1
|
Kim HL, Saravanakumar G, Lee S, Jang S, Kang S, Park M, Sobha S, Park SH, Kim SM, Lee JA, Shin E, Kim YJ, Jeong HS, Kim D, Kim WJ. Poly(β-amino ester) polymer library with monomer variation for mRNA delivery. Biomaterials 2025; 314:122896. [PMID: 39426123 DOI: 10.1016/j.biomaterials.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Non-viral vectors for mRNA delivery primarily include lipid nanoparticles (LNPs) and polymers. While LNPs are known for their high mRNA delivery efficiency, they can induce excessive immune responses and cause off-target effects, potentially leading to side effects. In this study, we aimed to explore polymer-based mRNA delivery systems as a viable alternative to LNPs, focusing on their mRNA delivery efficiency and potential application in mRNA vaccines. We created a library of poly(β-amino ester) (PBAE) polymers by combining various amine monomers and acrylate monomers. Through screening this polymer library, we identified specific polymer nanoparticles (PNPs) that demonstrated high mRNA expression efficiency, with sustained mRNA expression for up to two weeks. Furthermore, the PNPs showed mRNA expression only at the injection site and did not exhibit liver toxicity. Additionally, when assessing immune activation, the PNPs significantly induced T-cell immune activation and were effective in the plaque reduction neutralization test. These results suggest that polymer-based mRNA delivery systems not only hold potential for use in mRNA vaccines but also show promise for therapeutic applications.
Collapse
Affiliation(s)
- Hong Lyun Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Seowon Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Subin Jang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seonwoo Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mihyeon Park
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - So-Hee Park
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Soo-Min Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Eunkyung Shin
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Hye-Sook Jeong
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; OmniaMed Co, Ltd., Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Qiaerxie G, Jiang Y, Li G, Yang Z, Long F, Yu Y, Lu JS, Du P, Cui Y. Design and evaluation of mRNA encoding recombinant neutralizing antibodies for botulinum neurotoxin type B intoxication prophylaxis. Hum Vaccin Immunother 2024; 20:2358570. [PMID: 38853516 PMCID: PMC11168212 DOI: 10.1080/21645515.2024.2358570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024] Open
Abstract
Among all natural and synthetic toxins, botulinum neurotoxins (BoNTs), produced by Clostridium botulinum in an anaerobic environment, are the most toxic polymer proteins. Currently, the most effective modalities for botulism prevention and treatment are vaccination and antitoxin use, respectively. However, these modalities are associated with long response time for active immunization, side effects, and donor limitations. As such, the development of more promising botulism prevention and treatment modalities is warranted. Here, we designed an mRNA encoding B9-hFc - a heavy-chain antibody fused to VHH and human Fc that can neutralize BoNT serotype B (BoNT/B) effectively - and assessed its expression in vitro and in vivo. The results confirmed that our mRNA demonstrates good expression in vitro and in vivo. Moreover, a single mRNA lipid nanoparticle injection effectively prevents BoNT/B intoxication in vivo, with effects comparable to those of protein antibodies. In conclusion, we explored and clarified whether mRNA drugs encoding neutralizing antibodies prevent BoNT/B intoxication. Our results provide an efficient strategy for further research on the prevention and treatment of intoxication by botulinum toxin.
Collapse
Affiliation(s)
- Gulisaina Qiaerxie
- School of Medical Device, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Protein Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Protein Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Gege Li
- School of Medical Device, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Protein Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Protein Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Feng Long
- School of Medical Device, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zaozhuang, Zaozhuang, Shandong, China
| | - Yunzhou Yu
- Protein Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Jian Sheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Protein Engineering Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Yong Cui
- School of Medical Device, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Magaña Rodriguez JR, Guerra-Rebollo M, Borrós S, Fornaguera C. Nucleic acid-loaded poly(beta-aminoester) nanoparticles for cancer nano-immuno therapeutics: the good, the bad, and the future. Drug Deliv Transl Res 2024; 14:3477-3493. [PMID: 38700815 PMCID: PMC11499432 DOI: 10.1007/s13346-024-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 10/24/2024]
Abstract
Immunotherapy has emerged as a promising approach to cancer treatment, offering improved survival rates and enhanced patients' quality of life. However, realizing the full potential of immunotherapy in clinical practice remains a challenge, as there is still plenty of room for modulating the complexity of the human immune system in favor of an antitumor immunogenicity. Nanotechnology, with its unique properties, holds promise in augmenting the efficacy of cancer immunotherapies in biotherapeutic protection and site- and time-controlled delivery of the immune modulator biologicals. Polymeric nanoparticles are promising biomaterials among different nanocarriers thanks to their robustness, versatility, and cost-efficient design and production. This perspective paper overviews critical concepts in nanometric advanced delivery systems applied to cancer immunotherapy. We focus on a detailed exploration of the current state of the art and trends in using poly(beta-aminoester) (pBAE) polymers for nucleic acid-based antitumor immunotherapies. Through different examples of the use of pBAE polymers reported in the literature, we revise the main advantages these polymers offer and some challenges to overcome. Finally, the paper provides insights and predictions on the path toward the clinical implementation of cancer nano-immunotherapies, highlighting the potential of pBAE polymers for advancements in this field.
Collapse
Affiliation(s)
- J Rodrigo Magaña Rodriguez
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, 08017, Spain.
| |
Collapse
|
4
|
Shin K, Suh HW, Suberi A, Whang CH, Ene M, Grundler J, Grun MK, Saltzman WM. Branching in poly(amine-co-ester) polyplexes impacts mRNA transfection. Biomaterials 2024; 311:122692. [PMID: 38986360 PMCID: PMC11298310 DOI: 10.1016/j.biomaterials.2024.122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Branching is a key structural parameter of polymers, which can have profound impacts on physicochemical properties. It has been demonstrated that branching is a modulating factor for mRNA delivery and transfection using delivery vehicles built from cationic polymers, but the influence of polymer branching on mRNA delivery remains relatively underexplored compared to other polymer features such as monomer composition, hydrophobicity, pKa, or the type of terminal group. In this study, we examined the impact of branching on the physicochemical properties of poly(amine-co-esters) (PACE) and their efficiency in mRNA transfection in vivo and in vitro under various conditions. PACE polymers were synthesized with various degrees of branching ranging from 0 to 0.66, and their transfection efficiency was systemically evaluated. We observed that branching improves the stability of polyplexes but reduces the pH buffering capacity. Therefore, the degree of branching (DB) must be optimized in a delivery route specific manner due to differences in challenges faced by polyplexes in different physiological compartments. Through a systematic analysis of physicochemical properties and mRNA transfection in vivo and in vitro, this study highlights the influence of polymer branching on nucleic acid delivery.
Collapse
Affiliation(s)
- Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Polymer Science & Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Alexandra Suberi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Chang-Hee Whang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Madalina Ene
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Julian Grundler
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Molly K Grun
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
5
|
Du X, Zhao M, Jiang L, Pang L, Wang J, Lv Y, Yao C, Wu R. A mini-review on gene delivery technique using nanoparticles-mediated photoporation induced by nanosecond pulsed laser. Drug Deliv 2024; 31:2306231. [PMID: 38245895 PMCID: PMC10802807 DOI: 10.1080/10717544.2024.2306231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Nanosecond pulsed laser induced photoporation has gained increasing attention from scholars as an effective method for delivering the membrane-impermeable extracellular materials into living cells. Compared with femtosecond laser, nanosecond laser has the advantage of high throughput and low costs. It also has a higher delivery efficiency than continuous wave laser. Here, we provide an extensive overview of current status of nanosecond pulsed laser induced photoporation, covering the photoporation mechanism as well as various factors that impact the delivery efficiency of photoporation. Additionally, we discuss various techniques for achieving photoporation, such as direct photoporation, nanoparticles-mediated photoporation and plasmonic substrates mediated photoporation. Among these techniques, nanoparticles-mediated photoporation is the most promising approach for potential clinical application. Studies have already been reported to safely destruct the vitreous opacities in vivo by nanosecond laser induced vapor nanobubble. Finally, we discuss the potential of nanosecond laser induced phototoporation for future clinical applications, particularly in the areas of skin and ophthalmic pathologies. We hope this review can inspire scientists to further improve nanosecond laser induced photoporation and facilitate its eventual clinical application.
Collapse
Affiliation(s)
- Xiaofan Du
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Meng Zhao
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Le Jiang
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Lihui Pang
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center of Precise Surgery & Regenerative Medicine, Shaanxi Pro-vincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
6
|
Bhardwaj JS, Paliwal S, Singhvi G, Taliyan R. Immunological challenges and opportunities in glioblastoma multiforme: A comprehensive view from immune system lens. Life Sci 2024; 357:123089. [PMID: 39362586 DOI: 10.1016/j.lfs.2024.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, is the most common and deadly brain tumour. It has a poor prognosis and a low survival rate. GBM cells' immunological escape mechanism helps them resist advanced multimodal therapy. In physiological homeostasis, brain astrocytes and microglia suppress infections and clear the potential pathogen from the system. However, in severe pathological conditions like cancer, the immune response fails to eliminate mutated and rapidly over-proliferating GBM cells. The malignant cells' interactions with immune cells and the neoplasm's immunosuppressive environment enable the avoidance and their clearance. Immunotherapy efficiently addresses these difficulties, as shown by sufficient evidence. This review discusses how GBM cells inhibit and elude the immune system. These include MHC molecule expression alteration and PD-L1 and CTLA-4 immune checkpoint overexpression. Without co-stimulation, these changes induce effector T-cell tolerance and anergy. The review also covers how MDSCs, TAMs, Herpes Virus Entry Mediators, and Human cytomegalovirus protein decrease the effector immune response against glioblastoma. The latter part discusses various therapies that are available in the market or under clinical trials which revolves around combating resistance against the available multimodal therapies. The recent trends indicate that there are various monoclonal antibodies and peptide-based vaccines that can be utilized to overcome the immune evasion technique harbored by GBM cells. A strategic development of Immunotherapy considering these hallmarks of immune evasion may help in designing a therapy that may prove to be effective in killing the GBM cells thereby, improving the overall survival of GBM-affected patients.
