1
|
Mondal A, Kolomeisky AB. Microscopic origin of the spatial and temporal precision in biological systems. BIOPHYSICAL REPORTS 2025; 5:100197. [PMID: 39884433 DOI: 10.1016/j.bpr.2025.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
All living systems display remarkable spatial and temporal precision, despite operating in intrinsically fluctuating environments. It is even more surprising given that biological phenomena are regulated by multiple chemical reactions that are also random. Although the underlying molecular mechanisms of surprisingly high precision in biology remain not well understood, a novel theoretical picture that relies on the coupling of relevant stochastic processes has recently been proposed and applied to explain different phenomena. To illustrate this approach, in this review, we discuss two systems that exhibit precision control: spatial regulation in bacterial cell size and temporal regulation in the timing of cell lysis by λ bacteriophage. In cell-size regulation, it is argued that a balance between stochastic cell growth and cell division processes leads to a narrow distribution of cell sizes. In cell lysis, it is shown that precise timing is due to the coupling of holin protein accumulation and the breakage of the cellular membrane. The stochastic coupling framework also allows us to explicitly evaluate dynamic properties for both biological systems, eliminating the need to utilize the phenomenological concept of thresholds. Excellent agreement with experimental observations is observed, supporting the proposed theoretical ideas. These observations also suggest that the stochastic coupling method captures the important aspects of molecular mechanisms of precise cellular regulation, providing a powerful new tool for more advanced investigations of complex biological phenomena.
Collapse
Affiliation(s)
- Anupam Mondal
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas; Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas.
| |
Collapse
|
2
|
Ding Q, Ji M, Yao B, Wang Y. Modular metabolic flux control for kick-starting cascade catalysis through engineering customizable compartment. BIORESOURCE TECHNOLOGY 2025; 420:132109. [PMID: 39864563 DOI: 10.1016/j.biortech.2025.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/26/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Microbial compartment provides a promising approach for achieving high-valued chemical biosynthesis from renewable feedstock. However, volatile precursor could be utilized by pathway enzyme, which may hinder and adverse the cascade catalysis within microbial cell factory. Here, a customizable compartment was developed for pathway sequestration using spatially assembled cascade catalysis reaction. Firstly, a phase separation protein was designed to form the intracellular protein condensates, facilitating the construction of a customizable compartment in Escherichia coli. Subsequently, modular assembly and recruitment of customizable compartment were achieved through using a short peptide interaction pair to cluster enzymes or fuse them directly. Finally, the 2'-fucosyllactose (2'-FL) salvage pathway was heterogeneously expressed in microorganisms as a stable targeted chemical and proof-of-concept model, the results showed that anchoring various enzymes required for the 2'-FL cascade catalysis pathway within the customizable compartment created a multiple enzyme condensate system, resulting an improvement of 2'-FL titer compared to both wild type and optimized free enzymes reaction. These findings illustrating an effectively cascade catalysis model that increasing titer and kick-starting metabolic flux control through co-localizing multiple enzymes condensate within microbial cell factories.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China
| | - Mengqi Ji
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China
| | - Buhan Yao
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601 Anhui, China.
| |
Collapse
|
3
|
Hamer MS, Rossi FMV. Multitasking muscle: engineering iPSC-derived myogenic progenitors to do more. Front Cell Dev Biol 2025; 12:1526635. [PMID: 39911186 PMCID: PMC11794491 DOI: 10.3389/fcell.2024.1526635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
The generation of myogenic progenitors from iPSCs (iMPs) with therapeutic potential for in vivo tissue regeneration has long been a goal in the skeletal muscle community. Today, protocols enable the production of potent, albeit immature, iMPs that resemble Pax7+ adult muscle stem cells. While muscular dystrophies are often the primary therapeutic target for these cells, an underexplored application is their use in treating traumatic muscle injuries. Notably absent from recent reviews on iMPs is the concept of engineering these cells to perform functions post-transplantation that non-transgenic cells cannot. Here, we highlight protocols to enhance the generation, purification, and maturation of iMPs, and introduce the idea of engineering these cells to perform functions beyond their normal capacities, envisioning novel therapeutic applications.
