1
|
Aja PM, Agu PC, Ogbu C, Alum EU, Fasogbon IV, Musyoka AM, Ngwueche W, Egwu CO, Tusubira D, Ross K. RNA research for drug discovery: Recent advances and critical insight. Gene 2025; 947:149342. [PMID: 39983851 DOI: 10.1016/j.gene.2025.149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The field of RNA research has experienced significant changes and is now at the forefront of contemporary drug development. This narrative overview explores the scientific developments and historical turning points in RNA research, emphasising the field's critical significance in the development of novel therapeutics. Important discoveries like antisense oligonucleotides (ASOs), mRNA therapies, and RNA interference (RNAi) have created novel treatment options that can be targeted, such as the ground-breaking mRNA vaccinations against COVID-19. Advances in high-throughput sequencing, single-cell RNA sequencing, and epitranscriptomics have further unravelled the complexity of RNA biology, shedding light on the intricacies of gene regulation and cellular diversity. The integration of computational tools and bioinformatics has propelled the identification of RNA-based biomarkers and the development of RNA therapeutics. Despite significant progress, challenges such as RNA stability, delivery, and off-target effects persist, necessitating continuous innovation and ethical considerations. This review provides a critical insight into the current state and prospects of RNA research, emphasising its transformative potential in drug discovery. By examining the interplay between technological advancements and therapeutic applications, we underscore the promising horizon for RNA-based interventions in treating a myriad of diseases, marking a new era in precision medicine.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria.
| | - Peter Chinedu Agu
- Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria; Department of Biochemistry, Faculty of Science, Evangel University, Nigeria
| | - Celestine Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Nigeria
| | - Esther Ugo Alum
- Publications and Extension Department, Kampala International University, P. O. Box 20000, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Ilemobayo Victor Fasogbon
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Angela Mumbua Musyoka
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Wisdom Ngwueche
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinedu Ogbonia Egwu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Deusdedit Tusubira
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
2
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2025; 12:1388-1412. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
4
|
Bellavita R, Braccia S, Piccolo M, Bialecki P, Ferraro MG, Graziano SF, Esposito E, Donadio F, Bryszewska M, Irace C, Pedziwiatr-Werbicka E, Falanga A, Galdiero S. Shielding siRNA by peptide-based nanofibers: An efficient approach for turning off EGFR gene in breast cancer. Int J Biol Macromol 2025; 292:139219. [PMID: 39733890 DOI: 10.1016/j.ijbiomac.2024.139219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Peptide-based self-assembled nanosystems show great promise as non-viral gene and siRNA delivery vectors. In the current study, we designed and functionalized nanofibers for the delivery of siRNA, targeting and silencing EGFR gene overexpressed in triple-negative breast cancer. The nanofiber-mediated siRNA delivery was characterized in terms of zeta potential, morphology, and structural stability by circular dichroism spectroscopy. In cytotoxicity studies, nanofibers presented high biocompatibility showing a negligible effect on cell viability both on healthy and cancer cell lines. The binding between nanofibers and EGFR-siRNA was investigated and ascertained by performing different biophysical studies. The complex siRNA:NF was stable over time, under fetal bovine serum, temperature and ionic strength effects. Moreover, nanofibers effectiveness in stabilizing and delivering an ad hoc selected siRNA for EGFR gene expression silencing was verified in a preclinical model of triple-negative breast cancer. Specifically, a significant gene knockdown was obtained with the complex siRNA:NF, that is comparable with the effect obtained by lipofectamine/siRNA transfection. This effective gene silencing derived from the successful internalization of nanofibers by cancer cells as observed by confocal microscopy. These results suggested that this peptide-based nanofiber could be an effective and safe systemic siRNA delivery system for application in biomedical areas.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Simone Braccia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Piotr Bialecki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Sossio Fabio Graziano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Emanuela Esposito
- Institute of Applied Sciences and Intelligent Systems (ISASI), Naples Cryo Electron Microscopy Laboratory - EYE LAB, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Federica Donadio
- Institute of Applied Sciences and Intelligent Systems (ISASI), Naples Cryo Electron Microscopy Laboratory - EYE LAB, National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Carlo Irace
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 st., 90-236 Lodz, Poland
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, Portici, 80055 Portici, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
5
|
Abbas M, Gaye A. Emerging roles of noncoding RNAs in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2025; 328:H603-H621. [PMID: 39918596 DOI: 10.1152/ajpheart.00681.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
This review comprehensively examines the diverse roles of noncoding RNAs (ncRNAs) in the pathogenesis and treatment of cardiovascular disease (CVD), focusing on microRNA (miRNA), long noncoding RNA (lncRNA), piwi-interacting RNA (piRNA), small-interfering RNA (siRNA), circular RNA (circRNA), and vesicle-associated RNAs. These ncRNAs are integral regulators of key cellular processes, including gene expression, inflammation, and fibrosis, and they hold great potential as both diagnostic biomarkers and therapeutic targets. The review highlights novel insights into how these RNA species, particularly miRNAs, lncRNAs, and piRNAs, contribute to various CVDs such as hypertension, atherosclerosis, and myocardial infarction. In addition, it explores the emerging role of extracellular vesicles (EVs) in intercellular communication and their therapeutic potential in cardiovascular health. The review underscores the need for continued research into ncRNAs and RNA-based therapies, with a focus on advancing delivery systems and expanding personalized medicine approaches to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Malak Abbas
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical School, Nashville, Tennessee, United States
| |
Collapse
|
6
|
Kim HL, Saravanakumar G, Lee S, Jang S, Kang S, Park M, Sobha S, Park SH, Kim SM, Lee JA, Shin E, Kim YJ, Jeong HS, Kim D, Kim WJ. Poly(β-amino ester) polymer library with monomer variation for mRNA delivery. Biomaterials 2025; 314:122896. [PMID: 39426123 DOI: 10.1016/j.biomaterials.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Non-viral vectors for mRNA delivery primarily include lipid nanoparticles (LNPs) and polymers. While LNPs are known for their high mRNA delivery efficiency, they can induce excessive immune responses and cause off-target effects, potentially leading to side effects. In this study, we aimed to explore polymer-based mRNA delivery systems as a viable alternative to LNPs, focusing on their mRNA delivery efficiency and potential application in mRNA vaccines. We created a library of poly(β-amino ester) (PBAE) polymers by combining various amine monomers and acrylate monomers. Through screening this polymer library, we identified specific polymer nanoparticles (PNPs) that demonstrated high mRNA expression efficiency, with sustained mRNA expression for up to two weeks. Furthermore, the PNPs showed mRNA expression only at the injection site and did not exhibit liver toxicity. Additionally, when assessing immune activation, the PNPs significantly induced T-cell immune activation and were effective in the plaque reduction neutralization test. These results suggest that polymer-based mRNA delivery systems not only hold potential for use in mRNA vaccines but also show promise for therapeutic applications.
Collapse
Affiliation(s)
- Hong Lyun Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Seowon Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Subin Jang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seonwoo Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mihyeon Park
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - So-Hee Park
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Soo-Min Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Eunkyung Shin
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Hye-Sook Jeong
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Health, CheongJu, Chungbuk, 28160, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; OmniaMed Co, Ltd., Pohang, 37666, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
7
|
Ramakrishnan P, Ramprasath R, Jalaludeen AM, Jayakumar R, Jolius G, Balu R, Mohamed SB, Sridhar TM, Gunasekaran SS, Davoodbasha M, Thajuddin N, Gnanasekaran L, Sundaram T. Electrospun nanofibers of collagen and chitosan for tissue engineering and drug delivery applications: A review. Int J Biol Macromol 2025; 296:139663. [PMID: 39793786 DOI: 10.1016/j.ijbiomac.2025.139663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Tissue engineering plays a vital role in the medical field that addresses the repair, regeneration, and replacement of damaged tissues or organs. The development of drug-eluting electrospun nanofiber composed of biological macromolecules plays a key role in providing localized drug delivery and structural support. This review examines the recent development and impact of electrospun nanofibers in the field of tissue engineering and explores their potential applications. This review also investigates into the fabrication techniques of nanofibers, highlighting the use of biopolymers like collagen and chitosan, chiefly, focuses on understanding the mechanisms of drug-releasing features of these nanofibers. Studies concerning the medical applications of these nanofibers, such as wound healing, skin regeneration, bone tissue engineering, and neural repair, were also reviewed. Beyond the application in tissue regeneration, this review also explores the potential efficacy of nanofibres in cancer therapy, antibacterial activity, enzyme immobilization, and biosensing applications. This study provides an up-to-date critical insight into the applications of electrospun nanofiber application and key scalable production processes, underscoring the potential economic impacts of advanced wound care technologies. While outlining current challenges, this paper also offers future perspectives on the design, application, and potential expansion of drug-eluting electrospun fibers in medical sciences, ultimately showcasing their pivotal role in advancing therapeutic outcomes.