Collapse
Affiliation(s)
- Jayant Singh Bhardwaj
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Shivangi Paliwal
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
7
|
Garaizar A, Díaz-Oviedo D, Zablowsky N, Rissanen S, Köbberling J, Sun J, Steiger C, Steigemann P, Mann FA, Meier K. Toward understanding lipid reorganization in RNA lipid nanoparticles in acidic environments. Proc Natl Acad Sci U S A 2024; 121:e2404555121. [PMID: 39475644 DOI: 10.1073/pnas.2404555121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/02/2024] [Indexed: 11/13/2024] Open
Abstract
The use of lipid nanoparticles (LNPs) for therapeutic RNA delivery has gained significant interest, particularly highlighted by recent milestones such as the approval of Onpattro and two mRNA-based SARS-CoV-2 vaccines. However, despite substantial advancements in this field, our understanding of the structure and internal organization of RNA-LNPs -and their relationship to efficacy, both in vitro and in vivo- remains limited. In this study, we present a coarse-grained molecular dynamics (MD) approach that allows for the simulations of full-size LNPs. By analyzing MD-derived structural characteristics in conjunction with cellular experiments, we investigate the effect of critical parameters, such as pH and composition, on LNP structure and potency. Additionally, we examine the mobility and chemical environment within LNPs at a molecular level. Our findings highlight the significant impact that LNP composition and internal molecular mobility can have on key stages of LNP-based intracellular RNA delivery.
Collapse
Affiliation(s)
- Adiran Garaizar
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal 42113, Germany
- Computational Life Science, Bayer Crop Science, Monheim am Rhein 40789, Germany
| | - David Díaz-Oviedo
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal 42113, Germany
| | - Nina Zablowsky
- Lead Discovery, Nuvisan Innovation Campus Berlin, Berlin 13353, Germany
| | - Sami Rissanen
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Turku 20210, Finland
| | | | - Jiawei Sun
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin 13353, Germany
| | - Christoph Steiger
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin 13353, Germany
| | | | - Florian A Mann
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin 13353, Germany
| | - Katharina Meier
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal 42113, Germany
| |
Collapse
|
8
|
Li J, Hu J, Jin D, Huo H, Chen N, Lin J, Lu X. High-throughput synthesis and optimization of ionizable lipids through A 3 coupling for efficient mRNA delivery. J Nanobiotechnology 2024; 22:672. [PMID: 39497197 PMCID: PMC11536852 DOI: 10.1186/s12951-024-02919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND The efficacy of mRNA-based vaccines and therapies relies on lipid nanoparticles (LNPs) as carriers to deliver mRNA into cells. The chemical structure of ionizable lipids (ILs) within LNPs is crucial in determining their delivery efficiency. RESULTS In this study, we synthesized 623 alkyne-bearing ionizable lipids using the A3 coupling reaction and assessed their effectiveness in mRNA delivery. ILs with specific structural features-18-carbon alkyl chains, a cis-double bond, and ethanolamine head groups-demonstrated superior mRNA delivery capabilities. Variations in saturation, double bond placement, and chain length correlated with decreased efficacy. Alkynes positioned adjacent to nitrogen atoms in ILs reduced the acid dissociation constant (pKa) of LNPs, thereby hindering mRNA delivery efficiency. Conversion of alkynes to alkanes significantly enhanced mRNA delivery of ILs both in vitro and in vivo. Moreover, combining optimized ILs with cKK-E12 yields synergistic LNPs that showed markedly augmented mRNA expression levels in vivo. CONCLUSIONS Overall, our study provides insights into the structure-function relationships of ILs, providing a foundation for the rational design of ILs to enhance the efficacy of LNPs in mRNA delivery.
Collapse
Affiliation(s)
- Jingjiao Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Hu
- Key State Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Danni Jin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Haonan Huo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Chen
- Key State Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaqi Lin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Stevens CS, Carmichael JC, Watkinson R, Kowdle S, Reis RA, Hamane K, Jang J, Park A, Pernet O, Khamaikawin W, Hong P, Thibault P, Gowlikar A, An DS, Lee B. A temperature-sensitive and less immunogenic Sendai virus for efficient gene editing. J Virol 2024:e0083224. [PMID: 39494910 DOI: 10.1128/jvi.00832-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The therapeutic potential of gene editing technologies hinges on the development of safe and effective delivery methods. In this study, we developed a temperature-sensitive and less immunogenic Sendai virus (ts SeV) as a novel delivery vector for CRISPR-Cas9 and for efficient gene editing in sensitive human cell types with limited induction of an innate immune response. ts SeV demonstrates high transduction efficiency in human CD34+ hematopoietic stem and progenitor cells (HSPCs) including transduction of the CD34+/CD38-/CD45RA-/CD90+(Thy1+)/CD49fhigh stem cell enriched subpopulation. The frequency of CCR5 editing exceeded 90% and bi-allelic CCR5 editing exceeded 70% resulting in significant inhibition of HIV-1 infection in primary human CD14+ monocytes. These results demonstrate the potential of the ts SeV platform as a safe, efficient, and flexible addition to the current gene-editing tool delivery methods, which may help further expand the possibilities in personalized medicine and the treatment of genetic disorders. IMPORTANCE Gene editing has the potential to be a powerful tool for the treatment of human diseases including HIV, β-thalassemias, and sickle cell disease. Recent advances have begun to overcome one of the major limiting factors of this technology, namely delivery of the CRISPR-Cas9 gene editing machinery, by utilizing viral vectors. However, gene editing therapies have yet to be implemented due to inherent risks associated with the DNA viral vectors typically used for delivery. As an alternative strategy, we have developed an RNA-based Sendai virus CRISPR-Cas9 delivery vector that does not integrate into the genome, is temperature sensitive, and does not induce a significant host interferon response. This recombinant SeV successfully delivered CRISPR-Cas9 in primary human CD14+ monocytes ex vivo resulting in a high level of CCR5 editing and inhibition of HIV infection.
Collapse
Affiliation(s)
- Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jillian C Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruth Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rebecca A Reis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kory Hamane
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Jason Jang
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Olivier Pernet
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Wannisa Khamaikawin
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Patrick Hong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patricia Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya Gowlikar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dong Sung An
- UCLA School of Nursing, Los Angeles, California, USA
- UCLA AIDS Institute, Los Angeles, California, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Yıldırım Akdeniz G, Timuçin AC. Structure based computational RNA design towards MafA transcriptional repressor implicated in multiple myeloma. J Mol Graph Model 2024; 132:108839. [PMID: 39096645 DOI: 10.1016/j.jmgm.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Multiple myeloma is recognized as the second most common hematological cancer. MafA transcriptional repressor is an established mediator of myelomagenesis. While there are multitude of drugs available for targeting various effectors in multiple myeloma, current literature lacks a candidate RNA based MafA modulator. Thus, using the structure of MafA homodimer-consensus target DNA, a computational effort was implemented to design a novel RNA based chemical modulator against MafA. First, available MafA-consensus DNA structure was employed to generate an RNA library. This library was further subjected to global docking to select the most plausible RNA candidates, preferring to bind DNA binding region of MafA. Following global docking, MD-ready complexes that were prepared via local docking program, were subjected to 500 ns of MD simulations. First, each of these MD simulations were analyzed for relative binding free energy through MM-PBSA method, which pointed towards a strong RNA based MafA binder, RNA1. Second, through a detailed MD analysis, RNA1 was shown to prefer binding to a single monomer of the dimeric DNA binding domain of MafA using higher number of hydrophobic interactions compared with positive control MafA-DNA complex. At the final phase, a principal component analyses was conducted, which led us to identify the actual interaction region of RNA1 and MafA monomer. Overall, to our knowledge, this is the first computational study that presents an RNA molecule capable of potentially targeting MafA protein. Furthermore, limitations of our study together with possible future implications of RNA1 in multiple myeloma were also discussed.
Collapse
Affiliation(s)
- Güneş Yıldırım Akdeniz
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Tuzla, İstanbul, Turkey.
| | - Ahmet Can Timuçin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acıbadem Mehmet Ali Aydınlar University, 34752, Ataşehir, İstanbul, Turkey.
| |
Collapse
|
11
|
Hazazi A, Khan FR, Albloui F, Arif S, Abdulaziz O, Alhomrani M, Sindi AAA, Abu-Alghayth MH, Abalkhail A, Nassar SA, Binshaya AS. Signaling pathways in HPV-induced cervical cancer: Exploring the therapeutic promise of RNA modulation. Pathol Res Pract 2024; 263:155612. [PMID: 39357186 DOI: 10.1016/j.prp.2024.155612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Cervical cancer, originating from the epithelial tissue of the uterine cervix, constitutes the most commonly diagnosed malignancy among women worldwide. The predominant etiological factor underpinning cervical carcinogenesis is persistent infection with high-risk human papillomavirus (HPV) genotypes, notably HPV-16 and HPV-18. Oncoproteins encoded by high-risk HPV interfere with multiple essential cellular signaling cascades. Specifically, E5, E6, and E7 proteins disrupt the signaling pathways like p53, retinoblastoma tumor suppressor protein (pRB), The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK), and Wnt/β-catenin, promoting HPV-mediated carcinogenesis. This dysregulation disrupts cell cycle control, apoptosis, and metastasis through modulation of microRNAs (miRNA) and key cellular processes. The novel therapeutic interventions for HPV prevention and detection are fundamental to patient management. RNA-based treatment modalities offer the potential for manipulating critical pathways involved in cervical carcinogenesis. RNA therapeutics offer novel approaches to drug development by targeting intracellular genetic elements inaccessible to conventional modalities. Additional advantages include rapid design, synthesis, and a reduced genotoxic profile compared to DNA-based therapies. Despite beneficial attributes, system stability and efficient delivery remain critical parameters. This study assessed the intricate relationship between HPV, cervical cancer, and various signaling pathways. The study explores miRNAs' diagnostic and therapeutic potential, mall interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs)in cervical cancer management. The review highlights the prospect of RNA-targeted therapies to modulate specific cancer signaling pathways. This approach offers a novel strategy for cervical cancer treatment through precise regulation of cancer signaling. Future research should concentrate on developing RNA-targeted interventions to improve cervical cancer treatment outcomes through increased therapeutic efficacy and specificity.
