprehensive validation in scenarios with incomplete phases was performed, with the H-LSTM model consistently achieving AUROC values over 0.9. CONCLUSION The proposed H-LSTM model can be employed for classification tasks involving incomplete phases of CECT images in real-world scenarios, demonstrating high performance. This highlights the potential of AI-assisted systems in achieving accurate diagnosis and treatment of liver cancer. H-LSTM offers an effective solution for processing multi-phase data and provides practical value for clinical diagnostics.
Collapse
Affiliation(s)
- Shixin Huang
- Department of Scientific Research, The People's Hospital of Yubei District of Chongqing city, Chongqing, 401120, China
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Xixi Nie
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Kexue Pu
- School of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Wan
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Jiawei Luo
- West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, 610044, China.
| |
Collapse
|
3
|
Rauwerdink P, van de Vlasakker VCJ, Wassenaar ECE, Rovers KP, Los M, Herbschleb KH, Creemers GJM, Thijs AMJ, Raicu MG, Huysentruyt CJR, van der Hoeven EJRJ, Nederend J, Peeters RYM, Deenen MJ, Elias SG, Fijneman RJA, Constantinides A, Kranenburg O, Burger PWA, Nienhuijs SW, Wiezer RJ, Lurvink RJ, de Hingh IHJT, Boerma D. First-line palliative systemic therapy alternated with oxaliplatin-based pressurized intraperitoneal aerosol chemotherapy for unresectable colorectal peritoneal metastases: A single-arm phase II trial (CRC-PIPAC-II). EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108487. [PMID: 38905732 DOI: 10.1016/j.ejso.2024.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Palliative systemic therapy alternated with electrostatic precipitation oxaliplatin-based pressurized intraperitoneal aerosol chemotherapy (ePIPAC) has never been prospectively investigated in patients with unresectable colorectal peritoneal metastases (CPM). The CRC-PIPAC-II study aimed to assess safety, feasibility and efficacy of such bidirectional therapy. METHODS This two-center, single-arm, phase II trial enrolled chemotherapy-naïve patients to undergo three treatment cycles, consisting of systemic therapy (CAPOX, FOLFOX, FOLFIRI, or FOLFOXIRI, all with bevacizumab) and oxaliplatin-based ePIPAC (92 mg/m2) with intravenous leucovorin (20 mg/m2) and 5-fluorouracil (400 mg/m2). Primary outcome were major treatment-related adverse events. Secondary outcomes included minor events, tumor response, progression-free survival (PFS) and overall survival (OS). RESULTS Twenty patients completed 52 treatment cycles. Fifteen major events occurred in 7 patients (35 %): 5 events (33 %) related to systemic therapy; 5 (33 %) related to ePIPAC; and 5 (33 %) were biochemical events. No treatment-related deaths occurred. All patients experienced minor events, mostly abdominal pain, nausea and peripheral sensory neuropathy. After treatment, radiological, pathological, cytological, and biochemical response was observed in 0 %, 88 %, 38 %, and 31 % of patients respectively. Curative surgery was achieved in one patient. Median PFS was 10.0 months (95 % confidence interval [CI] 8.0-13.0) and median OS was 17.5 months (95 % CI 13.0-not reached). CONCLUSIONS Combining palliative systemic therapy with oxaliplatin-based ePIPAC in patients with unresectable CPM was feasible and showed an acceptable safety profile. Treatment-induced response and survival are promising, yet further research is required to determine the additional value of ePIPAC to systemic therapy.
Collapse
Affiliation(s)
| | | | | | - Koen P Rovers
- Department of Surgery, Catharina Hospital, Eindhoven, Netherlands
| | - Maartje Los
- Department of Medical Oncology, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Karin H Herbschleb
- Department of Medical Oncology, St. Antonius Hospital, Nieuwegein, Netherlands
| | | | | | - Mihaela G Raicu
- Department of Pathology DNA, St. Antonius Hospital, Nieuwegein, Netherlands
| | | | | | - Joost Nederend
- Department of Radiology, Catharina Hospital, Eindhoven, Netherlands
| | - Rifka Y M Peeters
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Remond J A Fijneman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alexander Constantinides
- Lab Translational Oncology, Division Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Onno Kranenburg
- Lab Translational Oncology, Division Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim W A Burger
- Department of Surgery, Catharina Hospital, Eindhoven, Netherlands
| | | | - René J Wiezer
- Department of Surgery, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Robin J Lurvink
- Department of Surgery, Catharina Hospital, Eindhoven, Netherlands
| | - Ignace H J T de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, Netherlands; Department of Epidemiology, School for Oncology and Developmental Biology, GROW, Maastricht, Netherlands.
| | - Djamila Boerma
- Department of Surgery, St. Antonius Hospital, Nieuwegein, Netherlands.
| |
Collapse
|
4
|
Chen H, Shen K, Shen X, Liu W, Ge Y, Yu J, Jia W, Ma J, Yuan P, Zhang C. Cystic plate approach combined with ICG fluorescence in laparoscopic anatomical hepatectomy. Int J Surg 2024; 110:5685-5695. [PMID: 38814280 PMCID: PMC11392184 DOI: 10.1097/js9.0000000000001706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The in-depth understanding of the fine anatomy of the liver has promoted the development of modern liver surgery. With the rapid popularity of laparoscopic hepatectomy, the membrane structure of the liver and its ability to dissect the intrahepatic and extrahepatic vascular system more conveniently and accurately has been gradually emphasized. OBJECTIVE Exploring the value of extrahepatic sheath dissection of the hepatic pedicle in minimally invasive anatomical hepatectomy with cystic plate approach. This study aims to assess the benefits of integrating the cystic plate approach with real-time guided laparoscopic anatomical hepatectomy, in comparison with conventional laparoscopic anatomical hepatectomy. MATERIALS AND METHODS Based on the theory of cystic plate and hepatic portal plate, the authors have pioneered the fluorescence real-time guided cystic plate approach in hepatectomy. The article focuses on the anatomical knowledge and technical difficulties of anatomical hepatectomy with fluoroscopic laparoscopic cystic plate approach and explores the safety and practicality of the cystic plate approach in laparoscopic anatomical hepatectomy. Additionally, a retrospective cohort study was also conducted to compare the operation time, intraoperative blood loss, and postoperative complications between the cystic plate approach and the conventional approach during fluoroscopic laparoscopic hepatectomy. RESULTS A total of 38 patients who met the inclusion criteria underwent laparoscopic hepatectomy between January 2019 and November 2022. No significant disadvantages were found in terms of operation time and intraoperative blood loss during the surgeries. Furthermore, the postoperative indications, including liver function indexes on the first postoperative day, WBC, and the postoperative hospital stay, were also not affected, thus proving the safety of the cystic approach. Importantly, through the cystic plate approach, the target liver pedicle was fully freed, and then the segments to be resected were precisely marked by positive or negative staining, followed by hepatectomy under real-time fluoroscopic guidance. This approach is extremely advantageous in anatomical liver segment resections, especially in right posterior lobe or hemi-hepatectomy, without increasing intraoperative bleeding or postoperative complication rates. CONCLUSION This technique allows for easy and safe freeing of the target liver pedicle using membrane structures, and also allows for precise anatomical hepatectomy in combination with real-time fluoroscopic laparoscopic navigation.
Collapse
Affiliation(s)
- Hao Chen
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| | - Kefeng Shen
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| | - Xiayong Shen
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
- Department of Graduate School, Wannan Medical College, Wuhu, People's Republic of China
| | - Wenbin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| | - Yongsheng Ge
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| | - Jihai Yu
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| | - Weidong Jia
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| | - Jinliang Ma
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| | - Peng Yuan
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| | - Chuanhai Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, HeFei
| |
Collapse
|
5
|
Kron P, Lodge P. New trends in surgery for colorectal liver metastasis. Ann Gastroenterol Surg 2024; 8:553-565. [PMID: 38957562 PMCID: PMC11216794 DOI: 10.1002/ags3.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 07/04/2024] Open
Abstract
By presenting the most up-to-date findings and incorporating the latest evidence, this article seeks to present a comprehensive guide for navigating the complexities inherent in the management of colorectal liver metastasis. It aims to serve as a valuable resource offering clinicians and healthcare professionals an understanding of the diverse modalities and approaches available for treating this challenging and multifaceted disease. In an era of rapidly evolving medical knowledge, this article examines the latest insights to make informed decisions in the realm of colorectal liver metastasis management. The article does not only highlight the up-to-date knowledge but also provides the evidence for existing therapeutic strategies. This practical tool provides evidence-based recommendations to clinicians, thereby contributing to the ongoing advancement of effective treatment strategies for this challenging disease.
Collapse
Affiliation(s)
- Philipp Kron
- Department for General and Transplantation SurgeryUniversity Hospital TuebingenTuebingenGermany
| | - Peter Lodge
- St. James's University Hospital, Leeds Teaching Hospitals NHS TrustLeedsUK
| |
Collapse
|
6
|
Cui Y, Lan L, Lv J, Zhao B, Kong J, Lai Y. Chalcomoracin promotes apoptosis and endoplasmic reticulum stress in hepatocellular carcinoma cells. J Antibiot (Tokyo) 2024; 77:428-435. [PMID: 38724630 DOI: 10.1038/s41429-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Chalcomoracin (CMR), a Diels-Alder adduct obtained from mulberry leaves, demonstrated wide-spectrum anti-cancer activity. Herein, we aimed to explore the function of CMR and how it works in hepatocellular carcinoma (HCC). Human HCC cell lines Hep3B and SNU-387 were cultured and treated with various concentrations of CMR (1.5, 3, and 6 µM). Subsequently, the effects of CMR on cell viability, colony formation, apoptosis, migration, and invasion abilities were studied in vitro. Furthermore, the levels of endoplasmic reticulum (ER) stress-related proteins and mitogen-activated protein kinase (MAPK) pathway-related proteins in cells under CMR exposure were detected using western blot. Experiments in vivo were conducted to examine the effects of CMR on tumor growth in HCC. CMR administration inhibited the viability and clonogenic, migration, and invasion abilities, as well as promoted cell apoptosis and ER stress in Hep3B and SNU-387 cells. In addition, CMR treatment reduced the phosphorylation levels of ERK, P38, and JNK in the MAPK pathway. Moreover, an in vivo study showed that CMR administration could inhibit tumorigenesis and MAPK pathway activity in HCC. Our data indicate that CMR has the potential to inhibit the development of HCC, potentially through the inhibition of the MAPK pathway. These findings suggest that CMR may have promising applications as an anticancer agent in future therapeutics for HCC.
Collapse
Affiliation(s)
- Yongliang Cui
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Liqin Lan
- Department of Intensive Care Unit, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jiahui Lv
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jinfeng Kong
- Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Yongping Lai
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| |
Collapse
|
7
|
Fan S, Gao Y, Zhao P, Xie G, Zhou Y, Yang X, Li X, Zhang S, Gonzalez FJ, Qu A, Huang M, Bi H. Fenofibrate-promoted hepatomegaly and liver regeneration are PPAR α-dependent and partially related to the YAP pathway. Acta Pharm Sin B 2024; 14:2992-3008. [PMID: 39027236 PMCID: PMC11252459 DOI: 10.1016/j.apsb.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 07/20/2024] Open
Abstract
Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is widely prescribed for hyperlipidemia management. Recent studies also showed that it has therapeutic potential in various liver diseases. However, its effects on hepatomegaly and liver regeneration and the involved mechanisms remain unclear. Here, the study showed that fenofibrate significantly promoted liver enlargement and regeneration post-partial hepatectomy in mice, which was dependent on hepatocyte-expressed PPARα. Yes-associated protein (YAP) is pivotal in manipulating liver growth and regeneration. We further identified that fenofibrate activated YAP signaling by suppressing its K48-linked ubiquitination, promoting its K63-linked ubiquitination, and enhancing the interaction and transcriptional activity of the YAP-TEAD complex. Pharmacological inhibition of YAP-TEAD interaction using verteporfin or suppression of YAP using AAV Yap shRNA in mice significantly attenuated fenofibrate-induced hepatomegaly. Other factors, such as MYC, KRT23, RAS, and RHOA, might also participate in fenofibrate-promoted hepatomegaly and liver regeneration. These studies demonstrate that fenofibrate-promoted liver enlargement and regeneration are PPARα-dependent and partially through activating the YAP signaling, with clinical implications of fenofibrate as a novel therapeutic agent for promoting liver regeneration.