Collapse
Affiliation(s)
- Praveen Ramakrishnan
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India.
| | - Ramakrishnan Ramprasath
- Abinnovus Consulting Private Limited, TBI-University of Madras, Chennai 600025, Tamil Nadu, India
| | - Abdulkadhar Mohamed Jalaludeen
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India
| | - R Jayakumar
- Abinnovus Consulting Private Limited, TBI-University of Madras, Chennai 600025, Tamil Nadu, India
| | - Gimbun Jolius
- Center for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang Al-Sultan Abdullah, 26300 Gambang, Pahang, Malaysia
| | - Ranganathan Balu
- CanBrs Therapeutics Private Limited, Indian Institute of Technology Madras - Research Park, Chennai, Tamil Nadu, India
| | - S B Mohamed
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - T M Sridhar
- Department of Analytical Chemistry, University of Madras, Chennai 600025, Tamil Nadu, India
| | - Sivagaami Sundari Gunasekaran
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India
| | - MubarakAli Davoodbasha
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India
| | - Nooruddin Thajuddin
- Crescent Global Outreach Mission Research and Development, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 620048, Tamil Nadu, India
| | | | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu district, Tamil Nadu 603203, India.
| |
Collapse
|
8
|
Biswas A, Periyasamy K, Maloverjan M, Porosk L, Arya G, Mehta S, Andla H, Raid R, Kisand V, Rätsep M, Wengel J, Rebane A, Pooga M. Engineered PepFect14 analog for efficient cellular delivery of oligonucleotides. Biomed Pharmacother 2025; 184:117872. [PMID: 39891949 DOI: 10.1016/j.biopha.2025.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
The broad use of oligonucleotides (ON) in therapeutic and biotechnological applications is limited due to inefficient delivery methods. In parallel with lipids and polymeric carriers, cell-penetrating peptides (CPPs) are efficient vehicles for delivering nucleic acids of various types and activity into cells. In the current work, we examined the structural motifs required for the high efficacy of PepFect14, an often-used CPP for ON delivery, by introducing point mutations into the peptide sequence. We predicted the characteristics of modified CPPs, and analyzed their structure and ability to condense ONs into nanoparticles (NPs) using biophysical methods. We evaluated the ability of new PF14 analogs to deliver splicing switching oligonucleotides (SCO) and small interfering RNA (siRNA) in reporter cell lines, as well as microRNA miR-146a in human primary keratinocytes and in a mouse skin inflammation in vivo. Our findings indicate that the α-helical structure of PF14 is essential for efficient ON delivery, and mutations that disrupt the hydrophobic or cationic face in the peptide abolish NP formation and cellular internalization. PF14-Lys, an analog containing lysine residues instead of original ornithines, yielded a higher biological response to SCO and siRNA in the respective reporter cells than PF14. Furthermore, PF14-Lys efficiently delivered miRNA into keratinocytes and led to the subsequent downregulation of the target genes. Importantly, subcutaneously administered PF14-Lys-miR-146a NPs suppressed the inflammatory responses in mouse model of irritant contact dermatitis. In conclusion, our results suggest that PF14-Lys is a highly promising delivery vector for various oligonucleotides, applicable both in vitro and in vivo.
Collapse
Affiliation(s)
- Abhijit Biswas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Kapilraj Periyasamy
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
| | - Maria Maloverjan
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ly Porosk
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Geeta Arya
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Sudhichan Mehta
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
| | - Hanna Andla
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
| | - Raivo Raid
- Institute of Molecular and Cell Biology, University of Tartu, 23b Riia Street, Tartu 51010, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, 1 Wilhelm Ostwaldi, Tartu 51014, Estonia
| | - Margus Rätsep
- Institute of Physics, University of Tartu, 1 Wilhelm Ostwaldi, Tartu 51014, Estonia
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia
| | - Margus Pooga
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| |
Collapse
|
9
|
Ma L, Lin Y. Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells. Nat Chem Biol 2025; 21:451-463. [PMID: 39753704 DOI: 10.1038/s41589-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/31/2024] [Indexed: 01/31/2025]
Abstract
Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells. This system generates a large, continuously diversified library of replicative RNAs through replicase-limited mode of replication and inducible mutagenesis. Using REPLACE, we engineered fluorescent proteins and transcription factors. Notably, cells equipped with REPLACE can undergo Darwinian adaptation, allowing them to evolve in response to both cell-extrinsic and cell-intrinsic challenges. Collectively, this work establishes a powerful platform for advancing mammalian synthetic biology and cell engineering applications through directed evolution.
Collapse
Affiliation(s)
- Liang Ma
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Peking University, Chengdu, China.
| |
Collapse
|
10
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
11
|
Wang S, Shen X, Chen G, Zhang W, Tan B. Application and development of CRISPR-Cas12a methods for the molecular diagnosis of cancer: A review. Anal Chim Acta 2025; 1341:343603. [PMID: 39880493 DOI: 10.1016/j.aca.2024.343603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Rapid, sensitive, and specific molecular detection methods are crucial for diagnosing, treating and prognosing cancer patients. With advancements in biotechnology, molecular diagnostic technology has garnered significant attention as a fast and accurate method for cancer diagnosis. CRISPR-Cas12a (Cpf1), an important CRISPR-Cas family member, has revolutionized the field of molecular diagnosis since its introduction. CRISPR-Cas technologies are a new generation of molecular tools that are widely used in the detection of pathogens, cancers, and other diseases. Liquid biopsy methods based on CRISPR-Cas12a have demonstrated remarkable success in cancer diagnosis, encompassing the detection of DNA mutations, DNA methylation, tumor-related viruses, and non-nucleic acid molecule identification. This review systematically discusses the developmental history, key technologies, and principles of CRISPR-Cas12a-based molecular diagnostic techniques and their applications in cancer diagnosis. This review has also discussed the future development directions of CRISPR-Cas12a, aiming for it to become a reliable new technology that can be used in clinical application.
Collapse
Affiliation(s)
- Sidan Wang
- Nanchang University Queen Mary School, China
| | - Xiaoyu Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Guanxiao Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Buzhen Tan
- Department of Obstetrics and Gynecology the Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
12
|
Jung D, Kim NE, Kim S, Bae JH, Jung IY, Doh KW, Lee B, Kim DK, Cho YE, Baek MC. Plant-derived nanovesicles and therapeutic application. Pharmacol Ther 2025:108832. [PMID: 40023319 DOI: 10.1016/j.pharmthera.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Plant-derived nanovesicles (PDNVs) are becoming more popular as promising therapeutic tools owing to their diversity, cost-effectiveness, and biocompatibility with very low toxicity. Therefore, this review aims to discuss the methods for isolating and characterizing PDNVs and emphasize their versatile roles in direct therapeutic applications and drug delivery systems. Their ability to effectively encapsulate and deliver large nucleic acids, proteins, and small-molecule drugs was highlighted. Moreover, advanced engineering strategies, such as surface modification and fusion with other vesicles, have been developed to enhance the therapeutic effects of PDNVs. Additionally, we describe key challenges related to this field, encouraging further research to optimize PDNVs for various clinical applications for prevention and therapeutic purposes. The distinctive properties and diverse applications of PDNVs could play a crucial role in the future of personalized medicine, fostering the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Dokyung Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Na-Eun Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sua Kim
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ju-Hyun Bae
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Il-Young Jung
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyung-Won Doh
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
13
|
Yao Z, Liu T, Wang J, Fu Y, Zhao J, Wang X, Li Y, Yang X, He Z. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol Adv 2025; 81:108546. [PMID: 40015385 DOI: 10.1016/j.biotechadv.2025.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
As an emerging therapeutic tool, small interfering RNA (siRNA) had the capability to down-regulate nearly all human mRNAs via sequence-specific gene silencing. Numerous studies have demonstrated the substantial potential of siRNA in the treatment of broad classes of diseases. With the discovery and development of various delivery systems and chemical modifications, six siRNA-based drugs have been approved by 2024. The utilization of siRNA-based therapeutics has significantly propelled efforts to combat a wide array of previously incurable diseases and advanced at a rapid pace, particularly with the help of potent targeted delivery systems. Despite encountering several extracellular and intracellular challenges, the efficiency of siRNA delivery has been gradually enhanced. Currently, targeted strategies aimed at improving potency and reducing toxicity played a crucial role in the druggability of siRNA. This review focused on recent advancements on ionizable lipid nanoparticles (LNPs) and cationic polymer (CP) vectors applied for targeted siRNA delivery. Based on various types of targeted modifications, we primarily described delivery systems modified with receptor ligands, peptides, antibodies, aptamers and amino acids. Finally, we discussed the challenges and opportunities associated with siRNA delivery systems based on ionizable LNPs and CPs vectors.
Collapse
Affiliation(s)
- Ziying Yao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingwen Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhai Fu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhua Zhao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Wang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaodong Yang
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Laturski AE, Dulay MT, Perry JL, DeSimone JM. Transfection via RNA-Based Nanoparticles: Comparing Encapsulation vs Adsorption Approaches of RNA Incorporation. Bioconjug Chem 2025. [PMID: 39999074 DOI: 10.1021/acs.bioconjchem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Historically, RNA delivery via nanoparticles has primarily relied on encapsulation, as demonstrated by lipid nanoparticles in SARS-CoV-2 vaccines. Concerns about RNA degradation on nanoparticle surfaces initially limited the exploration of adsorption-based approaches. However, recent advancements have renewed interest in adsorption as a viable alternative. This Viewpoint explores the approaches of RNA incorporation in nanoparticles, comparing encapsulation, adsorption, and the combination of encapsulation and adsorption, and presents a framework to guide the selection of the most suitable strategy based on general characteristics.
Collapse
Affiliation(s)
- Amy E Laturski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Jillian L Perry
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7575, United States
| | - Joseph M DeSimone
- Department of Chemical Engineering and Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Fontanellas A, Berraondo P, Urigo F, Jericó D, Martini PGV, Pastor F, Avila MA. RNA-based therapies in liver metabolic diseases. Gut 2025:gutjnl-2023-331742. [PMID: 39988358 DOI: 10.1136/gutjnl-2023-331742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
RNA-based therapeutics have rapidly emerged over the past decade, offering a new class of medicines that differ significantly from conventional drugs. These therapies can be programmed to target or restore defective genes, allowing for more personalised treatments and reducing side effects. Notably, RNA therapies have made significant progress in the treatment of genetic liver diseases, exemplified by small interfering RNA treatments for hereditary transthyretin amyloidosis, which use liver-targeting strategies such as GalNAc conjugation to improve efficacy and safety. RNA-based gene-editing technologies, such as base editor and prime editor clustered regularly interspaced short palindromic repeats systems, also show promise with their ability to minimise genomic rearrangements and cancer risk. While RNA therapies offer high precision, challenges remain in optimising delivery methods and ensuring long-term safety and efficacy. Lipid nanoparticle-mRNA therapeutics, particularly for protein replacement in rare diseases, have gained support from preclinical successes. Compared with viral gene therapies, mRNA therapies present a safer profile with reduced risks of genomic integration and oncogene activation. However, clinical trials, especially for rare diseases, face limitations such as small sample sizes and short observation periods. Further preclinical studies, including non-human primates, will be essential for refining trial designs. Despite their potential, the high costs of RNA therapies pose a challenge that will require cost-utility models to guide pricing and accessibility. Here, we discuss the fundamental aspects of RNA-based therapeutics and showcase the most relevant preclinical and clinical developments in genetic liver metabolic diseases.