Collapse
Affiliation(s)
- Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Quwayiyah, Shaqra University, Riyadh, Saudi Arabia; Department of Pharmaceutical Chemistry, Azad Institute of Pharmacy and Research, Lucknow, UP, India
| | - Fawaz Albloui
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Sultan Arif
- Department of Plastic Surgery and Burn Unit, Security Force Hospital, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, P.O.Box 66666, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Science, College of Applied Medical Sciences Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Professor, Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Science, College of Applied Medical Sciences Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
12
|
Jiao J, Qian Y, Lv Y, Wei W, Long Y, Guo X, Buerliesi A, Ye J, Han H, Li J, Zhu Y, Zhang W. Overcoming limitations and advancing the therapeutic potential of antibody-oligonucleotide conjugates (AOCs): Current status and future perspectives. Pharmacol Res 2024; 209:107469. [PMID: 39433169 DOI: 10.1016/j.phrs.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As cancer incidence rises due to an aging population, the importance of precision medicine continues to grow. Antibody-drug conjugates (ADCs) exemplify targeted therapies by delivering cytotoxic agents to specific antigens. Building on this concept, researchers have developed antibody-oligonucleotide conjugates (AOCs), which combine antibodies with oligonucleotides to regulate gene expression. This review highlights the mechanism of AOCs, emphasizing their unique ability to selectively target and modulate disease-causing proteins. It also explores the components of AOCs and their application in tumor therapy while addressing key challenges such as manufacturing complexities, endosomal escape, and immune response. The article underscores the significance of AOCs in precision oncology and discusses future directions, highlighting their potential in treating cancers driven by genetic mutations and abnormal protein expression.
Collapse
Affiliation(s)
- Jinlan Jiao
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Qian
- Dermatologic Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing 210042, China
| | - Yinhua Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Wenqian Wei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yongxuan Long
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoling Guo
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Anya Buerliesi
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
13
|
Sorrentino C, Ciummo SL, Fieni C, Di Carlo E. Nanomedicine for cancer patient-centered care. MedComm (Beijing) 2024; 5:e767. [PMID: 39434967 PMCID: PMC11491554 DOI: 10.1002/mco2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide, and an increase in incidence is estimated in the next future, due to population aging, which requires the development of highly tolerable and low-toxicity cancer treatment strategies. The use of nanotechnology to tailor treatments according to the genetic and immunophenotypic characteristics of a patient's tumor, and to allow its targeted release, can meet this need, improving the efficacy of treatment and minimizing side effects. Nanomedicine-based approach for the diagnosis and treatment of cancer is a rapidly evolving field. Several nanoformulations are currently in clinical trials, and some have been approved and marketed. However, their large-scale production and use are still hindered by an in-depth debate involving ethics, intellectual property, safety and health concerns, technical issues, and costs. Here, we survey the key approaches, with specific reference to organ-on chip technology, and cutting-edge tools, such as CRISPR/Cas9 genome editing, through which nanosystems can meet the needs for personalized diagnostics and therapy in cancer patients. An update is provided on the nanopharmaceuticals approved and marketed for cancer therapy and those currently undergoing clinical trials. Finally, we discuss the emerging avenues in the field and the challenges to be overcome for the transfer of nano-based precision oncology into clinical daily life.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging“G. d'Annunzio” University” of Chieti‐PescaraChietiItaly
- Anatomic Pathology and Immuno‐Oncology Unit, Center for Advanced Studies and Technology (CAST)“G. d'Annunzio” University of Chieti‐PescaraChietiItaly
| |
Collapse
|
14
|
Mo W, Donahue JK. Gene therapy for atrial fibrillation. J Mol Cell Cardiol 2024; 196:84-93. [PMID: 39270930 PMCID: PMC11534567 DOI: 10.1016/j.yjmcc.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in adults. Current limitations of pharmacological and ablative therapies motivate the development of novel therapies as next generation treatments for AF. The arrhythmia mechanisms creating and sustaining AF are key elements in the development of this novel treatment. Gene therapy provides a useful platform that allows us to regulate the mechanisms of interest using a suitable transgene(s), vector, and delivery method. Effective gene therapy strategies in the literature have targeted maladaptive electrical or structural remodeling that increase vulnerability to AF. In this review, we will summarize key elements of gene therapy for AF, including molecular targets, gene transfer vectors, atrial gene delivery and preclinical efficacy and toxicity testing. Recent advances and challenges in the field will be also discussed.
Collapse
Affiliation(s)
- Weilan Mo
- From the Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - J Kevin Donahue
- From the Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, United States of America.
| |
Collapse
|
15
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2024:10.1007/s00424-024-03037-5. [PMID: 39482558 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Wu X, Liu S, Liu D, Li X, Wang H, Han X. Global and Chinese trends in oligonucleotide drug clinical development: A comparative analysis. Pharmacol Res 2024; 210:107487. [PMID: 39488257 DOI: 10.1016/j.phrs.2024.107487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Oligonucleotide drugs are anticipated to mark the new wave of pharmaceutical innovation, succeeding the eras of small molecule drugs and monoclonal antibodies. This review assessed a decade of global and Chinese clinical advancements in this field. Since 2013, there has been a notable surge in the development of oligonucleotide drugs, although a considerable majority of these candidates are still in the nascent stages of clinical trials. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) represent two pivotal classes both on global scale and within China. Rare diseases have been the main therapeutic target for oligonucleotide drugs, with a less pronounced focus in China's pipeline relative to the global trend. Concurrently, these drugs are broadening their scope to encompass a variety of indications, potentially revolutionizing treatment approaches for chronic conditions. While China's clinical development in this sector is in its infancy compared to the global stage, technological progress and favorable policies are expected to foster a new landscape of oligonucleotide drug development in the future.
Collapse
Affiliation(s)
- Xiaofei Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shupeng Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dan Liu
- Shenyang Pharmaceutical University, School of Life Science and Biopharmaceuticals, Shenyang 110000, China
| | - Xiuqi Li
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
17
|
Abostait A, Abdelkarim M, Bao Z, Miyake Y, Tse WH, Di Ciano-Oliveir C, Buerki-Thurnherr T, Allen C, Keijzer R, Labouta HI. Optimizing lipid nanoparticles for fetal gene delivery in vitro, ex vivo, and aided with machine learning. J Control Release 2024; 376:678-700. [PMID: 39447842 DOI: 10.1016/j.jconrel.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
There is a clinical need to develop lipid nanoparticles (LNPs) to deliver congenital therapies to the fetus during pregnancy. The aim of these therapies is to restore normal fetal development and prevent irreversible conditions after birth. As a first step, LNPs need to be optimized for transplacental transport, safety on the placental barrier and fetal organs and transfection efficiency. We developed and characterized a library of LNPs of varying compositions and used machine learning (ML) models to delineate the determinants of LNP size and zeta potential. Utilizing different in vitro placental models with the help of a Random Forest algorithm, we could identify the top features driving percentage LNP transport and kinetics at 24 h, out of a total of 18 input features represented by 41 LNP formulations and 48 different transport experiments. We further evaluated the LNPs for safety, placental cell uptake, transfection efficiency in placental trophoblasts and fetal lung fibroblasts. To ensure the integrity of the LNPs following transplacental transport, we screened LNPs for transport and transfection using a high-throughput integrated transport-transfection in vitro model. Finally, we assessed toxicity of the LNPs in a tracheal occlusion fetal lung explant model. LNPs showed little to no toxicity to fetal and placental cells. Immunoglobin G (IgG) orientation on the surface of LNPs, PEGylated lipids, and ionizable lipids had significant effects on placental transport. The Random Forest algorithm identified the top features driving LNPs placental transport percentage and kinetics. Zeta potential emerged in the top driving features. Building on the ML model results, we developed new LNP formulations to further optimize the transport leading to 622 % increase in transport at 24 h versus control LNP formulation. To induce preferential siRNA transfection of fetal lung, we further optimized cationic lipid percentage and the lipid-to-siRNA ratio. Studying LNPs in an integrated placental and fetal lung fibroblasts model showed a strong correlation between zeta potential and fetal lung transfection. Finally, we assessed the toxicity of LNPs in a tracheal occlusion lung explant model. The optimized formulations appeared to be safe on ex vivo fetal lungs as indicated by insignificant changes in apoptosis (Caspase-3) and proliferation (Ki67) markers. In conclusion, we have optimized an LNP formulation that is safe, with high transplacental transport and preferential transfection in fetal lung cells. Our research findings represent an important step toward establishing the safety and effectiveness of LNPs for gene delivery to the fetal organs.
Collapse
Affiliation(s)
- Amr Abostait
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada
| | - Mahmoud Abdelkarim
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yuichiro Miyake
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan
| | - Wai Hei Tse
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | | | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen 9014, Switzerland
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hagar I Labouta
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto M5B 1T8, Canada; College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Canada; Biomedical Engineering, Faculty of Engineering, University of Toronto, Toronto M5S 3G9, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
18
|
Peng X, Wang T, Dai B, Zhu Y, Ji M, Yang P, Zhang J, Liu W, Miao Y, Liu Y, Wang S, Sun J. Gene Therapy for Inflammatory Cascade in Intrauterine Injury with Engineered Extracellular Vesicles Hybrid Snail Mucus-enhanced Adhesive Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410769. [PMID: 39454114 DOI: 10.1002/advs.202410769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 10/27/2024]
Abstract
Early hyper-inflammation caused by intrauterine injury triggered subsequent intrauterine adhesion (IUA). STAT1-mediated M1 macrophages are confirmed to secrete pro-inflammatory cytokines to accelerate inflammatory cascade and IUA formation by multi-omics analysis and experimental verification. However, clinically used hyaluronic acid (HA) hydrogels are prone to slip out of injury sites due to poor bio-adhesion properties. Therefore, there are still challenges in applying hydrogels for M1 macrophage intervention in IUA treatment. Herein, an engineered extracellular vesicles (EVs) hybrid snail mucus (SM)-enhanced adhesive hydrogels to improve bio-adhesion property is fabricated and M1 macrophage intervention through targeting delivery and STAT1 silencing is achieved. First, inspired by the high bio-adhesion capacity of SM, SM and gelatin methacrylate (GelMA) solution are mixed to construct GelMA/SM (GS) hydrogel. Then, folic acid-modified extracellular vesicles (FA-EVs) are synthesized for targeting the delivery of STAT1-siRNA. Upon injection of FA-EVs hybrid GS hydrogel into the uterine cavity, a protective hydrogel layer forms on the surface of injury sites and sustains the release of STAT1-siRNA-loaded FA-EVs to curtail M1 macrophages generation through inhibiting STAT1 phosphorylation, resulting in reduction of myofibroblasts activation and collagen deposition. In addition, the pregnancy rate and the number of fetuses in rats treated with this hydrogel were much higher than those in other groups, suggesting that the hydrogel could promote functional endometrial regeneration and restore fertility. Overall, this study presents a promising strategy for employing FA-EVs hybrid adhesive hydrogel with superior bio-adhesion properties and M1 macrophage targeting delivery for IUA treatment and uterus recovery.