Collapse
Affiliation(s)
- Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| |
Collapse
|
8
|
Liu YY, Li YY, Liu YS, Zhang ZL, Gao YJ. Establishment and validation of a nomogram containing cytokeratin fragment antigen 21-1 for the differential diagnosis of intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Front Oncol 2024; 14:1404799. [PMID: 39007100 PMCID: PMC11239389 DOI: 10.3389/fonc.2024.1404799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Background Our study aimed to develop a nomogram incorporating cytokeratin fragment antigen 21-1 (CYFRA21-1) to assist in differentiating between patients with intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Methods A total of 487 patients who were diagnosed with ICC and HCC at Qilu Hospital of Shandong University were included in this study. The patients were divided into a training cohort and a validation cohort based on whether the data collection was retrospective or prospective. Univariate and multivariate analyses were employed to select variables for the nomogram. The discrimination and calibration of the nomogram were evaluated using the area under the receiver operating characteristic curve (AUC) and calibration plots. Decision curve analysis (DCA) was used to assess the nomogram's net benefits at various threshold probabilities. Results Six variables, including CYFRA21-1, were incorporated to establish the nomogram. Its satisfactory discriminative ability was indicated by the AUC (0.972 for the training cohort, 0.994 for the validation cohort), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) values. The Hosmer-Lemeshow test and the calibration plots demonstrated favorable consistency between the nomogram predictions and the actual observations. Moreover, DCA revealed the clinical utility and superior discriminative ability of the nomogram compared to the model without CYFRA21-1 and the model consisting of the logarithm of alpha-fetoprotein (Log AFP) and the logarithm of carbohydrate antigen 19-9 (Log CA19-9). Additionally, the AUC values suggested that the discriminative ability of Log CYFRA21-1 was greater than that of the other variables used as diagnostic biomarkers. Conclusions This study developed and validated a nomogram including CYFRA21-1, which can aid clinicians in the differential diagnosis of ICC and HCC patients.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue-Yue Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Yong-Shuai Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| | - Zong-Li Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yan-Jing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Li H, Du Z, Zhu L, Zhang C, Xiong J, Zhou B, Dong B, Zhang X, Alifu N. Ultrabright NIR-IIb Fluorescence Quantum Dots for Targeted Imaging-Guided Surgery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32045-32057. [PMID: 38861701 DOI: 10.1021/acsami.4c04748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Pioneering approaches for precise tumor removal involve fluorescence-guided surgery, while challenges persist, including the low fluorescence contrast observed at tumor boundaries and the potential for excessive damage to normal tissue at the edges. Lead/cadmium sulfide quantum dots (PbS@CdS QDs), boasting high quantum yields (QYs) and vivid fluorescence, have facilitated advancements in the second near-infrared window (NIR-II, 900-1700 nm). However, during fluorescent surgical navigation operations, hydrophilic coatings of these inorganic nanoparticles (NPs) guarantee biosafety; it also comes at the expense of losing a significant portion of QY and NIR-II fluorescence, causing heightened damage to normal tissues caused by cutting edges. Herein, we present hydrophilic core-shell PbS@CdS@PEG NPs with an exceptionally small diameter (∼8 nm) and a brilliant NIR-IIb (1500-1700 nm) emission at approximately 1600 nm. The mPEG-SH (MW: 2000) addresses the hydrophobicity and enhances the biosafety of PbS@CdS QDs. In vivo fluorescence-guided cervical tumor resection becomes achievable immediately upon injection of an aqueous solution of PbS@CdS@PEG NPs. Notably, this approach results in a significantly reduced thickness (100-500 μm) of damage to normal tissues at the margins of the resected tumors. With a high QY (∼30.2%) and robust resistance to photobleaching, NIR-IIb imaging is sustained throughout the imaging process.
Collapse
Affiliation(s)
- Hui Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi 830054, China
| | - Zhong Du
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 841100, China
| | - Lijun Zhu
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 841100, China
| | - Chi Zhang
- Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Xinjiang Medical University, Urumqi 830054, China
| | - Jiabao Xiong
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 841100, China
| | - Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Biao Dong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xueliang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Nuernisha Alifu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, Urumqi 830054, China
- Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Xinjiang Medical University, Urumqi 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 841100, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
10
|
Wang X, Xie S, Qiu C, Du X, Qin J, Hu Z, Grimm R, Zhu J, Shen W. Use of Intravoxel Incoherent Motion Diffusion-Weighted Imaging to Assess Mesenchymal Stromal Cells Promoting Liver Regeneration in a Rat Model. Acad Radiol 2024:S1076-6332(24)00302-7. [PMID: 38908920 DOI: 10.1016/j.acra.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 06/24/2024]
Abstract
RATIONALE AND OBJECTIVES Mesenchymal stem cells (MSCs) have the potential to promote liver regeneration, but the process is unclear. This study aims to explore the therapeutic effects and dynamic processes of MSCs in liver regeneration through intravoxel incoherent motion (IVIM) imaging. ANIMAL MODEL 70 adult Sprague-Dawley rats were randomly divided into either the control or MSC group (n = 35/group). All rats received a partial hepatectomy (PH) with the left lateral and middle lobes removed. Each group was divided into seven subgroups: pre-PH and 1, 2, 3, 5, 7, and 14 days post-PH (n = 5 rats/subgroup). Magnetic resonance imaging (MRI) was performed before obtaining pathological specimens at each time point on postoperative days 1, 2, 3, 5, 7, and 14. The MRI parameters for the pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF) were calculated. Correlation analysis was conducted for the biochemical markers (alanine transaminase [ALT], aspartate transaminase [AST], and total bilirubin [TBIL]), histopathological findings (hepatocyte size and Ki-67 proliferation index), liver volume (LV) and liver regeneration rate (LLR). RESULTS Liver D, D* , and PF differed significantly between the control and MSC groups at all time points (all P < 0.05). After PH, the D increased, then decreased, and the D* and PF decreased, then increased in both groups. The hepatocyte Ki-67 proliferation index of the MSC group was lower on day 2 post-PH, but higher on days 3 and 5 post-PH than that of the control group. Starting from day 3 post-PH, both the LV and LLR in the MSC group were greater than those in the control group (all P < 0.05). Hepatocytes were larger in the MSC group than in the control group on days 2 and 7 post-PH. In the MSC group, the D, D* , and PF were correlated with the AST levels, Ki-67 index and hepatocyte size (|r|=0.35-0.71; P < 0.05). In the control group, the D and D* were correlated with ALT levels, AST levels, Ki-67 index, LLR, LV, and hepatocyte size (|r|=0.34-0.95; P < 0.05). CONCLUSION Bone marrow MSC therapy can promote hepatocyte hypertrophy and prolong liver proliferation post-PH. IVIM parameters allow non-invasively evaluating the efficacy of MSCs in promoting LR.
Collapse
Affiliation(s)
- Xuyang Wang
- Medical College of Nankai University, Tianjin, China
| | - Shuangshuang Xie
- Radiology department, Tianjin First Central Hospital, Tianjin, China
| | - Caixin Qiu
- Radiology department, Tianjin First Central Hospital, Tianjin, China
| | - Xinzhe Du
- Medical College of Nankai University, Tianjin, China
| | - Jiaming Qin
- Medical College of Nankai University, Tianjin, China
| | - Zhandong Hu
- Pathology department, Tianjin First Central Hospital, Tianjin, China
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Jinxia Zhu
- MR Research Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Wen Shen
- Medical College of Nankai University, Tianjin, China; Radiology department, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
11
|
Wang Y, Huang R, Lu Y, Liu M, Mo R. Immuno-protective vesicle-crosslinked hydrogel for allogenic transplantation. Nat Commun 2024; 15:5176. [PMID: 38890279 PMCID: PMC11189436 DOI: 10.1038/s41467-024-49135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The longevity of grafts remains a major challenge in allogeneic transplantation due to immune rejection. Systemic immunosuppression can impair graft function and can also cause severe adverse effects. Here, we report a local immuno-protective strategy to enhance post-transplant persistence of allografts using a mesenchymal stem cell membrane-derived vesicle (MMV)-crosslinked hydrogel (MMV-Gel). MMVs are engineered to upregulate expression of Fas ligand (FasL) and programmed death ligand 1 (PD-L1). The MMVs are retained within the hydrogel by crosslinking. The immuno-protective microenvironment of the hydrogel protects allografts by presenting FasL and PD-L1. The binding of these ligands to T effector cells, the dominant contributors to graft destruction and rejection, results in apoptosis of T effector cells and generation of regulatory T cells. We demonstrate that implantation with MMV-Gel prolongs the survival and function of grafts in mouse models of allogeneic pancreatic islet cells and skin transplantation.
Collapse
Affiliation(s)
- Yuqian Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Renqi Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yougong Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Mingqi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
12
|
Wang L, Feng B, Liang M, Li D, Cong R, Chen Z, Wang S, Ma X, Zhao X. Prognostic performance of MRI LI-RADS version 2018 features and clinical-pathological factors in alpha-fetoprotein-negative hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:1918-1928. [PMID: 38642093 DOI: 10.1007/s00261-024-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE To evaluate the role of the magnetic resonance imaging (MRI) Liver Imaging Reporting and Data System (LI-RADS) version 2018 features and clinical-pathological factors for predicting the prognosis of alpha-fetoprotein (AFP)-negative (≤ 20 ng/ml) hepatocellular carcinoma (HCC) patients, and to compare with other traditional staging systems. METHODS We retrospectively enrolled 169 patients with AFP-negative HCC who received preoperative MRI and hepatectomy between January 2015 and August 2020 (derivation dataset:validation dataset = 118:51). A prognostic model was constructed using the risk factors identified via Cox regression analysis. Predictive performance and discrimination capability were evaluated and compared with those of two traditional staging systems. RESULTS Six risk factors, namely the LI-RADS category, blood products in mass, microvascular invasion, tumor size, cirrhosis, and albumin-bilirubin grade, were associated with recurrence-free survival. The prognostic model constructed using these factors achieved C-index of 0.705 and 0.674 in the derivation and validation datasets, respectively. Furthermore, the model performed better in predicting patient prognosis than traditional staging systems. The model effectively stratified patients with AFP-negative HCC into high- and low-risk groups with significantly different outcomes (p < 0.05). CONCLUSION A prognostic model integrating the LI-RADS category, blood products in mass, microvascular invasion, tumor size, cirrhosis, and albumin-bilirubin grade may serve as a valuable tool for refining risk stratification in patients with AFP-negative HCC.