Collapse
Affiliation(s)
- Antonio Fontanellas
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Area de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Pedro Berraondo
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Area de Oncologia (CIBERonc), Madrid, Spain
| | - Francesco Urigo
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Daniel Jericó
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | - Fernando Pastor
- Molecular Therapeutics Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red, Area de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| |
Collapse
|
16
|
Duangchan K, Limjunyawong N, Rodponthukwaji K, Ittiudomrak T, Thaweesuvannasak M, Kunwong N, Metheetrairut C, Sirivatanauksorn V, Sirivatanauksorn Y, Kositamongkol P, Mahawithitwong P, Tovikkai C, Nguyen KT, Srisawat C, Punnakitikashem P. Development of Small Interfering RNA Loaded Cationic Lipid Nanoparticles for the Treatment of Liver Cancer with Elevated α-Fetoprotein Expression. ACS BIO & MED CHEM AU 2025; 5:78-88. [PMID: 39990947 PMCID: PMC11843345 DOI: 10.1021/acsbiomedchemau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 02/25/2025]
Abstract
α-Fetoprotein (AFP) is an oncogenic glycoprotein that is overexpressed in most patients with liver cancer. Moreover, it significantly affects tumorigenesis and progression, particularly by inhibiting programmed cell death or apoptosis. The treatment of liver cancer with chemotherapy is currently still in use, but its toxicity is a major concern. Alternatively, targeted therapy, especially small interfering RNA (siRNA)-based therapeutics that utilize siRNA to suppress target gene expression, is a promising cancer treatment approach that can help reduce such drawbacks. However, transporting siRNA into cells is a challenge due to its ease of degradation and limited cell membrane permeability. To overcome this limitation, we fabricated cationic lipid nanoparticles (cLNPs) to deliver AFP-targeted siRNA (siAFP) to AFP-producing liver cancer cells. Our results illustrated that these nanoparticles had a high capacity for siRNA encapsulation (>95%) and entered the cancer cells efficiently. Cell internalization of siAFP-loaded cLNPs resulted in the silencing of AFP mRNA expression and led to increased apoptotic cell death by inducing caspase-3/7 activity. This suggested that our cLNPs could be used as a powerful siRNA delivery carrier and siAFP-loaded cLNPs might be a useful strategy for treating liver cancer in the future.
Collapse
Affiliation(s)
- Kongpop Duangchan
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nathachit Limjunyawong
- Research
Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center
of Research Excellence in Allergy and Immunology, Faculty of Medicine
Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kamonlatth Rodponthukwaji
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research
Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Center of Research Excellence in Theranostic Nanomedicine, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Teeranai Ittiudomrak
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research
Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mattika Thaweesuvannasak
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Natsuda Kunwong
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanatip Metheetrairut
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Vorapan Sirivatanauksorn
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yongyut Sirivatanauksorn
- Department
of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prawat Kositamongkol
- Department
of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prawej Mahawithitwong
- Department
of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chutwichai Tovikkai
- Department
of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kytai T. Nguyen
- Department
of Bioengineering, University of Texas at
Arlington, Arlington, Texas76019, United States
| | - Chatchawan Srisawat
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Center of Research Excellence in Theranostic Nanomedicine, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Primana Punnakitikashem
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Center of Research Excellence in Theranostic Nanomedicine, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
17
|
Gao M, Zhong J, Liu X, Zhao Y, Zhu D, Shi X, Xu X, Zhou Q, Xuan W, Zhang Y, Zhou Y, Cheng J. Deciphering the Role of PEGylation on the Lipid Nanoparticle-Mediated mRNA Delivery to the Liver. ACS NANO 2025; 19:5966-5978. [PMID: 39899798 DOI: 10.1021/acsnano.4c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Organ- and cell-specific delivery of mRNA via modular lipid nanoparticles (LNPs) is promising in treating various diseases, but targeted cargo delivery is still very challenging. Most previous work focuses on screening ionizable and helper lipids to address the above issues. Here, we report the multifacial role of PEGylated lipids in manipulating LNP-mediated delivery of mRNA to the liver. We employed the typical excipients in LNP products, including DLin-MC3-DMA, DPSC, and cholesterol. Five types of PEGylated lipids were selected, and their molar ratio was fixed at 1.5% with a constant PEG molecular weight of 2000 Da. The architecture of steric lipids dramatically affected the in vitro gene transfection, in vivo blood clearance, liver deposition, and targeting of specific cells, all of which were closely linked to the de-PEGylation rate. The fast de-PEGylation resulted in short blood circulation and high accumulation in the liver. However, the ultrafast de-PEGylation enabled the deposition of more LNPs in Kupffer cells other than hepatocytes. Surprisingly, simply changing the terminal groups of PEGylated lipids from methoxyl to carboxyl or amine could dramatically increase the liver delivery of LNPs, which might be associated with the accelerated de-PEGylation rate and enhanced LNP-cell interaction. The current work highlights the importance of manipulating steric lipids in promoting mRNA delivery, offering an alternative approach for formulating and optimizing mRNA LNPs.
Collapse
Affiliation(s)
- Menghua Gao
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jiafeng Zhong
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Xinxin Liu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dingcheng Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohuo Shi
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310030, China
| | - Xuehan Xu
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Qin Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Wenjing Xuan
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yue Zhang
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yaofeng Zhou
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Jianjun Cheng
- School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
18
|
Park W, Choi J, Hwang J, Kim S, Kim Y, Shim MK, Park W, Yu S, Jung S, Yang Y, Kweon DH. Apolipoprotein Fusion Enables Spontaneous Functionalization of mRNA Lipid Nanoparticles with Antibody for Targeted Cancer Therapy. ACS NANO 2025; 19:6412-6425. [PMID: 39908463 PMCID: PMC11841042 DOI: 10.1021/acsnano.4c16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
The mRNA-lipid nanoparticles (mRNA@LNPs) offer a novel opportunity to treat targets previously considered undruggable. Although antibody conjugation is crucial for enhancing the specificity, delivery efficiency, and minimizing the toxicity of mRNA therapeutics, current chemical conjugation methods are complex and produce heterogeneous particles with misoriented antibodies. In this work, we introduce a chemical-free approach to functionalize mRNA@LNPs with antibodies, mimicking protein corona formation for targeted mRNA delivery. By fusing apolipoprotein to the Fc domain of a targeting antibody, we enabled the antibody to spontaneously display on the surface of mRNA@LNPs without altering the existing LNP process or employing complex chemical conjugation techniques. We demonstrated precise protein expression using trastuzumab-bound mRNA@LNPs, facilitating specific mRNA expression in HER2-positive cancer cells. mRNA was efficiently delivered to the tumor site after intravenous administration. While the control LNPs lacking targeting antibodies caused acute liver toxicity, trastuzumab-displayed LNPs showed no systemic toxicity. The tumor-specific delivery of p53 tumor suppressor mRNA led to the complete regression of cancer cells. Thus, apolipoprotein fusion enables a straightforward and scalable production of antibody-functionalized mRNA@LNPs, offering significant therapeutic potential in gene therapy.
Collapse
Affiliation(s)
- Wonbeom Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Jiwoong Choi
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Jaehyeon Hwang
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Suhyun Kim
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Yelee Kim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Department
of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Man Kyu Shim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Wooram Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Seokhyeon Yu
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Sangwon Jung
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Yoosoo Yang
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Division
of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dae-Hyuk Kweon
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| |
Collapse
|
19
|
Qin ZX, Zuo L, Zeng Z, Ma R, Xie W, Zhu X, Zhou X. GalNac-siRNA conjugate delivery technology promotes the treatment of typical chronic liver diseases. Expert Opin Drug Deliv 2025:1-15. [PMID: 39939158 DOI: 10.1080/17425247.2025.2466767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Nucleic acid-based therapeutics have become a key pillar of the 'third wave' of modern medicine, following the eras of small molecule inhibitors and antibody drugs. Their rapid progress is heavily dependent on delivery technologies, with the development of N-acetylgalactosamine (GalNAc) conjugates marking a breakthrough in targeting liver diseases. This technology has gained significant attention for its role in addressing chronic conditions like chronic hepatitis B (CHB) and nonalcoholic steatohepatitis (NASH), which are challenging to treat with conventional methods. AREAS COVERED This review explores the origins, mechanisms, and advantages of GalNAc-siRNA delivery systems, highlighting their ability to target hepatocytes via the asialoglycoprotein receptor (ASGPR). The literature reviewed covers preclinical and clinical advancements, particularly in CHB and NASH. Key developments in stabilization chemistry and conjugation technologies are examined, emphasizing their impact on enhancing therapeutic efficacy and patient compliance. EXPERT OPINION GalNAc-siRNA technology represents a transformative advancement in RNA interference (RNAi) therapies, addressing unmet needs in liver-targeted diseases. While significant progress has been made, challenges remain, including restricted targeting scope and scalability concerns. Continued innovation is expected to expand applications, improve delivery efficiency, and overcome limitations, establishing GalNAc-siRNA as a cornerstone for future nucleic acid-based treatments.