Collapse
Affiliation(s)
- Xiaotong Peng
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tao Wang
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yiping Zhu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Mei Ji
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pusheng Yang
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiaxin Zhang
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenwen Liu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yaxin Miao
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yonghang Liu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jing Sun
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
19
|
Chen X, Wu J, Zhou B, Zhu M, Zhang J, Zhou N, Zhu YZ, Zhang X, Duan X, Men K. Bacterial Lysate-Based Bifunctional mRNA Nanoformulation for Efficient Colon Cancer Immunogene Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56580-56598. [PMID: 39397736 DOI: 10.1021/acsami.4c07684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
mRNA-based nonviral gene therapy has played an important role in cancer therapy, however, the limited delivery efficiency and therapeutic capacity still require further exploration and enhancement. Immunogene therapy provides a strategy for cancer treatment. Bacteria are tiny single-celled living organisms, many of which can be found in and on the human body and are beneficial to humans. Lactobacillus reuteri is a bacterial member of the gut flora, and recent research has shown that it can reduce intestinal inflammation by stimulating an immunomodulatory response. L. reuteri lysate represents an ideal resource for constructing advanced mRNA delivery systems with immune stimulation potential. Here, we prepared a bifunctional mRNA delivery system DMP-Lac (DOTAP-mPEG-PCL-L. reuteri lysate), which successfully codelivered L. reuteri lysate and IL-23A mRNA, exhibited a high mRNA delivery efficiency of 75.56% ± 0.85%, and strongly promoted the maturation and activation of the immune system in vivo. Both the CT26 abdominal metastasis model and the lung metastasis model also exhibited a good therapeutic effect, and the tumor inhibition rate of DMP-Lac/IL-23A group reached 97.92%. Protein chip technology verified that DMP acted as an immune adjuvant, demonstrating that the L. reuteri lysate could regulate the related immune cells, while IL-23 mRNA caused changes in downstream factors, thus producing the corresponding tumor treatment effect. The DMP-Lac/IL-23A complex exhibited strong anticancer immunotherapeutic effects. Our results demonstrated that this bifunctional mRNA formulation served as a tumor-specific nanomedicine, providing an advanced strategy for colon cancer immunogene therapy.
Collapse
Affiliation(s)
- Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Na Zhou
- State Key Laboratory for Quality Research of Chinese Medicines and School of Pharmacy, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yi Zhun Zhu
- State Key Laboratory for Quality Research of Chinese Medicines and School of Pharmacy, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xin Zhang
- State Key Laboratory for Quality Research of Chinese Medicines and School of Pharmacy, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
20
|
Wang Y, Wang C, Lu Y. Spleen Targeting Nucleic Acid Delivery Vector Based on Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56826-56836. [PMID: 39390629 DOI: 10.1021/acsami.4c13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Nucleic acids have attracted increasing attention as drugs due to their fascinating advantages, such as long-term efficacy and ease of preparation compared to proteins. The nucleic acid therapy relies heavily on delivery vectors, which can prevent the degradation of nucleic acids while assisting them in cellular internalization. However, commonly used nonviral vector liposomes easily accumulate in the liver, which can limit their application in extrahepatic diseases. Herein, a potential spleen targeting vector for nucleic acids is developed based on the metal-organic frameworks. The plasmids are encapsulated inside the nanoscale zeolitic imidazolate framework (ZIF) via coprecipitation. The co-encapsulation of the cationic polymer poly(ether imide) (PEI) and the stabilizer polyvinylpyrrolidone (PVP) can significantly improve particle dispersion and stability. The prepared nanoparticles allow efficient transfection in vitro, mainly through clathrin-mediated and caveolae-mediated endocytosis. The biodistribution in mice shows that 46% of the nanoparticles accumulate in the spleen, which is much higher than that of the liposomes. The vector can successfully deliver plasmids to extrahepatic organs for protein synthesis and even induce an immune response. The elaborate ZIF-based nanoparticle may offer a new route for extrahepatic, especially spleen targeting delivery for the nucleic acids.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Komorizono R, Yoshizumi S, Tomonaga K. Development of an RNA virus-based episomal vector with artificial aptazyme for gene silencing. Appl Microbiol Biotechnol 2024; 108:491. [PMID: 39422780 PMCID: PMC11489216 DOI: 10.1007/s00253-024-13327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
RNA virus-based episomal vector (REVec), engineered from Borna disease virus, is an innovative gene delivery tool that enables sustained gene expression in transduced cells. However, the difficulty in controlling gene expression and eliminating vectors has limited the practical use of REVec. In this study, we overcome these shortcomings by inserting artificial aptazymes into the untranslated regions of foreign genes carried in vectors or downstream of the viral phosphoprotein gene, which is essential for vector replication. Non-transmissive REVec carrying GuaM8HDV or the P1-F5 aptazyme showed immediate suppression of gene expression in a guanine or theophylline concentration-dependent manner. Continuous compound administration also markedly reduced the percentage of vector-transduced cells and eventually led to the complete elimination of the vectors from the transduced cells. This new REVec is a safe gene delivery technology that allows fine-tuning of gene expression and could be a useful platform for gene therapy and gene-cell therapy, potentially contributing to the cure of many genetic disorders. KEY POINTS: • We developed a bornavirus vector capable of silencing transgene expression by insertion of aptazyme • Transgene expression was markedly suppressed in a compound concentration-dependent manner • Artificial aptazyme systems allowed complete elimination of the vector from transduced cells.
Collapse
Affiliation(s)
- Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan
| | - Shima Yoshizumi
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-Cho, Shogo-in, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
22
|
Zimmer D, Schmid F, Settanni G. Ionizable Cationic Lipids and Helper Lipids Synergistically Contribute to RNA Packing and Protection in Lipid-Based Nanomaterials. J Phys Chem B 2024; 128:10165-10177. [PMID: 39366669 PMCID: PMC11493059 DOI: 10.1021/acs.jpcb.4c05057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Lipid-based nanomaterials are used as a common delivery vehicle for RNA therapeutics. They typically include a formulation containing ionizable cationic lipids, cholesterol, phospholipids, and a small molar fraction of PEGylated lipids. The ionizable cationic lipids are considered a crucial element of the formulation for the way they mediate interactions with the anionic RNA as a function of pH. Here, we show, by means of molecular dynamics simulation of lipid formulations containing two different ionizable cationic lipids (DLinDMA and DLinDAP), that the direct interactions of those lipids with RNA, taken alone, may not be sufficient to determine the level of protection and packaging of mRNA. Our simulations help and highlight how the collective behavior of the lipids in the formulation, which determines the ability to envelop the RNA, and the level of hydration of the lipid-RNA interface may also play a significant role. This allows the drawing of a hypothesis about the experimentally observed differences in the transfection efficiency of the two ionizable cationic lipids.
Collapse
Affiliation(s)
- David
Noel Zimmer
- Department
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
9, Mainz 55128, Germany
- Faculty
of Physics and Astronomy, Ruhr University
Bochum, Universitätsstrasse
150, Bochum 44801, Germany
| | - Friederike Schmid
- Department
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
9, Mainz 55128, Germany
| | - Giovanni Settanni
- Department
of Physics, Johannes Gutenberg University
Mainz, Staudingerweg
9, Mainz 55128, Germany
- Faculty
of Physics and Astronomy, Ruhr University
Bochum, Universitätsstrasse
150, Bochum 44801, Germany
| |
Collapse
|
23
|
Tarab-Ravski D, Stotsky-Oterin L, Elisha A, Kundoor GR, Ramishetti S, Hazan-Halevy I, Haas H, Peer D. The future of genetic medicines delivered via targeted lipid nanoparticles to leukocytes. J Control Release 2024; 376:286-302. [PMID: 39401676 DOI: 10.1016/j.jconrel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Genetic medicines hold vast therapeutic potential, offering the ability to silence or induce gene expression, knock out genes, and even edit DNA fragments. Applying these therapeutic modalities to leukocytes offers a promising path for treating various conditions yet overcoming the obstacles of specific and efficient delivery to leukocytes remains a major bottleneck in their clinical translation. Lipid nanoparticles (LNPs) have emerged as the leading delivery system for nucleic acids due to their remarkable versatility and ability to improve their in vivo stability, pharmacokinetics, and therapeutic benefits. Equipping LNPs with targeting moieties can promote their specific cellular uptake and internalization to leukocytes, making targeted LNPs (tLNPs) an inseparable part of developing leukocyte-targeted gene therapy. However, despite the significant advancements in research, genetic medicines for leukocytes using targeted delivery approaches have not been translated into the clinic yet. Herein, we discuss the important aspects of designing tLNPs and highlight the considerations for choosing an appropriate bioconjugation strategy and targeting moiety. Furthermore, we provide our insights on limiting challenges and identify key areas for further research to advance these exciting therapies for patient care.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Govinda Reddy Kundoor
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Heinrich Haas
- NeoVac Ltd. 127 Olympic Ave., OX14 4SA, Milton Park, Oxfordshire, UK; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Wang S, Zhang C, Liu H, Fan X, Fu S, Li W, Zhang H. Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1657. [PMID: 39452993 PMCID: PMC11510473 DOI: 10.3390/nano14201657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of chemotherapy drugs and genetic drugs presents a challenge in co-delivering these agents. In this study, nanoparticles loaded with PTX were prepared using the biodegradable polymer material poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). These nanoparticles were surface-modified with target proteins (Affibody molecules) and RALA cationic peptides to create core-shell structured microspheres with targeted and cationic functionalization. A three-drug co-delivery system (PTX@PHBHHx-ARP/siRNAGEM) were developed by electrostatically adsorbing siRNA chains containing GEM onto the microsphere surface. The encapsulation efficiency of PTX in the nanodrug was found to be 81.02%, with a drug loading of 5.09%. The chemogene adsorption capacity of siRNAGEM was determined to be 97.3%. Morphological and size characterization of the nanodrug revealed that PTX@PHBHHx-ARP/siRNAGEM is a rough-surfaced microsphere with a particle size of approximately 150 nm. This nanodrug exhibited targeting capabilities toward BT474 cells with HER2 overexpression while showing limited targeting ability toward MCF-7 cells with low HER2 expression. Results from the MTT assay demonstrated that PTX@PHBHHx-ARP/siRNAGEM exhibits high cytotoxicity and excellent combination therapy efficacy compared to physically mixed PTX/GEM/siRNA. Additionally, Western blot analysis confirmed that siRNA-mediated reduction of Bcl-2 expression significantly enhanced cell apoptosis mediated by PTX or GEM in tumor cells, thereby increasing cell sensitivity to PTX and GEM. This study presents a novel targeted nanosystem for the co-delivery of chemotherapy drugs and genetic drugs.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Chao Zhang
- Department of Life Science, Hengshui University, Hengshui 053000, China;
| | - Huandi Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Xueyu Fan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Shuangqing Fu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Wei Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| | - Honglei Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; (S.W.); (H.L.); (X.F.); (S.F.)