Collapse
Affiliation(s)
- Mark Stephen Hamer
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Qiu X, Zhu L, Wang H, Xie M. Biocomputing at the crossroad between emulating artificial intelligence and cellular supremacy. Curr Opin Biotechnol 2025; 92:103264. [PMID: 39837198 DOI: 10.1016/j.copbio.2025.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
Biocomputation aims to create sophisticated biological systems capable of addressing important problems in (bio)medicine with a machine-like precision. At present, computational gene networks engineered by single- or multi-layered assembly of DNA-, RNA- and protein-level gene switches have allowed bacterial or mammalian cells to perform various regulation logics of interest, including Boolean calculation or neural network-like computing. This review highlights the molecular building blocks, design principles, and computational tasks demonstrated by current biocomputers, before briefly discussing possible fields where biological computers may ultimately outcompete their electronic counterparts and achieve cellular supremacy.
Collapse
Affiliation(s)
- Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, 410073 Changsha, Hunan, China; College of Computer Science and Technology, National University of Defense Technology, 410073 Changsha, Hunan, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, 410073 Changsha, Hunan, China
| | - Hui Wang
- Research Center for Life Sciences Computing, Zhejiang Laboratory, 311100 Hangzhou, China.
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, 310024 Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, 310024 Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 310024 Hangzhou, Zhejiang, China; School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Mansouri M, Fussenegger M. Engineering electrogenetic interfaces for mammalian cell control. Cell Chem Biol 2025:S2451-9456(25)00003-0. [PMID: 39879984 DOI: 10.1016/j.chembiol.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Human body cells and our daily electronic devices both communicate information within their distinct worlds by regulating the flow of electrons across specified membranes. While electronic devices depend on the flow of electrons generated by conductive materials to communicate within a digital network, biological systems use ion gradients, created in analog biochemical reactions, to trigger biological data transmission throughout multicellular systems. Electrogenetics is an emerging concept in synthetic biology in which electrons generated by digital electronic devices program customized electron-responsive biological units within living cells. In this paper, we outline endeavors to design direct electrogenetic interfaces to control cell behaviors in therapeutically engineered mammalian cells. We also discuss prospects for the world of electrogenetics, focusing on how to engineer the next generation of therapeutic cells controlled by electronic devices and the internet of the body.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
6
|
Senevirathne A, Lloren KKS, Aganja RP, Kwon J, Lee JH. Transforming bacterial pathogens into wonder tools in cancer immunotherapy. Mol Ther 2025:S1525-0016(25)00033-4. [PMID: 39825565 DOI: 10.1016/j.ymthe.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Cancer immunotherapy has revolutionized cancer treatment due to its precise, target-specific approach compared with conventional therapies. However, treating solid tumors remains challenging as these tumors are inherently immunosuppressive, and their tumor microenvironment (TME) often limits therapeutic efficacy. Interestingly, certain bacterial species offer a promising alternative by exhibiting an innate ability to target and proliferate within tumor environments. Bacterial structural and functional components can activate innate and adaptive immune responses, creating tumor-suppressive conditions that reduce tumor mass. Additionally, bacteria can deliver effector molecules directly into tumor cells, inducing apoptotic and necrotic cell death. Despite their potential, the use of bacteria in cancer immunotherapy poses risks due to possible toxicities and unpredictable in vivo behavior. Advances in genetic engineering have addressed these concerns by enabling the development of attenuated bacterial strains with enhanced anticancer properties for safer medical applications. This review highlights the role of bacteria in TME modulation, recent strategies to bioengineer bacterial pathogens as therapeutic tools, and the synergistic effects of combining bacteria with other immunotherapies. It also discusses the challenges and prospects of translating this innovative approach into clinical practice, offering a comprehensive overview of bacteria-based cancer immunotherapy's potential to reshape the future of cancer treatment.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Khristine Kaith S Lloren