Collapse
Affiliation(s)
- Zhen-Xin Qin
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Ziran Zeng
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Rongguan Ma
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Wenyan Xie
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
20
|
Wang Z, Wang J, Wu W, Shi C, Wang Y, Chen Y, Liu F, Xie S, Lin A. LncRNAs: expanding horizons in drug development and disease treatment. Sci Bull (Beijing) 2025; 70:287-289. [PMID: 39667985 DOI: 10.1016/j.scib.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Zhizhuo Wang
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Junfeng Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenfei Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shanshan Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Aifu Lin
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China; MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China.
| |
Collapse
|
21
|
Hu M, Zhang Y, Ding H, Chao R, Cao Z. Effect and mechanism of miRNA-144-5p-regulated autophagy in older adults with Sarcopenia. Immun Ageing 2025; 22:7. [PMID: 39953589 PMCID: PMC11827453 DOI: 10.1186/s12979-025-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Advanced aging invariably triggers an overabundance of apoptosis, stemming from diminished autophagy or a disarray in cellular autophagic processes. This, in turn, leads to an accelerated breakdown of muscle proteins, which exacerbates the ongoing deterioration of skeletal muscle and intensifies the severity of senile sarcopenia. This study aimed to investigate the role and mechanism of miRNA-regulated autophagy in senile sarcopenia. METHODS The miRNAs associated with sarcopenia were screened, and the target genes of significant miRNAs were predicted. The effects of significantly differentially expressed miRNA-144-5p on cell aging and autophagy were validated in vivo and in vitro. RESULTS The inhibition of miR-144-5p enhanced the multiplication of mouse myoblasts, increased the expression of MHC and autophagic markers LC3II/LC3I and Beclin-1, facilitated the formation of autophagosomes in mouse myoblasts, and reduced the number of aging cells and the expression of senescence-related proteins acetylated p53, p53, and p21 expression in mouse myoblasts. miR-144-5p affects myoblast senescence, myogenic differentiation, and autophagy by regulating the downstream target gene, Atg2A. Inhibiting miR-144-5p markedly increased the grip strength of the posterior limb in old mice, and the CSA of old mice and young mice was also markedly increased. CONCLUSION All experiments have demonstrated that miRNA-144-5p has a significant impact on the regulation of autophagy and the development of senile sarcopenia.
Collapse
Affiliation(s)
- Mengdie Hu
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Ying Zhang
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Hong Ding
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Rui Chao
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Zhidong Cao
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
22
|
El-Sahli S, Manturthi S, Durocher E, Bo Y, Akman A, Sannan C, Kirkby M, Iroakazi CD, Deyell H, Kaczmarek S, Lee SH, Iqbal U, Côté M, Wang L, Gadde S. Nanoparticle-Mediated mRNA Delivery to Triple-Negative Breast Cancer (TNBC) Patient-Derived Xenograft (PDX) Tumors. ACS Pharmacol Transl Sci 2025; 8:460-469. [PMID: 39974646 PMCID: PMC11833720 DOI: 10.1021/acsptsci.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
mRNA-based therapies can overcome several challenges faced by traditional therapies in treating a variety of diseases by selectively modulating genes and proteins without genomic integration. However, due to mRNA's poor stability and inherent limitations, nanoparticle (NP) platforms have been developed to deliver functional mRNA into cells. In cancer treatment, mRNA technology has multiple applications, such as restoration of tumor suppressors and activating antitumor immunity. Most of these applications have been evaluated using simple cell-line-based tumor models, which failed to represent the complexity, heterogeneity, and 3D architecture of patient tumors. This discrepancy has led to inconsistencies and failures in clinical translation. Compared to cell line models, patient-derived xenograft (PDX) models more accurately represent patient tumors and are better suitable for modeling. Therefore, for the first time, this study employed two different TNBC PDX tumors to examine the effects of the mRNA-NPs. mRNA-NPs are developed using EGFP-mRNA as a model and studied in TNBC cell lines, ex vivo TNBC PDX organotypic slice cultures, and in vivo TNBC PDX tumors. Our findings show that NPs can effectively accumulate in tumors after intravenous administration, protecting and delivering mRNA to PDX tumors with different genetic and chemosensitivity backgrounds. These studies offer more clinically relevant modeling systems for mRNA nanotherapies in cancer applications.
Collapse
Affiliation(s)
- Sara El-Sahli
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Shireesha Manturthi
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Emma Durocher
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Yuxia Bo
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
| | - Alexandra Akman
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Christina Sannan
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Melanie Kirkby
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Chiamaka Divine Iroakazi
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Hannah Deyell
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Shelby Kaczmarek
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Seung-Hwan Lee
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Umar Iqbal
- Human
Health
Therapeutics Research Centre, National Research Council Canada, Ottawa K1A 0R6, Canada
| | - Marceline Côté
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Lisheng Wang
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Suresh Gadde
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, ON K1Y 1J8, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa-Carleton
Institute for Biomedical Engineering (OCIBME), Ottawa K1S 5B6, Canada
| |
Collapse
|
23
|
He Y, Li H, Shi Q, Liu Y, Pan Q, He X. The liver-specific long noncoding RNA FAM99B inhibits ribosome biogenesis and cancer progression through cleavage of dead-box Helicase 21. Cell Death Dis 2025; 16:97. [PMID: 39952918 PMCID: PMC11829061 DOI: 10.1038/s41419-025-07401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Emerging evidence has demonstrated that long noncoding RNAs (lncRNAs) are promising targets or agents for the treatment of human cancers. Most liver-specific lncRNAs exhibit loss of expression and act as tumor suppressors in liver cancer. Modulating the expression of these liver-specific lncRNAs is a potential approach for lncRNA-based gene therapy for hepatocellular carcinoma (HCC). Here, we report that the expression of the liver-specific lncRNA FAM99B is significantly decreased in HCC tissues and that FAM99B suppresses HCC cell proliferation and metastasis both in vitro and in vivo. FAM99B promotes the nuclear export of DDX21 through XPO1, leading to further cleavage of DDX21 by caspase3/6 in the cytoplasm. FAM99B inhibits ribosome biogenesis by inhibiting ribosomal RNA (rRNA) processing and RPS29/RPL38 transcription, thereby reducing global protein synthesis through downregulation of DDX21 in HCC cells. Interestingly, the FAM99B65-146 truncation exhibits tumor-suppressive effects in vivo and in vitro. Moreover, GalNAc-conjugated FAM99B65-146 inhibits the growth and metastasis of orthotopic HCC xenografts, providing a new strategy for the treatment of HCC. This is the first report of the use of a lncRNA as an agent rather than a target in tumor treatment. Graphical illustration of the mechanism of FAM99B in HCC.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- DEAD-box RNA Helicases/metabolism
- DEAD-box RNA Helicases/genetics
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Animals
- Ribosomes/metabolism
- Cell Proliferation/genetics
- Cell Line, Tumor
- Mice
- Mice, Nude
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Exportin 1 Protein
- Karyopherins/metabolism
- Karyopherins/genetics
- Mice, Inbred BALB C
- Male
- Hep G2 Cells
- Liver/metabolism
- Liver/pathology
Collapse
Affiliation(s)
- Yifei He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongquan Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiaochu Pan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Dai L, Ma W, Song Z, Lu B, He Y, Zhang J, Wei D, Wang B, Li G, Gao D, Wang Y. Targeted and Synergistic Codelivery of Chemotherapeutic and Nucleic Acid Drugs by Liposome-Coated MPDA Nanoparticles for Advanced Prostate Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8875-8885. [PMID: 39894982 DOI: 10.1021/acsami.4c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Docetaxel (DTX)-based chemotherapy is the primary therapeutic approach for advanced prostate cancer (PCa) when endocrine therapy proves ineffective. Traditional chemotherapy exhibits poor specificity and induces severe side effects, such as immunosuppression, neurotoxicity, and hypersensitivity. In this study, we aimed to develop a new targeted nanodrug delivery system to accurately identify PCa cells and deliver drugs. We prepared mesoporous polydopamine (MPDA) nanoparticles using a one-pot method. After loading DTX onto MPDA, siRNA was attached to the surface, which was coated with polyethylene glycol lipids film (PEG-Lips); together, this formed MDS@L. The aptamer A10-3.2 was coupled to the surface of PEG-Lips to obtain MDS@LA, which was characterized using different techniques, including transmission electron microscopy and Fourier transform infrared spectroscopy. MDS@LA exhibited excellent stability, acid-responsive release, and photothermal properties, enhancing its antitumor effects. Both in vitro and in vivo experiments revealed that MDS@LA precisely targeted PCa cells and effectively delivered DTX and siRNA, leading to significant inhibition of PCa cell growth and proliferation. This versatile nanoplatform offers a promising, precise, and efficient therapeutic approach for advanced PCa, addressing the limitations of conventional chemotherapy.
Collapse
Affiliation(s)
- Liang Dai
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Wangteng Ma
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Zixuan Song
- Department of Pediatrics, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Binwei Lu
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Yuchu He
- State Key Laboratory of Metastable, Materials Science and Technology, Nano-biotechnology KeyLab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediationin Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Jidong Zhang
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Dapeng Wei
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Baibing Wang
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Guangming Li
- School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Dawei Gao
- State Key Laboratory of Metastable, Materials Science and Technology, Nano-biotechnology KeyLab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediationin Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yimin Wang
- Department of General Surgery, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
- Department of Surgery, Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
25
|
He C, He P, Ou Y, Tang X, Wei H, Xu Y, Bai S, Guo Z, Hu R, Xiong K, Du G, Sun X. Rectifying the Crosstalk between the Skeletal and Immune Systems Improves Osteoporosis Treatment by Core-Shell Nanocapsules. ACS NANO 2025; 19:5549-5567. [PMID: 39879106 DOI: 10.1021/acsnano.4c14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites. This strategy integrates the antiresorptive drug alendronate with siSema4D, efficiently inhibiting osteoclast (OC) differentiation and bone resorption, while promoting osteogenesis to restore the balance between osteoblasts (OBs) and OCs. Moreover, encapsulating siSema4D within the nanocapsules helps to mitigate immunological cascades, thereby reversing the inflammatory microenvironment and restoring immune homeostasis and providing insights into the immunomodulatory effects of Sema4D in osteoporosis therapy. In both ovariectomized and senile osteoporotic mouse models, local intramuscular administration of core-shell nanocapsules effectively rectified the imbalance between the skeletal and immune systems, significantly enhancing the overall efficacy of osteoporosis treatment. Our findings underscore the therapeutic promise of addressing the multifaceted osteoporotic microenvironment through targeted interventions.