| |
Collapse
|
25
|
Dong C, Tan D, Sun H, Li Z, Zhang L, Zheng Y, Liu S, Zhang Y, He Q. Interleukin-12 Delivery Strategies and Advances in Tumor Immunotherapy. Curr Issues Mol Biol 2024; 46:11548-11579. [PMID: 39451566 PMCID: PMC11506767 DOI: 10.3390/cimb46100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-12 (IL-12) is considered to be a promising cytokine for enhancing an antitumor immune response; however, recombinant IL-12 has shown significant toxicity and limited efficacy in early clinical trials. Recently, many strategies for delivering IL-12 to tumor tissues have been developed, such as modifying IL-12, utilizing viral vectors, non-viral vectors, and cellular vectors. Previous studies have found that the fusion of IL-12 with extracellular matrix proteins, collagen, and immune factors is a way to enhance its therapeutic potential. In addition, studies have demonstrated that viral vectors are a good platform, and a variety of viruses such as oncolytic viruses, adenoviruses, and poxviruses have been used to deliver IL-12-with testing previously conducted in various cancer models. The local expression of IL-12 in tumors based on viral delivery avoids systemic toxicity while inducing effective antitumor immunity and acting synergistically with other therapies without compromising safety. In addition, lipid nanoparticles are currently considered to be the most mature drug delivery system. Moreover, cells are also considered to be drug carriers because they can effectively deliver therapeutic substances to tumors. In this article, we will systematically discuss the anti-tumor effects of IL-12 on its own or in combination with other therapies based on different delivery strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qing He
- State Key Laboratory of Drug Regulatory Sciences, National Institutes for Food and Drug Control, Beijing 102629, China; (C.D.); (D.T.); (H.S.); (Z.L.); (L.Z.); (Y.Z.); (S.L.); (Y.Z.)
| |
Collapse
|
26
|
Li YZ, Ji RR. Gene therapy for chronic pain management. Cell Rep Med 2024; 5:101756. [PMID: 39366385 PMCID: PMC11513853 DOI: 10.1016/j.xcrm.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Despite significant advances in identifying molecular targets for chronic pain over the past two decades, many remain difficult to target with traditional methods. Gene therapies such as antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR, and virus-based delivery systems have played crucial roles in discovering and validating new pain targets. While there has been a surge in gene therapy-based clinical trials, those focusing on pain as the primary outcome remain uncommon. This review examines various gene therapy strategies, including ASOs, small interfering RNA (siRNAs), optogenetics, chemogenetics, and CRISPR, and their delivery methods targeting primary sensory neurons and non-neuronal cells, including glia and chondrocytes. We also explore emerging gene therapy tools and highlight gene therapy's clinical potential in pain management, including trials targeting pain-related diseases. Advances in single-cell analysis of sensory neurons and non-neuronal cells, along with the development of new delivery tools, are poised to accelerate the application of gene therapy in pain medicine.
Collapse
Affiliation(s)
- Yi-Ze Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
27
|
Ghitman J, Pircalabioru GG, Deleanu C, Vasile E, Iliescu C, Iovu H. Hybrid fibrous architectures-mediated gene transfer by pDNA nanoparticles into macrophages. Heliyon 2024; 10:e38071. [PMID: 39398054 PMCID: PMC11471199 DOI: 10.1016/j.heliyon.2024.e38071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Gene therapy is one of the most potential therapeutic approaches in direct and specific regulation of biological functions of macrophages at the gene level for efficient cell therapy. However, the delivery of genetic material to macrophages is extremely challenging, because of low stability, specificity and inability of therapeutic genes to efficiently enter the cells. Here, we present a method that uses the hybrid electrospun architectures based on gelatin-alginate decorated with carboxylated graphene oxide (HAG/G) as efficient substrate for loading and in vitro local and controlled delivery of plasmid DNA (pDNA) to macrophages as an alternative to systemic gene delivery carriers. Polyethyleneimine (PEI) is employed to assemble PEI/pDNA nanoparticles (Np) - used as model of carrier. The dispersion of GO-COOH sheets shifts the surface zeta potential of HAG/G to high negative value (SZP = -16.8 ± 2.21 mV) and further increases the encapsulation efficiency of PEI/pDNA Np onto hybrid HAG/G electrospun architectures to ∼ 69 % (HAG/G-Np). The in vitro biological investigations show a good metabolic activity of macrophages seeded onto HAG/G-Np (MTT assay), while gene expression experiments (fluorescent microscopy) show a 30 % increase in transient gene transfection of cells cultured in the presence of HAG/G-Np as compared to those incubated with free PEI/pDNA Np.
Collapse
Affiliation(s)
- Jana Ghitman
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
- Center of Excellence in Bioengineering – eBio-hub, National University of Science and Technology Politehnica Bucharest - CAMPUS, 6 Iuliu Maniu Boulevard, 061344, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Center of Excellence in Bioengineering – eBio-hub, National University of Science and Technology Politehnica Bucharest - CAMPUS, 6 Iuliu Maniu Boulevard, 061344, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Calin Deleanu
- “C. D. Nenitescu” Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu, 060042, Bucharest, Romania
| | - Ciprian Iliescu
- Center of Excellence in Bioengineering – eBio-hub, National University of Science and Technology Politehnica Bucharest - CAMPUS, 6 Iuliu Maniu Boulevard, 061344, Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190, Voluntari, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
- Center of Excellence in Bioengineering – eBio-hub, National University of Science and Technology Politehnica Bucharest - CAMPUS, 6 Iuliu Maniu Boulevard, 061344, Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
| |
Collapse
|
28
|
Kalaimani K, Balachandran S, Boopathy LK, Roy A, Jayachandran B, Sankaranarayanan S, Arumugam MK. Recent advancements in small interfering RNA based therapeutic approach on breast cancer. Eur J Pharmacol 2024; 981:176877. [PMID: 39128807 DOI: 10.1016/j.ejphar.2024.176877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Breast cancer (BC) is the most common and malignant tumor diagnosed in women, with 2.9 million cases in 2023 and the fifth highest cancer-causing mortality worldwide. Recent developments in targeted therapy options for BC have demonstrated the promising potential of small interfering RNA (siRNA)-based cancer therapeutic approaches. As BC continues to be a global burden, siRNA therapy emerges as a potential treatment strategy to regulate disease-related genes in other types of cancers, including BC. siRNAs are tiny RNA molecules that, by preventing their expression, can specifically silence genes linked to the development of cancer. In order to increase the stability and effectiveness of siRNA delivery to BC cells, minimize off-target effects, and improve treatment efficacy, advanced delivery technologies such as lipid nanoparticles and nanocarriers have been created. Additionally, combination therapies, such as siRNAs that target multiple pathways are used in conjunction with conventional chemotherapy agents, have shown synergistic effects in various preclinical studies, opening up new treatment options for breast cancer that are personalized and precision medicine-oriented. Targeting important genes linked to BC growth, metastasis, and chemo-resistance has been reported in BC research using siRNA-based therapies. This study reviews recent reports on therapeutic approaches to siRNA for advanced treatment of BC. Furthermore, this review evaluates the role and mechanisms of siRNA in BC and demonstrates the potential of exploiting siRNA as a novel target for BC therapy.
Collapse
Affiliation(s)
- Kathirvel Kalaimani
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Shana Balachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Bhuvaneshwari Jayachandran
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sangamithra Sankaranarayanan
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
29
|
Shen T, Sun X, Yang S, Wang W, Chen Z, Lin Y, Li S, Peng H, Zeng L, Li G, Li X, Wang B, Ning J, Wen H, Lei B, Zhang L. Innovative Oral Nano/Gene Delivery System Based on Engineered Modified Saccharomyces cerevisiae for Colorectal Cancer Therapy. ACS NANO 2024; 18:28212-28227. [PMID: 39363565 DOI: 10.1021/acsnano.4c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The efficient delivery of RNA-based drugs to solid tumors remains a formidable obstacle. We aim to develop a safe and efficient oral drug delivery system compatible with RNA-based drugs that is urgently needed to overcome challenges such as enzymatic degradation and gastrointestinal barriers to facilitate effective treatment for treating colorectal cancer (CRC). To address these challenges, we utilized engineered modified Saccharomyces cerevisiae to evaluate the delivery efficacy of miR21-antagomir for treating CRC in preclinical mouse models, including adenomatosis polyposis coli mutant transgenic mice ApcMin/+ and in situ tumor-bearing mice. An orally deliverable gene delivery system, YS@NPs21, was designed. This gene delivery system demonstrated effectively suppressed tumor growth in both ApcMin/+ and in situ tumor-bearing mice models. This system exhibited tumor-targeting capability, effective inhibition of tumor growth, and low toxicity toward nontumor cells. Successful implementation of this innovative oral drug delivery system could offer a straightforward, safe, and RNA drug-compatible approach to CRC treatment, ultimately improving patient outcomes and reducing medical costs.