Collapse
Affiliation(s)
- Leyao Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Meng Liang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rong Cong
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaowei Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Sicong Wang
- Magnetic Resonance Imaging Research, General Electric Healthcare (China), Beijing, 100176, China
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Tang X, Mao X, Ling P, Yu M, Pan H, Wang J, Liu M, Pan H, Qiu W, Che N, Zhang K, Bao F, Peng H, Ding Q, Wang S, Zhou W. Glycolysis inhibition induces anti-tumor central memory CD8 +T cell differentiation upon combination with microwave ablation therapy. Nat Commun 2024; 15:4665. [PMID: 38821965 PMCID: PMC11143264 DOI: 10.1038/s41467-024-49059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Minimally invasive thermal therapy is a successful alternative treatment to surgery in solid tumors with high complete ablation rates, however, tumor recurrence remains a concern. Central memory CD8+ T cells (TCM) play important roles in protection from chronic infection and cancer. Here we find, by single-cell RNA analysis of human breast cancer samples, that although the memory phenotype of peripheral CD8+ T cells increases slightly after microwave ablation (MWA), the metabolism of peripheral CD8+ T cells remains unfavorable for memory phenotype. In mouse models, glycolysis inhibition by 2-deoxy-D-glucose (2DG) in combination with MWA results in long-term anti-tumor effect via enhancing differentiation of tumor-specific CD44hiCD62L+CD8+ TCM cells. Enhancement of CD8+ TCM cell differentiation determined by Stat-1, is dependent on the tumor-draining lymph nodes (TDLN) but takes place in peripheral blood, with metabolic remodeling of CD8+ T cells lasting the entire course of the the combination therapy. Importantly, in-vitro glycolysis inhibition in peripheral CD8+ T cells of patients with breast or liver tumors having been treated with MWA thrice leads to their differentiation into CD8+ TCM cells. Our work thus offers a potential strategy to avoid tumor recurrence following MWA therapy and lays down the proof-of-principle for future clinical trials.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinrui Mao
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Peiwen Ling
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Muxin Yu
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hua Pan
- Department of General Surgery, Liyang Branch of Jiangsu Provincial People's Hospital, 70 Jianshe West Road, 213399, Liyang, China
| | - Jiaming Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingduo Liu
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Pan
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Nan Che
- Department of Rheumatology and Immunology, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
| | - Kai Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Pancreatic Center & Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Feifan Bao
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hongwei Peng
- Department of General Surgery, Liyang Branch of Jiangsu Provincial People's Hospital, 70 Jianshe West Road, 213399, Liyang, China
| | - Qiang Ding
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shui Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Wenbin Zhou
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Zhao Y, Chen C, Chen K, Sun Y, He N, Zhang X, Xu J, Shen A, Zhao S. Multi-omics analysis of macrophage-associated receptor and ligand reveals a strong prognostic signature and subtypes in hepatocellular carcinoma. Sci Rep 2024; 14:12163. [PMID: 38806553 PMCID: PMC11133315 DOI: 10.1038/s41598-024-62668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to morbidity and mortality worldwide. The interaction between receptors and ligands is the primary mode of intercellular signaling and plays a vital role in the progression of HCC. This study aimed to identify the macrophage-related receptor ligand marker genes associated with HCC and further explored the molecular immune mechanisms attributed to altered biomarkers. Single-cell RNA sequencing data containing primary and recurrent samples were downloaded from the China National GeneBank. Cell types were first identified to explore differences between immune cells from different sample sources. CellChat analysis was used to infer and analyze intercellular communication networks quantitatively. Three molecular subtypes were constructed based on the screened twenty macrophage-associated receptor ligand genes. Bulk RNA-Seq data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the screening, the minor absolute shrinkage and selection operator (LASSO) regression model was employed to identify key markers. After collecting peripheral blood and clinical information from patients, an enzyme-linked immunosorbent assay (ELISA) was used to detect the correlation between key markers and IL-10, one of the macrophage markers. After developing a new HCC risk adjustment model and conducting analysis, it was found that there were significant differences in immune status and gene mutations between the high-risk and low-risk groups of patients based on macrophage-associated receptor and ligand genes. This study identified SPP1, ANGPT2, and NCL as key biological targets for HCC. The drug-gene interaction network analysis identified wortmannin, ribavirin, and tarnafloxin as potential therapeutic drugs for the three key markers. In a clinical cohort study, patients with immune checkpoint inhibitor (ICI) resistance had significantly higher expression levels of OPN, ANGPT2, NCL, and IL-10 than patients with ICI-responsiveness. These three key markers were positively correlated with the expression level of IL-10. The signature based on macrophage-associated receptor and ligand genes can accurately predict the prognosis of patients with HCC and the sensitivity to immunotherapy. These results may help guide the development of targeted prevention and personalized treatment of HCC.
Collapse
Affiliation(s)
- Yulou Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School, Nantong University, Nantong, China
| | - Cong Chen
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Kang Chen
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanjun Sun
- The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Ning He
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiubing Zhang
- Department of Medical Oncology, Nantong Second People's Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Department of Medical Oncology, Nantong Second People's Affiliated Hospital of Nantong University, Nantong, China
| | - Aiguo Shen
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| | - Suming Zhao
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
15
|
Khairnar P, Phatale V, Shukla S, Tijani AO, Hedaoo A, Strauss J, Verana G, Vambhurkar G, Puri A, Srivastava S. Nanocarrier-Integrated Microneedles: Divulging the Potential of Novel Frontiers for Fostering the Management of Skin Ailments. Mol Pharm 2024; 21:2118-2147. [PMID: 38660711 DOI: 10.1021/acs.molpharmaceut.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.
Collapse
Affiliation(s)
- Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
16
|
Demartis S, Rassu G, Anjani QK, Volpe-Zanutto F, Hutton ARJ, Sabri AB, McCarthy HO, Giunchedi P, Donnelly RF, Gavini E. Improved pharmacokinetic and lymphatic uptake of Rose Bengal after transfersome intradermal deposition using hollow microneedles. J Control Release 2024; 369:363-375. [PMID: 38554770 DOI: 10.1016/j.jconrel.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The lymphatic system is active in several processes that regulate human diseases, among which cancer progression stands out. Thus, various drug delivery systems have been investigated to promote lymphatic drug targeting for cancer therapy; mainly, nanosized particles in the 10-150 nm range quickly achieve lymphatic vessels after an interstitial administration. Herein, a strategy to boost the lymphotropic delivery of Rose Bengal (RB), a hydrosoluble chemotherapeutic, is proposed, and it is based on the loading into Transfersomes (RBTF) and their intradermal deposition in vivo by microneedles. RBTF of 96.27 ± 13.96 nm (PDI = 0.29 ± 0.02) were prepared by a green reverse-phase evaporation technique, and they showed an RB encapsulation efficiency of 98.54 ± 0.09%. In vitro, RBTF remained physically stable under physiological conditions and avoided the release of RB. In vivo, intravenous injection of RBTF prolonged RB half-life of 50 min in healthy rats compared to RB intravenous injection; the RB half-life in rat body was further increased after intradermal injection reaching 24 h, regardless of the formulation used. Regarding lymphatic targeting, RBTF administered intravenously provided an RB accumulation in the lymph nodes of 12.3 ± 0.14 ng/mL after 2 h, whereas no RB accumulation was observed after RB intravenous injection. Intradermally administered RBTF resulted in the highest RB amount detected in lymph nodes after 2 h from the injection (84.2 ± 25.10 ng/mL), which was even visible to the naked eye based on the pink colouration of the drug. In the case of intradermally administered RB, RB in lymph node was detected only at 24 h (13.3 ± 1.41 ng/mL). In conclusion, RBTF proved an efficient carrier for RB delivery, enhancing its pharmacokinetics and promoting lymph-targeted delivery. Thus, RBTF represents a promising nanomedicine product for potentially facing the medical need for novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Sara Demartis
- Department of Chemical, Mathematical, Natural and Physical Sciences, University of Sassari, Sassari 07100, Italy
| | - Giovanna Rassu
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Akmal B Sabri
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Paolo Giunchedi
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Elisabetta Gavini
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
17
|
Sun L, Zhao Y, Peng H, Zhou J, Zhang Q, Yan J, Liu Y, Guo S, Wu X, Li B. Carbon dots as a novel photosensitizer for photodynamic therapy of cancer and bacterial infectious diseases: recent advances. J Nanobiotechnology 2024; 22:210. [PMID: 38671474 PMCID: PMC11055261 DOI: 10.1186/s12951-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.
Collapse
Affiliation(s)
- Lingxiang Sun
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Hongyi Peng
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan, China
| | - Jingyu Yan
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yingyu Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Susu Guo
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| |
Collapse
|
18
|
Zou J, Zhang Y, Pan Y, Mao Z, Chen X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem Soc Rev 2024; 53:3224-3252. [PMID: 38379286 DOI: 10.1039/d3cs00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Hangzhou, Zhejiang 310009, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
19
|
Magistri P, Guidetti C, Catellani B, Caracciolo D, Odorizzi R, Frassoni S, Bagnardi V, Guerrini GP, Di Sandro S, Di Benedetto F. Robotic ALPPS for primary and metastatic liver tumours: short-term outcomes versus open approach. Updates Surg 2024; 76:435-445. [PMID: 38326663 DOI: 10.1007/s13304-023-01680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/25/2023] [Indexed: 02/09/2024]
Abstract
Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) is one of the strategies available for patients initially unresectable. High risk of peri-operative morbidity and mortality limited its application and diffusion. We aimed to analyse short-term outcomes of robotic ALPPS versus open approach, to assess safety and reproducibility of this technique. A retrospective analysis of prospectively maintained databases at University of Modena and Reggio Emilia on patients that underwent ALPPS between January 2015 and September 2022 was conducted. The main aim of the study was to evaluate safety and feasibility of robotic approach, either full robotic or only first-stage robotic, compared to a control group of patients who underwent open ALPPS in the same Institution. 23 patients were included. Nine patients received a full open ALPPS (O-ALPPS), 7 received a full robotic ALPPS (R-ALPPS), and 7 underwent a robotic approach for stage 1, followed by an open approach for stage 2 (R + O-ALPPS). PHLF grade B-C after stage 1 was 0% in all groups, rising to 58% in the R + O-ALPPS group after stage 2 and remaining 0% in the R-ALPPS group. 86% of R-ALPPS cases were discharged from the hospital between stages 1 and 2, and median total in-hospital stay and ICU stay favoured full robotic approach as well. This contemporary study represents the largest series of robotic ALPPS, showing potential advantages from full robotic ALPPS over open approach, resulting in reduced hospital stay and complications and lower incidence of 90-day mortality.
Collapse
Affiliation(s)
- Paolo Magistri
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Cristiano Guidetti
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Barbara Catellani
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Daniela Caracciolo
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Roberta Odorizzi
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Samuele Frassoni
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Gian Piero Guerrini
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Stefano Di Sandro
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University Hospital of Modena "Policlinico", University of Modena and Reggio Emilia, 41124, Modena, Italy.
| |
Collapse
|
20
|
Bozkurt E, Sijberden JP, Kasai M, Abu Hilal M. Efficacy and perioperative safety of different future liver remnant modulation techniques: a systematic review and network meta-analysis. HPB (Oxford) 2024; 26:465-475. [PMID: 38245490 DOI: 10.1016/j.hpb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND In daily clinical practice, different future liver remnant (FLR) modulation techniques are increasingly used to allow a liver resection in patients with insufficient FLR volume. This systematic review and network meta-analysis aims to compare the efficacy and perioperative safety of portal vein ligation (PVL), portal vein embolization (PVE), liver venous deprivation (LVD) and associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). METHODS A literature search for studies comparing liver resections following different FLR modulation techniques was performed in MEDLINE, Embase and Cochrane Central, and pairwise and network meta-analyses were conducted. RESULTS Overall, 23 studies comprising 1557 patients were included. LVD achieved the greatest increase in FLR (17.32 %, 95% CI 2.49-32.15), while ALPPS was most effective in preventing dropout before the completion hepatectomy (OR 0.29, 95% CI 0.15-0.55). PVL tended to be associated with a longer time to completion hepatectomy (MD 5.78 days, 95% CI -0.67-12.23). Liver failure occurred less frequently after LVD, compared to PVE (OR 0.35, 95% CI 0.14-0.87) and ALPPS (OR 0.28, 95% CI 0.09-0.85). DISCUSSION ALPPS and LVD seem superior to PVE and PVL in terms of achieved FLR increase and subsequent treatment completion. LVD was associated with lower rates of post hepatectomy liver failure, compared to both PVE and ALPPS. A summary of the protocol has been prospectively registered in the PROSPERO database (CRD42022321474).
Collapse
Affiliation(s)
- Emre Bozkurt
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy; Department of Surgery, Hepatopancreatobiliary Surgery Division, Koç University Hospital, Istanbul, Turkey
| | - Jasper P Sijberden
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy; Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Meidai Kasai
- Department of Surgery, Meiwa Hospital, Hyogo, Japan
| | - Mohammad Abu Hilal
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy; Department of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
21
|
Xin H, Zhang Y, Lai Q, Liao N, Zhang J, Liu Y, Chen Z, He P, He J, Liu J, Zhou Y, Yang W, Zhou Y. Automatic origin prediction of liver metastases via hierarchical artificial-intelligence system trained on multiphasic CT data: a retrospective, multicentre study. EClinicalMedicine 2024; 69:102464. [PMID: 38333364 PMCID: PMC10847157 DOI: 10.1016/j.eclinm.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background Currently, the diagnostic testing for the primary origin of liver metastases (LMs) can be laborious, complicating clinical decision-making. Directly classifying the primary origin of LMs at computed tomography (CT) images has proven to be challenging, despite its potential to streamline the entire diagnostic workflow. Methods We developed ALMSS, an artificial intelligence (AI)-based LMs screening system, to provide automated liver contrast-enhanced CT analysis for distinguishing LMs from hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), as well as subtyping primary origin of LMs as six organ systems. We processed a CECT dataset between January 1, 2013 and June 30, 2022 (n = 3105: 840 HCC, 354 ICC, and 1911 LMs) for training and internally testing ALMSS, and two additional cohorts (n = 622) for external validation of its diagnostic performance. The performance of radiologists with and without the assistance of ALMSS in diagnosing and subtyping LMs was assessed. Findings ALMSS achieved average area under the curve (AUC) of 0.917 (95% confidence interval [CI]: 0.899-0.931) and 0.923 (95% [CI]: 0.905-0.937) for differentiating LMs, HCC and ICC on both the internal testing set and external testing set, outperformed that of two radiologists. Moreover, ALMSS yielded average AUC of 0.815 (95% [CI]: 0.794-0.836) and 0.818 (95% [CI]: 0.790-0.842) for predicting six primary origins on both two testing sets. Interestingly, ALMSS assigned origin diagnoses for LMs with pathological phenotypes beyond the training categories with average AUC of 0.761 (95% [CI]: 0.657-0.842), which verify the model's diagnostic expandability. Interpretation Our study established an AI-based diagnostic system that effectively identifies and characterizes LMs directly from multiphasic CT images. Funding National Natural Science Foundation of China, Guangdong Provincial Key Laboratory of Medical Image Processing.