Collapse
Affiliation(s)
- Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongjiao Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Liu Y, Zhang R, Yang Y, Liu X, Jiang Y. Corosolic acid derivative-based lipid nanoparticles for efficient RNA delivery. J Control Release 2025; 378:1-17. [PMID: 39631700 DOI: 10.1016/j.jconrel.2024.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Lipid nanoparticles (LNPs) represent the most widely employed and clinically validated platform for in vivo RNA delivery. However, currently used LNP formulations, which consist of lipids and cholesterol, exhibit limited transfection efficiency and off-target hepatic transfection. These limitations necessitate higher dosage and pose potential safety concerns. In this study, three derivatives of corosolic acid (CA) were synthesized to create a library of cholesterol-free lipid nanoparticles, CAxLNPs. From this library, CAβLNP was identified as the most effective, exhibiting enhanced tumor cell uptake and superior endosomal membrane fusion capabilities compared to cholesterol-containing LNP formulations, leading to optimal endosomal escape and efficient cytoplasmic delivery of mRNA/siRNA. Following intratumoral injection, CAβLNP demonstrated significantly improved retention and penetration within tumor tissues while minimizing undesired hepatic transfection. This LNP formulation offers a safer, more effective carrier for RNA delivery, providing promising potential to expand the applications of RNA therapeutics.
Collapse
Affiliation(s)
- Yunhu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Ruizhe Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Yueying Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Xiao Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China
| | - Yanyan Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Shanghai, 201203, China.
| |
Collapse
|
27
|
Mubarak N, Waqar MA, Khan AM, Asif Z, Alvi AS, Virk AA, Amir S. A comprehensive insight of innovations and recent advancements in nanocarriers for nose-to-brain drug targeting. Des Monomers Polym 2025; 28:7-29. [PMID: 39935823 PMCID: PMC11812116 DOI: 10.1080/15685551.2025.2464132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Central Nervous System (CNS) disorders are the leading cause of illness and affect the everyday lives of people all around the globe and are predicted to increase tremendously in the upcoming decades. Traditional methods of delivering drugs to the CNS face considerable limitations. Nose-to-brain targeting offers a promising alternative that bypasses the blood-brain barrier (BBB), enabling targeted drug administration to the central nervous system (CNS). Nanotechnology has brought forward innovative solutions to the challenges of drug delivery in CNS disorders. Nanocarriers such as liposomes, nanoparticles, nanoemulsions and dendrimers can enhance drug stability, bioavailability, and targeted delivery to the brain. These nanocarriers are designed to overcome physiological barriers and provide controlled and sustained drug release directly to the CNS. Nanocarrier technology has made significant strides in recent years, enabling more effective and targeted delivery of drugs to the brain. With recent advancements, intranasal delivery coupled with nanocarriers seems to be a promising combination that can provide better clinical profiles, pharmacokinetics, and pharmacodynamics for neurodegenerative disorders. This study focuses on exploring the nose-to-brain drug delivery system, emphasizing the use of various nanocarriers designed for this purpose. Additionally, the study encompasses recent advancements in nanocarrier technology tailored specifically to improve the efficiency of drug administration through the nasal route to the brain.
Collapse
Affiliation(s)
- Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Zainab Asif
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aima Subia Alvi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aqsa Arshad Virk
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Sakeena Amir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
28
|
Park JS, Choi YH, Min JY, Lee J, Shim G. Fundamental and Targeted Approaches in Pulmonary Arterial Hypertension Treatment. Pharmaceutics 2025; 17:224. [PMID: 40006591 PMCID: PMC11859843 DOI: 10.3390/pharmaceutics17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its treatment, while irreversible vascular changes, such as fibrosis, remain unaddressed by current therapies. Fundamental research on molecular pathways and targeted delivery systems has paved the way for advanced therapeutic strategies that aim to modify disease progression rather than merely manage symptoms. Nanoparticle-based drug delivery systems, leveraging controlled release and pulmonary targeting, offer a promising avenue to overcome these challenges. Such systems enable precise localization to pulmonary vasculature, minimize systemic side effects, and support emerging approaches like gene therapy and combination treatments. Future research should focus on refining nanoparticle formulations for personalized medicine, optimizing inhalation delivery systems, and integrating multi-target approaches to achieve curative outcomes in PAH. This review explores pathophysiology of PAH, current pharmacological strategies, and innovative nanoparticle-based therapies, emphasizing their potential to transform PAH treatment and address its underlying mechanisms.
Collapse
Affiliation(s)
- Ji Su Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong Hwan Choi
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Ji-Young Min
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Jaeseong Lee
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
29
|
Goswami R, Nagaraj H, Cicek YA, Nasim N, Mirza SS, Hassan MA, Mhaske R, Saravanan DM, Noonan C, Pham E, Mager J, Rotello VM. Polymer-siRNA nanovectors for treating lung inflammation. J Control Release 2025; 378:1092-1102. [PMID: 39730067 PMCID: PMC11830555 DOI: 10.1016/j.jconrel.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects. siRNA is a promising therapeutic modality for immune regulation. However, effective delivery of siRNA is challenged by issues related to cellular uptake and localization within tissues. This study investigates a series of guanidinium-functionalized polymers (Cn-Guan) designed to explore the effects of amphiphilicity on siRNA complexation and efficiency in vitro and in vivo. Nine polymers with varying side chain lengths (C3, C5, C7) and molecular weights (17 kDa, 30 kDa, 65 kDa) were synthesized, forming polyplexes with siRNA. Characterization revealed that C7-Guan/si_scr polymers exhibited the smallest polyplex sizes and the tightest complexation with siRNA. In vitro studies showed that 65 kDa polymers had the highest gene knockdown efficiency, with C3 and C5-Guan/si_TNF-α achieving ∼70 % knockdown, while C7-Guan/si_TNF-α achieved ∼30 %. In vivo, C7-Guan/Cy5-siRNA demonstrated the highest lung accumulation, and all polymers showed ∼70 % TNF-α knockdown with a low siRNA dosage (0.14 mg/kg) in a murine lung inflammation model. C7-Guan polymers, despite lower in vitro efficiency, were quite effective in vivo, potentially due to enhanced serum stability. These findings demonstrate that Cn-Guan/siRNA polyplexes are effective and safe for attenuating pulmonary inflammation and provide important insights for the development of future siRNA delivery vectors for lung disease treatment.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Nourina Nasim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarah S Mirza
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Rukmini Mhaske
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Deepthika M Saravanan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Cedar Noonan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Edward Pham
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA.
| |
Collapse
|
30
|
Li TX, Yang YY, Zong JB, Li M, Fu XX, Jiang XX, Wang WT, Li XQ, Qi HZ, Yu T. Activated neutrophil membrane-coated tRF-Gly-CCC nanoparticles for the treatment of aortic dissection/aneurysm. J Control Release 2025; 378:334-349. [PMID: 39672274 DOI: 10.1016/j.jconrel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Aortic dissection/aneurysm (AAD) is a critical and life-threatening condition marked by a lack of effective pharmacological treatments. Gene therapy has emerged as a promising approach to treat AAD and slow its advancement. However, the clinical utility of gene therapy is impeded by significant challenges, including the scarcity of innovative genetic drugs in current medical practices and the absence of a streamlined gene delivery mechanism. Our investigation centered on a unique gene target, tRF-Gly-CCC, belonging to tsRNAs, essential for maintaining vascular smooth muscle cell function and regulating inflammatory cell responses. To enhance in vivo treatment, we developed a kind of activated neutrophil membrane bionic nanoparticles (neu MCs), incorporating tRF-Gly-CCC-loaded polymer nanoparticles as the core and activated neutrophil membrane as the outer layer. The utilization of activated neutrophil membrane cloaking serves a dual purpose by safeguarding tRF-Gly-CCC and facilitating targeted delivery to the AAD site. Neu MCs exhibit improved stability in circulation, enabling precise delivery to aortic lesions and reducing AAD mortality. Notably, studies suggest that neu MCs offer a superior approach for immediate intervention to reduce vascular rupture. In conclusion, our study utilized a novel genetic drug and an effective delivery system to enable early intervention in AAD.