Collapse
Affiliation(s)
- Tianli Shen
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuejun Sun
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wei Wang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zilu Chen
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyao Lin
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Hang Peng
- Department of General Surgery, Shaanxi Provincial People's Hospital of Xi'an Jiaotong University, Xi'an 710068, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Gan Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuqi Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Haimei Wen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Bo Lei
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
30
|
Liao S, Liu Z, Lv W, Li S, Tian T, Wang Y, Wu H, Zhao ZH, Lin Y. Efficient Delivery of siRNA via Tetrahedral Framework Nucleic Acids: Inflammation Attenuation and Matrix Regeneration in Temporomandibular Joint Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53499-53514. [PMID: 39330704 DOI: 10.1021/acsami.4c11089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is the most common and severe subtype of temporomandibular disease characterized by inflammation and cartilage matrix degradation. Compared with traditional conservative treatment, small interfering RNAs (siRNAs) have emerged as a more efficient gene-targeted therapeutic tool for TMJOA treatment. Nuclear factor kappaB (NF-κB) is a transcription factor orchestrating the inflammatory processes in the pathogenesis of TMJOA. Employing siRNA-NF-κB could theoretically control the development of TMJOA. However, the clinical applications of siRNA-NF-κB are limited by its structural instability, poor cellular uptake, and short TMJ retention. To overcome these shortcomings, we developed a tetrahedral framework nucleic acid (tFNA) system carrying siRNA-NF-κB, named Tsi. The results indicated that Tsi exhibited excellent structural stability and excellent cellular uptake efficiency. It also demonstrated a superior NF-κB silencing effect over siRNA alone, attenuating the activation of NF-κB and upregulating the NRF2/HO-1 pathway. This system effectively reduced the release of inflammatory factors and reactive oxygen species (ROS), inhibiting cellular oxidative stress and apoptosis. In vivo, Tsi displayed enhanced TMJ retention capacity in comparison to siRNA alone and offered significant protective effects on both the cartilage matrix and subchondral bone, presenting a promising approach for TMJOA treatment.
Collapse
Affiliation(s)
- Shengnan Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weitong Lv
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yifan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, Sichuan, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
31
|
Wang J, Jia R, Wan W, Han H, Wang G, Li Z, Li J. Drug Delivery Targeting Neuroinflammation to Treat Brain Diseases. Bioconjug Chem 2024. [PMID: 39377704 DOI: 10.1021/acs.bioconjchem.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Inflammation within the brain is a hallmark of a wide range of brain diseases. The complex role of inflammatory processes in these conditions suggests that neuroinflammation could be a valuable therapeutic target. While several promising anti-inflammatory agents have been identified, their clinical application in brain diseases is often hampered by the inability to cross the blood-brain barrier (BBB) and reach therapeutically effective concentrations at the pathological sites. This limitation highlights the urgent need for effective BBB-penetrating drug delivery systems designed to target brain inflammation. This review critically examines the recent advances over the past five years in drug delivery strategies aimed at mitigating brain inflammation in Alzheimer's disease and ischemic stroke─two of the leading causes of death and disability worldwide. Additionally, we address the key challenges in this field, offering insights into future directions for targeting neuroinflammation in the treatment of brain diseases.
Collapse
Affiliation(s)
- Juntao Wang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruiqin Jia
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Wubo Wan
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Haijun Han
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Guoying Wang
- Macquarie Medical School, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Zhen Li
- Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Jia Li
- Macquarie Medical School, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
32
|
Tran TTT, Phung CD, Yeo BZJ, Prajogo RC, Jayasinghe MK, Yuan J, Tan DSW, Yeo EYM, Goh BC, Tam WL, Le MTN. Customised design of antisense oligonucleotides targeting EGFR driver mutants for personalised treatment of non-small cell lung cancer. EBioMedicine 2024; 108:105356. [PMID: 39303667 PMCID: PMC11437961 DOI: 10.1016/j.ebiom.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are currently the standard therapy for patients with non-small cell lung cancer (NSCLC) bearing mutations in epidermal growth factor receptor (EGFR). Unfortunately, drug-acquired resistance is inevitable due to the emergence of new mutations in EGFR. Moreover, the TKI treatment is associated with severe toxicities due to the unspecific inhibition of wild-type (WT) EGFR. Thus, treatment that is customised to an individual's genetic alterations in EGFR may offer greater therapeutic benefits for patients with NSCLC. METHODS In this study, we demonstrate a new therapeutic strategy utilising customised antisense oligonucleotides (ASOs) to selectively target activating mutations in the EGFR gene in an individualised manner that can overcome drug-resistant mutations. We use extracellular vesicles (EVs) as a vehicle to deliver ASOs to NSCLC cells. FINDINGS Specifically guided by the mutational profile identified in NSCLC patients, we have successfully developed ASOs that selectively inhibit point mutations in the EGFR gene, including L858R and T790M, while sparing the WT EGFR. Delivery of the EGFR-targeting ASOs by EVs significantly reduced tumour growth in xenograft models of EGFR-L858R/T790M-driven NSCLC. Importantly, we have also shown that EGFR-targeting ASOs exhibit more potent anti-cancer effect than TKIs in NSCLC with EGFR mutations, effectively suppressing a patient-derived TKI-resistant NSCLC tumour. INTERPRETATION Overall, by harnessing the specificity and efficacy of ASOs, we present an effective and adaptable therapeutic platform for NSCLC treatment. FUNDING This study was funded by Singapore's Ministry of Health (NMRC/OFIRG/MOH-000643-00, OFIRG21nov-0068, NMRC/OFLCG/002-2018, OFYIRG22jul-0034), National Research Foundation (NRF-NRFI08-2022, NRF-CRP22-2019-0003, NRF-CRP23-2019-0004), A∗STAR, and Ministry of Education.
Collapse
Affiliation(s)
- Trinh T T Tran
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore
| | - Cao Dai Phung
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore
| | - Brendon Z J Yeo
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore
| | - Rebecca C Prajogo
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore
| | - Migara K Jayasinghe
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Ju Yuan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore
| | - Daniel S W Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore; Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Republic of Singapore; Duke-NUS Medical School, Republic of Singapore, 8 College Road, Singapore, 169857, Republic of Singapore; Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Republic of Singapore; Cancer and Therapeutics Research Laboratory, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Republic of Singapore
| | - Eric Y M Yeo
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore
| | - Boon Cher Goh
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore; Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore, 138672, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Republic of Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Republic of Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, (A∗STAR), 61 Biopolis Street, Proteos, Singapore, 138673, Republic of Singapore.
| |
Collapse
|
33
|
Chaudhary N, Newby AN, Whitehead KA. Non-Viral RNA Delivery During Pregnancy: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306134. [PMID: 38145340 PMCID: PMC11196389 DOI: 10.1002/smll.202306134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/25/2023] [Indexed: 12/26/2023]
Abstract
During pregnancy, the risk of maternal and fetal adversities increases due to physiological changes, genetic predispositions, environmental factors, and infections. Unfortunately, treatment options are severely limited because many essential interventions are unsafe, inaccessible, or lacking in sufficient scientific data to support their use. One potential solution to this challenge may lie in emerging RNA therapeutics for gene therapy, protein replacement, maternal vaccination, fetal gene editing, and other prenatal treatment applications. In this review, the current landscape of RNA platforms and non-viral RNA delivery technologies that are under active development for administration during pregnancy is explored. Advancements of pregnancy-specific RNA drugs against SARS-CoV-2, Zika, influenza, preeclampsia, and for in-utero gene editing are discussed. Finally, this study highlights bottlenecks that are impeding translation efforts of RNA therapies, including the lack of accurate cell-based and animal models of human pregnancy and concerns related to toxicity and immunogenicity during pregnancy. Overcoming these challenges will facilitate the rapid development of this new class of pregnancy-safe drugs.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Alexandra N. Newby
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
34
|
Narita M, Kohata A, Kageyama T, Watanabe H, Aikawa K, Kawaguchi D, Morihiro K, Okamoto A, Okazoe T. Fluorocarbon-DNA Conjugates for Enhanced Cellular Delivery: Formation of a Densely Packed DNA Nano-Assembly. Chembiochem 2024; 25:e202400436. [PMID: 38858172 DOI: 10.1002/cbic.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Forming nano-assemblies is essential for delivering DNA conjugates into cells, with the DNA density in the nano-assembly playing an important role in determining the uptake efficiency. In this study, we developed a strategy for the facile synthesis of DNA strands bearing perfluoroalkyl (RF) groups (RF-DNA conjugates) and investigated how they affect cellular uptake. An RF-DNA conjugate bearing a long RF group at the DNA terminus forms a nano-assembly with a high DNA density, which results in greatly enhanced cellular uptake. The uptake mechanism is mediated by clathrin-dependent endocytosis. The use of RF groups to densely assemble negatively charged DNA is a useful strategy for designing drug delivery carriers.