Collapse
Affiliation(s)
- Hongjie Xin
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiwen Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qianwei Lai
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Naying Liao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanping Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Zhihua Chen
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Pengyuan He
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jian He
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junwei Liu
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchen Zhou
- Department of General Surgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yuanping Zhou
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Yan Q, Li D, Jia S, Yang J, Ma J. Novel gene-based therapeutic approaches for the management of hepatic complications in diabetes: Reviewing recent advances. J Diabetes Complications 2024; 38:108688. [PMID: 38281457 DOI: 10.1016/j.jdiacomp.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/30/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia and systemic complications, including hepatic dysfunction, significantly contributing to disease progression and morbidity. This article reviews recent advances in gene-based therapeutic strategies targeting hepatic complications in diabetes, offering a promising approach for precision medicine by addressing underlying molecular mechanisms. Traditional treatments for hepatic complications in diabetes often manage symptoms rather than molecular causes, showing limited efficacy. Gene-based therapies are poised to correct dysfunctional pathways and restore hepatic function. Fundamental gene therapy approaches include gene silencing via small interfering RNAs (siRNAs) to target hepatic glucose production, lipid metabolism, and inflammation. Viral vectors can restore insulin sensitivity and reduce oxidative stress in diabetic livers. Genome editing, especially CRISPR-Cas9, allows the precise modification of disease-associated genes, offering immense potential for hepatic complication treatment. Strategies using CRISPR-Cas9 to enhance insulin receptor expression and modulate aberrant lipid regulatory genes are explored. Safety challenges in gene-based therapies, such as off-target effects and immune responses, are discussed. Advances in nanoparticle-based delivery systems and targeted gene editing techniques offer solutions to enhance specificity and minimize adverse effects. In conclusion, gene-based therapeutic approaches are a transformative direction in managing hepatic complications in diabetes. Further research is needed to optimize efficacy, safety, and long-term outcomes. Nevertheless, these innovative strategies promise to improve the lives of individuals with diabetes by addressing hepatic dysfunction's genetic root causes.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
23
|
Sijberden JP, Zimmitti G, Cipriani F, Furumaya A, Lanari J, Suhool A, Osei-Bordom D, Aghayan D, Jovine E, Ruzzenente A, Ardito F, D'Hondt M, Ferrero A, Benedetti Cacciaguerra A, Lopez-Ben S, Dagher I, Fuks D, Alseidi A, Rotellar F, di Benedetto F, Ratti F, Swijnenburg RJ, Gringeri E, Vivarelli M, Giuliante F, Edwin B, Sutcliffe RP, Primrose JN, Cillo U, Besselink MG, Aldrighetti LA, Abu Hilal M. Trends in the characteristics and perioperative outcomes of patients undergoing laparoscopic and open resections for benign liver lesions: An international multicenter retrospective cohort study of 845 patients. HPB (Oxford) 2024; 26:188-202. [PMID: 37989610 DOI: 10.1016/j.hpb.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Solid benign liver lesions (BLL) are increasingly discovered, but clear indications for surgical treatment are often lacking. Concomitantly, laparoscopic liver surgery is increasingly performed. The aim of this study was to assess if the availability of laparoscopic surgery has had an impact on the characteristics and perioperative outcomes of patients with BLL. METHODS This is a retrospective international multicenter cohort study, including patients undergoing a laparoscopic or open liver resection for BLL from 19 centers in eight countries. Patients were divided according to the time period in which they underwent surgery (2008-2013, 2014-2016, and 2017-2019). Unadjusted and risk-adjusted (using logistic regression) time-trend analyses were performed. The primary outcome was textbook outcome (TOLS), defined as the absence of intraoperative incidents ≥ grade 2, bile leak ≥ grade B, severe complications, readmission and 90-day or in-hospital mortality, with the absence of a prolonged length of stay added to define TOLS+. RESULTS In the complete dataset comprised of patients that underwent liver surgery for all indications, the proportion of patients undergoing liver surgery for benign disease remained stable (12.6% in the first time period, 11.9% in the second time period and 12.1% in the last time period, p = 0.454). Overall, 845 patients undergoing a liver resection for BLL in the first (n = 374), second (n = 258) or third time period (n = 213) were included. The rates of ASA-scores≥3 (9.9%-16%,p < 0.001), laparoscopic surgery (57.8%-77%,p < 0.001), and Pringle maneuver use (33.2%-47.2%,p = 0.001) increased, whereas the length of stay decreased (5 to 4 days,p < 0.001). There were no significant changes in the TOLS rate (86.6%-81.3%,p = 0.151), while the TOLS + rate increased from 41.7% to 58.7% (p < 0.001). The latter result was confirmed in the risk-adjusted analyses (aOR 1.849,p = 0.004). CONCLUSION The surgical treatment of BLL has evolved with an increased implementation of the laparoscopic approach and a decreased length of stay. This evolution was paralleled by stable TOLS rates above 80% and an increase in the TOLS + rate.
Collapse
Affiliation(s)
- Jasper P Sijberden
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy; Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Giuseppe Zimmitti
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - Federica Cipriani
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alicia Furumaya
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jacopo Lanari
- Department of Surgical, Oncological and Gastroenterological Sciences, General Surgery 2, Hepatopancreatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Amal Suhool
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | | | - Davit Aghayan
- The Intervention Centre and Department of HPB Surgery, Oslo University Hospital and Institute of Medicine, University of Oslo, Oslo, Norway
| | - Elio Jovine
- Department of Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Francesco Ardito
- Chirurgia Epatobiliare, Università Cattolica Del Sacro Cuore-IRCCS, Rome, Italy
| | - Mathieu D'Hondt
- Department of Digestive and Hepatobiliary/Pancreatic Surgery, Groeninge Hospital, Kortrijk, Belgium
| | - Alessandro Ferrero
- Department of General and Oncological Surgery, Umberto I Mauriziano Hospital, Largo Turati 62, 10128, Turin, Italy
| | - Andrea Benedetti Cacciaguerra
- Hepatobiliary and Abdominal Transplantation Surgery, Department of Experimental and Clinical Medicine, Riuniti Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Santi Lopez-Ben
- Servei de Cirurgia General i Digestiva, Hospital Doctor Josep Trueta de Girona, Girona, Catalonia, Spain
| | - Ibrahim Dagher
- Department of Digestive Minimally Invasive Surgery, Antoine Béclère Hospital, Paris, France
| | - David Fuks
- Department of Digestive, Oncologic and Metabolic Surgery, Institut Mutualiste Montsouris, Université Paris Descartes, Paris 75014, France
| | - Adnan Alseidi
- Department of Surgery, Virginia Mason Medical Center, Seattle, USA; Department of Surgery, University of California San Francisco, California, USA
| | - Fernando Rotellar
- HPB and Liver Transplantation Unit, Department of Surgery, University Clinic, Universidad de Navarra, Institute of Health Research of Navarra (IdisNA), Pamplona, Spain
| | - Fabrizio di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Ratti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Rutger-Jan Swijnenburg
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Enrico Gringeri
- Department of Surgical, Oncological and Gastroenterological Sciences, General Surgery 2, Hepatopancreatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Marco Vivarelli
- Hepatobiliary and Abdominal Transplantation Surgery, Department of Experimental and Clinical Medicine, Riuniti Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Felice Giuliante
- Chirurgia Epatobiliare, Università Cattolica Del Sacro Cuore-IRCCS, Rome, Italy
| | - Bjørn Edwin
- The Intervention Centre and Department of HPB Surgery, Oslo University Hospital and Institute of Medicine, University of Oslo, Oslo, Norway
| | | | - John N Primrose
- Department of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Umberto Cillo
- Department of Surgical, Oncological and Gastroenterological Sciences, General Surgery 2, Hepatopancreatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Marc G Besselink
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Luca A Aldrighetti
- Hepatobiliary Surgery Division, IRCCS San Raffaele Hospital, Milan, Italy
| | - Mohammad Abu Hilal
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy; Department of Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
24
|
Kron P, Lodge JPA. Changing perspectives in the treatment of colorectal liver metastases. Br J Surg 2024; 111:znad431. [PMID: 38198156 DOI: 10.1093/bjs/znad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Affiliation(s)
- Philipp Kron
- Department for Surgery, University Hospital Zurich, Zurich, Switzerland
- Department for General and Transplantation Surgery, University Hospital Tuebingen, Tuebingen, Germany
| | - J Peter A Lodge
- HPB and Transplant Unit, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
25
|
Wu Y, Guo J, Peng W. Application of the IDEAL framework in hepatopancreatobiliary surgery: a review of the literature. Langenbecks Arch Surg 2023; 409:20. [PMID: 38153558 DOI: 10.1007/s00423-023-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE To evaluate every stage of surgical innovation and generate high-quality research evidence, the IDEAL (Idea, Development, Exploration, Assessment, Long-term study) framework was developed. This study aimed to explore the application of the IDEAL framework in hepatopancreatobiliary surgery and identify factors limiting its dissemination. METHODS We conducted a citation search of 8 core IDEAL framework articles in PubMed, Embase, Web of Science, and Scopus databases from 2009 to 2022. Two independent reviewers screened and selected articles related to hepatopancreatobiliary surgery. RESULTS A total of 1621 articles were identified through citation search. Following screening, 132 articles were finally retained, including 75 original studies (57%) and 57 secondary studies (43%). Of the original studies, only 10 articles (13%) accurately applied the IDEAL framework in methodology, distributed as follows: 1 in pre-IDEAL stage (0), 2 in Idea stage (1), 7 in Development stage (2a), 1 in Exploration stage (2b), and no articles in Assessment and Long-term study stages (3, 4). In the secondary studies, 36 articles (63%) mentioned and discussed the IDEAL framework, and all supported its application. CONCLUSIONS The application of the IDEAL framework in hepatopancreatobiliary surgery is increasingly widespread, as evidenced by its substantial citation in numerous articles. However, the utilization of the IDEAL framework remains predominantly confined to the early stages of innovation in hepatopancreatobiliary surgery, coupled with instances of misapplication stemming from insufficient comprehension of the framework. Further efforts are necessary to extend the impact of the IDEAL framework and provide surgeons with comprehensive guidance for its judicious implementation.
