1
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
2
|
Fang Y, Liu Y, Dong Z, Zhao X, Zhang M, Zheng Y, Yang C, Wang Y, Liu N, Yan P, Ma Y, Yang F, Zheng Y, Zhang W, Yang J, Sun M. JAML overexpressed in colorectal cancer promotes tumour proliferation by activating the PI3K-AKT-mTOR signalling pathway. Sci Rep 2024; 14:24514. [PMID: 39424882 PMCID: PMC11489459 DOI: 10.1038/s41598-024-75180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The expression and biological function of junctional adhesion molecule-like protein (JAML) in colorectal cancer (CRC) remain unclear. Paraffin tissue samples from 50 cases of CRC were collected to determine the expression of JAML. JAML was overexpressed or knock-down in CRC cells to evaluated the proliferation, migration and invasion in vitro and in vivo. Western-blot and others were applied to explore the mechanisms. The study showed that JAML was highly expressed within cancer tissues in 50% (25/50) of patients with CRC, and was correlated with higher TNM stage (p < 0.05). Patients of JAML-high group had poorer overall survival compared to JAML-low group (p = 0.0362, HR = 0.4295, 95% CI of 0.1908-0.9667). The tumour infiltrating lymphocytes (TILs) was lower in the JAML-high group than in the JAML-low group (p < 0.05). Overexpression of JAML promoted the proliferation, migration, and invasion of CRC by activating the PI3K-AKT-mTOR signalling pathway both in vitro and in vivo. TILs were reduced in JAML-high tumour tissues by decreasing chemokines such as CCL20 and CXCL9/10/11. Our study identified JAML, a potentially ideal target that is specifically highly expressed in CRC tissues, which promoted tumour proliferation, impaired T-lymphocytes infiltration, provided a promising therapeutic strategy for patients with CRC.
Collapse
Affiliation(s)
- Yuying Fang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yanan Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Zhilin Dong
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Clinical Medicine, Shandong First Medical University, Jinan, 271016, Shandong, People's Republic of China
| | - Xinchao Zhao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Clinical Medicine, Shandong First Medical University, Jinan, 271016, Shandong, People's Republic of China
| | - Mingyan Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yawen Zheng
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Chunsheng Yang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yufeng Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Ning Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Peng Yan
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yuan Ma
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Fei Yang
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China.
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Liu Z, Chen J, Ren Y, Liu S, Ba Y, Zuo A, Luo P, Cheng Q, Xu H, Han X. Multi-stage mechanisms of tumor metastasis and therapeutic strategies. Signal Transduct Target Ther 2024; 9:270. [PMID: 39389953 PMCID: PMC11467208 DOI: 10.1038/s41392-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024] Open
Abstract
The cascade of metastasis in tumor cells, exhibiting organ-specific tendencies, may occur at numerous phases of the disease and progress under intense evolutionary pressures. Organ-specific metastasis relies on the formation of pre-metastatic niche (PMN), with diverse cell types and complex cell interactions contributing to this concept, adding a new dimension to the traditional metastasis cascade. Prior to metastatic dissemination, as orchestrators of PMN formation, primary tumor-derived extracellular vesicles prepare a fertile microenvironment for the settlement and colonization of circulating tumor cells at distant secondary sites, significantly impacting cancer progression and outcomes. Obviously, solely intervening in cancer metastatic sites passively after macrometastasis is often insufficient. Early prediction of metastasis and holistic, macro-level control represent the future directions in cancer therapy. This review emphasizes the dynamic and intricate systematic alterations that occur as cancer progresses, illustrates the immunological landscape of organ-specific PMN creation, and deepens understanding of treatment modalities pertinent to metastasis, thereby identifying some prognostic and predictive biomarkers favorable to early predict the occurrence of metastasis and design appropriate treatment combinations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingqi Chen
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Ayala-de Miguel C, Jiménez-Castro J, Sánchez-Vegas A, Díaz-López S, Chaves-Conde M. Third-line treatment and beyond in metastatic colorectal cancer: What do we have and what can we expect? Crit Rev Oncol Hematol 2024; 202:104454. [PMID: 39043356 DOI: 10.1016/j.critrevonc.2024.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
Colorectal cancer remains the third most common cancer worldwide and the second cause of cancer-related death. Treatment advances and precision oncological medicine for these tumours have been stalled in comparison to those for other common tumours such as lung and breast cancer. However, the recent publication of the SUNLIGHT trial results with the trifluridine/tipiracil (TAS-102)-bevacizumab combination and the irruption of new molecular targets with guided treatments have opened new possibilities in third-line metastatic colorectal cancer management. Anti-EGFR rechallenge, anti-HER2 targeted therapies or the promising results of Pressurised Intraperitoneal Aerosol Chemotherapy (PIPAC), are some of the available options that may modify what is presumably third-line colorectal treatment. Hereby, we present the evidence of the different treatment options in third-line colorectal cancer and beyond, as well as the possibilities of sequencing them.
Collapse
Affiliation(s)
- Carlos Ayala-de Miguel
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Jerónimo Jiménez-Castro
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Adrián Sánchez-Vegas
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Sebastián Díaz-López
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| | - Manuel Chaves-Conde
- Servicio Oncología Médica, Hospital Universitario Virgen de Valme, Ctra, de Cádiz Km 548,9, Seville C.P. 41014, Spain.
| |
Collapse
|
5
|
Hassan S, Mirza T, Khatoon A, Bukhari U, Shaikh F, Karim A. BRAF mutations and the association of V600E with CD133 and CDX2 expression in a Pakistani colorectal carcinoma cohort. BMC Cancer 2024; 24:1162. [PMID: 39300378 DOI: 10.1186/s12885-024-12925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Despite a high incidence of colorectal carcinoma, data regarding genetic aberrations in colorectal carcinoma (CRC) patients in Pakistan is scarce. This study aimed to determine the frequency of BRAFV600E mutations in colorectal carcinoma tissue in the Pakistani population and to associate BRAFV600E expression with CD133, a marker of colorectal stem cells, and CDX2 marker of differentiation. METHODS Sanger Sequencing of exon 15 (426 bp) including the hotspot V600E was performed on formalin-fixed-paraffin-embedded (FFPE) CRC tissue samples of 115 patients. The samples were subjected to immunohistochemistry (IHC) to assess the expression of BRAFV600E, CDX2, and CD133. Additionally, homology modelling and docking were performed to investigate novel deletions revealed in sequencing. RESULTS Twenty-four (20.8%) BRAF variants were identified in the coding region, with V600E mutations detected in 14 (12.2% )cases (GenBank: PP003258.1; Pop Set: 2678087296). Moreover, a wide spectrum of novel non-V600E mutations (8.6%) were identified, including deletions and missense variations. In-silico analysis revealed that due to large deletions in the coding region of three samples, the affinity of the anti-BRAF drugs (Encorafenib and Vemurafenib) for the active site decreased in comparison to the wild type. The IHC analysis showed that BRAFV600E expression was significantly associated with CD133 expression (χ2(1, n=115) = 26.351; p = < 0.001) and with CDX2 expression (χ2(1, n=115) = 14.88; p = 0.001). Multivariate analysis using binary logistic regression revealed association of BRAFV600E mutations with age (OR = 1.123; CI = 1.024-1.232; p = 0.014), gender (OR = 0.071; CI = 0.006-0.831; p = 0.035), grade (0.007; CI = 0-0.644) and CD133 expression (OR = 65.649; CI = 2.153-2001.556; p = 0.016). CONCLUSION The present study demonstrates a notably high V600E frequency (12.2%) in comparison to global reported data, which ranges from 0.4 to 18%. This finding reflects the importance of upfront BRAF testing of the genetically distinct population of Pakistan. Previously unreported mutations identified in the sample may be of clinical significance and warrant further investigation. The concomitant high expression and significant association between CD133 and BRAFV600E represent vital actionable genes that may be targeted together to improve CRC patient management.
Collapse
Affiliation(s)
- Sobia Hassan
- Department of Pathology, Ziauddin Medical University, Karachi, 75000, Pakistan
| | - Talat Mirza
- Research Department, Ziauddin Medical University Karachi, Karachi, 75000, Pakistan
| | - Ambrina Khatoon
- Department of Molecular Medicine, Ziauddin Medical University Karachi, 4/B Shahrah-e-Ghalib Road, Block 6 Clifton, Karachi, 75000, Pakistan.