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
7
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2025; 43:16-42. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
8
|
Miura M, Kawahara M. Refining minimal engineered receptors for specific activation of on-target signaling molecules. Sci Rep 2024; 14:31671. [PMID: 39738202 DOI: 10.1038/s41598-024-81259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Since designer cells are attracting much attention as a new modality in gene and cell therapy, it would be advantageous to develop synthetic receptors that recognize artificial ligands and activate solely signaling molecules of interest. In this study, we refined the construction of our previously developed minimal engineered receptors (MERs) to avoid off-target activation of STAT5 while maintaining on-target activation of signaling molecules corresponding to tyrosine motifs. Among the myristoylated, cytoplasmic, and transmembrane types of MERs, the cytoplasmic type had the highest signaling efficiency, although there was off-target activation of STAT5 upon ligand stimulation. Tyrosine-to-phenylalanine mutagenesis revealed that both the tyrosine motif for recruiting target signaling molecules and the tyrosine residues in the JAK-binding domain did not contribute to off-target activation of STAT5. Using alanine mutagenesis for Box1 of the JAK-binding domain of MERs, we ultimately found a Box1 mutation that slightly reduced activation of on-target signaling molecules but minimized off-target activation of STAT5. The refined MER enabled us to precisely analyze the signaling and cell fate-inducing properties of seven tyrosine motifs. Therefore, the refined MER, which realizes activation of on-target signaling molecules with high signal-to-noise ratios, will attract much attention as a tool for functionalizing designer cells and more broadly in the field of synthetic biology.
Collapse
Affiliation(s)
- Masashi Miura
- Laboratory of Cell Vaccine, Microbial Research Center for Health and Medicine (MRCHM), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-Shi, Osaka, 567-0085, Japan
| | - Masahiro Kawahara
- Laboratory of Cell Vaccine, Microbial Research Center for Health and Medicine (MRCHM), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-Shi, Osaka, 567-0085, Japan.
| |
Collapse
|
9
|
Aldrete CA, An C, Call CC, Gao XJ, Vlahos AE. Perspectives on Synthetic Protein Circuits in Mammalian Cells. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 32:100555. [PMID: 39372446 PMCID: PMC11448451 DOI: 10.1016/j.cobme.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mammalian synthetic biology aims to engineer cellular behaviors for therapeutic applications, such as enhancing immune cell efficacy against cancers or improving cell transplantation outcomes. Programming complex biological functions necessitates an understanding of molecular mechanisms governing cellular responses to stimuli. Traditionally, synthetic biology has focused on transcriptional circuits, but recent advances have led to the development of synthetic protein circuits, leveraging programmable binding, proteolysis, or phosphorylation to modulate protein interactions and cellular functions. These circuits offer advantages including robust performance, rapid functionality, and compact design, making them suitable for cellular engineering or gene therapies. This review outlines the post-translational toolkit, emphasizing synthetic protein components utilizing proteolysis or phosphorylation to program mammalian cell behaviors. Finally, we focus on key differences between rewiring native signaling pathways and creating orthogonal behaviors, alongside a proposed framework for translating synthetic protein circuits from tool development to pre-clinical applications in biomedicine.