Collapse
Affiliation(s)
- Youwei Wu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiulin Guo
- Department of Information, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Peng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Zhang S, Nie J, Tai S, Zheng T. PD-L1 inhibitor plus gemcitabine and cisplatin therapy followed by conversion surgery for initially unresectable advanced gallbladder cancer. BMJ Case Rep 2023; 16:e255403. [PMID: 38123314 DOI: 10.1136/bcr-2023-255403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Advanced gallbladder cancer (GBC) is not amenable to surgical resection. There are limited treatment options and the prognosis is dismal. The role of immune checkpoint inhibitors in conversion therapy remains unclear for initially unresectable advanced GBC. We present a case of a woman in her late 60s diagnosed with stage IV GBC with liver and para-aortic and retroperitoneal lymph node metastases, who achieved a pathological complete response after three cycles of programmed cell death-ligand 1 inhibitor durvalumab combined with gemcitabine and cisplatin regimen and underwent conversion surgery without complication. The patient went on to develop disease progression without adjuvant therapy 6 months after surgery.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, People's Republic of China
| | - Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, People's Republic of China
| | - Sheng Tai
- Department of Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin, People's Republic of China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
- Heilongjiang Cancer Institute, Harbin, People's Republic of China
| |
Collapse
|
27
|
Li G, Zhu L, Guo M, Wang D, Meng M, Zhong Y, Zhang Z, Lin Y, Liu C, Wang J, Zhang Y, Gao Y, Cao Y, Xia Z, Qiu J, Li Y, Liu S, Chen H, Liu W, Han Y, Zheng M, Ma X, Xu L. Characterisation of forkhead box protein A3 as a key transcription factor for hepatocyte regeneration. JHEP Rep 2023; 5:100906. [PMID: 38023606 PMCID: PMC10679869 DOI: 10.1016/j.jhepr.2023.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background & Aims Liver regeneration is vital for the recovery of liver function after injury, yet the underlying mechanism remains to be elucidated. Forkhead box protein A3 (FOXA3), a member of the forkhead box family, plays important roles in endoplasmic reticulum stress sensing, and lipid and glucose homoeostasis, yet its functions in liver regeneration are unknown. Methods Here, we explored whether Foxa3 regulates liver regeneration via acute and chronic liver injury mice models. We further characterised the molecular mechanism by chromatin immunoprecipitation sequencing and rescue experiments in vivo and in vitro. Then, we assessed the impact of Foxa3 pharmacological activation on progression and termination of liver regeneration. Finally, we confirmed the Foxa3-Cebpb axis in human liver samples. Results Foxa3 is dominantly expressed in hepatocytes and cholangiocytes and is induced upon partial hepatectomy (PH) or carbon tetrachloride (CCl4) administration. Foxa3 deficiency in mice decreased cyclin gene levels and delayed liver regeneration after PH, or acute or chronic i.p. CCl4 injection. Conversely, hepatocyte-specific Foxa3 overexpression accelerated hepatocytes proliferation and attenuated liver damage in an CCl4-induced acute model. Mechanistically, Foxa3 directly regulates Cebpb transcription, which is involved in hepatocyte division and apoptosis both in vivo and in vitro. Of note, Cebpb overexpression in livers of Foxa3-deficient mice rescued their defects in cell proliferation and regeneration upon CCl4 treatment. In addition, pharmacological induction of Foxa3 via cardamonin speeded up hepatocyte proliferation after PH, without interfering with liver regeneration termination. Finally, Cebpb and Ki67 levels had a positive correlation with Foxa3 expression in human chronic disease livers. Conclusions These data characterise Foxa3 as a vital regulator of liver regeneration, which may represent an essential factor to maintain liver mass after liver injury by governing Cebpb transcription. Impact and Implications Liver regeneration is vital for the recovery of liver function after chemical insults or hepatectomy, yet the underlying mechanism remains to be elucidated. Herein, via in vitro and in vivo models and analysis, we demonstrated that Forkhead box protein A3 (FOXA3), a Forkhead box family member, maintained normal liver regeneration progression by governing Cebpb transcription and proposed cardamonin as a lead compound to induce Foxa3 and accelerate liver repair, which signified that FOXA3 may be a potential therapeutic target for further preclinical study on treating liver injury.
Collapse
Affiliation(s)
- Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijun Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yinzhao Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yi Lin
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Caizhi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yahui Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yining Gao
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhirui Xia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenyue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
28
|
Mehrabi A, Golriz M, Ramouz A, Khajeh E, Hammad A, Hackert T, Müller-Stich B, Strobel O, Ali-Hasan-Al-Saegh S, Ghamarnejad O, Al-Saeedi M, Springfeld C, Rupp C, Mayer P, Mieth M, Goeppert B, Hoffmann K, Büchler MW. Promising Outcomes of Modified ALPPS for Staged Hepatectomy in Cholangiocarcinoma. Cancers (Basel) 2023; 15:5613. [PMID: 38067316 PMCID: PMC10705795 DOI: 10.3390/cancers15235613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/14/2024] Open
Abstract
Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a two-stage procedure that can potentially cure patients with large cholangiocarcinoma. The current study evaluates the impact of modifications on the outcomes of ALPPS in patients with cholangiocarcinoma. In this single-center study, a series of 30 consecutive patients with cholangiocarcinoma (22 extrahepatic and 8 intrahepatic) who underwent ALPPS between 2011 and 2021 was evaluated. The ALPPS procedure in our center was modified in 2016 by minimizing the first stage of the surgical procedure through biliary externalization after the first stage, antibiotic administration during the interstage phase, and performing biliary reconstructions during the second stage. The rate of postoperative major morbidity and 90-day mortality, as well as the one- and three-year disease-free and overall survival rates were calculated and compared between patients operated before and after 2016. The ALPPS risk score before the second stage of the procedure was lower in patients who were operated on after 2016 (before 2016: median 6.4; after 2016: median 4.4; p = 0.010). Major morbidity decreased from 42.9% before 2016 to 31.3% after 2016, and the 90-day mortality rate decreased from 35.7% before 2016 to 12.5% after 2016. The three-year survival rate increased from 40.8% before 2016 to 73.4% after 2016. Our modified ALPPS procedure improved perioperative and postoperative outcomes in patients with extrahepatic and intrahepatic cholangiocarcinoma. Minimizing the first step of the ALPPS procedure was key to these improvements.
Collapse
Affiliation(s)
- Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ali Ramouz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ahmed Hammad
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Beat Müller-Stich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sadeq Ali-Hasan-Al-Saegh
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christian Rupp
- Department of Internal Medicine, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Philipp Mayer
- Department of Interventional Radiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Goeppert
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Katrin Hoffmann
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Markus W. Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Meillat H, Garnier J, Palen A, Ewald J, de Chaisemartin C, Tyran M, Mitry E, Lelong B. Organ sparing to cure stage IV rectal cancer: A case report and review of literature. World J Gastrointest Surg 2023; 15:2619-2626. [PMID: 38111764 PMCID: PMC10725537 DOI: 10.4240/wjgs.v15.i11.2619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Rectal sparing is an option for some rectal cancers with complete or good response after chemoradiotherapy (CRT); however, it has never been evaluated in patients with metastases. We assessed long-term outcomes of a rectal-sparing approach in a liver-first strategy for patients with rectal cancer with resectable liver metastases. CASE SUMMARY We examined patients who underwent an organ-sparing approach for rectal cancer with synchronous liver metastases using a liver-first strategy during 2010-2015 (n = 8). Patients received primary chemotherapy and pelvic CRT. Liver surgery was performed during the interval between CRT completion and rectal tumor re-evaluation. Clinical and oncological characteristics and long-term outcomes were assessed.All patients underwent liver metastatic resection with curative intent. The R0 rate was 100%. Six and two patients underwent local excision and a watch-and-wait (WW) approach, respectively. All patients had T3N1 tumors at diagnosis and had good clinical response after CRT. The median survival time was 60 (range, 14-127) mo. Three patients were disease free for 5, 8, and 10 years after the procedure. Five patients developed metastatic recurrence in the liver (n = 5) and/or lungs (n = 2). Only one patient developed local recurrence concurrent with metastatic recurrence 24 mo after the WW approach. Two patients died during follow-up. CONCLUSION The results suggest good local control in patients undergoing organ-sparing strategies for rectal cancer with synchronous liver metastasis. Prospective trials are required to validate these data and identify good candidates for these strategies.
Collapse
Affiliation(s)
- Hélène Meillat
- Department of Digestive Surgical Oncology, Institut Paoli Calmettes, Marseille 13009, France
| | - Jonathan Garnier
- Department of Digestive Surgical Oncology, Institut Paoli Calmettes, Marseille 13009, France
| | - Anais Palen
- Department of Digestive Surgical Oncology, Institut Paoli Calmettes, Marseille 13009, France
| | - Jacques Ewald
- Department of Digestive Surgical Oncology, Institut Paoli Calmettes, Marseille 13009, France
| | - Cécile de Chaisemartin
- Department of Digestive Surgical Oncology, Institut Paoli Calmettes, Marseille 13009, France
| | - Marguerite Tyran
- Department of Radiotherapy, Institut Paoli Calmettes, Marseille 13009, France
| | - Emmanuel Mitry
- Department of Digestive Surgical Oncology, Institut Paoli Calmettes, Marseille 13009, France
| | - Bernard Lelong
- Department of Digestive Surgical Oncology, Institut Paoli Calmettes, Marseille 13009, France
| |
Collapse
|
30
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
31
|
Shin DW. [Treatment of Ampullary Adenocarcinoma]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:159-170. [PMID: 37876255 DOI: 10.4166/kjg.2023.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
The ampulla of Vater is a small projection formed by the confluence of the main pancreatic duct and common bile duct in the second part of the duodenum. Primary ampullary adenocarcinoma is a rare malignancy, accounting for only 0.2% of gastrointestinal cancers and approximately 7% of all periampullary cancers. Jaundice from a biliary obstruction is the most common symptom of ampullary adenocarcinoma. In the early stages, radical pancreatoduodenectomy is the standard surgical approach. On the other hand, no randomized controlled trial has provided evidence to guide physicians on the choice of adjuvant/palliative chemotherapy because of the rarity of the disease and the paucity of related research. This paper reports the biology, histology, current therapeutic strategies, and potential future therapies of ampullary adenocarcinoma.
Collapse
Affiliation(s)
- Dong Woo Shin
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
32
|
Qian Y, Jia W, Liu H. Editorial: Biomarkers and immunotherapy of hepatic-biliary-pancreatic cancers. Front Oncol 2023; 13:1301416. [PMID: 37941545 PMCID: PMC10629553 DOI: 10.3389/fonc.2023.1301416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Yawei Qian
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenyu Jia
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Hongda Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Chang W, Chen Y, Zhou S, Ren L, Xu Y, Zhu D, Tang W, Ye Q, Wang X, Fan J, Wei Y, Xu J. Anatomical resection improves relapse-free survival in colorectal liver metastases in patients with KRAS/NRAS/BRAF mutations or right-sided colon cancer: a retrospective cohort study. Int J Surg 2023; 109:3070-3077. [PMID: 37526097 PMCID: PMC10583959 DOI: 10.1097/js9.0000000000000562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/02/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND The type of liver resection (anatomical resection, AR or non-anatomical resection, NAR) for colorectal liver metastases (CRLM) is subject to debate. The debate may persist because some prognostic factors, associated with aggressive tumor biological behavior, have been overlooked. OBJECTIVE Our study aimed to investigate the characteristics of patients who would benefit more from anatomical resection for CRLM. METHODS Seven hundred twenty-nine patients who underwent hepatic resection of CRLM were retrospectively collected from June 2012 to May 2019. Treatment effects between AR and NAR were compared in full subgroup analyses. Tumor relapse-free survival (RFS) was evaluated by a stratified log-rank test and summarized with the use of Kaplan-Meier and Cox proportional hazards methods. RESULTS Among 729 patients, 235 (32.2%) underwent AR and 494 (67.8%) underwent NAR. We showed favorable trends in RFS for AR compared with NAR in the patients with KRAS/NRAS/BRAF mutation (interaction P <0.001) or right-sidedness (interaction P <0.05). Patients who underwent AR had a markedly improved RFS compared with NAR in the cohorts of RAS/NRAS/BRAF mutation (median RFS 23.2 vs. 11.1 months, P <0.001) or right-sidedness (median RFS 31.6 vs. 11.5 months, P <0.001); upon the multivariable analyses, AR [gene mutation: hazard ratio (HR)=0.506, 95% CI=0.371-0.690, P <0.001; right-sidedness: HR=0.426, 95% CI=0.261-0.695, P =0.001) remained prognostic independently. In contrast, patients who underwent AR had a similar RFS compared with those who underwent NAR, in the cohorts of patients with gene wild-type tumors (median RFS 20.5 vs. 21.6 months, P =0.333). or left-sidedness (median RFS 15.8 vs. 19.5 months, P =0.294). CONCLUSIONS CRLM patients with gene mutation or right-sidedness can benefit more from AR rather than from NAR.