| | - Uzma Bukhari
- Department of Pathology, Dow University of Health Sciences Karachi, Karachi, 74200, Pakistan
| | - Fouzia Shaikh
- Department of Pathology, Ziauddin Medical University, Karachi, 75000, Pakistan
| | - Asad Karim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, Jamil-ur-Rahman Center for Genome Research, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
6
|
Liang W, Zhu Z, Xu D, Wang P, Guo F, Xiao H, Hou C, Xue J, Zhi X, Ran R. The burgeoning spatial multi-omics in human gastrointestinal cancers. PeerJ 2024; 12:e17860. [PMID: 39285924 PMCID: PMC11404479 DOI: 10.7717/peerj.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024] Open
Abstract
The development and progression of diseases in multicellular organisms unfold within the intricate three-dimensional body environment. Thus, to comprehensively understand the molecular mechanisms governing individual development and disease progression, precise acquisition of biological data, including genome, transcriptome, proteome, metabolome, and epigenome, with single-cell resolution and spatial information within the body's three-dimensional context, is essential. This foundational information serves as the basis for deciphering cellular and molecular mechanisms. Although single-cell multi-omics technology can provide biological information such as genome, transcriptome, proteome, metabolome, and epigenome with single-cell resolution, the sample preparation process leads to the loss of spatial information. Spatial multi-omics technology, however, facilitates the characterization of biological data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue samples, while retaining their spatial context. Consequently, these techniques significantly enhance our understanding of individual development and disease pathology. Currently, spatial multi-omics technology has played a vital role in elucidating various processes in tumor biology, including tumor occurrence, development, and metastasis, particularly in the realms of tumor immunity and the heterogeneity of the tumor microenvironment. Therefore, this article provides a comprehensive overview of spatial transcriptomics, spatial proteomics, and spatial metabolomics-related technologies and their application in research concerning esophageal cancer, gastric cancer, and colorectal cancer. The objective is to foster the research and implementation of spatial multi-omics technology in digestive tumor diseases. This review will provide new technical insights for molecular biology researchers.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Zhenpeng Zhu
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Peng Wang
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Fei Guo
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haoshan Xiao
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Chenyang Hou
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Rensen Ran
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Liu M, Liu Q, Hu K, Dong Y, Sun X, Zou Z, Ji D, Liu T, Yu Y. Colorectal cancer with BRAF V600E mutation: Trends in immune checkpoint inhibitor treatment. Crit Rev Oncol Hematol 2024; 204:104497. [PMID: 39245296 DOI: 10.1016/j.critrevonc.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC) with BRAF V600E mutation presents a formidable scientific and clinical challenge due to its aggressive nature and poor response to standard therapeutic approaches. BRAF V600E mutation-induced conspicuous activation of the MAPK pathway contributes to the relentless tumor progression. Nevertheless, the efficacy of multi-targeted MAPK pathway inhibition remains suboptimal in clinical practice. Patients with high microsatellite instability (MSI-H) have shown favorable results with immune checkpoint inhibitors (ICIs). The combination of the MAPK pathway inhibition with ICIs has recently emerged as a promising regimen to improve clinical outcomes in the microsatellite stable (MSS) subgroup of BRAF V600E-mutant metastatic CRC patients. In this review, we elucidate the unique tumor biology of BRAF V600E-mutant CRC, with a particular focus on the immune features underlying the rationale for ICI treatments in the MSI-H and MSS subpopulations, then highlight the trends in clinical trials of the ICI therapy for BRAF V600E-mutant metastatic CRC.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Keshu Hu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Dong
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dingkun Ji
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
10
|
Zhou S, Luo X, Chen C, Jiang H, Yang C, Ran G, Yu J, Yin C. The performance of large language model powered chatbots compared to oncology physicians on colorectal cancer queries. Int J Surg 2024; 110:01279778-990000000-01734. [PMID: 38935100 PMCID: PMC11487020 DOI: 10.1097/js9.0000000000001850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Large language model (LLM)-powered chatbots have become increasingly prevalent in healthcare, while their capacity in oncology remains largely unknown. To evaluate the performance of LLM-powered chatbots compared to oncology physicians in addressing to colorectal cancer queries. METHODS This study was conducted between August 13, 2023, and January 5, 2024. A total of 150 questions were designed, and each question was submitted three times to eight chatbots: ChatGPT-3.5, ChatGPT-4, ChatGPT-4 Turbo, Doctor GPT, Llama-2-70B, Mixtral-8x7B, Bard, and Claude 2.1. No feedback was provided to these chatbots. The questions were also answered by nine oncology physicians, including three residents, three fellows, and three attendings. Each answer was scored based on its consistency with guidelines, with a score of 1 for consistent answers and 0 for inconsistent answers. The total score for each question was based on the number of corrected answers, ranging from 0 to 3. The accuracy and scores of the chatbots were compared to those of the physicians. RESULTS Claude 2.1 demonstrated the highest accuracy, with an average accuracy of 82.67%, followed by Doctor GPT at 80.45%, ChatGPT-4 Turbo at 78.44%, ChatGPT-4 at 78%, Mixtral-8x7B at 73.33%, Bard at 70%, ChatGPT-3.5 at 64.89%, and Llama-2-70B at 61.78%. Claude 2.1 outperformed residents, fellows, and attendings. Doctor GPT outperformed residents and fellows. Additionally, Mixtral-8x7B outperformed residents. In terms of scores, Claude 2.1 outperformed residents and fellows. Doctor GPT, ChatGPT-4 Turbo and ChatGPT-4 outperformed residents. CONCLUSIONS This study shows that LLM-powered chatbots can provide more accurate medical information compared to oncology physicians.
Collapse
Affiliation(s)
- Shan Zhou
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Xiao Luo
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Chan Chen
- Department of Clinical Laboratory, Shenzhen Baoan Hospital, The Second Affiliated Hospital of Shenzhen University, Shenzhen
| | - Hong Jiang
- Statistical Office, Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Chun Yang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guanghui Ran
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Juan Yu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
11
|
Piazza GA, Chandrasekaran P, Maxuitenko YY, Budhwani KI. Assessment of KRAS G12C inhibitors for colorectal cancer. Front Oncol 2024; 14:1412435. [PMID: 38978742 PMCID: PMC11228624 DOI: 10.3389/fonc.2024.1412435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent and lethal cancer worldwide. Approximately 45% of CRC patients harbor a gain-in-function mutation in KRAS. KRAS is the most frequently mutated oncogene accounting for approximately 25% of all human cancers. Gene mutations in KRAS cause constitutive activation of the KRAS protein and MAPK/AKT signaling, resulting in unregulated proliferation and survival of cancer cells and other aspects of malignant transformation, progression, and metastasis. While KRAS has long been considered undruggable, the FDA recently approved two direct acting KRAS inhibitors, Sotorasib and Adagrasib, that covalently bind and inactivate KRASG12C. Both drugs showed efficacy for patients with non-small cell lung cancer (NSCLC) diagnosed with a KRASG12C mutation, but for reasons not well understood, were considerably less efficacious for CRC patients diagnosed with the same mutation. Thus, it is imperative to understand the basis for resistance to KRASG12C inhibitors, which will likely be the same limitations for other mutant specific KRAS inhibitors in development. This review provides an update on clinical trials involving CRC patients treated with KRASG12C inhibitors as a monotherapy or combined with other drugs. Mechanisms that contribute to resistance to KRASG12C inhibitors and the development of novel RAS inhibitors with potential to escape such mechanisms of resistance are also discussed.
Collapse
Affiliation(s)
- Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | | | - Yulia Y Maxuitenko
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, United States
| | - Karim I Budhwani
- CerFlux, Birmingham, AL, United States
- University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Ding Y, Zhou R, Shi G, Jiang Y, Li Z, Xu X, Ma J, Huang J, Fu C, Zhou H, Wang H, Li J, Dong Z, Yu Q, Jiang K, An Y, Liu Y, Li Y, Yu L, Li Z, Zhang X, Wang J. Cadherin 17 Nanobody-Mediated Near-Infrared-II Fluorescence Imaging-Guided Surgery and Immunotoxin Delivery for Colorectal Cancer. Biomater Res 2024; 28:0041. [PMID: 38911825 PMCID: PMC11192146 DOI: 10.34133/bmr.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Surgery and targeted therapy are of equal importance for colorectal cancer (CRC) treatment. However, complete CRC tumor resection remains challenging, and new targeted agents are also needed for efficient CRC treatment. Cadherin 17 (CDH17) is a membrane protein that is highly expressed in CRC and, therefore, is an ideal target for imaging-guided surgery and therapeutics. This study utilizes CDH17 nanobody (E8-Nb) with the near-infrared (NIR) fluorescent dye IRDye800CW to construct a NIR-II fluorescent probe, E8-Nb-IR800CW, and a Pseudomonas exotoxin (PE)-based immunotoxin, E8-Nb-PE38, to evaluate their performance for CRC imaging, imaging-guided precise tumor excision, and antitumor effects. Our results show that E8-Nb-IR800CW efficiently recognizes CDH17 in CRC cells and tumor tissues, produces high-quality NIR-II images for CRC tumors, and enables precise tumor removal guided by NIR-II imaging. Additionally, fluorescent imaging confirms the targeting ability and specificity of the immunotoxin toward CDH17-positive tumors, providing the direct visible evidence for immunotoxin therapy. E8-Nb-PE38 immunotoxin markedly delays the growth of CRC through the induction of apoptosis and immunogenic cell death (ICD) in multiple CRC tumor models. Furthermore, E8-Nb-PE38 combined with 5-FU exerts synergistically antitumor effects and extends survival. This study highlights CDH17 as a promising target for CRC imaging, imaging-guided surgery, and drug delivery. Nanobodies targeting CDH17 hold great potential to construct NIR-II fluorescent probes for surgery navigation, and PE-based toxins fused with CDH17 nanobodies represent a novel therapeutic strategy for CRC treatment. Further investigation is warranted to validate these findings for potential clinical translation.