Collapse
Affiliation(s)
- Carlos A. Aldrete
- Department of Chemical Engineering, Stanford University, CA, USA, 94305
| | - Connie An
- Department of Chemical Engineering, Stanford University, CA, USA, 94305
| | - Connor C. Call
- Department of Chemical Engineering, Stanford University, CA, USA, 94305
| | - Xiaojing J. Gao
- Department of Chemical Engineering, Stanford University, CA, USA, 94305
| | | |
Collapse
|
10
|
Goh H, Choi S, Kim J. Synthetic translational coupling element for multiplexed signal processing and cellular control. Nucleic Acids Res 2024; 52:13469-13483. [PMID: 39526390 PMCID: PMC11602170 DOI: 10.1093/nar/gkae980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Repurposing natural systems to develop customized functions in biological systems is one of the main thrusts of synthetic biology. Translational coupling is a common phenomenon in diverse polycistronic operons for efficient allocation of limited genetic space and cellular resources. These beneficial features of translation coupling can provide exciting opportunities for creating novel synthetic biological devices. Here, we introduce a modular synthetic translational coupling element (synTCE) and integrate this design with de novo designed riboregulators, toehold switches. A systematic exploration of sequence domain variants for synTCEs led to the identification of critical design considerations for improving the system performance. Next, this design approach was seamlessly integrated into logic computations and applied to construct multi-output transcripts with well-defined stoichiometric control. This module was further applied to signaling cascades for combined signal transduction and multi-input/multi-output synthetic devices. Further, the synTCEs can precisely manipulate the N-terminal ends of output proteins, facilitating effective protein localization and cellular population control. Therefore, the synTCEs could enhance computational capability and applicability of riboregulators for reprogramming biological systems, leading to future applications in synthetic biology, metabolic engineering and biotechnology.
Collapse
Affiliation(s)
- Hyunseop Goh
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Seungdo Choi
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| |
Collapse
|
11
|
Wang X, Zhang D, Singh YP, Yeo M, Deng G, Lai J, Chen F, Ozbolat IT, Yu Y. Progress in Organ Bioprinting for Regenerative Medicine. ENGINEERING 2024; 42:121-142. [DOI: 10.1016/j.eng.2024.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Riquelme-Guzmán C, Stout AJ, Kaplan DL, Flack JE. Unlocking the potential of cultivated meat through cell line engineering. iScience 2024; 27:110877. [PMID: 39351194 PMCID: PMC11440241 DOI: 10.1016/j.isci.2024.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Cultivated meat has the potential to revolutionize food production, but its progress is hindered by fundamental shortcomings of mammalian cells with respect to industrial-scale bioprocesses. Here, we discuss the essential role of cell line engineering in overcoming these limitations, highlighting the balance between the benefits of enhanced cellular traits and the associated regulatory and consumer acceptance challenges. We believe that careful selection of cell engineering strategies, including both genetic and non-genetic modifications, can address this trade-off and is essential to advancing the field.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
- Deco Labs, Inc., Boston, MA, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tufts University Center for Cellular Agriculture, Tufts University, Medford, MA, USA
| | - Joshua E Flack
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
13
|
Galvan S, Teixeira AP, Fussenegger M. Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli. Biotechnol Bioeng 2024; 121:2987-3000. [PMID: 38867466 DOI: 10.1002/bit.28770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies. Here, we review recent developments in synthetic gene switches responsive to molecular stimuli, spanning regulatory mechanisms acting at the transcriptional, translational, and posttranslational levels. We also discuss current challenges facing clinical translation of cell-based therapies employing these devices.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Monck C, Elani Y, Ceroni F. Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release. Nat Chem Biol 2024; 20:1380-1386. [PMID: 38969863 PMCID: PMC11427347 DOI: 10.1038/s41589-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Synthetic cells containing genetic programs and protein expression machinery are increasingly recognized as powerful counterparts to engineered living cells in the context of biotechnology, therapeutics and cellular modelling. So far, genetic regulation of synthetic cell activity has been largely confined to chemical stimuli; to unlock their potential in applied settings, engineering stimuli-responsive synthetic cells under genetic regulation is imperative. Here we report the development of temperature-sensitive synthetic cells that control protein production by exploiting heat-responsive mRNA elements. This is achieved by combining RNA thermometer technology, cell-free protein expression and vesicle-based synthetic cell design to create cell-sized capsules able to initiate synthesis of both soluble proteins and membrane proteins at defined temperatures. We show that the latter allows for temperature-controlled cargo release phenomena with potential implications for biomedicine. Platforms like the one presented here can pave the way for customizable, genetically programmed synthetic cells under thermal control to be used in biotechnology.