Collapse
Affiliation(s)
- Tian-Xiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Yan-Yan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jin-Bao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China
| | - Min Li
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266000, People's Republic of China
| | - Xiu-Xiu Fu
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Xiao-Xin Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Wen-Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Xiao-Qian Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China
| | - Hong-Zhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
31
|
Dong H, He Z, Cai S, Ma H, Su L, Li J, Yang H, Xie R. Methylprednisolone substituted lipid nanoparticles deliver C3 transferase mRNA for combined treatment of spinal cord injury. J Nanobiotechnology 2025; 23:98. [PMID: 39923070 PMCID: PMC11807324 DOI: 10.1186/s12951-025-03153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
Spinal cord injury (SCI), characterized by the disruption of neural pathways and an increase in inflammatory cell infiltration, leads to profound and lasting neurological deficits, with a high risk of resulting in permanent disability. Currently, the therapeutic landscape for SCI is notably sparse, with limited effective treatment options available. Methylprednisolone (MP), a widely used clinical anti-inflammatory agent for SCI, requires administration in high doses that are associated with significant adverse effects. In this study, we introduce an innovative approach by substituting cholesterol with MP to engineer a novel Lipid Nanoparticle (MP-LNP). This strategy aims to enhance the localization and concentration of MP at the injury site, thereby amplifying its therapeutic efficacy while mitigating systemic side effects. Furthermore, we explore the integration of C3 transferase mRNA into MP-LNPs. C3 transferase, a potent inhibitor of the RhoA pathway, has shown promise in facilitating neurological recovery in animal models of SCI and is currently being evaluated in clinical trials. The novel formulation, MP-LNP-C3, is designed for direct administration to the injury site during decompression surgery, offering a targeted therapeutic modality for SCI. Our findings reveal several significant advantages of this approach: Firstly, the incorporation of C3 transferase mRNA into MP-LNPs does not compromise the structural integrity of the nanoparticles, ensuring efficient mRNA expression within the spinal cord. Secondly, the MP-LNP formulation effectively attenuates inflammation and reduces the adverse effects associated with high-dose MP treatment in the acute phase of SCI. Lastly, MP-LNP-C3 demonstrates notable neuroprotective properties and promotes enhanced recovery of motor function in SCI mouse models. Together, these results underscore the potential of this innovative LNP-based therapy as a promising avenue for advancing the treatment of clinical SCI.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Neurosurgery, National Center for Neurological Disorders, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zongxing He
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shiyi Cai
- Department of Neurosurgery, National Center for Neurological Disorders, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haiqiang Ma
- Department of Neurosurgery, National Center for Neurological Disorders, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lili Su
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Jianfeng Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Huiying Yang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Rong Xie
- Department of Neurosurgery, National Center for Neurological Disorders, Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
32
|
Gressler S, Hipfinger C, Part F, Pavlicek A, Zafiu C, Giese B. A systematic review of nanocarriers used in medicine and beyond - definition and categorization framework. J Nanobiotechnology 2025; 23:90. [PMID: 39920688 PMCID: PMC11804063 DOI: 10.1186/s12951-025-03113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Nanocarriers are transport and encapsulation systems that primarily serve to protect and improve the dispersibility of predominantly hydrophobic active ingredients but also enable their targeted delivery and controlled release at the site of action. Nanocarriers are mainly made of either organic or inorganic materials, but various combinations of materials in complex structures are also under development. Most nanocarriers represent entities that are rationally designed to meet the functional requirements of a specific application. They can therefore be understood as Advanced Materials. Nanocarrier systems are already being used in medicine, cosmetics, agriculture, food, and household products. They are therefore used in a variety of products, ideally designed to be safe and sustainable, and may need to be registered before they can be placed on the market. Inspired by medical research, nanocarriers are also increasingly being used for precision farming (nano-agrochemicals) or products, such as air fresheners or lithium-ion batteries, and could thus be released into the environment in large quantities. To enable the identification of critical nanocarriers in subsequent investigations, a comprehensive literature review of the broad and heterogeneous research field of nanocarriers is provided, as well as an approach for categorization based on the origin and chemical composition of their constituent materials. A definition of nanocarriers based on size (1-1000 nm) and function is also proposed for their risk assessment.
Collapse
Grants
- FKZ 3722 66 401 0 German Federal Ministry for the Environment, Nature Conversation, Nuclear Safety and Consumer Protection
- FKZ 3722 66 401 0 German Federal Ministry for the Environment, Nature Conversation, Nuclear Safety and Consumer Protection
- FKZ 3722 66 401 0 German Federal Ministry for the Environment, Nature Conversation, Nuclear Safety and Consumer Protection
- FKZ 3722 66 401 0 German Federal Ministry for the Environment, Nature Conversation, Nuclear Safety and Consumer Protection
- FKZ 3722 66 401 0 German Federal Ministry for the Environment, Nature Conversation, Nuclear Safety and Consumer Protection
- FKZ 3722 66 401 0 German Federal Ministry for the Environment, Nature Conversation, Nuclear Safety and Consumer Protection
- Universität für Bodenkultur Wien
Collapse
Affiliation(s)
- Sabine Gressler
- Department of Landscape, Water and Infrastructure, Institute of Waste Management and Circularity, BOKU University, Muthgasse 107, 1190, Vienna, Austria
| | - Christina Hipfinger
- Department of Landscape, Water and Infrastructure, Institute of Safety and Risk Sciences, BOKU University, Dänenstraße 4, 1190, Vienna, Austria
| | - Florian Part
- Department of Landscape, Water and Infrastructure, Institute of Waste Management and Circularity, BOKU University, Muthgasse 107, 1190, Vienna, Austria.
| | - Anna Pavlicek
- Department of Biotechnology and Food Science, Institute of Synthetic Bioarchitectures, BOKU University, Muthgasse 11, 1190, Vienna, Austria
| | - Christian Zafiu
- Department of Landscape, Water and Infrastructure, Institute of Waste Management and Circularity, BOKU University, Muthgasse 107, 1190, Vienna, Austria
| | - Bernd Giese
- Department of Landscape, Water and Infrastructure, Institute of Safety and Risk Sciences, BOKU University, Dänenstraße 4, 1190, Vienna, Austria
| |
Collapse
|
33
|
Ma X, Mei S, He Y, Wuyun Q, Zhou L, Cai Z, Luo Q, Wen Y, Yan J. Unraveling the association and regulatory role of miR-146b-5p in coronary artery disease. BMC Cardiovasc Disord 2025; 25:81. [PMID: 39910430 PMCID: PMC11796014 DOI: 10.1186/s12872-025-04530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Coronary artery disease (CAD), one of the most prevalent cardiovascular diseases, is a critical health issue that affects millions of individuals worldwide. It has been reported that miR-146b-5p exhibited a strong correlation with inflammatory responses and atherosclerosis. However, its association with the incidence and severity of CAD has not been substantiated in a large cohort. In the study, we focus on the expression of miR-146b-5p in peripheral blood mononuclear cells (PBMCs) of patients with CAD and preliminarily investigate its function and underlying mechanism. METHODS AND RESULTS The study encompassed a total of 452 participants, consisting 295 patients with CAD and 157 individuals without CAD. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to assess miR-146b-5p expression in PBMCs. We found that miR-146b-5p was significantly increased in PBMCs of patients with CAD compared with the control group. Binary logistic regression revealed that miR-146b-5p was associated with CAD. Receiver Operation Characteristic (ROC) analysis showed that the sensitivity and specificity of miR-146b-5p in discriminating CAD patients from non-CAD patients were meaningful. Subsequent subgroup analysis showed that miR-146b-5p was related to the severity of CAD. Furthermore, gain- and loss-of-function experiments in THP-1 cells showed that miR-146b-5p inhibited inflammation, cell proliferation, and migration. Mechanically, miR-146b-5p was involved in the classical NF-κB inflammatory pathway by directly targeting IKKβ. CONCLUSION Our study revealed that miR-146b-5p was higher in the PBMCs of CAD patients than non-CAD individuals, and established a correlation between miR-146b-5p and occurrence and severity of CAD. In addition, the inflammatory role of miR-146b-5p is mediated by targeting IKKβ.
Collapse
Affiliation(s)
- Xiaozhu Ma
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Shuai Mei
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yi He
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qidamugai Wuyun
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Li Zhou
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ziyang Cai
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Qiushi Luo
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yi Wen
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiangtao Yan
- Department of Cardiology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| |
Collapse
|
34
|
Haque S, Kaminskas LM. The emergence of inhalable RNA therapeutics and challenges faced - where to from here? Nanomedicine (Lond) 2025; 20:251-253. [PMID: 39582281 PMCID: PMC11792789 DOI: 10.1080/17435889.2024.2429368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Affiliation(s)
- Shadabul Haque
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lisa M. Kaminskas
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Choi GW, Kim JH, Kang DW, Cho HY. A journey into siRNA therapeutics development: A focus on Pharmacokinetics and Pharmacodynamics. Eur J Pharm Sci 2025; 205:106981. [PMID: 39643127 DOI: 10.1016/j.ejps.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
siRNA therapeutics are emerging novel modalities targeting highly specific mRNA via RNA interference mechanism. Its unique pharmacokinetics (PKs) and pharmacodynamics (PDs) are significant challenges for clinical use. Furthermore, naked siRNA is a highly soluble macromolecule with a negative charge, making plasma membrane penetration a significant hurdle. It is also vulnerable to nuclease degradation. Therefore, advanced formulation technologies, such as lipid nanoparticles and N-acetylgalactosamine conjugation, have been developed and are now used in clinical practice to enhance target organ delivery and stability. The innate complex biological mechanisms of siRNA, along with its formulation, are major determinants of the PK/PD characteristics of siRNA products. To systematically and quantitatively understand these characteristics, it is essential to develop and utilize quantitative PK/PD models for siRNA therapeutics. In this review, the effects of formulation on the PKs and PK/PD models of approved siRNA products were presented, highlighting the importance of selecting appropriate biomarkers and understanding formulation, PKs, and PDs for quantitative interpreting the relationship between plasma concentration, organ concentration, biomarkers, and efficacy.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
36
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2025; 477:187-199. [PMID: 39482558 PMCID: PMC11761519 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
37
|
Huang B, Abedi M, Ahn G, Coventry B, Sappington I, Tang C, Wang R, Schlichthaerle T, Zhang JZ, Wang Y, Goreshnik I, Chiu CW, Chazin-Gray A, Chan S, Gerben S, Murray A, Wang S, O'Neill J, Yi L, Yeh R, Misquith A, Wolf A, Tomasovic LM, Piraner DI, Duran Gonzalez MJ, Bennett NR, Venkatesh P, Ahlrichs M, Dobbins C, Yang W, Wang X, Sahtoe DD, Vafeados D, Mout R, Shivaei S, Cao L, Carter L, Stewart L, Spangler JB, Roybal KT, Greisen PJ, Li X, Bernardes GJL, Bertozzi CR, Baker D. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 2025; 638:796-804. [PMID: 39322662 PMCID: PMC11839401 DOI: 10.1038/s41586-024-07948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras1,2 (LYTACs) and cytokine receptor-targeting chimeras3 (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor. Here we describe computational design approaches for endocytosis-triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for insulin-like growth factor 2 receptor (IGF2R) and asialoglycoprotein receptor (ASGPR), sortilin and transferrin receptors, and show that fusing these tags to soluble or transmembrane target protein binders leads to lysosomal trafficking and target degradation. As these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. EndoTag fusion to a PD-L1 antibody considerably increases efficacy in a mouse tumour model compared to antibody alone. The modularity and genetic encodability of EndoTags enables AND gate control for higher-specificity targeted degradation, and the localized secretion of degraders from engineered cells. By promoting endocytosis, EndoTag fusion increases signalling through an engineered ligand-receptor system by nearly 100-fold. EndoTags have considerable therapeutic potential as targeted degradation inducers, signalling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody-drug and antibody-RNA conjugates.