Collapse
Affiliation(s)
- Youbin Ding
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Runhua Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
- Department of Pharmacy, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Guangwei Shi
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- Department of Neurosurgery and Medical Research Center, Shunde Hospital,
Southern Medical University (The First People’s Hospital of Shunde Foshan), Guangzhou 510515, P. R. China
| | - Yuke Jiang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Pingcheng District, Datong, Shanxi Province 037009, P. R. China
| | - Xiaolong Xu
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jingbo Ma
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jingnan Huang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Hongchao Zhou
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Huifang Wang
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Jiexuan Li
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Zhiyu Dong
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Qingling Yu
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Kexin Jiang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Yehai An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Yawei Liu
- Department of Neurosurgery and Medical Research Center, Shunde Hospital,
Southern Medical University (The First People’s Hospital of Shunde Foshan), Guangzhou 510515, P. R. China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Le Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhijie Li
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
| | - Jigang Wang
- Department of Medical Imaging, The Third Affiliated Hospital,
Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou 510515, P. R. China
- Shenzhen Clinical Research Centre for Geriatrics and Department of Geriatrics, Shenzhen People’s Hospital; First Affiliated Hospital of Southern University of Science and Technology,
Second Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, P. R. China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy,
Henan University, Kaifeng 475004, Henan, P. R. China
- Department of Oncology,
the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
13
|
Zhou Y, Wu S, Qu FJ. Therapeutic strategies targeting the epidermal growth factor receptor signaling pathway in metastatic colorectal cancer. World J Gastrointest Oncol 2024; 16:2362-2379. [PMID: 38994135 PMCID: PMC11236217 DOI: 10.4251/wjgo.v16.i6.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
More than 1.9 million new colorectal cancer (CRC) cases and 935000 deaths were estimated to occur worldwide in 2020, representing about one in ten cancer cases and deaths. Overall, colorectal ranks third in incidence, but second in mortality. More than half of the patients are in advanced stages at diagnosis. Treatment options are complex because of the heterogeneity of the patient population, including different molecular subtypes. Treatments have included conventional fluorouracil-based chemotherapy, targeted therapy, immunotherapy, etc. In recent years, with the development of genetic testing technology, more and more targeted drugs have been applied to the treatment of CRC, which has further prolonged the survival of metastatic CRC patients.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Fan-Jie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| |
Collapse
|
14
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Peng Q, Jiang L, Shen Y, Xu Y, Shen X, Zou L, Zhu Y, Shen Y. LC-MS metabolomics analysis of serum metabolites during neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03537-x. [PMID: 38831193 DOI: 10.1007/s12094-024-03537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND This study aimed to investigate the serum metabolite profiles during neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal cancer (LARC) using liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. METHODS 60 serum samples were collected from 20 patients with LARC before, during, and after radiotherapy. LC-MS metabolomics analysis was performed to identify the metabolite variations. Functional annotation was applied to discover altered metabolic pathways. The key metabolites were screened and their ability to predict sensitivity to radiotherapy was calculated using random forests and ROC curves. RESULTS The results showed that NCRT led to significant changes in the serum metabolite profiles. The serum metabolic profiles showed an apparent separation between different time points and different sensitivity groups. Moreover, the functional annotation showed that the differential metabolites were associated with a series of important metabolic pathways. Pre-radiotherapy (3Z,6Z)-3,6-Nonadiena and pro-radiotherapy 1-Hydroxyibuprofen showed good predictive performance in discriminating the sensitive and non-sensitive group to NCRT, with an AUC of 0.812 and 0.75, respectively. Importantly, the combination of different metabolites significantly increased the predictive ability. CONCLUSION This study demonstrated the potential of LC-MS metabolomics for revealing the serum metabolite profiles during NCRT in LARC. The identified metabolites may serve as potential biomarkers and therapeutic targets for the management of this disease. Furthermore, the understanding of the affected metabolic pathways may help design more personalized therapeutic strategies for LARC patients.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lili Jiang
- Department of Oncology, Nantong Haimen District People's Hospital, Jiangsu, China
| | - Yi Shen
- Department of Radiation Oncology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yao Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinan Shen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Li Zou
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| | - Yuntian Shen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Mason JD, Marks E, Fan S, McCormick K, Wilson C, Harris AL, Hamdy FC, Cunningham C, Goberdhan DCI. Stress-induced Rab11a-exosomes induce amphiregulin-mediated cetuximab resistance in colorectal cancer. J Extracell Vesicles 2024; 13:e12465. [PMID: 38887984 PMCID: PMC11184284 DOI: 10.1002/jev2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/28/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G-protein Rab11a. These vesicles, termed Rab11a-exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a-exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non-genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG-carrying Rab11a-exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a-exosomes from cetuximab-resistant KRAS-mutant HCT116 cells, can suppress the effects of cetuximab on KRAS-wild type Caco-2 CRC cells. Using neutralising anti-AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a-exosomes affects its ability to compete with cetuximab. We propose that this Rab11a-exosome-mediated mechanism contributes to the establishment of resistance in cetuximab-sensitive cells and may explain why in cetuximab-resistant tumours only some cells carry mutant KRAS.
Collapse
Affiliation(s)
- John D. Mason
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Ewan Marks
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Shih‐Jung Fan
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of Life SciencesNational Central UniversityTaoyuan CityTaiwan
| | - Kristie McCormick
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Clive Wilson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Adrian L. Harris
- Department of Oncology, Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Freddie C. Hamdy
- Nuffield Department of Surgical SciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Chris Cunningham
- Nuffield Department of Surgical SciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | | |
Collapse
|
17
|
Hu D, Cui L, Zhang S, He S, Zhuo Y, Li D, Zhang L, Wang Y, Yang L, Wang X. Antitumor effect of tubeimoside-I on murine colorectal cancers through PKM2-dependent pyroptosis and immunomodulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4069-4087. [PMID: 38010398 DOI: 10.1007/s00210-023-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Induction of cancer cell death is an established treatment strategy, but chemotherapy drug-mediated apoptosis can be evaded by many tumors. Pyroptosis is a type of inflammatory programmed cell death (PCD) that is important for organism immunity. Tubeimoside-I (TBMS1) is a plant-derived component that exhibits antitumor activity. However, it is unclear how TBMS1 induces pyroptosis to inhibit colorectal cancer (CRC). In this study, we demonstrated that TBMS1 is able to induce pyroptosis in murine CRC cells and releases pro-inflammatory cytokines. Mechanistically, we found that TBMS1 inhibits CRC cell proliferation and migration and induces pyroptosis by activating caspase-3 and cleaving gasdermin E (GSDME) through the inhibition of PKM2. In the animal experiments, TBMS1 attenuated the weight of solid tumors, increased the proportion of CD8+ cytotoxic T cells, and reduced the content of M2-type macrophages in the spleen of tumor-bearing mice. Furthermore, TBMS1 inhibited M2-type polarization by blocking STAT6 pathway activation in RAW 264.7 cells. To sum up, our findings suggest that TBMS1 triggers pyroptosis in CRC by acting on the PKM2/caspase-3/GSDME signaling pathway. Additionally, it modulates the antitumor immune response in CRC murine models. This study provides a promising basis for the potential use of TBMS1 in treating CRC.
Collapse
Affiliation(s)
- Dongsheng Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Siqi He
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Yanli Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin University, Tianjin, China.
| |
Collapse
|
18
|
Kagawa Y, Smith JJ, Fokas E, Watanabe J, Cercek A, Greten FR, Bando H, Shi Q, Garcia-Aguilar J, Romesser PB, Horvat N, Sanoff H, Hall W, Kato T, Rödel C, Dasari A, Yoshino T. Future direction of total neoadjuvant therapy for locally advanced rectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:444-455. [PMID: 38485756 DOI: 10.1038/s41575-024-00900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 05/31/2024]
Abstract
Despite therapeutic advancements, disease-free survival and overall survival of patients with locally advanced rectal cancer have not improved in most trials as a result of distant metastases. For treatment decision-making, both long-term oncologic outcomes and impact on quality-of-life indices should be considered (for example, bowel function). Total neoadjuvant therapy (TNT), comprised of chemotherapy and radiotherapy or chemoradiotherapy, is now a standard treatment approach in patients with features of high-risk disease to prevent local recurrence and distant metastases. In selected patients who have a clinical complete response, subsequent surgery might be avoided through non-operative management, but patients who do not respond to TNT have a poor prognosis. Refined molecular characterization might help to predict which patients would benefit from TNT and non-operative management. Specifically, integrated analysis of spatiotemporal multi-omics using artificial intelligence and machine learning is promising. Three prospective trials of TNT and non-operative management in Japan, the USA and Germany are collaborating to better understand drivers of response to TNT. Here, we address the future direction for TNT.
Collapse
Affiliation(s)
- Yoshinori Kagawa
- Department of Gastroenterological Surgery, Osaka General Medical Center, Osaka, Japan
| | - J Joshua Smith
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
- Department of Radiation Oncology, CyberKnife and Radiation Therapy, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Jun Watanabe
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Andrea Cercek
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian R Greten
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
- German Cancer Consortium (DKTK), Frankfurt, Germany
- Institute for Tumour Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Qian Shi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Julio Garcia-Aguilar
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hanna Sanoff
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Takeshi Kato
- Department of Surgery, NHO Osaka National Hospital, Osaka, Japan
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
- German Cancer Consortium (DKTK), Frankfurt, Germany
| | - Arvind Dasari
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan.
| |
Collapse
|
19
|
Kiran N, Yashaswini C, Maheshwari R, Bhattacharya S, Prajapati BG. Advances in Precision Medicine Approaches for Colorectal Cancer: From Molecular Profiling to Targeted Therapies. ACS Pharmacol Transl Sci 2024; 7:967-990. [PMID: 38633600 PMCID: PMC11019743 DOI: 10.1021/acsptsci.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Precision medicine is transforming colorectal cancer treatment through the integration of advanced technologies and biomarkers, enhancing personalized and effective disease management. Identification of key driver mutations and molecular profiling have deepened our comprehension of the genetic alterations in colorectal cancer, facilitating targeted therapy and immunotherapy selection. Biomarkers such as microsatellite instability (MSI) and DNA mismatch repair deficiency (dMMR) guide treatment decisions, opening avenues for immunotherapy. Emerging technologies such as liquid biopsies, artificial intelligence, and machine learning promise to revolutionize early detection, monitoring, and treatment selection in precision medicine. Despite these advancements, ethical and regulatory challenges, including equitable access and data privacy, emphasize the importance of responsible implementation. The dynamic nature of colorectal cancer, with its tumor heterogeneity and clonal evolution, underscores the necessity for adaptive and personalized treatment strategies. The future of precision medicine in colorectal cancer lies in its potential to enhance patient care, clinical outcomes, and our understanding of this intricate disease, marked by ongoing evolution in the field. The current reviews focus on providing in-depth knowledge on the various and diverse approaches utilized for precision medicine against colorectal cancer, at both molecular and biochemical levels.