Collapse
Affiliation(s)
- Wenju Chang
- Colorectal Cancer Center
- Department of General Surgery
- Cancer Center, Zhongshan Hospital, Fudan University
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai
- Department of General Surgery, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, People’s Republic of China
| | - Yijiao Chen
- Colorectal Cancer Center
- Department of General Surgery
| | - Shizhao Zhou
- Colorectal Cancer Center
- Department of General Surgery
| | - Li Ren
- Colorectal Cancer Center
- Department of General Surgery
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai
- Department of General Surgery, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, People’s Republic of China
| | - Yuqiu Xu
- Colorectal Cancer Center
- Department of General Surgery
| | - Dexiang Zhu
- Colorectal Cancer Center
- Department of General Surgery
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai
| | - Wentao Tang
- Colorectal Cancer Center
- Department of General Surgery
| | | | | | | | - Ye Wei
- Colorectal Cancer Center
- Department of General Surgery
- Cancer Center, Zhongshan Hospital, Fudan University
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai
| | - Jianmin Xu
- Colorectal Cancer Center
- Department of General Surgery
- Cancer Center, Zhongshan Hospital, Fudan University
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai
| |
Collapse
|
34
|
Huang JL, Sun Y, Wu ZH, Zhu HJ, Xia GJ, Zhu XS, Wu JH, Zhang KH. Differential diagnosis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on spatial and channel attention mechanisms. J Cancer Res Clin Oncol 2023; 149:10161-10168. [PMID: 37268850 DOI: 10.1007/s00432-023-04935-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The pre-operative non-invasive differential diagnosis of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) mainly depends on imaging. However, the accuracy of conventional imaging and radiomics methods in differentiating between the two carcinomas is unsatisfactory. In this study, we aimed to establish a novel deep learning model based on computed tomography (CT) images to provide an effective and non-invasive pre-operative differential diagnosis method for HCC and ICC. MATERIALS AND METHODS We retrospectively investigated the CT images of 395 HCC patients and 99 ICC patients who were diagnosed based on pathological analysis. To differentiate between HCC and ICC we developed a deep learning model called CSAM-Net based on channel and spatial attention mechanisms. We compared the proposed CSAM-Net with conventional radiomic models such as conventional logistic regression, least absolute shrinkage and selection operator regression, support vector machine, and random forest models. RESULTS With respect to differentiating between HCC and ICC, the CSAM-Net model showed area under the receiver operating characteristic curve (AUC) values of 0.987 (accuracy = 0.939), 0.969 (accuracy = 0.914), and 0.959 (accuracy = 0.912) for the training, validation, and test sets, respectively, which were significantly higher than those of the conventional radiomics models (0.736-0.913 [accuracy = 0.735-0.912], 0.602-0.828 [accuracy = 0.647-0.818], and 0.638-0.845 [accuracy = 0.618-0.849], respectively. The decision curve analysis showed a high net benefit of the CSAM-Net model, which suggests potential efficacy in differentiating between HCC and ICC in the diagnosis of liver cancers. CONCLUSIONS The proposed CSAM-Net model based on channel and spatial attention mechanisms provides an effective and non-invasive tool for the differential diagnosis of HCC and ICC on CT images, and has potential applications in diagnosis of liver cancers.
Collapse
Affiliation(s)
- Ji-Lan Huang
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ying Sun
- Department of Gastroenterology, Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, 350004, China
| | - Zhi-Heng Wu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China
| | - Hui-Jun Zhu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China
| | - Guo-Jin Xia
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xi-Shun Zhu
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031, China
| | - Jian-Hua Wu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China.
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Nanchang, 330006, China.
| |
Collapse
|
35
|
Gan B, He Y, Ma Y, Mao L, Liao C, Deng G. Identification of a novel lncRNA prognostic signature and analysis of functional lncRNA AC115619.1 in hepatocellular carcinoma. Front Pharmacol 2023; 14:1167418. [PMID: 37614318 PMCID: PMC10442647 DOI: 10.3389/fphar.2023.1167418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the deadliest malignancy. Long non-coding RNAs (lncRNAs) are involved in the development of multiple human malignancies. This study aimed to establish a reliable signature and identify novel biomarkers for HCC patients. Methods: Differentially expressed lncRNAs (DElncRNAs) were identified from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Univariate, LASSO, and multivariate Cox regression analyses were applied to screen the prognostic lncRNAs and establish a prognostic model. Receiver operating characteristic (ROC) curves and Kaplan-Meier analyses were conducted to validate the prognostic value of this model. The association between lncRNAs and differential m6A genes was analyzed by Spearman's analysis. A series of bioinformatic and in vitro experiments were applied to explore the function of hub lncRNA. Results: A total of 32 DElncRNAs were identified, and 12 DElncRNAs were associated with the prognosis of HCC patients. A prognostic signature comprising six prognostic lncRNAs (LINC02428, LINC02163, AC008549.1, AC115619.1, CASC9, and LINC02362) was constructed, and the model exhibited an excellent capacity for prognosis prediction. Furthermore, 12 differential m6A regulators were identified, and RBMX was found to be correlated negatively with the hub lncRNA AC115619.1. The expression level of AC115619.1 was lower in HCC tissues than that in normal tissues and was significantly related to clinicopathologic features, survival rate, and drug sensitivity. Overexpression of AC115619.1 notably inhibited the proliferation, migration, and invasion of HCC cells. Conclusion: This study provided a promising prognostic signature for HCC patients and identified AC115619.1 as a novel biomarker, which plays an essential role in regulating the progression of HCC.
Collapse
Affiliation(s)
- Binliang Gan
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Youwu He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Yonggang Ma
- Department of NeuroInterventional Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Linfeng Mao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chuanjie Liao
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| |
Collapse
|
36
|
Xue M, Jiang H, Zheng J, Wu Y, Xu Y, Pan J, Zhu W. Spatiotemporal Excitation Module-based CNN for Diagnosis of Hepatic Malignancy in Four-phase CT Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082966 DOI: 10.1109/embc40787.2023.10340787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Liver cancer is a part of the common causes of cancer death worldwide, and the accurate diagnosis of hepatic malignancy is important for effective next treatment. In this paper, we propose a convolutional neural network (CNN) based on a spatiotemporal excitation (STE) module for identification of hepatic malignancy in four-phase computed tomography (CT) images. To enhance the display detail of lesion, we expand single-channel CT images into three channels by using the channel expansion method. Our proposed STE module consists of a spatial excitation (SE) module and a temporal interaction (TI) module. The SE module calculates the temporal differences of CT slices at the feature level, which is used to excite shape-sensitive channels of the lesion features. The TI module shifts a portion of the channels in the temporal dimension to exchange information among the current CT slice and adjacent CT slices. Four-phase CT images of 398 patients diagnosed with hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are used for experiments and five cross-validations are performed. Our model achieved average accuracy of 85.00% and average AUC of 88.91% for classifying HCC and ICC.Clinical Relevance- The proposed deep learning-based model can perform HCC and ICC recognition tasks based on four-phase CT images, assisting doctors to obtain better diagnostic performance.
Collapse
|
37
|
Zhang Y, Wang MY, Wang LK, Zhang S, Sun H, Liu J. Preliminary study of 3D printing technology for extracorporeal positioning guide assisted ultrasound-guided microwave ablation of the liver. Expert Rev Med Devices 2023; 20:1227-1233. [PMID: 37897059 DOI: 10.1080/17434440.2023.2277233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND We designed a 3D-printed extracorporeal positioning guide for assisting ultrasound-guided microwave ablation of the liver and observed its effectiveness. RESEARCH DESIGN AND METHODS 13 patients with liver cancer were selected, and their CT data were obtained. The CT data is reconstructed in 3D by computer software Mimics to create a 3D model. The 3D-printed in vitro positioning guides were designed by 3-Matic and fabricated using 3D printing technology. Finally, it is applied to the clinic, and its effect is observed. RESULTS The preliminary design of a 3D printed extracorporeal positioning guide was applied to the clinic, and the efficiency of assisted ultrasound positioning was 76.92% (10/13), with three patients requiring repositioning. The efficiency of the 3D printed extracorporeal positioning guide technique was 76.92%, a CT examination was performed one month after surgery, and three patients had residual lesions. CONCLUSIONS 3D-printed extracorporeal positioning guides can assist ultrasound in localizing tumors during liver microwave ablation and reduce repeated punctures. It makes percutaneous microwave ablation of the liver more precise and safe. However, the current study sample is small, there are still apparent shortcomings, and long-term clinical studies are needed to prove its effectiveness.
Collapse
Affiliation(s)
- Yu Zhang
- Guizhou University Medical College, Guiyang, Guizhou Province, China
| | - Ming-Yue Wang
- Guizhou Medoll Company, Oriental Pearl Tower, Guizhou Province, China
| | - Li-Kui Wang
- Guizhou Medoll Company, Oriental Pearl Tower, Guizhou Province, China
| | - Sha Zhang
- Guizhou Medoll Company, Oriental Pearl Tower, Guizhou Province, China
| | - Hong Sun
- Guizhou Medoll Company, Oriental Pearl Tower, Guizhou Province, China
| | - Jun Liu
- Guizhou University Medical College, Guiyang, Guizhou Province, China
- Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
38
|
Verdonschot KHM, Arts S, Van den Boezem PB, de Wilt JHW, Fütterer JJ, Stommel MWJ, Overduin CG. Ablative margins in percutaneous thermal ablation of hepatic tumors: a systematic review. Expert Rev Anticancer Ther 2023; 23:977-993. [PMID: 37702571 DOI: 10.1080/14737140.2023.2247564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION This study aims to systematically review current evidence on ablative margins and correlation to local tumor progression (LTP) after thermal ablation of hepatocellular carcinoma (HCC) and colorectal liver metastases (CRLM). METHODS A systematic search was performed in PubMed (MEDLINE) and Web of Science to identify all studies that reported on ablative margins (AM) and related LTP rates. Studies were assessed for risk of bias and synthesized separately per tumor type. Where possible, results were pooled to calculate risk differences (RD) as function of AM. RESULTS In total, 2910 articles were identified of which 43 articles were eligible for final analysis. There was high variability in AM measurement methodology across studies in terms of measurement technique, imaging modalities, and timing. Most common margin stratification was < 5 mm and > 5 mm, for which data were available in 25/43 studies (58%). Of these, all studies favored AM > 5 mm to reduce the risk of LTP, with absolute RD of 16% points for HCC and 47% points for CRLM as compared to AM < 5 mm. CONCLUSIONS Current evidence supports AM > 5 mm to reduce the risk of LTP after thermal ablation of HCC and CRLM. However, standardization of AM measurement and reporting is critical to allow future meta-analyses and improved identification of optimal threshold value for clinical use.
Collapse
Affiliation(s)
- K H M Verdonschot
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - S Arts
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - P B Van den Boezem
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J H W de Wilt
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J J Fütterer
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
- The Robotics and Mechatronics research group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| | - M W J Stommel
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C G Overduin
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Zuo D, Li Y, Liu H, Liu D, Fang Q, Li P, Tu L, Xiong Y, Zeng Y, Liu P. Value of Non-tumoral Liver Volume in the Prognosis of Large Hepatocellular Carcinoma Patients After R0 Resection. J Clin Transl Hepatol 2023; 11:560-571. [PMID: 36969888 PMCID: PMC10037504 DOI: 10.14218/jcth.2022.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/02/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatectomy is an effective treatment for selected patients with large hepatocellular carcinoma (HCC). This study aimed to develop a nomogram incorporating non-tumoral liver volume (non-TLV) and liver function markers to predict the patients' overall survival (OS) and disease-free survival (DFS). METHODS Data of 198 consecutive large HCC patients who underwent hepatectomy at the Zhongshan Hospital Xiamen University were collected. Another 68 patients from the Mengchao Hepatobiliary Surgery Hospital served as an external validation cohort. The nomograms were developed based on the independent prognostic factors screened by multivariate Cox regression analyses. Concordance index (C-index), calibration curves, and time-dependent receiver operating characteristic (ROC) curves were used to measure the discrimination and predictive accuracy of the models. RESULTS High HBV DNA level, low non-TLV/ICG, vascular invasion, and a poorly differentiated tumor were confirmed as independent risk factors for both OS and DFS. The model established in this study predicted 5-year post-operative survival and DFS in good agreement with the actual observation confirmed by the calibration curves. The C-indexes of the nomograms in predicting OS and DFS were 0.812 and 0.823 in the training cohort, 0.821 and 0.846 in the internal validation cohort, and 0.724 and 0.755 in the external validation cohort. The areas under the ROC curves (AUCs) of nomograms for predicted OS and DFS at 1, 3, and 5 year were 0.85, 0.86, 0.83 and 0.76, 0.76, 0.63, respectively. CONCLUSIONS Nomograms with non-TLV/ICG predicted the prognosis of single large HCC patients accurately and effectively.