Collapse
Grants
- 22UT0019 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 23UT0211 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 23UT1115 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 20K05460 JSPS KAKENHI Grant-in-Aid for Scientific Research
- 23K13852 Grant-in-Aid for Early-Career Scientists
Collapse
Affiliation(s)
- Minako Narita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Current address: School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8501, Japan
| | - Taiichi Kageyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Honoka Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
35
|
Ma D, Xie A, Lv J, Min X, Zhang X, Zhou Q, Gao D, Wang E, Gao L, Cheng L, Liu S. Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins. Protein Cell 2024; 15:724-743. [PMID: 38518087 PMCID: PMC11443452 DOI: 10.1093/procel/pwae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024] Open
Abstract
Developing an intracellular delivery system is of key importance in the expansion of protein-based therapeutics acting on cytosolic or nuclear targets. Recently, extracellular vesicles (EVs) have been exploited as next-generation delivery modalities due to their natural role in intercellular communication and biocompatibility. However, fusion of protein of interest to a scaffold represents a widely used strategy for cargo enrichment in EVs, which could compromise the stability and functionality of cargo. Herein, we report intracellular delivery via EV-based approach (IDEA) that efficiently packages and delivers native proteins both in vitro and in vivo without the use of a scaffold. As a proof-of-concept, we applied the IDEA to deliver cyclic GMP-AMP synthase (cGAS), an innate immune sensor. The results showed that cGAS-carrying EVs activated interferon signaling and elicited enhanced antitumor immunity in multiple syngeneic tumor models. Combining cGAS EVs with immune checkpoint inhibition further synergistically boosted antitumor efficacy in vivo. Mechanistically, scRNA-seq demonstrated that cGAS EVs mediated significant remodeling of intratumoral microenvironment, revealing a pivotal role of infiltrating neutrophils in the antitumor immune milieu. Collectively, IDEA, as a universal and facile strategy, can be applied to expand and advance the development of protein-based therapeutics.
Collapse
Affiliation(s)
- Ding Ma
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - An Xie
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiahui Lv
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolin Min
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xinye Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qian Zhou
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Daxing Gao
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Enyu Wang
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Lei Gao
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Linzhao Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Senquan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
36
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
37
|
Tian Y, Jing G, Ma M, Yin R, Zhang M. Microglial activation and polarization in type 2 diabetes-related cognitive impairment: A focused review of pathogenesis. Neurosci Biobehav Rev 2024; 165:105848. [PMID: 39142542 DOI: 10.1016/j.neubiorev.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Microglia, as immune cells in the central nervous system, are closely related to cognitive impairment associated with type 2 diabetes (T2D). Preliminary explorations have investigated the relationship between T2D-related cognitive impairment and the activation and polarization of microglia. This review summarizes the potential mechanisms of microglial activation and polarization in the context of T2D. It discusses central inflammatory responses, neuronal apoptosis, amyloid-β deposition, and abnormal phosphorylation of Tau protein mediated by microglial activation and polarization, exploring the connections between microglial activation and polarization and T2D-related cognitive impairment from multiple perspectives. Additionally, this review provides references for future treatment targeting microglia in T2D-related cognitive impairment and for clinical translation.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Ma
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiying Yin
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
38
|
Chavda VP, Luo G, Bezbaruah R, Kalita T, Sarma A, Deka G, Duo Y, Das BK, Shah Y, Postwala H. Unveiling the promise: Exosomes as game-changers in anti-infective therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230139. [PMID: 39439498 PMCID: PMC11491308 DOI: 10.1002/exp.20230139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs)-based intercellular communication (through exosomes, microvesicles, and apoptotic bodies) is conserved across all kingdoms of life. In recent years, exosomes have gained much attention for targeted pharmaceutical administration due to their unique features, nanoscale size, and capacity to significantly contribute to cellular communication. As drug delivery vehicles, exosomes have several advantages over alternative nanoparticulate drug delivery technologies. A key advantage lies in their comparable makeup to the body's cells, which makes them non-immunogenic. However, exosomes vesicles face several challenges, including a lack of an effective and standard production technique, decreased drug loading capacity, limited characterization techniques, and underdeveloped isolation and purification procedures. Exosomes are well known for their long-term safety and natural ability to transport intercellular nucleic acids and medicinal compounds across the blood-brain-barrier (BBB). Therefore, in addition to revealing new insights into exosomes' distinctiveness, the growing availability of new analytical tools may drive the development of next-generation synthetic systems. Herein, light is shed on exosomes as drug delivery vehicles in anti-infective therapy by reviewing the literature on primary articles published between 2002 and 2023. Additionally, the benefits and limitations of employing exosomes as vehicles for therapeutic drug delivery are also discussed.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Guanghong Luo
- Department of Radiation OncologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Rajashri Bezbaruah
- Department of Pharmaceutical SciencesFaculty of Science and EngineeringDibrugarh UniversityDibrugarhAssamIndia
| | - Tutumoni Kalita
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Anupam Sarma
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Gitima Deka
- College of PharmacyYeungnam UniversityGyeonsanRepublic of Korea
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Bhrigu Kumar Das
- School of Pharmaceutical SciencesGirijananda Chowdhury University, AzaraGuwahatiAssamIndia
| | - Yesha Shah
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| | - Humzah Postwala
- PharmD SectionL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
39
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
40
|
Chen C, Ai Q, Tian H, Wei Y. CKLF1 in cardiovascular and cerebrovascular diseases. Int Immunopharmacol 2024; 139:112718. [PMID: 39032474 DOI: 10.1016/j.intimp.2024.112718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Chemokine like factor 1 (CKLF1) is a novel atypical chemokine, playing a crucial role in cardiovascular and cerebrovascular diseases (CCVDs) demonstrated by a growing body of works. In cardiovascular diseases including atherosclerosis and myocardial infarction, meanwhile in cerebrovascular diseases such as ischemic stroke and hemorrhagic stroke, the expression levels of CKLF1 change markedly, which triggers downstream signaling pathways by binding with its functional receptors, and then exerts multiple effects to participate in the occurrence and development of these CCVDs. The functional roles of CKLF1 are dynamic and CKLF1 may act as a double-edged sword. The CCVDs-promoting role is related to recruiting inflammatory cells, enhancing the proliferation of vascular smooth muscle cells and endothelial cells, while the CCVDs-suppressing role may correlate with migration of nerve cells and promotion of hematopoietic stem cell proliferation which contributes to disease recovery. Based on this, the paper intends to review expression shifts, potential roles, and molecular mechanisms of CKLF1 in CCVDs, and the current status of CKLF1 targeted therapeutic strategies is also included. We hope this review may provide a valuable reference for using CKLF1 as a diagnostic and prognostic biomarker for CCVDs or developing novel treatments.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Qidi Ai
- Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Haiyan Tian
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
41
|
Schwarzenbach H. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Noncoding RNA 2024; 10:51. [PMID: 39452837 PMCID: PMC11510331 DOI: 10.3390/ncrna10050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Epithelial ovarian cancer (EOC) with its high death incidence rate is generally detected at advanced stages. During its progression, EOC often develops peritoneal metastasis aggravating the outcomes of EOC patients. Studies on non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), have analyzed the impact of miRNAs and circRNAs, along with their interaction among each other, on cancer cells. MiRNAs can act as oncogenes or tumor suppressors modulating post-transcriptional gene expression. There is accumulating evidence that circRNAs apply their stable, covalently closed, continuous circular structures to competitively inhibit miRNA function, and so act as competing endogenous RNAs (ceRNAs). This interplay between both ncRNAs participates in the malignity of a variety of cancer types, including EOC. In the current review, I describe the characteristics of miRNAs and circRNAs, and discuss their interplay with each other in the development, progression, and drug resistance of EOC. Sponging of miRNAs by circRNAs may be used as a biomarker and therapeutic target in EOC.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
42
|
Kong X, Li T, Yang H. AAV-mediated gene therapies by miniature gene editing tools. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2608-5. [PMID: 39388062 DOI: 10.1007/s11427-023-2608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 10/15/2024]
Abstract
The advent of CRISPR-Cas has revolutionized precise gene editing. While pioneering CRISPR nucleases like Cas9 and Cas12 generate targeted DNA double-strand breaks (DSB) for knockout or homology-directed repair, next generation CRISPR technologies enable gene editing without DNA DSB. Base editors directly convert bases, prime editors make diverse alterations, and dead Cas-regulator fusions allow nuanced control of gene expression, avoiding potentially risks like translocations. Meanwhile, the discovery of diminutive Cas12 orthologs and Obligate Mobile Element-Guided Activity (OMEGA) nucleases has overcome cargo limitations of adeno-associated viral vectors, expanding prospects for in vivo therapeutic delivery. Here, we review the ever-evolving landscape of cutting-edge gene editing tools, focusing on miniature Cas12 orthologs and OMEGA effectors amenable to single AAV packaging. We also summarize CRISPR therapies delivered using AAV vectors, discuss challenges such as efficiency and specificity, and look to the future of this transformative field of in vivo gene editing enabled by AAV vectors delivery.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Tong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hui Yang
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China.
| |
Collapse
|
43
|
Wang YE, Chen J, Yang H, He J, Varier KM, Chen Y, Wu X, Guo Q, Liang Y, Shen X, Wei M, Li W, Tao L. Polysialic acid driving cardiovascular targeting co-delivery 1,8-cineole and miR-126 to synergistically alleviate lipopolysaccharide-induced acute cardiovascular injury. Int J Biol Macromol 2024; 280:135970. [PMID: 39332566 DOI: 10.1016/j.ijbiomac.2024.135970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Infection-induced cardiovascular damage is the primary pathological mechanism underlying septic cardiac dysfunction. This condition affects the majority of patients in intensive care unit and has an unfavorable prognosis due to the lack of effective therapies available. Vascular cell adhesion molecule-1 (VCAM-1) plays a vital role in coordinating the inflammatory response and recruitment of leukocytes in cardiac tissue, making it a potential target for developing novel therapies. MicroRNA-126 (miR-126) has been shown to downregulate VCAM-1 expression in endothelial cells, reducing leukocyte adhesion and exerting anti-inflammatory effects. Therefore, this work described a polysialic acid (PSA) modified ROS-responsive nanosystem to targeted co-delivery 1,8-Cineole and miR-126 for mitigating septic cardiac dysfunction. The nanosystem consists of 1,8-Cineole nanoemulsion (CNE) conjugated with PEI/miR126 complex by a ROS-sensitive linker, with PSA on its surface to facilitate targeted delivery via specific interactions with selectins on endothelial cells. CNE has demonstrated protective effects against inflammation in the cardiovascular system and synergistic anti-inflammatory effects when combined with miR-126. The targeted nanosystem successfully delivered miR-126 and 1,8-Cineole to the injured heart tissues and vessels, reducing inflammatory responses and improving cardiac function. In summary, this work provides a promising therapy for alleviating the inflammatory response in sepsis while boosting cardiovascular protection.