Collapse
Affiliation(s)
- Neelakanta
Sarvashiva Kiran
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Rahul Maheshwari
- School
of Pharmacy and Technology Management, SVKM’s
Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC,, Jadcherla, Hyderabad 509301, India
| | - Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
20
|
Ke S, Lei Y, Guo Y, Xie F, Yu Y, Geng H, Zhong Y, Xu D, Liu X, Yu F, Xia X, Zhang Z, Zhu C, Ling W, Li B, Zhao W. CD177 drives the transendothelial migration of Treg cells enriched in human colorectal cancer. Clin Transl Immunology 2024; 13:e1506. [PMID: 38596253 PMCID: PMC11003710 DOI: 10.1002/cti2.1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Objectives Regulatory T (Treg) cells regulate immunity in autoimmune diseases and cancers. However, immunotherapies that target tumor-infiltrating Treg cells often induce unwanted immune responses and tissue inflammation. Our research focussed on exploring the expression pattern of CD177 in tumor-infiltrating Treg cells with the aim of identifying a potential target that can enhance immunotherapy effectiveness. Methods Single-cell RNA sequencing (scRNA-seq) data and survival data were obtained from public databases. Twenty-one colorectal cancer patient samples, including fresh tumor tissues, peritumoral tissues and peripheral blood mononuclear cells (PBMCs), were analysed using flow cytometry. The transendothelial activity of CD177+ Treg cells was substantiated using in vitro experiments. Results ScRNA-seq and flow cytometry results indicated that CD177 was exclusively expressed in intratumoral Treg cells. CD177+ Treg cells exhibited greater activation status and expressed elevated Treg cell canonical markers and immune checkpoint molecules than CD177- Treg cells. We further discovered that both intratumoral CD177+ Treg cells and CD177-overexpressing induced Treg (iTreg) cells had lower levels of PD-1 than their CD177- counterparts. Moreover, CD177 overexpression significantly enhanced the transendothelial migration of Treg cells in vitro. Conclusions These results demonstrated that Treg cells with higher CD177 levels exhibited an enhanced activation status and transendothelial migration capacity. Our findings suggest that CD177 may serve as an immunotherapeutic target and that overexpression of CD177 may improve the efficacy of chimeric antigen receptor T (CAR-T) cell therapy.
Collapse
Affiliation(s)
- Shouyu Ke
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Lei
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixian Guo
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Xie
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yimeng Yu
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danhua Xu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xu Liu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fengrong Yu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Ling
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Li
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
21
|
Shah ET, Molloy C, Gough M, Kryza T, Samuel SG, Tucker A, Bhatia M, Ferguson G, Heyman R, Vora S, Monkman J, Bolderson E, Kulasinghe A, He Y, Gabrielli B, Hooper JD, Richard DJ, O'Byrne KJ, Adams MN. Inhibition of Aurora B kinase (AURKB) enhances the effectiveness of 5-fluorouracil chemotherapy against colorectal cancer cells. Br J Cancer 2024; 130:1196-1205. [PMID: 38287178 PMCID: PMC10991355 DOI: 10.1038/s41416-024-02584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.
Collapse
Affiliation(s)
- Esha T Shah
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Christopher Molloy
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Madeline Gough
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Thomas Kryza
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Selwin G Samuel
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Amos Tucker
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Maneet Bhatia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Genevieve Ferguson
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Rebecca Heyman
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Shivam Vora
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Emma Bolderson
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Yaowu He
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Brian Gabrielli
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - John D Hooper
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kenneth J O'Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Cancer Services, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Mark N Adams
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
22
|
MacLelland V, Kravitz M, Gupta A. Therapeutic and diagnostic applications of antisense peptide nucleic acids. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102086. [PMID: 38204913 PMCID: PMC10777018 DOI: 10.1016/j.omtn.2023.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peptide nucleic acids (PNAs) are synthetic nucleic acid analogs with a neutral N-(2-aminoethyl) glycine backbone. PNAs possess unique physicochemical characteristics such as increased resistance to enzymatic degradation, ionic strength and stability over a wide range of temperatures and pH, and low intrinsic electrostatic repulsion against complementary target oligonucleotides. PNA has been widely used as an antisense oligonucleotide (ASO). Despite the favorable characteristics of PNA, in comparison with other ASO technologies, the use of antisense PNA for novel therapeutics has lagged. This review provides a brief overview of PNA, its antisense mechanisms of action, delivery strategies, and highlights successful applications of PNA, focusing on anti-pathogenic, anti-neurodegenerative disease, anti-cancer, and diagnostic agents. For each application, several studies are discussed focusing on the different target sites of the PNA, design of different PNAs and the therapeutic outcome in different cell lines and animal models. Thereafter, persisting limitations slowing the successful integration of antisense PNA therapeutics are discussed in order to highlight actionable next steps in the development and optimization of PNA as an ASO.
Collapse
Affiliation(s)
- Victoria MacLelland
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Madeline Kravitz
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| |
Collapse
|
23
|
Cao L, Ouyang H. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via exosomes in gastrointestinal tumors. Front Oncol 2024; 14:1374742. [PMID: 38463229 PMCID: PMC10920350 DOI: 10.3389/fonc.2024.1374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Gastrointestinal (GI) tumors are a significant global health threat, with high rates of morbidity and mortality. Exosomes contain various biologically active molecules like nucleic acids, proteins, and lipids and can serve as messengers for intercellular communication. They play critical roles in the exchange of information between tumor cells and the tumor microenvironment (TME). The TME consists of mesenchymal cells and components of the extracellular matrix (ECM), with fibroblasts being the most abundant cell type in the tumor mesenchyme. Cancer-associated fibroblasts (CAFs) are derived from normal fibroblasts and mesenchymal stem cells that are activated in the TME. CAFs can secrete exosomes to modulate cell proliferation, invasion, migration, drug resistance, and other biological processes in tumors. Additionally, tumor cells can manipulate the function and behavior of fibroblasts through direct cell-cell interactions. This review provides a summary of the intercellular crosstalk between GI tumor cells and CAFs through exosomes, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Longyang Cao
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| | - Hong Ouyang
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| |
Collapse
|
24
|
Peng W, Feng Y, Yao C, Zhang S, Zhuo H, Qiu T, Zhang Y, Tang J, Gu Y, Sun Y. Evaluating AI in medicine: a comparative analysis of expert and ChatGPT responses to colorectal cancer questions. Sci Rep 2024; 14:2840. [PMID: 38310152 PMCID: PMC10838275 DOI: 10.1038/s41598-024-52853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Colorectal cancer (CRC) is a global health challenge, and patient education plays a crucial role in its early detection and treatment. Despite progress in AI technology, as exemplified by transformer-like models such as ChatGPT, there remains a lack of in-depth understanding of their efficacy for medical purposes. We aimed to assess the proficiency of ChatGPT in the field of popular science, specifically in answering questions related to CRC diagnosis and treatment, using the book "Colorectal Cancer: Your Questions Answered" as a reference. In general, 131 valid questions from the book were manually input into ChatGPT. Responses were evaluated by clinical physicians in the relevant fields based on comprehensiveness and accuracy of information, and scores were standardized for comparison. Not surprisingly, ChatGPT showed high reproducibility in its responses, with high uniformity in comprehensiveness, accuracy, and final scores. However, the mean scores of ChatGPT's responses were significantly lower than the benchmarks, indicating it has not reached an expert level of competence in CRC. While it could provide accurate information, it lacked in comprehensiveness. Notably, ChatGPT performed well in domains of radiation therapy, interventional therapy, stoma care, venous care, and pain control, almost rivaling the benchmarks, but fell short in basic information, surgery, and internal medicine domains. While ChatGPT demonstrated promise in specific domains, its general efficiency in providing CRC information falls short of expert standards, indicating the need for further advancements and improvements in AI technology for patient education in healthcare.