Collapse
Affiliation(s)
- Carolina Monck
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, London, UK
- fabriCELL, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
- fabriCELL, Imperial College London, London, UK.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
| |
Collapse
|
15
|
Yoon C, Lee E, Kim D, Joung S, Kim Y, Jung H, Kim Y, Lee GM. SiMPl-GS: Advancing Cell Line Development via Synthetic Selection Marker for Next-Generation Biopharmaceutical Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405593. [PMID: 39105414 PMCID: PMC11481413 DOI: 10.1002/advs.202405593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Rapid and efficient cell line development (CLD) process is essential to expedite therapeutic protein development. However, the performance of widely used glutamine-based selection systems is limited by low selection efficiency, stringency, and the inability to select multiple genes. Therefore, an AND-gate synthetic selection system is rationally designed using split intein-mediated protein ligation of glutamine synthetase (GS) (SiMPl-GS). Split sites of the GS are selected using a computational approach and validated with GS-knockout Chinese hamster ovary cells for their potential to enable cell survival in a glutamine-free medium. In CLD, SiMPl-GS outperforms the wild-type GS by selectively enriching high producers. Unlike wild-type GS, SiMPl-GS results in cell pools in which most cells produce high levels of therapeutic proteins. Harnessing orthogonal split intein pairs further enables the selection of four plasmids with a single selection, streamlining multispecific antibody-producing CLD. Taken together, SiMPl-GS is a simple yet effective means to expedite CLD for therapeutic protein production.
Collapse
Affiliation(s)
- Chansik Yoon
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Eun‐ji Lee
- Biotherapeutics Translational Research CenterKRIBBDaejeon34113Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
| | - Dongil Kim
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Siyun Joung
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Yujin Kim
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| | - Heungchae Jung
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
- BIO CenterDaejeon TechnoparkDaejeon34054Republic of Korea
| | - Yeon‐Gu Kim
- Biotherapeutics Translational Research CenterKRIBBDaejeon34113Republic of Korea
- Department of Bioprocess Engineering, KRIBB School of BiotechnologyUSTDaejeon34141Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon34141Republic of Korea
| |
Collapse
|
16
|
Shao J, Qiu X, Zhang L, Li S, Xue S, Si Y, Li Y, Jiang J, Wu Y, Xiong Q, Wang Y, Chen Q, Gao T, Zhu L, Wang H, Xie M. Multi-layered computational gene networks by engineered tristate logics. Cell 2024; 187:5064-5080.e14. [PMID: 39089254 DOI: 10.1016/j.cell.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.
Collapse
Affiliation(s)
- Jiawei Shao
- Department of Pharmacy, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China; College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lihang Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China
| | - Shichao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Xue
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yaqing Si
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yilin Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuhang Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiqi Xiong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yukai Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qidi Chen
- Department of Pharmacy, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Ting Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Hui Wang
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China.
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| |
Collapse
|
17
|
Capponi S, Wang S. AI in cellular engineering and reprogramming. Biophys J 2024; 123:2658-2670. [PMID: 38576162 PMCID: PMC11393708 DOI: 10.1016/j.bpj.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
During the last decade, artificial intelligence (AI) has increasingly been applied in biophysics and related fields, including cellular engineering and reprogramming, offering novel approaches to understand, manipulate, and control cellular function. The potential of AI lies in its ability to analyze complex datasets and generate predictive models. AI algorithms can process large amounts of data from single-cell genomics and multiomic technologies, allowing researchers to gain mechanistic insights into the control of cell identity and function. By integrating and interpreting these complex datasets, AI can help identify key molecular events and regulatory pathways involved in cellular reprogramming. This knowledge can inform the design of precision engineering strategies, such as the development of new transcription factor and signaling molecule cocktails, to manipulate cell identity and drive authentic cell fate across lineage boundaries. Furthermore, when used in combination with computational methods, AI can accelerate and improve the analysis and understanding of the intricate relationships between genes, proteins, and cellular processes. In this review article, we explore the current state of AI applications in biophysics with a specific focus on cellular engineering and reprogramming. Then, we showcase a couple of recent applications where we combined machine learning with experimental and computational techniques. Finally, we briefly discuss the challenges and prospects of AI in cellular engineering and reprogramming, emphasizing the potential of these technologies to revolutionize our ability to engineer cells for a variety of applications, from disease modeling and drug discovery to regenerative medicine and biomanufacturing.