Collapse
Affiliation(s)
- Yu-E Wang
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China; The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jianbo Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Hong Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Jinggang He
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Krishnapriya M Varier
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Yuanxian Liang
- School of Clinical Medicine, Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Maochen Wei
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Wei Li
- Department of Cardiovascular medicine, Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang 550025, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, No. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
44
|
Huang B, Abedi M, Ahn G, Coventry B, Sappington I, Tang C, Wang R, Schlichthaerle T, Zhang JZ, Wang Y, Goreshnik I, Chiu CW, Chazin-Gray A, Chan S, Gerben S, Murray A, Wang S, O'Neill J, Yi L, Yeh R, Misquith A, Wolf A, Tomasovic LM, Piraner DI, Duran Gonzalez MJ, Bennett NR, Venkatesh P, Ahlrichs M, Dobbins C, Yang W, Wang X, Sahtoe DD, Vafeados D, Mout R, Shivaei S, Cao L, Carter L, Stewart L, Spangler JB, Roybal KT, Greisen PJ, Li X, Bernardes GJL, Bertozzi CR, Baker D. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 2024:10.1038/s41586-024-07948-2. [PMID: 39322662 DOI: 10.1038/s41586-024-07948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras1,2 (LYTACs) and cytokine receptor-targeting chimeras3 (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor. Here we describe computational design approaches for endocytosis-triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for insulin-like growth factor 2 receptor (IGF2R) and asialoglycoprotein receptor (ASGPR), sortilin and transferrin receptors, and show that fusing these tags to soluble or transmembrane target protein binders leads to lysosomal trafficking and target degradation. As these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. EndoTag fusion to a PD-L1 antibody considerably increases efficacy in a mouse tumour model compared to antibody alone. The modularity and genetic encodability of EndoTags enables AND gate control for higher-specificity targeted degradation, and the localized secretion of degraders from engineered cells. By promoting endocytosis, EndoTag fusion increases signalling through an engineered ligand-receptor system by nearly 100-fold. EndoTags have considerable therapeutic potential as targeted degradation inducers, signalling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody-drug and antibody-RNA conjugates.
Collapse
Affiliation(s)
- Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yujia Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ching Wen Chiu
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Adam Chazin-Gray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey Gerben
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Li Yi
- Novo Nordisk, Måløv, Denmark
| | | | | | | | - Luke M Tomasovic
- Departments of Biomedical Engineering and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan I Piraner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Maria J Duran Gonzalez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Nathaniel R Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Dionne Vafeados
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rubul Mout
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Shirin Shivaei
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Kole T Roybal
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
45
|
Arjunan P, Mahalingam G, Sankar P, Kathirvelu D, Suresh S, Rani S, Mohankumar KM, Thangavel S, Marepally S. Base-modified factor VIII mRNA delivery with galactosylated lipid nanoparticles as a protein replacement therapy for haemophilia A. Biomater Sci 2024; 12:5052-5062. [PMID: 39210734 DOI: 10.1039/d4bm00909f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The bleeding disorder hemophilia A (HemA) requires systemic functional factor VIII protein infusions on prophylactic schedules. Recently, chemically modified mRNAs have emerged as promising protein replacement therapies to reduce repeated infusions and improve safety profiles. However, the influence of base modifications on mRNA translation kinetics to specific cell types remains unexplored. In this study, towards developing mRNA therapeutics for haemophilia A, we synthesized chemically modified mRNAs with commercially available base modifications of adenine, guanine, uridine, and cytidine, and evaluated in vitro transcription yield and translation kinetics in hepatic cell lines using reporter eGFP mRNA. Our findings demonstrated that mRNA with N1-methyl pseudouridine (m1Ψ) showed a 5-12-fold increase in translation efficiency in both hepatic and endothelial cell lines. As a proof of concept for developing mRNA therapy for HemA, where FVIII is deficient, we developed a m1Ψ modified functional FVIII mRNA with our liver-targeting lipid nanoparticle (Gal-LNP) system. We evaluated its delivery efficiencies in both hepatic cell lines and the HemA mouse model. The m1Ψ-FVIII mRNA showed high therapeutic efficacy up to 15 days in vivo in the HemA mouse model. Gal-LNPs were found to be safe for systemic administration. Our study reveals that incorporating m1Ψ base modifications on mRNAs could improve therapeutic efficacy in liver- and endothelial-based therapeutics. Optimized mRNA synthesis for superior expression kinetics in hepatic cells and its delivery with liver-targeted nanoparticles may emerge as protein replacement therapies for monogenic liver disorders.
Collapse
Affiliation(s)
- Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
| | - Priyanka Sankar
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
| | - Durga Kathirvelu
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
| | - Sevanthy Suresh
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
| | - Sandya Rani
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, 632002, TN, India.
| |
Collapse
|
46
|
Qi Y, Han H, Liu A, Zhao S, Lawanprasert A, Nielsen JE, Choudhary H, Liang D, Barron AE, Murthy N. Ethylene oxide graft copolymers reduce the immunogenicity of lipid nanoparticles. RSC Adv 2024; 14:30071-30076. [PMID: 39309654 PMCID: PMC11414743 DOI: 10.1039/d4ra05007j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Lipid nanoparticle (LNP)/mRNA complexes have great therapeutic potential but their PEG chains can induce the production of anti-PEG antibodies. New LNPs that do not contain PEG are greatly needed. We demonstrate here that poly-glutamic acid-ethylene oxide graft copolymers can replace the PEG on LNPs and outperform PEG-LNPs after chronic administration.
Collapse
Affiliation(s)
- Yalin Qi
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Albert Liu
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Sheng Zhao
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Atip Lawanprasert
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, School of Medicine, Stanford University Stanford California 94305 USA
- Department of Science and Environment, Roskilde University Roskilde 4000 Denmark
| | - Hema Choudhary
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Dengpan Liang
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine, Stanford University Stanford California 94305 USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
- Innovative Genomics Institute (IGI) Berkeley California 94704 USA
| |
Collapse
|
47
|
Ferraresso F, Badior K, Seadler M, Zhang Y, Wietrzny A, Cau MF, Haugen A, Rodriguez GG, Dyer MR, Cullis PR, Jan E, Kastrup CJ. Protein is expressed in all major organs after intravenous infusion of mRNA-lipid nanoparticles in swine. Mol Ther Methods Clin Dev 2024; 32:101314. [PMID: 39253356 PMCID: PMC11382111 DOI: 10.1016/j.omtm.2024.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo delivery of mRNA is promising for the study of gene expression and the treatment of diseases. Lipid nanoparticles (LNPs) enable efficient delivery of mRNA constructs, but protein expression has been assumed to be limited to the liver. With specialized LNPs, delivery to extrahepatic tissue occurs in small animal models; however, it is unclear if global delivery of mRNA to all major organs is possible in humans because delivery may be affected by differences in innate immune response and relative organ size. Furthermore, limited studies with LNPs have been performed in large animal models, such as swine, due to their sensitivity to complement activation-related pseudoallergy (CARPA). In this study, we found that exogenous protein expression occurred in all major organs when swine were injected intravenously with a relatively low dose of mRNA encapsulated in a clinically relevant LNP formulation. Exogenous protein was detected in the liver, spleen, lung, heart, uterus, colon, stomach, kidney, small intestine, and brain of the swine without inducing CARPA. Furthermore, protein expression was detected in the bone marrow, including megakaryocytes, hematopoietic stem cells, and granulocytes, and in circulating white blood cells and platelets. These results show that nearly all major organs contain exogenous protein expression and are viable targets for mRNA therapies.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Geoffrey G Rodriguez
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell R Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christian J Kastrup
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
48
|
Fraire JC, Prado-Morales C, Aldaz Sagredo A, Caelles AG, Lezcano F, Peetroons X, Bakenecker AC, Di Carlo V, Sánchez S. Swarms of Enzymatic Nanobots for Efficient Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47192-47205. [PMID: 39262054 PMCID: PMC11403613 DOI: 10.1021/acsami.4c08770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This study investigates the synthesis and optimization of nanobots (NBs) loaded with pDNA using the layer-by-layer (LBL) method and explores the impact of their collective motion on the transfection efficiency. NBs consist of biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and are powered by the urease enzyme, enabling autonomous movement and collective swarming behavior. In vitro experiments were conducted to validate the delivery efficiency of fluorescently labeled NBs, using two-dimensional (2D) and three-dimensional (3D) cell models: murine urothelial carcinoma cell line (MB49) and spheroids from human urothelial bladder cancer cells (RT4). Swarms of pDNA-loaded NBs showed enhancements of 2.2- to 2.6-fold in delivery efficiency and 6.8- to 8.1-fold in material delivered compared to inhibited particles (inhibited enzyme) and the absence of fuel in a 2D cell culture. Additionally, efficient intracellular delivery of pDNA was demonstrated in both cell models by quantifying and visualizing the expression of eGFP. Swarms of NBs exhibited a >5-fold enhancement in transfection efficiency compared to the absence of fuel in a 2D culture, even surpassing the Lipofectamine 3000 commercial transfection agent (cationic lipid-mediated transfection). Swarms also demonstrated up to a 3.2-fold enhancement in the amount of material delivered in 3D spheroids compared to the absence of fuel. The successful transfection of 2D and 3D cell cultures using swarms of LBL PLGA NBs holds great potential for nucleic acid delivery in the context of bladder treatments.
Collapse
Affiliation(s)
- Juan C Fraire
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Carles Prado-Morales
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana Aldaz Sagredo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Ainhoa G Caelles
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Florencia Lezcano
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Xander Peetroons
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Anna C Bakenecker
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Valerio Di Carlo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
49
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
50
|
Nunes da Silva W, Dias Moura Prazeres PH, Goulart Guimarães PP. PLA-PEG as an alternative to PEGylated lipids for nanoparticle-based DNA vaccination against SARS-CoV-2. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102293. [PMID: 39252876 PMCID: PMC11382102 DOI: 10.1016/j.omtn.2024.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Walison Nunes da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|