Collapse
Affiliation(s)
- Wen Peng
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Cui Yao
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Sheng Zhang
- Department of Radiotherapy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Han Zhuo
- Department of Intervention, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Tianzhu Qiu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Yi Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Junwei Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Wang H, Nie C, Luo M, Bai Q, Yao Z, Lv H, Chen B, Wang J, Xu W, Wang S, Chen X. Novel GSH-responsive prodrugs derived from indole-chalcone and camptothecin trigger apoptosis and autophagy in colon cancer. Bioorg Chem 2024; 143:107056. [PMID: 38183685 DOI: 10.1016/j.bioorg.2023.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Antineoplastic agents that target tubulin have shown efficacy as chemotherapeutic drugs, yet they are often constrained by multidrug resistance (MDR) and unwanted side effects. A multi-targeted strategy demonstrates great potency in reducing toxicity and enhancing efficacy and provides an alternative way for attenuating MDR. In this study, a series of dual-targeted anti-cancer agents based on indole-chalcone derivatives and the camptothecin (CPT) scaffold were synthesized. Among them, 14-1 demonstrated superior anti-proliferative activity than its precursor 13-1, CPT or their physical mixtures against tested cancer cells, including multidrug-resistant variants, while exhibited moderate cytotoxicity toward human normal cells. Mechanistic studies revealed that 14-1 acted as a glutathione-responsive prodrug, inducing apoptosis by substantially enhancing intracellular uptake of CPT, inhibiting tubulin polymerization, increasing the accumulation of intracellular reactive oxygen species, and initiating a mitochondrion-dependent apoptotic pathway. Moreover, 14-1 notably induced autophagy and suppressed topoisomerase I activity to further promote apoptosis. Importantly, 14-1 displayed potent inhibitory effect on tumor growth in paclitaxel (PTX)-resistant colorectal cancer (HCT-116/PTX) xenograft models without inducing obvious toxicity compared with CPT- or combo-treated group. These results suggest that 14-1 holds promise as a novel candidate for anti-cancer therapy, particularly in PTX-resistant cancers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Miao Luo
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Qiwen Bai
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Zhentao Yao
- Department of Endoscopic Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Saiqi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province 450008, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province 450008, China.
| |
Collapse
|
26
|
Brockmueller A, Buhrmann C, Moravejolahkami AR, Shakibaei M. Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? J Adv Res 2024:S2090-1232(24)00005-5. [PMID: 38190940 DOI: 10.1016/j.jare.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), which is mainly caused by epigenetic and lifestyle factors, is very often associated with functional plasticity during its development. In addition, the malignant plasticity of CRC cells underscores one of their survival abilities to functionally adapt to specific stresses, including inflammation, that occur during carcinogenesis. This leads to the generation of various subsets of cancer cells with phenotypic diversity and promotes epithelial-mesenchymal transition (EMT), formation of cancer cell stem cells (CSCs) and metabolic reprogramming. This can enhance cancer cell differentiation and facilitate tumorigenic potential, drug resistance and metastasis. AIM OF REVIEW The tumor protein p53 acts as one of the central suppressors of carcinogenesis by regulating its target genes, whose proteins are involved in the plasticity of cancer cells, autophagy, cell cycle, apoptosis, DNA repair. The aim of this review is to summarize the latest published research on resveratrol's effect in the prevention of CRC, its regulatory actions, specifically on the p53 pathway, and its treatment options. KEY SCIENTIFIC CONCEPTS OF REVIEW Resveratrol, a naturally occurring polyphenol, is a potent inducer of a variety of tumor-controlling. However, the underlying mechanisms linking the p53 signaling pathway to the functional anti-plasticity effect of resveratrol in CRC are still poorly understood. Therefore, this review discusses novel relationships between anti-cellular plasticity/heterogeneity, pro-apoptosis and modulation of tumor protein p53 signaling in CRC oncogenesis, as one of the crucial mechanisms by which resveratrol prevents malignant phenotypic changes leading to cell migration and drug resistance, thus improving the ongoing treatment of CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| |
Collapse
|
27
|
Li Z, Wang D, Zhang W, Shi H, Zhu M. Novel PBMC LncRNA signatures as diagnostic biomarkers for colorectal cancer. Pathol Res Pract 2024; 253:154985. [PMID: 38039742 DOI: 10.1016/j.prp.2023.154985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The expression of long non-coding RNAs (LncRNAs) in peripheral blood mononuclear cell (PBMC) and its clinical relevance in colorectal cancer (CRC) remains largely uncharacterized. To address these gaps, we investigated the expression profiles of lncRNAs in PBMC from CRC and healthy controls (HC) by RNA sequencing. The expression level of differentially expressed lncRNAs (DElncRNAs) were evaluated by quantitative PCR in PBMC samples from CRC patients and HC. A total of 447 DElncRNAs were identified, with 178 elevated lncRNAs and 269 decreased lncRNAs in PBMC from CRC patients as compared with that from HC. RT-PCR results supported a significant elevation of NEAT1:11, lnc-PDZD8-1:5 and LINC00910:16 in 98 CRC patients and 82 HC. The clinical implication of NEAT1:11, lnc-PDZD8-1:5 and LINC00910:16 as CRC diagnostic biomarker were determined by receiver operating characteristic (ROC) curve, showing sensitivity 74.5% and specificity 84.5% for joint detection the three lncRNAs. Notably, NEAT1:11 was closely related with the size and extent of primary tumor, with higher relative expression of NEAT1:11 in higher T stage (P = 0.0047). Moreover, NEAT1:11 was related with grade (P = 0.012). Collectively, PBMC from patients with CRC show significantly variable expression profiles of lncRNAs, and detection of these differential expression lncRNAs may provide useful information for basic and clinical research.
Collapse
Affiliation(s)
- Zhaosheng Li
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Dongfeng Wang
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wenjun Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Huina Shi
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mingchen Zhu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
28
|
Mima K, Hamada T, Inamura K, Baba H, Ugai T, Ogino S. The microbiome and rise of early-onset cancers: knowledge gaps and research opportunities. Gut Microbes 2023; 15:2269623. [PMID: 37902043 PMCID: PMC10730181 DOI: 10.1080/19490976.2023.2269623] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
Accumulating evidence indicates an alarming increase in the incidence of early-onset cancers, which are diagnosed among adults under 50 years of age, in the colorectum, esophagus, extrahepatic bile duct, gallbladder, liver, stomach, pancreas, as well as the bone marrow (multiple myeloma), breast, head and neck, kidney, prostate, thyroid, and uterine corpus (endometrium). While the early-onset cancer studies have encompassed research on the wide variety of organs, this article focuses on research on digestive system cancers. While a minority of early-onset cancers in the digestive system are associated with cancer-predisposing high penetrance germline genetic variants, the majority of those cancers are sporadic and multifactorial. Although potential etiological roles of diets, lifestyle, environment, and the microbiome from early life to adulthood (i.e. in one's life course) have been hypothesized, exact contribution of each of these factors remains uncertain. Diets, lifestyle patterns, and environmental exposures have been shown to alter the oral and intestinal microbiome. To address the rising trend of early-onset cancers, transdisciplinary research approaches including lifecourse epidemiology and molecular pathological epidemiology frameworks, nutritional and environmental sciences, multi-omics technologies, etc. are needed. We review current evidence and discuss emerging research opportunities, which can improve our understanding of their etiologies and help us design better strategies for prevention and treatment to reduce the cancer burden in populations.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cancer Epidemiology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
29
|
Li Y, Peng Q, Wang L. EphA2 as a phase separation protein associated with ferroptosis and immune cell infiltration in colorectal cancer. Aging (Albany NY) 2023; 15:12952-12965. [PMID: 37980165 DOI: 10.18632/aging.205212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 11/20/2023]
Abstract
Colorectal cancer is one of the most common malignant tumors in the digestive system, and its high incidence and metastasis rate make it a terrible killer that threatens human health. In-depth exploration of the targets affecting the progression of colorectal cancer cells and the development of specific targeted drugs for them are of great significance for the prognosis of colorectal cancer patients. Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph subfamily with tyrosine kinase activity, plays a key role in the regulation of signaling pathways related to the malignant phenotype of various tumor cells, but its specific regulatory mechanism in colorectal cancer needs to be further clarified. Here, we found that EphA2 was abnormally highly expressed in colorectal cancer and that patients with colorectal cancer with high EphA2 expression had a worse prognosis. We also found that EphA2 can form liquid-liquid phase separation condensates on cell membrane, which can be disrupted by ALW-II-41-27, an inhibitor of EphA2. In addition, we found that EphA2 expression in colorectal cancer was positively correlated with the expression of ferroptosis-related genes and the infiltration of multiple immune cells. These findings suggest that EphA2 is a novel membrane protein with phase separation ability and is associated with ferroptosis and immune cell infiltration, which further suggests that malignant progression of colorectal cancer may be inhibited by suppressing the phase separation ability of EphA2.