Collapse
Affiliation(s)
- Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yujia Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ching Wen Chiu
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Adam Chazin-Gray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey Gerben
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Li Yi
- Novo Nordisk, Måløv, Denmark
| | | | | | | | - Luke M Tomasovic
- Departments of Biomedical Engineering and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan I Piraner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Maria J Duran Gonzalez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Nathaniel R Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Dionne Vafeados
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rubul Mout
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Shirin Shivaei
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Kole T Roybal
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
Linthorst NA, van Vlijmen BJ, Eikenboom JC. The future of siRNA-mediated approaches to treat von Willebrand disease. Expert Rev Hematol 2025; 18:109-122. [PMID: 39865861 PMCID: PMC11854048 DOI: 10.1080/17474086.2025.2459259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION The clinical management of the inherited bleeding disorder von Willebrand disease (VWD) focuses on normalizing circulating levels of von Willebrand factor (VWF) and factor VIII (FVIII) to prevent or control bleeding events. The heterogeneous nature of VWD, however, complicates effective disease management and development of universal treatment guidelines. AREAS COVERED The current treatment modalities of VWD and their limitations are described and why this prompts the development of new treatment approaches. In particular, RNA-based therapeutics have gained significant interest because of their ability to reversibly alter gene expression with long-term efficacy. In the field of VWD, small-interfering RNAs (siRNAs) have been explored through various strategies to improve disease phenotypes. These different approaches are discussed as well as their potential impact on reshaping the future therapeutic landscape. EXPERT OPINION Current treatments for VWD often require frequent intravenous administration of VWF concentrates or desmopressin, with only short-term benefits. Moreover, remaining circulating mutant VWF can cause detrimental effects. Allele-selective siRNA-based therapies could provide more reliable and long-term disease correction by specifically targeting mutant VWF. This approach could be applied to a large part of the population aligning with the growing emphasis on personalized treatment and patient-centered care in VWD management.
Collapse
Affiliation(s)
- Noa A. Linthorst
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J.M van Vlijmen
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen C.J Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Chung MC, Mendez-Gomez HR, Soni D, McGinley R, Zacharia A, Ashbrook J, Stover B, Grippin AJ, Sayour EJ, Guan J. Multi-Step Assembly of an RNA-Liposome Nanoparticle Formulation Revealed by Real-Time, Single-Particle Quantitative Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414305. [PMID: 39887619 DOI: 10.1002/advs.202414305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Indexed: 02/01/2025]
Abstract
Self-assembly plays a critical role in nanoparticle-based applications. However, it remains challenging to monitor the self-assembly of multi-component nanomaterials at a single-particle level, in real-time, with high throughput, and in a model-independent manner. Here, multi-color fluorescence microscopy is applied to track the assembly of both liposomes and mRNA simultaneously in clinical mRNA-based cancer immunotherapy. Imaging reveals that the assembly occurs in discrete steps: initially, RNA adsorbs onto the liposomes; then, the RNA-coated liposomes cluster into heterogeneous structures ranging from sub-micrometer to tens of micrometers. The clustering process is consistent with a Smoluchowski model with a Brownian diffusion kernel. The transition between the two steps of assembly is determined by the orientation of RNA-mediated interactions. Given the facile application of this approach and the ubiquity of the components studied, the imaging and analysis in this work are readily applied to monitor multi-component assembly of diverse nanomaterials.
Collapse
Affiliation(s)
- Michael C Chung
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - Hector R Mendez-Gomez
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. Wells, Gainesville, FL, 32610, USA
| | - Dhruvkumar Soni
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. Wells, Gainesville, FL, 32610, USA
| | - Reagan McGinley
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Alen Zacharia
- Department of Physics, University of Florida, Gainesville, FL, 32611, USA
| | - Jewel Ashbrook
- Middlebury College Department of Physics, McCardell Bicentennial Hall, Middlebury, VT, 05753, USA
| | - Brian Stover
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL, 32610, USA
| | - Adam J Grippin
- MD Anderson Cancer Center, Division of Radiation Oncology, University of Texas, Houston, TX, 77030, USA
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida Lillian S. Wells, Gainesville, FL, 32610, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL, 32610, USA
| | - Juan Guan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
40
|
García Coll J, Trousselier P, Pawar SD, Bessin Y, Lichon L, Leblond Chain J, Sachon E, Bettache N, Ulrich S. Amphiphilic dynamic covalent polymer vectors of siRNA. Chem Sci 2025; 16:2413-2419. [PMID: 39790989 PMCID: PMC11707677 DOI: 10.1039/d4sc07668k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Dynamic covalent polymers (DCPs) recently emerged as smart siRNA delivery vectors, which dynamically self-assemble through siRNA templating and depolymerize in a controlled manner. Herein, we report the dynamic combinatorial screening of cationic and amphiphilic peptide-based monomers. We provide experimental evidence, by mass spectrometry analyses, of the siRNA-templated formation of DCPs, and show that amphiphilic DCPs display superior activity in terms of siRNA complexation and delivery in cells. Thus, the work describes a new type of siRNA vector based on dynamic covalent lipopolyplexes, which feature improved activity as well as better nano-structuration compared to previous generations of DCPs.
Collapse
Affiliation(s)
- José García Coll
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Pauline Trousselier
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Sachin Dattram Pawar
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM) Paris France
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Laure Lichon
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | | | - Emmanuelle Sachon
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM) Paris France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
41
|
Gao S, Chen M, Wich D, Bloomer H, Qu Z, Guan H, Xu Q. ZUGC-RNA degradation generates immunosuppressor to evade immune responses in eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.633273. [PMID: 39974952 PMCID: PMC11838226 DOI: 10.1101/2025.01.27.633273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Among the hundreds of modified nucleosides identified in terrestrial life, 2-amino-6-aminopurine (Z) is widely recognized as a prominent modified purine. Recently, RNA written with the ZUGC alphabet shows significant potential in RNA therapeutics as a synthetic biosystem. Here, we demonstrate that ZUGC-RNA can evade immune recognition in eukaryotes, independent of factors such as RNA length, sequence, 5'-triphosphate, modified uridine, and secondary structure. Notably, we discovered that both the degradation of ZUGC-RNA and metabolites of Z-nucleotides can function as immunosuppressors, silencing TLR7 sensing to block immune responses. This mechanism differs from that of pseudo-uridine (Ψ) modified RNA currently in use. ZUGC-RNAs also demonstrate broad applicability across multiple neural cell types. Our findings provide valuable insights for developing more tolerable RNA-based drugs and designing immunomodulators targeting TLR7. In addition to the potential prebiotic relevance of Z, our finding not only contributes to understanding the RNA world hypothesis but also provides new insights into the exploration of the origin of life.
Collapse
Affiliation(s)
- Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Mengting Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Zhiyuan Qu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Huiwen Guan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
42
|
Rai S, Mukherjee M, Paul BK, Mukherjee S. Cyclodextrin Derivatives as Modulators for Enhanced Drug Delivery from Niosome Membrane: A Fluorescence Correlation Spectroscopy and Isothermal Titration Calorimetry Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1601-1613. [PMID: 39818913 DOI: 10.1021/acs.langmuir.4c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Designing efficient drug delivery systems for optimum therapeutic outcomes and minimum adverse effects remains a pivotal focus in pharmaceutical research. Understanding the nature of interactions between drugs and drug carriers and the drug-release mechanism are the key aspects for the development of effective delivery systems. This work presents a detailed investigation into the intricate interactions between niosomes and the drug Phenosafranin (PSF), and the subsequent release induced by a variety of cyclodextrins (CDs) employing a multifaceted approach. Ensemble average spectroscopic and single molecular level investigations based on fluorescence correlation spectroscopy (FCS), are employed to explore the binding interactions of PSF with the niosome membrane. Subsequently, the release of the drug was studied by disrupting the niosome structure using various CDs, and their efficacy was accessed through steady-state and time-resolved photophysical responses. FCS experiments provided precise insights into the binding and drug release process at the single-molecule level through the variation in translational and diffusion characteristics of the drug. Additionally, isothermal titration calorimetric (ITC) investigations further revealed the thermodynamics governing the CD-niosome host:guest interactions and the varying potential of different CDs in disrupting the niosome to release the drug which were further validated by electron microscopy and confocal fluorescence microscopy analyses. A broader analysis of niosomes prepared with various nonionic surfactants highlighted the influence of cavitand size and structure on the interaction with different niosome constituents. This comprehensive analysis sheds light on the complex interplay of these components and their interactions, providing insights into drug delivery systems and their potential therapeutic applications.
Collapse
Affiliation(s)
- Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh India
| | - Madhumita Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh India
| | - Bijan Kumar Paul
- Department of Chemistry, Mahadevananda Mahavidyalaya, Barrackpore, Kolkata 700 120, West Bengal India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh India
| |
Collapse
|
43
|
Li J, Mao X, Zhao T, Fang W, Jin Y, Liu M, Fan C, Tian Y. Tetrahedral DNA Framework-Based Spherical Nucleic Acids for Efficient siRNA Delivery. Angew Chem Int Ed Engl 2025; 64:e202416988. [PMID: 39497620 DOI: 10.1002/anie.202416988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 11/20/2024]
Abstract
Spherical nucleic acids (SNAs) hold substantial therapeutic potential for the delivery of small interfering RNAs (siRNAs). Nevertheless, their potential remains largely untapped due to the challenges of cytosolic delivery. Inspired by the dynamic, spiky architecture of coronavirus, an interface engineering approach based on a tetrahedral DNA framework (tDF) is demonstrated for the development of coronavirus-mimicking SNAs. By exploiting their robustness and precise construction, tDFs are evenly arranged on the surface of core nanoparticles (NPs) with flexible conformations, generating a dynamic, spiky architecture. This spiky architecture in tetrahedral DNA framework-based SNAs (tDF-SNAs) substantially improve siRNAs duplex efficiency from 20 % to 95 %. Meanwhile, tDF-SNAs changed the endocytosis pathway to clathrin-independent cellular engulfment pathway and enhanced the cellular uptake efficiency. Due to these advances, the delivery efficiency of siRNA molecules by tDF-SNAs is 1-2 orders of magnitude higher than that of SNAs, resulting in a 2-fold increase in gene silencing efficacy. These results show promise in the development of bioinspired siRNAs delivery systems for intracellular applications.