Collapse
Affiliation(s)
- Dongliang Zuo
- Department of Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yuntong Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Hongzhi Liu
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Surgery Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Dongxu Liu
- Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Qinliang Fang
- Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Pengtao Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Liang Tu
- Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Yu Xiong
- Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | - Yongyi Zeng
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Surgery Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Correspondence to: Pingguo Liu, Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, 201 Hubin South Rd., Xiamen, Fujian 361001, China. Tel/Fax: +86-592-2993141, E-mail: ; Yongyi Zeng, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, Fujian 350025, China. Tel/Fax: +86-591-8370-5927, E-mail:
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
- Correspondence to: Pingguo Liu, Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, 201 Hubin South Rd., Xiamen, Fujian 361001, China. Tel/Fax: +86-592-2993141, E-mail: ; Yongyi Zeng, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, Fujian 350025, China. Tel/Fax: +86-591-8370-5927, E-mail:
| |
Collapse
|
40
|
Jing Q, Yuan C, Zhou C, Jin W, Wang A, Wu Y, Shang W, Zhang G, Ke X, Du J, Li Y, Shao F. Comprehensive analysis identifies CLEC1B as a potential prognostic biomarker in hepatocellular carcinoma. Cancer Cell Int 2023; 23:113. [PMID: 37308868 PMCID: PMC10262401 DOI: 10.1186/s12935-023-02939-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND C-type lectin domain family 1 member B (CLEC1B, encoding the CLEC-2 protein), a member of the C-type lectin superfamily, is a type II transmembrane receptor involved in platelet activation, angiogenesis, and immune and inflammatory responses. However, data regarding its function and clinical prognostic value in hepatocellular carcinoma (HCC) remain scarce. METHODS The expression of CLEC1B was explored using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. RT-qPCR, western blot, and immunohistochemistry assays were employed to validate the downregulation of CLEC1B. Univariate Cox regression and survival analyses were used to evaluate the prognostic value of CLEC1B. Gene Set Enrichment Analysis (GSEA) was conducted to investigate the potential association between cancer hallmarks and CLEC1B expression. The TISIDB database was applied to search for the correlation between immune cell infiltration levels and CLEC1B expression. The association between CLEC1B and immunomodulators was conducted by Spearman correlation analysis based on the Sangerbox platform. Annexin V-FITC/PI apoptosis kit was used for the detection of cell apoptosis. RESULTS The expression of CLEC1B was low in various tumors and exhibited a promising clinical prognostic value for HCC patients. The expression level of CLEC1B was tightly associated with the infiltration of various immune cells in the HCC tumor microenvironment (TME) and positively correlated with a bulk of immunomodulators. In addition, CLEC1B and its related genes or interacting proteins are implicated in multiple immune-related processes and signaling pathways. Moreover, overexpression of CLEC1B significantly influenced the treatment effects of sorafenib on HCC cells. CONCLUSIONS Our results reveal that CLEC1B could serve as a potential prognostic biomarker and may be a novel immunoregulator for HCC. However, its function in immune regulation should be further explored.
Collapse
Grants
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2020ZA098, 2021ZB245 Traditional Chinese Medicine Science and Technology Project of Zhejiang Province
- 2020ZA098, 2021ZB245 Traditional Chinese Medicine Science and Technology Project of Zhejiang Province
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chen Yuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aiwei Wang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Yanfang Wu
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Wenzhong Shang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Guibing Zhang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Xia Ke
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fangchun Shao
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Wang B, Liu Y, Liao Z, Wu H, Zhang B, Zhang L. EZH2 in hepatocellular carcinoma: progression, immunity, and potential targeting therapies. Exp Hematol Oncol 2023; 12:52. [PMID: 37268997 DOI: 10.1186/s40164-023-00405-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/15/2023] [Indexed: 06/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death. The accumulation of genetic and epigenetic changes is closely related to the occurrence and development of HCC. Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase) is suggested to be one of the principal factors that mediates oncogenesis by acting as a driver of epigenetic alternation. Recent studies show that EZH2 is widely involved in proliferation and metastasis of HCC cells. In this review, the functions of EZH2 in HCC progression, the role of EZH2 in tumor immunity and the application of EZH2-related inhibitors in HCC therapy are summarized.
Collapse
Affiliation(s)
- Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Hepatobiliary Surgery, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Key Laboratory of Hepatobiliary and Pancreatic Diseases of Shanxi Province (Preparatory), Shanxi Tongji Hospital, Tongji Medical College, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
42
|
Dong Y, Wang WP, Ignee A, Zuo D, Qiu YJ, Zhang Q, Lu XY, Chen S, Dietrich CF. The diagnostic value of Doppler Resistive Index in the differential diagnosis of focal liver lesions. J Ultrason 2023; 23:e45-e52. [PMID: 37520747 PMCID: PMC10379844 DOI: 10.15557/jou.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/03/2023] [Indexed: 08/01/2023] Open
Abstract
Aim To investigate the diagnostic value of resistance index (RI) in differentiating focal liver lesions. Patients and methods In this retrospective study, a total of 576 patients with histologically confirmed focal liver lesions were included. Each patient underwent B-mode ultrasound examination and color Doppler ultrasound examination. The RI values of different focal liver lesions were recorded and compared. Results The mean RI value of benign lesions was significantly lower than that of malignant lesions (0.54 ± 0.10 vs. 0.71 ± 0.12) (p <0.05). In malignant lesions, the RI value of intrahepatic cholangiocarcinoma was significantly lower than that of hepatocellular carcinoma lesions. Furthermore, in hepatocellular carcinoma lesions, the RI of large lesions (group 4: >10 cm) was significantly lower than that of small lesions (group 1: ≤2 cm, group 2: 2-5 cm) (p <0.05). Taken RI of 0.615 as a cutoff value to differentiate malignant and benign lesions, the sensitivity, specificity, positive predictive value and negative predictive value were 82.80%, 81.00%, 81.34% and 82.48%, respectively. Conclusion Color Doppler ultrasound examination is a valuable imaging method in detecting blood flow signal within liver lesions. The RI parameter should be helpful in differentiating malignant and benign liver tumors.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Andre Ignee
- Department of Gastroenterology and Rheumatology, Julius-Spital Würzburg, Würzburg, Germany
| | - Dan Zuo
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiu-Yun Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng Chen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Christoph Frank Dietrich
- Department General Internal Medicine, Hirslanden Clinics Beau-Site, Salem and Permancence, Bern, Switzerland
| |
Collapse
|
43
|
Wen Y, Emontzpohl C, Xu L, Atkins CL, Jeong JM, Yang Y, Kim K, Wu C, Akira S, Ju C. Interleukin-33 facilitates liver regeneration through serotonin-involved gut-liver axis. Hepatology 2023; 77:1580-1592. [PMID: 36129070 PMCID: PMC10758291 DOI: 10.1002/hep.32744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Insufficient liver regeneration causes post-hepatectomy liver failure and small-for-size syndrome. Identifying therapeutic targets to enhance hepatic regenerative capacity remains urgent. Recently, increased IL-33 was observed in patients undergoing liver resection and in mice after partial hepatectomy (PHx). The present study aims to investigate the role of IL-33 in liver regeneration after PHx and to elucidate its underlying mechanisms. APPROACH AND RESULTS We performed PHx in IL-33 -/- , suppression of tumorigenicity 2 (ST2) -/- , and wild-type control mice, and found deficiency of IL-33 or its receptor ST2 delayed liver regeneration. The insufficient liver regeneration could be normalized in IL-33 -/- but not ST2 -/- mice by recombinant murine IL-33 administration. Furthermore, we observed an increased level of serotonin in portal blood from wild-type mice, but not IL-33 -/- or ST2 -/- mice, after PHx. ST2 deficiency specifically in enterochromaffin cells recapitulated the phenotype of delayed liver regeneration observed in ST2 -/- mice. Moreover, the impeded liver regeneration in IL-33 -/- and ST2 -/- mice was restored to normal levels by the treatment with (±)-2,5-dimethoxy-4-iodoamphetamine, which is an agonist of the 5-hydroxytrytamine receptor (HTR)2A. Notably, in vitro experiments demonstrated that serotonin/HTR2A-induced hepatocyte proliferation is dependent on p70S6K activation. CONCLUSIONS Our study identified that IL-33 is pro-regenerative in a noninjurious model of liver resection. The underlying mechanism involved IL-33/ST2-induced increase of serotonin release from enterochromaffin cells to portal blood and subsequent HTR2A/p70S6K activation in hepatocytes by serotonin. The findings implicate the potential of targeting the IL-33/ST2/serotonin pathway to reduce the risk of post-hepatectomy liver failure and small-for-size syndrome.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | | | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Kangho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
44
|
Jia X, Li X, Shen T, Zhou L, Yang G, Wang F, Zhu X, Wan M, Li S, Zhang S. Monitoring of thermal lesions in ultrasound using fully convolutional neural networks: A preclinical study. ULTRASONICS 2023; 130:106929. [PMID: 36669371 DOI: 10.1016/j.ultras.2023.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/15/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Accurate monitoring of thermal ablation regions is an important guarantee for successful ablation treatment, which mainly depends on the subjective judgment of radiologists in current clinical practice. This work innovatively applied fully convolutional neural networks (FCNs) for detection and monitoring of thermal ablation regions in ultrasound (US) and comprehensively compared the performance of VGG16-FCN, U-Net, UNet++, Attention U-Net, MultiResUNet, and ResUNet, which have shown outstanding performance in medical image segmentation. The input of the models was US echo envelope data backscattered from the ablated regions. Excised porcine liver ablation dataset and clinical liver tumors ablation dataset were respectively used to evaluate the prediction ability of the models. With 1000 excised porcine liver ablation samples for training and 200 samples for testing, the UNet++ achieves both the highest Dice score (DSC) of 0.7824 ± 0.1098 and the best Hausdorff distance (HD) of 2.70 ± 1.38 mm. Additionally, considering potential clinical usage, we also tested the model generalizability by training on the excised dataset and testing on the clinical data, in which we obtained the performance with the highest DSC obtained by the ResUNet and the best HD by the UNet++. Our comparative study suggests that both UNet++ and ResUNet have relatively outstanding segmentation performance among all compared models, which are potential candidates for automatic segmentation of thermal ablation regions in US during clinical ablation treatment.
Collapse
Affiliation(s)
- Xin Jia
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiejing Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ting Shen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ling Zhou
- Department of Ultrasound, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang 310016, China.
| | - Guang Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Fan Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xingguang Zhu
- Department of Medical Engineering, Beijing Huilongguan Hospital, Beijing 100096, China.
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shiyan Li
- Department of Ultrasound, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang 310016, China.
| | - Siyuan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; Sichuan Digital Economy Industry Development Research Institute, Sichuan 610000, China.
| |
Collapse
|
45
|
Balci D, Nadalin S, Mehrabi A, Alikhanov R, Fernandes ESM, Di Benedetto F, Hernandez-Alejandro R, Björnsson B, Efanov M, Capobianco I, Clavien PA, Kirimker EO, Petrowsky H. Revival of associating liver partition and portal vein ligation for staged hepatectomy for perihilar cholangiocarcinoma: An international multicenter study with promising outcomes. Surgery 2023; 173:1398-1404. [PMID: 36959071 DOI: 10.1016/j.surg.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Associating liver partition and portal vein ligation for staged hepatectomy for perihilar cholangiocarcinoma has been considered to be contraindicated due to the initial poor results. Given the recent reports of improved outcomes, we aimed to collect the recent experiences of different centers performing associating liver partition and portal vein ligation for staged hepatectomy for perihilar cholangiocarcinoma to analyze factors related to improved outcomes. METHODS This proof-of-concept study collected contemporary cases of associating liver partition and portal vein ligation for staged hepatectomy for perihilar cholangiocarcinoma and analyzed for morbidity, short and long-term survival, and factors associated with outcomes. RESULTS In total, 39 patients from 8 centers underwent associating liver partition and portal vein ligation for staged hepatectomy for perihilar cholangiocarcinoma from 2010 to 2020. The median preoperative future liver remnant volume was 323 mL (155-460 mL). The median future liver remnant increase was 58.7% (8.9% -264.5%) with a median interstage interval of 13 days (6-60 days). Post-stage 1 and post-stage 2 biliary leaks occurred in 2 (7.7%) and 4 (15%) patients. Six patients (23%) after stage 1 and 6 (23%) after stage 2 experienced grade 3 or higher complications. Two patients (7.7%) died within 90 days after stage 2. The 1-, 3-, and 5-year survival was 92%, 69%, and 55%, respectively. A subgroup analysis revealed poor survival for patients undergoing additional vascular resection and lymph node positivity. Lymph node-negative patients showed excellent survival demonstrated by 1-, 3-, and 5-year survival of 86%, 86%, and 86%. CONCLUSION This study highlights that the critical attitude toward associating liver partition and portal vein ligation for staged hepatectomy for perihilar cholangiocarcinoma needs to be revised. In selected patients with perihilar cholangiocarcinoma, associating liver partition and portal vein ligation for staged hepatectomy can achieve favorable survival that compares to the outcome of established surgical treatment strategies reported in benchmark studies for perihilar cholangiocarcinoma including 1-stage hepatectomy and liver transplantation.