Collapse
Affiliation(s)
- Yanling Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Qiu Peng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
30
|
Yang J, Zhao S, Su J, Liu S, Wu Z, Ma W, Tang M, Wu J, Mao E, Han L, Liu M, Zhang J, Cao L, Shao J, Shang Y. Comprehensive genomic profiling reveals prognostic signatures and insights into the molecular landscape of colorectal cancer. Front Oncol 2023; 13:1285508. [PMID: 38023196 PMCID: PMC10680082 DOI: 10.3389/fonc.2023.1285508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent malignancy with diverse molecular characteristics. The NGS-based approach enhances our comprehension of genomic landscape of CRC and may guide future advancements in precision oncology for CRC patients. Method In this research, we conducted an analysis using Next-Generation Sequencing (NGS) on samples collected from 111 individuals who had been diagnosed with CRC. We identified somatic and germline mutations and structural variants across the tumor genomes through comprehensive genomic profiling. Furthermore, we investigated the landscape of driver mutations and their potential clinical implications. Results Our findings underscore the intricate heterogeneity of genetic alterations within CRC. Notably, BRAF, ARID2, KMT2C, and GNAQ were associated with CRC prognosis. Patients harboring BRAF, ARID2, or KMT2C mutations exhibited shorter progression-free survival (PFS), whereas those with BRAF, ARID2, or GNAQ mutations experienced worse overall survival (OS). We unveiled 80 co-occurring and three mutually exclusive significant gene pairs, enriched primarily in pathways such as TP53, HIPPO, RTK/RAS, NOTCH, WNT, TGF-Beta, MYC, and PI3K. Notably, co-mutations of BRAF/ALK, BRAF/NOTCH2, BRAF/CREBBP, and BRAF/FAT1 correlated with worse PFS. Furthermore, germline AR mutations were identified in 37 (33.33%) CRC patients, and carriers of these variants displayed diminished PFS and OS. Decreased AR protein expression was observed in cases with AR germline mutations. A four-gene mutation signature was established, incorporating the aforementioned prognostic genes, which emerged as an independent prognostic determinant in CRC via univariate and multivariate Cox regression analyses. Noteworthy BRAF and ARID2 protein expression decreases detected in patients with their respective mutations. Conclusion The integration of our analyses furnishes crucial insights into CRC's molecular characteristics, drug responsiveness, and the construction of a four-gene mutation signature for predicting CRC prognosis.
Collapse
Affiliation(s)
- Jinwei Yang
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Sihui Zhao
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Junyan Su
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Siyao Liu
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Zaozao Wu
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ming Tang
- Department of Pathology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingcui Wu
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Erdong Mao
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Li Han
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Mengyuan Liu
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Jiali Zhang
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Lei Cao
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Jingyi Shao
- Department of Reproductive Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yun Shang
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
31
|
Khuanjing T, Maneechote C, Ongnok B, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Vagus nerve stimulation and acetylcholinesterase inhibitor donepezil provide cardioprotection against trastuzumab-induced cardiotoxicity in rats by attenuating mitochondrial dysfunction. Biochem Pharmacol 2023; 217:115836. [PMID: 37816466 DOI: 10.1016/j.bcp.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Trastuzumab (Trz) is a targeted anticancer drug for human epidermal growth factor receptor 2 (HER2)-positive tumors, as Trz-induced cardiotoxicity (TIC) is commonly observed in Trz-treated patients. Since cardiac autonomic modulation with electrical vagus nerve stimulation (VNS) and acetylcholinesterase (AChE) inhibitors exerts cardioprotection against various heart diseases, the comparative effects of electrical VNS and an AChE inhibitor (donepezil) on cardiac and mitochondrial functions and programmed cell death pathways in TIC are not known. VNS devices were implanted in thirty-two male Wistar rats and were divided into 4 groups: (i) Control-Sham (CSham), (ii) Trz-Sham (TSham), (iii) Trz-VNS (TVNS), and (iv) Trz-donepezil (TDPZ). Rats in the Trz-treated groups were intraperitoneally injected with Trz (4 mg/kg/day) for 7 days, while CSham rats were injected with NSS. VNS devices were activated in the TVNS rats during the 7-day Trz treatment, but not in the sham rats. Rats in the TDPZ group received donepezil orally (5 mg/kg/day) for 7 days. At the end, left ventricular (LV) function and heart rate variability were evaluated, and heart tissue was collected for biochemical and histological analysis. Trz rats showed LV dysfunction and cardiac sympathovagal imbalance. In addition, mitochondrial function and dynamics were impaired in TIC rats. Trz also increased cardiomyocyte death by inducing apoptosis, pyroptosis, and ferroptosis. Electrical VNS and donepezil had similar efficacy in alleviating cardiac mitochondrial dysfunction, dynamic imbalances, and cardiomyocyte death, leading to improved LV function. These findings suggested that parasympathetic activation via either VNS or an AChE inhibitor could be a promising therapeutic intervention against TIC.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
32
|
OHTSU A, GOTO K, YOSHINO T. Improvement of patient care using cancer genomic profiling: SCRUM-/CIRCULATE-Japan experience. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:241-253. [PMID: 37558430 PMCID: PMC10749397 DOI: 10.2183/pjab.99.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
We launched SCRUM-Japan platform for the cancer genome profiling (CGP) test screening followed by the enrollment to genomically-matched clinical trials in 2015. More than 30,000 tissue-based and 10,000 liquid-based CGP tests have already been performed for enrolling to a total of 127 industry-/investigator-initiated registration trials, which resulted in regulatory approvals of 12 new agents with 14 indications in Japan. Using the clinical-genomic database, a new driver gene was recently discovered with dramatic response by genomically-matched agent. Our comparative study with tissue-based CGPs revealed more usefulness of liquid biopsy in terms of less invasive manner, shorter turn-round time, and higher enrollment rate for matched treatments than tissue-based in gastrointestinal cancers. For detecting minimal/molecular residual disease (MRD) after surgery, post-surgical monitoring with tumor-informed liquid biopsy assay in association with two randomized control trials have also started in 2020 (CIRCULATE-Japan). The observational cohort study showed obvious efficacy of the MRD monitoring for predicting recurrence, leading to change clinical practice in patient selection who should receive adjuvant therapy in the near future.
Collapse
Affiliation(s)
- Atsushi OHTSU
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Koichi GOTO
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | |
Collapse
|
33
|
Pan Q, Fan X, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Nano-enabled colorectal cancer therapy. J Control Release 2023; 362:548-564. [PMID: 37683732 DOI: 10.1016/j.jconrel.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Colorectal cancer (CRC), one of the most common and deadliest diseases worldwide, poses a great health threat and social burden. The clinical treatments of CRC encompassing surgery, chemotherapy, and radiotherapy are challenged with toxicity, therapy resistance, and recurrence. In the past two decades, targeted therapy and immunotherapy have greatly improved the therapeutic benefits of CRC patients but they still suffer from drug resistance and low response rates. Very recently, gut microbiota regulation has exhibited a great potential in preventing and treating CRC, as well as in modulating the efficacy and toxicity of chemotherapy and immunotherapy. In this review, we provide a cutting-edge summary of nanomedicine-based treatment in colorectal cancer, highlighting the recent progress of oral and systemic tumor-targeting and/or tumor-activatable drug delivery systems as well as novel therapeutic strategies against CRC, including nano-sensitizing immunotherapy, anti-inflammation, gut microbiota modulation therapy, etc. Finally, the recent endeavors to address therapy resistance, metastasis, and recurrence in CRC were discussed. We hope this review could offer insight into the design and development of nanomedicines for CRC and beyond.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
34
|
Lin X, Zong C, Zhang Z, Fang W, Xu P. Progresses in biomarkers for cancer immunotherapy. MedComm (Beijing) 2023; 4:e387. [PMID: 37799808 PMCID: PMC10547938 DOI: 10.1002/mco2.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Currently, checkpoint inhibitor-based immunotherapy has emerged as prevailing treatment modality for diverse cancers. However, immunotherapy as a first-line therapy has not consistently yielded durable responses. Moreover, the risk of immune-related adverse events increases with combination regimens. Thus, the development of predictive biomarkers is needed to optimize individuals benefit, minimize risk of toxicities, and guide combination approaches. The greatest focus has been on tumor programmed cell death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB). However, there remains a subject of debate due to thresholds variability and significant heterogeneity. Major unmet challenges in immunotherapy are the discovery and validation of predictive biomarkers. Here, we show the status of tumor PD-L1, MSI, TMB, and emerging data on novel biomarker strategies with oncogenic signaling and epigenetic regulation. Considering the exploration of peripheral and intestinal immunity has served as noninvasive alternative in predicting immunotherapy, this review also summarizes current data in systemic immunity, encompassing solute PD-L1 and TMB, circulating tumor DNA and infiltrating lymphocytes, routine emerging inflammatory markers and cytokines, as well as gut microbiota. This review provides up-to-date information on the evolving field of currently available biomarkers in predicting immunotherapy. Future exploration of novel biomarkers is warranted.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineShantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Chenyu Zong
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| | - Zhihan Zhang
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Weiyi Fang
- Cancer Research InstituteSchool of Basic Medical ScienceSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Ping Xu
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| |
Collapse
|
35
|
Liu J, Xie H. BRAF Non-V600 Mutations in Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:4604. [PMID: 37760573 PMCID: PMC10527056 DOI: 10.3390/cancers15184604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. Despite advancements in detection and therapeutic options, patients with metastatic CRC continue to face poor survival rates. The heterogeneity of oncogenic alterations, including BRAF mutations, poses a substantial challenge in identifying optimal treatment approaches. Notably, BRAF non-V600 mutations, encompassing class II and class III mutations, exhibit the distinct patterns of the signaling pathways and responses to targeted therapies compared to BRAF V600 mutations (class I). Nevertheless, the current classification system may underestimate the complexity and heterogeneity of BRAF-mutant CRC. Ongoing clinical trials are actively investigating targeted therapies for BRAF non-V600 mutations, but they are being confronted with patient recruitment obstacles due to the genetic diversity of these alterations. Continued research is needed to refine mutation subtyping, identify effective treatment strategies, and improve outcomes for patients with BRAF non-V600-mutant CRC. Enhancing our understanding and management of this specific subgroup of CRC is crucial for developing personalized treatment approaches and advancing patient care. This manuscript provides a comprehensive overview of the recent advances in and perspectives on BRAF non-V600 alterations in colorectal cancer, including relevant ongoing clinical trials.