Collapse
Affiliation(s)
- Jie Li
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| | - Xiuhai Mao
- Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tiantian Zhao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| | - Weina Fang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| | - Yangyang Jin
- Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengmeng Liu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
44
|
Lee H, Rho WY, Kim YH, Chang H, Jun BH. CRISPR-Cas9 Gene Therapy: Non-Viral Delivery and Stimuli-Responsive Nanoformulations. Molecules 2025; 30:542. [PMID: 39942646 PMCID: PMC11820414 DOI: 10.3390/molecules30030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The CRISPR-Cas9 technology, one of the groundbreaking genome editing methods for addressing genetic disorders, has emerged as a powerful, precise, and efficient tool. However, its clinical translation remains hindered by challenges in delivery efficiency and targeting specificity. This review provides a comprehensive analysis of the structural features, advantages, and potential applications of various non-viral and stimuli-responsive systems, examining recent progress to emphasize the potential to address these limitations and advance CRISPR-Cas9 therapeutics. We describe how recent reports emphasize that nonviral vectors, including lipid-based nanoparticles, extracellular vesicles, polymeric nanoparticles, gold nanoparticles, and mesoporous silica nanoparticles, can offer diverse advantages to enhance stability, cellular uptake, and biocompatibility, based on their structures and physio-chemical stability. We also summarize recent progress on stimuli-responsive nanoformulations, a type of non-viral vector, to introduce precision and control in CRISPR-Cas9 delivery. Stimuli-responsive nanoformulations are designed to respond to pH, redox states, and external triggers, facilitate controlled and targeted delivery, and minimize off-target effects. The insights in our review suggest future challenges for clinical applications of gene therapy technologies and highlight the potential of delivery systems to enhance CRISPR-Cas9's clinical efficacy, positioning them as pivotal tools for future gene-editing therapies.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si 24341, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| |
Collapse
|
45
|
Kang K, do Espirito Santo É, Diaz CJ, Mayfield S, Molino JVD. Engineering microalgal cell wall-anchored proteins using GP1 PPSPX motifs and releasing with intein-mediated fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634604. [PMID: 39896471 PMCID: PMC11785195 DOI: 10.1101/2025.01.23.634604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Harnessing and controlling the localization of recombinant proteins is critical for advancing applications in synthetic biology, industrial biotechnology, and drug delivery. This study explores protein anchoring and controlled release in Chlamydomonas reinhardtii, providing innovative tools for these fields. Using truncated variants of the GP1 glycoprotein fused to the plastic-degrading enzyme PHL7, we identified the PPSPX motif as essential for anchoring proteins to the cell wall. Constructs with increased PPSPX content exhibited reduced secretion but improved anchoring, pinpointing the potential anchor-signal sites of GP1 and highlighting the distinct roles of these motifs in protein localization. Building on the anchoring capabilities established with these glycomodules, we also demonstrated a controlled release system using a pH-sensitive intein derived from RecA from Mycobacterium tuberculosis. This intein efficiently cleaved and released PHL7 and mCherry that was fused to GP1 under acidic conditions, enabling precise temporal and environmental control. At pH 5.5, fluorescence kinetics demonstrated significant mCherry release from the pJPW4mCherry construct within 4 hours. In contrast, release was minimal under pH 8.0 conditions and negligible for the pJPW2mCherry (W2) control, irrespective of the pH. Additionally, bands on the Western blot at the expected size of mCherry also showed its efficient release from the mCherry::intein::GP1 fusion protein at pH 5.5. Conversely, at pH 8.0, no bands were detected. This anchor-release approach offers significant potential for drug delivery, biocatalysis, and environmental monitoring applications. By integrating glycomodules and pH-sensitive inteins, this study establishes a versatile framework for optimizing protein localization and release in C. reinhardtii, with broad implications for proteomics, biofilm engineering, and scalable therapeutic delivery systems.
Collapse
Affiliation(s)
- Kalisa Kang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Évellin do Espirito Santo
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Crisandra Jade Diaz
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Stephen Mayfield
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
- Algenesis Inc., 1238 Sea Village Dr., Cardiff, CA, United States of America
| | - João Vitor Dutra Molino
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
46
|
Wang J, Gao T, Zhang D, Tang Y, Gu J. Phospholipase C epsilon 1 as a therapeutic target in cardiovascular diseases. J Adv Res 2025:S2090-1232(25)00051-7. [PMID: 39855298 DOI: 10.1016/j.jare.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Phospholipase C epsilon 1 (PLCε1) can hydrolyze phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-4-phosphate at the plasma membrane and perinuclear membrane in the cardiovascular system, producing lipid-derived second messengers. These messengers are considered prominent triggers for various signal transduction processes. Notably, diverse cardiac phenotypes have been observed in cardiac-specific and global Plce1 knockout mice under conditions of pathological stress. It is well established that the cardiac-specific Plce1 knockout confers cardioprotective benefits. Therefore, the development of tissue/cell-specific targeting approaches is critical for advancing therapeutic interventions. AIM OF REVIEW This review aims to distill the foundational biology and functional significance of PLCε1 in cardiovascular diseases, as well as to explore potential avenues for research and the development of novel therapeutic strategies targeting PLCε1. KEY SCIENTIFIC CONCEPTS OF REVIEW Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide, with incidence rates escalating annually. A comprehensive understanding of the multifaceted role of PLCε1 is essential for enhancing the diagnosis, management, and prognostic assessment of patients suffering from cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongmei Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
47
|
Panigaj M, Basu Roy T, Skelly E, Chandler MR, Wang J, Ekambaram S, Bircsak K, Dokholyan NV, Afonin KA. Autonomous Nucleic Acid and Protein Nanocomputing Agents Engineered to Operate in Living Cells. ACS NANO 2025; 19:1865-1883. [PMID: 39760461 PMCID: PMC11757000 DOI: 10.1021/acsnano.4c13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent years, the rapid development and employment of autonomous technology have been observed in many areas of human activity. Autonomous technology can readily adjust its function to environmental conditions and enable an efficient operation without human control. While applying the same concept to designing advanced biomolecular therapies would revolutionize nanomedicine, the design approaches to engineering biological nanocomputing agents for predefined operations within living cells remain a challenge. Autonomous nanocomputing agents made of nucleic acids and proteins are an appealing idea, and two decades of research has shown that the engineered agents act under real physical and biochemical constraints in a logical manner. Throughout all domains of life, nucleic acids and proteins perform a variety of vital functions, where the sequence-defined structures of these biopolymers either operate on their own or efficiently function together. This programmability and synergy inspire massive research efforts that utilize the versatility of nucleic and amino acids to encode functions and properties that otherwise do not exist in nature. This Perspective covers the key concepts used in the design and application of nanocomputing agents and discusses potential limitations and paths forward.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Tanaya Basu Roy
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Jian Wang
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Srinivasan Ekambaram
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kristin Bircsak
- MIMETAS
US, INC, Gaithersburg, Maryland 20878, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
48
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
49
|
Kuskov AN, Kukovyakina EV. Nanotechnology-Based Drug Delivery Systems, 2nd Edition. Pharmaceutics 2025; 17:110. [PMID: 39861757 PMCID: PMC11769125 DOI: 10.3390/pharmaceutics17010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nanotechnology is a promising and rapidly developing area in the 21st century, which affects various fields of science: physics, chemistry, biology, engineering, microelectronics, and medicine [...].
Collapse
Affiliation(s)
- Andrey N. Kuskov
- Department of Technology of Chemical-Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | | |
Collapse
|
50
|
Song C, Jiang L, Sha X, Jiao Z, Xing Y, Li X, Li X, Yao Z, Li Z, Wang D, Zhang L, Zhang Y, Yin F. Peptide Nanocarriers for Targeted Delivery of Nucleic Acids for Cancer Therapy. Bioconjug Chem 2025; 36:25-33. [PMID: 39714310 DOI: 10.1021/acs.bioconjchem.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Peptides have been extensively studied in nanomedicine with great bioactivity and biocompatibility; however, their poor cell-membrane-penetrating properties and nonselectivity greatly limit their clinical applications. In this study, tumor-targeting therapy was achieved by modifying our previously developed efficient peptide vector with the cancer-targeting peptide RGD, enabling it to specifically target tumor cells with a high expression of RGD-binding receptors. B-cell lymphoma-2 antisense oligonucleotides were selected as the target model to validate the effectiveness of the delivery carriers. Results demonstrated that this delivery system can be efficiently and selectively taken up by RGD receptor-positive cells (αvβ3 integrin receptor), further inducing effective target gene knockdown. Overall, this system provided a promising strategy for the targeted delivery of nucleic acid drugs.
Collapse
Affiliation(s)
- Chunli Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Leying Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinrui Sha
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zijun Jiao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xi Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinyu Li
- Shenzhen JXBio Pharmaceutical Co., Ltd., Shenzhen 518118, China
- Shenzhen JYMed Technology Co.,Ltd., Shenzhen 518118, China
| | - Zhiyong Yao
- Shenzhen JYMed Technology Co.,Ltd., Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lixiang Zhang
- Shenzhen JXBio Pharmaceutical Co., Ltd., Shenzhen 518118, China
- Shenzhen JYMed Technology Co.,Ltd., Shenzhen 518118, China
| | - Yaping Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| |
Collapse
|