Collapse
Affiliation(s)
- Deniz Balci
- Department of Surgery, Bahcesehir University School of Medicine, Istanbul, Turkey.
| | - Silvio Nadalin
- Department of General, Visceral, and Transplant Surgery, University Hospital Tübingen, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Germany
| | - Ruslan Alikhanov
- Department of Hepato-Pancreato-Biliary Surgery, Moscow Clinical Research Center Named After Loginov A.S., Russia
| | - Eduardo S M Fernandes
- Department of General Surgery and Transplantation, Hospital Adventista Silvestre, and Department of Surgery, Faculty of Medicine, Universidade Federal do Rio de Janeiro, Brazil
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Italy
| | | | - Bergthor Björnsson
- Department of Surgery in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Mikhail Efanov
- Department of Hepato-Pancreato-Biliary Surgery, Moscow Clinical Research Center Named After Loginov A.S., Russia
| | - Ivan Capobianco
- Department of General, Visceral, and Transplant Surgery, University Hospital Tübingen, Germany
| | - Pierre-Alain Clavien
- Department of Surgery and Transplantation, Swiss Hepatopancreaticobiliary and Transplant Center Zürich, University Hospital Zürich, Switzerland
| | | | - Henrik Petrowsky
- Department of Surgery and Transplantation, Swiss Hepatopancreaticobiliary and Transplant Center Zürich, University Hospital Zürich, Switzerland
| |
Collapse
|
46
|
Park SH, Kim B, Kim S, Park S, Park YH, Shin SK, Sung PS, Choi JI. Estimating postsurgical outcomes of patients with a single hepatocellular carcinoma using gadoxetic acid-enhanced MRI: risk scoring system development and validation. Eur Radiol 2023; 33:3566-3579. [PMID: 36933020 DOI: 10.1007/s00330-023-09539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVES To develop and validate risk scoring systems using gadoxetic acid-enhanced liver MRI features and clinical factors that predict recurrence-free survival (RFS) of a single hepatocellular carcinoma (HCC). METHODS Consecutive 295 patients with treatment-naïve single HCC who underwent curative surgery were retrospectively enrolled from two centers. Cox proportional hazard models developed risk scoring systems whose discriminatory powers were validated using external data and compared to the Barcelona Clinic Liver Cancer (BCLC) or American Joint Committee on Cancer (AJCC) staging systems using Harrell's C-index. RESULTS Independent variables-tumor size (per cm; hazard ratio [HR], 1.07; 95% confidence interval [CI]: 1.02-1.13; p = 0.005), targetoid appearance (HR, 1.74; 95% CI: 1.07-2.83; p = 0.025), radiologic tumor in vein or tumor vascular invasion (HR, 2.59; 95% CI: 1.69-3.97; p < 0.001), the presence of a nonhypervascular hypointense nodule on the hepatobiliary phase (HR, 4.65; 95% CI: 3.03-7.14; p < 0.001), and pathologic macrovascular invasion (HR, 2.60; 95% CI: 1.51-4.48; p = 0.001)-with tumor markers (AFP ≥ 206 ng/mL or PIVKA-II ≥ 419 mAU/mL) derived pre- and postoperative risk scoring systems. The risk scores showed comparably good discriminatory powers in the validation set (C-index, 0.75-0.82) and outperformed the BCLC (C-index, 0.61) and AJCC staging systems (C-index, 0.58; ps < 0.05). The preoperative scoring system stratified the patients into low-, intermediate-, and high-risk for recurrence, whose 2-year recurrence rate was 3.3%, 31.8%, and 85.7%, respectively. CONCLUSION The developed and validated pre- and postoperative risk scoring systems can estimate RFS after surgery for a single HCC. KEY POINTS • The risk scoring systems predicted RFS better than the BCLC and AJCC staging systems (C-index, 0.75-0.82 vs. 0.58-0.61; ps < 0.05). • Five variables-tumor size, targetoid appearance, radiologic tumor in vein or vascular invasion, the presence of a nonhypervascular hypointense nodule on the hepatobiliary phase, and pathologic macrovascular invasion-combined with tumor markers derived risk scoring systems predicting postsurgical RFS for a single HCC. • In the risk scoring system using preoperatively-available factors, patients were classified into three distinct risk groups, with 2-year recurrence rates in the low-, intermediate-, and high-risk groups being 3.3%, 31.8%, and 85.7% in the validation set.
Collapse
Affiliation(s)
- So Hyun Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Bohyun Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodae-ro, Seocho-Gu, 06591, Seoul, Korea.
| | - Sehee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, Korea
| | - Suyoung Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Yeon Ho Park
- Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Seung Kak Shin
- Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Pil Soo Sung
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joon-Il Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpodae-ro, Seocho-Gu, 06591, Seoul, Korea
| |
Collapse
|
47
|
Unresectable Hepatocellular Carcinoma: A Review of New Advances with Focus on Targeted Therapy and Immunotherapy. LIVERS 2023. [DOI: 10.3390/livers3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
With an expected incidence of more than 1 million cases by 2025, liver cancer remains a problem for world health. With over 90% of cases, hepatocellular carcinoma (HCC) is the most prevalent kind of liver cancer. In this review, we presented the range of experimental therapeutics for patients with advanced HCC, the successes and failures of new treatments, areas for future development, the evaluation of dose-limiting toxicity in different drugs, and the safety profile in patients with liver dysfunction related to the underlying chronic liver disease. In addition to the unmet demand for biomarkers to guide treatment decisions and the burgeoning fields of immunotherapy and systemic therapy in hepatocellular carcinoma, the development of old and new drugs, including their failures and current advancements, has been reviewed. This review aims to evaluate the updated optimal clinical treatment of unresectable hepatocellular carcinomas in clinical practice, mainly through targeted therapy. Although surgical treatment can significantly enhance the survival probability of early and intermediate-stage patients, it is unsuitable for most HCC patients due to a lack of donors. Due to their severe toxicity, the few first-line anti-HCC drugs, such as sorafenib, are often reserved for advanced HCC patients for whom other therapies have failed. The second-line drugs are usually alternatives for patients with intolerance or resistance. Consequently, the ongoing growth of possible preclinical drugs and studies on miRNAs, lncRNAs, and numerous other signaling pathway targets for developing novel drugs may introduce additional treatment prospects for HCC.
Collapse
|
48
|
Yang S, Qian L, Li Z, Li Y, Bai J, Zheng B, Chen K, Qiu X, Cai G, Wang S, Huang H, Wu J, Zhu Y, Zhangyang Q, Feng L, Wu T, Wu R, Yang A, Wang K, Wang R, Zhang Y, Zhao Y, Wang W, Bao J, Shen S, Hu J, Wu X, Zhou T, Meng Z, Liu W, Wang H, Wang P, Chen L. Integrated Multi-Omics Landscape of Liver Metastases. Gastroenterology 2023; 164:407-423.e17. [PMID: 36574521 DOI: 10.1053/j.gastro.2022.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND & AIMS Lack of thorough knowledge about the complicated immune microenvironment (IM) within a variety of liver metastases (LMs) leads to inappropriate treatment and unsatisfactory prognosis. We aimed to characterize IM subtypes and investigate potential mechanisms in LMs. METHODS Mass cytometry was applied to characterize immune landscape of a primary liver cancers and liver metastases cohort. Transcriptomic and whole-exome sequencing were used to explore potential mechanisms across distinct IM subtypes. Single-cell transcriptomic sequencing, multiplex fluorescent immunohistochemistry, cell culture, mouse model, Western blot, quantitative polymerase chain reaction, and immunohistochemistry were used for validation. RESULTS Five IM subtypes were revealed in 100 LMs and 50 primary liver cancers. Patients featured terminally exhausted (IM1) or rare T-cell-inflamed (IM2 and IM3) immune characteristics showed worse outcome. Increased intratumor heterogeneity, enriched somatic TP53, KRAS, APC, and PIK3CA mutations and hyperactivated hypoxia signaling accounted for the formation of vicious subtypes. SLC2A1 promoted immune suppression and desert via increasing proportion of Spp1+ macrophages and their inhibitory interactions with T cells in liver metastatic lesions. Furthermore, SLC2A1 promoted immune escape and LM through inducing regulatory T cells, including regulatory T cells and LAG3+CD4+ T cells in primary colorectal cancer. CONCLUSIONS The study provided integrated multi-omics landscape of LM, uncovering potential mechanisms for vicious IM subtypes and confirming the roles of SLC2A1 in regulating tumor microenvironment remodeling in both primary tumor and LM lesions.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ling Qian
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixuan Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Ye Li
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Bai
- Berry Oncology Corporation, Beijing, China
| | - Bo Zheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Kun Chen
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyao Qiu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shan Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | | | - Jianmin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yanjing Zhu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Qianwen Zhangyang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Lanyun Feng
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tong Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Rui Wu
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | - Kaiting Wang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ruiru Wang
- Berry Oncology Corporation, Beijing, China
| | - Yani Zhang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yan Zhao
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Wenwen Wang
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jinxia Bao
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Ji Hu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China
| | - Xuan Wu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Zhou
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China; Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Shanghai China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hongyang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China.
| | - Peng Wang
- Department of Integrative Oncology, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lei Chen
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; National Center for Liver Cancer, Shanghai, China.
| |
Collapse
|
49
|
Surgical management of liver metastasis from colorectal cancer. MEMO - MAGAZINE OF EUROPEAN MEDICAL ONCOLOGY 2023. [DOI: 10.1007/s12254-022-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
SummaryThis short review illustrates the benefits of a multidisciplinary team approach, especially when it comes to the treatment of patients with colorectal cancer liver metastasis. Therefore, the classification to resectable and primarily unresectable disease has to be determined prior to the first treatment decision. Particularly the use of conversion chemotherapy has the potential of altering initially unresectable liver metastasis to a potentially resectable disease. The three possible therapy choices for synchronously metastasized colorectal cancer will be reflected in this review, as well as local therapeutic alternatives or combinations.
Collapse
|
50
|
Zhou Y, Jiang H, Diao Z, Tong G, Luan Q, Li Y, Li X. MRLA-Net: A tumor segmentation network embedded with a multiple receptive-field lesion attention module in PET-CT images. Comput Biol Med 2023; 153:106538. [PMID: 36646023 DOI: 10.1016/j.compbiomed.2023.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
The tumor image segmentation is an important basis for doctors to diagnose and formulate treatment planning. PET-CT is an extremely important technology for recognizing the systemic situation of diseases due to the complementary advantages of their respective modal information. However, current PET-CT tumor segmentation methods generally focus on the fusion of PET and CT features. The fusion of features will weaken the characteristics of the modality itself. Therefore, enhancing the modal features of the lesions can obtain optimized feature sets, which is extremely necessary to improve the segmentation results. This paper proposed an attention module that integrates the PET-CT diagnostic visual field and the modality characteristics of the lesion, that is, the multiple receptive-field lesion attention module. This paper made full use of the spatial domain, frequency domain, and channel attention, and proposed a large receptive-field lesion localization module and a small receptive-field lesion enhancement module, which together constitute the multiple receptive-field lesion attention module. In addition, a network embedded with a multiple receptive-field lesion attention module has been proposed for tumor segmentation. This paper conducted experiments on a private liver tumor dataset as well as two publicly available datasets, the soft tissue sarcoma dataset, and the head and neck tumor segmentation dataset. The experimental results showed that the proposed method achieves excellent performance on multiple datasets, and has a significant improvement compared with DenseUNet, and the tumor segmentation results on the above three PET/CT datasets were improved by 7.25%, 6.5%, 5.29% in Dice per case. Compared with the latest PET-CT liver tumor segmentation research, the proposed method improves by 8.32%.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Huiyan Jiang
- Department of Software College, Northeastern University, Shenyang 110819, China.
| | - Zhaoshuo Diao
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Guoyu Tong
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Qiu Luan
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|