Collapse
Affiliation(s)
- Junjia Liu
- Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Hao Xie
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Khuanjing T, Maneechote C, Ongnok B, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC, Chattipakorn N. Acetylcholinesterase inhibition protects against trastuzumab-induced cardiotoxicity through reducing multiple programmed cell death pathways. Mol Med 2023; 29:123. [PMID: 37691124 PMCID: PMC10494358 DOI: 10.1186/s10020-023-00686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/12/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Trastuzumab (Trz)-induced cardiotoxicity (TIC) is one of the most common adverse effects of targeted anticancer agents. Although oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, and ferroptosis have been identified as potential mechanisms underlying TIC, the roles of pyroptosis and necroptosis under TIC have never been investigated. It has been shown that inhibition of acetylcholinesterase function by using donepezil exerts protective effects in various heart diseases. However, it remains unknown whether donepezil exerts anti-cardiotoxic effects in rats with TIC. We hypothesized that donepezil reduces mitochondrial dysfunction, inflammation, oxidative stress, and cardiomyocyte death, leading to improved left ventricular (LV) function in rats with TIC. METHODS Male Wistar rats were randomly assigned to be Control or Trz groups (Trz 4 mg/kg/day, 7 days, I.P.). Rats in Trz groups were assigned to be co-treated with either drinking water (Trz group) or donepezil 5 mg/kg/day (Trz + DPZ group) via oral gavage for 7 days. Cardiac function, heart rate variability (HRV), and biochemical parameters were evaluated. RESULTS Trz-treated rats had impaired LV function, HRV, mitochondrial function, and increased inflammation and oxidative stress, leading to apoptosis, ferroptosis, and pyroptosis. Donepezil co-treatment effectively decreased those adverse effects of TIC, resulting in improved LV function. An in vitro study revealed that the cytoprotective effects of donepezil were abolished by a muscarinic acetylcholine receptor (mAChR) antagonist. CONCLUSIONS Donepezil exerted cardioprotection against TIC via attenuating mitochondrial dysfunction, oxidative stress, inflammation, and cardiomyocyte death, leading to improved LV function through mAChR activation. This suggests that donepezil could be a novel intervention strategy in TIC.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
37
|
Kobayashi S, Bando H, Taketomi A, Takamoto T, Shinozaki E, Shiozawa M, Hara H, Yamazaki K, Komori K, Matsuhashi N, Kato T, Kagawa Y, Yokota M, Oki E, Komine K, Takahashi S, Wakabayashi M, Yoshino T. NEXUS trial: a multicenter phase II clinical study evaluating the efficacy and safety of the perioperative use of encorafenib, binimetinib, and cetuximab in patients with previously untreated surgically resectable BRAF V600E mutant colorectal oligometastases. BMC Cancer 2023; 23:779. [PMID: 37605122 PMCID: PMC10440878 DOI: 10.1186/s12885-023-11311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The optimal treatment strategy for resectable BRAF V600E mutant colorectal oligometastases (CRM) has not been established due to the rarity and rapid progression of the disease. Since the unresectable recurrence rate is high, development of novel perioperative therapies are warranted. On December 2020, the BEACON CRC triplet regimen of encorafenib, binimetinib, and cetuximab was approved for unresectable metastatic colorectal cancer in Japan. METHODS The NEXUS trial is a multicenter phase II clinical study evaluating the efficacy and safety of the perioperative use of encorafenib, binimetinib, and cetuximab in patients with previously untreated surgically resectable BRAF V600E mutant CRM. The key inclusion criteria are as follows: histologically diagnosed with colorectal adeno/adenosquamous carcinoma; RAS wild-type and BRAF V600E mutation by tissue or blood; and previously untreated resectable distant metastases. The triplet regimen (encorafenib: 300 mg daily; binimetinib: 45 mg twice daily; cetuximab: 400 mg/m2, then 250 mg/m2 weekly, 28 days/cycle) is administered for 3 cycles each before and after curative resection. The primary endpoint of the study is the 1-year progression-free survival (PFS) rate and the secondary end points are the PFS, disease-free survival, overall survival, and objective response rate. The sample size is 32 patients. Endpoints in the NEXUS trial as well as integrated analysis with the nationwide registry data will be considered for seeking regulatory approval for the perioperative use of the triplet regimen. DISCUSSION The use of the triplet regimen in the perioperative period is expected to be safe and effective in patients with resectable BRAF V600E mutant CRM. TRIAL REGISTRATION jRCT2031220025, April. 16, 2022.
Collapse
Affiliation(s)
- Shin Kobayashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 2770882, Japan.
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Hospital, Sapporo, Japan
| | - Takeshi Takamoto
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Eiji Shinozaki
- Gastrointestinal Oncology Department, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroki Hara
- Gastroenterological Department, Saitama Cancer Center, Ina, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Koji Komori
- Department of Gastroenterological Surgery Aichi Cancer Center Hospital, Nagoya, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery, Pediatric Surgery, Gifu University Hospital, Gifu, Japan
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshinori Kagawa
- Department of Gastroenterological Surgery, Osaka General Medical Center, Osaka, Japan
| | - Mitsuru Yokota
- Department of General Surgery, Kurashiki Central Hospital, Kurashiki, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keigo Komine
- Department of Clinical Oncology, Tohoku University Hospital, Sendai, Japan
| | - Shinichiro Takahashi
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Masashi Wakabayashi
- Division for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
38
|
Voutsadakis IA. High tumor mutation burden (TMB) in microsatellite stable (MSS) colorectal cancers: Diverse molecular associations point to variable pathophysiology. Cancer Treat Res Commun 2023; 36:100746. [PMID: 37494750 DOI: 10.1016/j.ctarc.2023.100746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Colorectal cancers with defects in the Mismatch Repair (MMR) system represent a minority of the disease. MMR defective cancers are characterized by high Tumor Mutation Burden (TMB) and are sensitive to immunotherapy with immune checkpoint inhibitors. In contrast, the majority of colorectal cancers are MMR proficient (Microsatellite Stable, MSS) and display a low TMB. However, a few of these MSS cancers have high TMB. METHODS Published genomic studies of colorectal cancers were examined to identify cases profiled as MSS and having a TMB above 10 mutations / Mb. Data from four studies detailed in the cBioportal for cancer genomics site and providing data on MSI status were examined. RESULTS In the MSK study of metastatic colorectal cancers, 7.5% of patients with MSS tumors had a high TMB of more than 10 mutations/ Mb. The MSK study of localized rectal cancers showed that 9.5% of patients with MSS tumors had a high TMB. The DFCI cohort included 10 patients with TMB above 10 mutations/ Mb characterized as MSS and not having MMR or proofreading polymerases mutations. Mutations in genes encoding for proteins of the KRAS pathways were more frequent in MSS tumors with high TMB than in counterparts with low TMB. Moreover, genes involved in DNA damage response and in epigenetic regulations were more frequently mutated in MSS colorectal cancers with high TMB. CONCLUSION Alterations of the KRAS signal transduction pathways, DDR gene mutations and epigenetic modifier mutations may contribute to increase mutation burden in subsets of MSS colorectal cancers.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste Marie, Ontario, P6B 0A8, Canada; Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
39
|
Wang X, Zhao C, Gong Y, Wang Y, Guo F. Multidrug resistance in the standardized treatment of colon cancer harboring a rare fibrosarcoma B-type (BRAF) p.N581I mutation: a case report. Front Oncol 2023; 13:1175693. [PMID: 37519790 PMCID: PMC10380923 DOI: 10.3389/fonc.2023.1175693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 08/01/2023] Open
Abstract
BRAF non-V600 mutations are a distinct molecular subset of colorectal cancer (CRC) that has little to no clinical similarity to the BRAF V600 mutations. It is generally considered that the BRAF non-V600 mutations correlate with better survival of CRC patients. In this report, we present an unusual case of that a midlife female patient who was initially diagnosed with stage IIIC colon cancer, and multiple metastases were found 25 months after radical surgery. Next-generation sequencing (NGS) revealed the BRAF p.N581I (c.1742A>T) mutation. She received chemotherapy, targeted therapy, and immunotherapy. However, the disease progressed rapidly with rare metastasis of the bone and cerebellum. This case highlights that the BRAF non-V600 mutations, such as BRAF p.N581I mutant, may lead to resistance to epidermal growth factor receptor (EGFR) inhibitors and result in a rapid course in colorectal cancer. The role of BRAF p.N581I mutation in colorectal cancer demands more attention.
Collapse
Affiliation(s)
| | | | | | | | - Feng Guo
- Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
40
|
Li Q, Wang Y, Wang JW, Qian L, Wang S, Cao TT, Xia YB, Huang XX, Xu L. Preserving or peeling the inferior mesenteric arterial sheath during laparoscopic rectal cancer surgery: a prospective study of surgical outcomes. BMC Surg 2023; 23:176. [PMID: 37370110 PMCID: PMC10303794 DOI: 10.1186/s12893-023-02083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND We mainly evaluated whether preserving the inferior mesenteric artery (IMA) sheath to dissecting IMA root lymph nodes (also called No.253 lymph nodes) would benefit patients in terms of comparable lymph-node yield removed during operation and postoperative complications in laparoscopic radical resection of rectal cancer. METHODS This is a prospective study included 141 rectal cancer patients who received laparoscopic radical resection during September 2018 to December 2020. All patients were randomly assigned to the preserved group (n = 71) and the peeled group (n = 70). The baseline characteristics, pathological features, intraoperative and postoperative data outcomes and complications were analyzed by independent samples t test, chi-square test or Fisher's exact test between the 2 groups. RESULTS The baseline characteristic and pathological features had no statistical difference between the 2 groups. The preserved group had a shorter operative time (P = 0.002), a shorter lymph node dissection time (P < 0.001), less intraoperative bleeding (P = 0.004), an earlier time to first flatus (P = 0.013), an earlier time to fluid intake (P = 0.033) and a shorter length of hospitalization (P = 0.012) than the peeled group. The differences between the 2 groups were not statistically significant (P > 0.05) in regard to the total number of lymph nodes cleared, positive lymph nodes, bleeding, anastomotic leakage, pneumonia, wound infection, abscess, ileus, urinary retention, urinary tract infection and chyle leakage. CONCLUSION Preserving of the IMA sheath in laparoscopic radical surgery for rectal cancer will reduce the total operation time and the length of hospitalization. This surgical method could lead to lower complication rate and faster recovery. TRIAL REGISTRATION The study was approved by the Ethics Committee of The First Affiliated Hospital of Wannan Medical College and registered by the China Clinical Trials Registry (ChiCTR2200060830, Date of Registration:2022-06-12 -retrospective registration) http://www.chictr.org.cn/index.aspx .
Collapse
Affiliation(s)
- Qian Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Jia-Wei Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Long Qian
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ting-Ting Cao
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ya-Bin Xia
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Xiao-Xu Huang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China.
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China.
| | - Li Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China.
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China.
| |
Collapse
|
41
|
Yang G, Yu XR, Weisenberger DJ, Lu T, Liang G. A Multi-Omics Overview of Colorectal Cancer to Address Mechanisms of Disease, Metastasis, Patient Disparities and Outcomes. Cancers (Basel) 2023; 15:cancers15112934. [PMID: 37296894 DOI: 10.3390/cancers15112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Human colorectal cancer (CRC) is one of the most common malignancies in men and women across the globe, albeit CRC incidence and mortality shows a substantial racial and ethnic disparity, with the highest burden in African American patients. Even with effective screening tools such as colonoscopy and diagnostic detection assays, CRC remains a substantial health burden. In addition, primary tumors located in the proximal (right) or distal (left) sides of the colorectum have been shown to be unique tumor types that require unique treatment schema. Distal metastases in the liver and other organ systems are the major causes of mortality in CRC patients. Characterizing genomic, epigenomic, transcriptomic and proteomic (multi-omics) alterations has led to a better understanding of primary tumor biology, resulting in targeted therapeutic advancements. In this regard, molecular-based CRC subgroups have been developed that show correlations with patient outcomes. Molecular characterization of CRC metastases has highlighted similarities and differences between metastases and primary tumors; however, our understanding as to how to improve patient outcomes based on metastasis biology is lagging and remains a major obstacle to improving CRC patient outcomes. In this review, we will summarize the multi-omics features of primary CRC tumors and their metastases across racial and ethnic groups, the differences in proximal and distal tumor biology, molecular-based CRC subgroups, treatment strategies and challenges for improving patient outcomes.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Xi Richard Yu
- China Grand Enterprises, Beijing 100101, China
- Huadong Medicine Co., Ltd., Hangzhou 310011, China
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Sciences, China Pharmaceutical University, Nanjing 211121, China
| | - Gangning Liang
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
42
|
Ottaiano A, Santorsola M, Capuozzo M, Perri F, Circelli L, Cascella M, Ianniello M, Sabbatino F, Granata V, Izzo F, Iervolino D, Casillo M, Petrillo N, Gualillo O, Nasti G, Savarese G. The prognostic role of p53 mutations in metastatic colorectal cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 186:104018. [PMID: 37150312 DOI: 10.1016/j.critrevonc.2023.104018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
INTRODUCTION P53 is one of the most frequently mutated genes in colorectal cancer (CRC). The present study was undertaken to provide a solid estimate of the prognostic value of p53 mutations in metastatic CRC patients. METHODS This meta-analysis was done in accordance to the Preferred Reporting Item For Systematic Reviews and Meta-Analysis 2020 guidelines. Studies in English published in the last ten years were searched through PubMed and Google Scholar. Final selection criteria were: 1) association with overall survival, 2) presence of Hazard Ratios (HRs) with 95% Confidence Intervals (CIs). The articles were evaluated for quality and risk of bias using the Newcastle-Ottawa Scale and QUIPS tool, respectively. The meta-analysis was conducted with random-effects model according to the Hartung-Knapp-Sidik-Jonkman method and results were depicted in classical Forest plots. Studies heterogeneity was determined by I2 and Tau2 statistics. The relationship between p53 mutation and clinic-pathological variables was examined using the χ2 test. RESULTS Nine articles met the eligibility criteria and went to the final analysis. Sample size ranged from 51 to 1043 patients. All studies were retrospective. The Newcastle Ottawa Scale score was >6 in all studies, QUIPS risk of bias was low in 6, moderate in 3 studies. Only three studies analysed the entire p53 gene coding region. The DNA sequencing technological platforms varied from Sanger to NGS sequencing techniques. The p53 mutational frequencies ranged from 35.0 to 73.0%. A strong association (p<0.0001) emerged between p53 alteration and left-sided CRC. The final pooled HR (p53 mutated vs p53 wild-type tumours) for overall survival was 1.30 (95% CI: 0.75-2.25) at random-effects model. CONCLUSIONS The available evidence does not support a prognostic role for p53 in metastatic CRC patients. Prospective studies, with larger sample sizes and consistent and harmonized methodology, are needed to explore the prognostic role of p53 in metastatic CRC patients.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy.
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | | | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Francesco Izzo
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Domenico Iervolino
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Marika Casillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Naples, Italy
| | - Nadia Petrillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Naples, Italy
| |
Collapse
|
43
|
Pan B, Yue Y, Ding W, Sun L, Xu M, Wang S. A novel prognostic signatures based on metastasis- and immune-related gene pairs for colorectal cancer. Front Immunol 2023; 14:1161382. [PMID: 37180113 PMCID: PMC10169605 DOI: 10.3389/fimmu.2023.1161382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Background Metastasis remains the leading cause of mortality in patients diagnosed with colorectal cancer (CRC). The pivotal contribution of the immune microenvironment in the initiation and progression of CRC metastasis has gained significant attention. Methods A total of 453 CRC patients from The Cancer Genome Atlas (TCGA) were included as the training set, and GSE39582, GSE17536, GSE29621, GSE71187 were included as the validation set. The single-sample gene set enrichment analysis (ssGSEA) was performed to assess the immune infiltration of patients. Least absolute shrinkage and selection operator (LASSO) regression analysis, Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier analysis were used to construct and validate risk models based on R package. CTSW and FABP4-knockout CRC cells were constructed via CRISPR-Cas9 system. Western-blot and Transwell assay were utilized to explore the role of fatty acid binding protein 4 (FABP4) / cathepsin W (CTSW) in CRC metastasis and immunity. Results Based on the normal/tumor, high-/low-immune cell infiltration, and metastatic/non-metastatic group, we identified 161 differentially expressed genes. After random assignment and LASSO regression analysis, a prognostic model containing 3 metastasis- and immune-related gene pairs was constructed and represented good prognostic prediction efficiency in the training set and 4 independent CRC cohorts. According to this model, we clustered patients and found that the high-risk group was associated with stage, T and M stage. In addition, the high-risk group also shown higher immune infiltration and high sensitivity to PARP inhibitors. Further, FABP4 and CTSW derived from the constitutive model were identified to be involved in metastasis and immunity of CRC. Conclusion In conclusion, a validated prognosis predictive model for CRC was constructed. CTSW and FABP4 are potential targets for CRC treatment.
Collapse
Affiliation(s)
- Bei Pan
- School of Medicine, Southeast University, Nanjing, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yanzhe Yue
- Division of Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenbo Ding
- Division of Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Xie BW, Guan B, Chen W, Zhou M, Gu Q, Liu Y, Yan D. Tumor-derived extracellular vesicles delivering TNF-α promotes colorectal cancer metastasis via the NF-kB/LAMB3/AKT axis by targeting SNAP23. Arch Biochem Biophys 2023; 741:109605. [PMID: 37086961 DOI: 10.1016/j.abb.2023.109605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/24/2023]
Abstract
Accumulating evidence have demonstrated that cytokines are enriched in tumor-derived extracellular vesicles (EVs) and widely involved in tumorigenesis of various types of carcinomas, including colorectal cancer (CRC). Nevertheless, the functions of cytokines in EVs secreted from colorectal cancer cells remain largely unknown. In the present study, we found that TNF-α was elevated in EVs from CRC patient serum samples and CRC cell lines, of which the expression was associated with aggressive features of colorectal cancer. EV TNF-α secretion is dependent on synaptosome-associated protein 23 (SNAP23). Functional experiments revealed that EV TNF-α promotes CRC cell metastasis via the NF-κB pathway by targeting SNAP23. Mechanistically, SNAP23 was transcriptionally upregulated by EV TNF-α/NF-κB axis to enhance the expression of laminin subunit beta-3 (LAMB3), thereby activating the PI3K/AKT signaling pathway and consequently facilitate CRC progression. Based on our findings, we could conclude that EV TNF-α plays an oncogenic role in CRC progression through SNAP23, which in turn promotes EV TNF-α secretion, suggesting that EV TNF-α/SNAP23 axis may serve as a diagnostic biomarker and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Bo-Wen Xie
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingjie Guan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Menghua Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youdong Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|