Collapse
Affiliation(s)
- Sara Capponi
- IBM Almaden Research Center, San Jose, California; Center for Cellular Construction, San Francisco, California.
| | - Shangying Wang
- Bay Area Institute of Science, Altos Labs, Redwood City, California.
| |
Collapse
|
18
|
Helenek C, Krzysztoń R, Petreczky J, Wan Y, Cabral M, Coraci D, Balázsi G. Synthetic gene circuit evolution: Insights and opportunities at the mid-scale. Cell Chem Biol 2024; 31:1447-1459. [PMID: 38925113 PMCID: PMC11330362 DOI: 10.1016/j.chembiol.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Directed evolution focuses on optimizing single genetic components for predefined engineering goals by artificial mutagenesis and selection. In contrast, experimental evolution studies the adaptation of entire genomes in serially propagated cell populations, to provide an experimental basis for evolutionary theory. There is a relatively unexplored gap at the middle ground between these two techniques, to evolve in vivo entire synthetic gene circuits with nontrivial dynamic function instead of single parts or whole genomes. We discuss the requirements for such mid-scale evolution, with hypothetical examples for evolving synthetic gene circuits by appropriate selection and targeted shuffling of a seed set of genetic components in vivo. Implementing similar methods should aid the rapid generation, functionalization, and optimization of synthetic gene circuits in various organisms and environments, accelerating both the development of biomedical and technological applications and the understanding of principles guiding regulatory network evolution.
Collapse
Affiliation(s)
- Christopher Helenek
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rafał Krzysztoń
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julia Petreczky
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yiming Wan
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariana Cabral
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Damiano Coraci
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
19
|
Carneiro DC, Rocha VPC, Damasceno PKF, Barbosa JDV, Soares MBP. Therapeutic applications of synthetic gene/genetic circuits: a patent review. Front Bioeng Biotechnol 2024; 12:1425529. [PMID: 39161351 PMCID: PMC11330796 DOI: 10.3389/fbioe.2024.1425529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
A significant limitation of numerous current genetic engineering therapy approaches is their limited control over the strength, timing, or cellular context of their therapeutic effect. Synthetic gene/genetic circuits are synthetic biology approaches that can control the generation, transformation, or depletion of a specific DNA, RNA, or protein and provide precise control over gene expression and cellular behavior. They can be designed to perform logical operations by carefully selecting promoters, repressors, and other genetic components. Patent search was performed in Espacenet, resulting in 38 selected patents with 15 most frequent international classifications. Patent embodiments were categorized into applications for the delivery of therapeutic molecules, treatment of infectious diseases, treatment of cancer, treatment of bleeding, and treatment of metabolic disorders. The logic gates of selected genetic circuits are described to comprehensively demonstrate their therapeutic applications. Synthetic gene circuits can be customized for precise control of therapeutic interventions, leading to personalized therapies that respond specifically to individual patient needs, enhancing treatment efficacy and minimizing side effects. They can be highly sensitive biosensors that provide real-time therapy by accurate monitoring various biomarkers or pathogens and appropriately synthesizing a therapeutic molecule. Synthetic gene circuits may also lead to the development of advanced regenerative therapies and to implantable biodevices that produce on-demand bioactive molecules. However, this technology faces challenges for commercial profitability. The genetic circuit designs need adjustments for specific applications, and may have disadvantages like toxicity from multiple regulators, homologous recombination, context dependency, resource overuse, and environmental variability.
Collapse
Affiliation(s)
| | - Vinícius P. C. Rocha
- SENAI Institute of Advanced Health Systems Innovation, University Center SENAI CIMATEC, Salvador, Brazil
| | - Patrícia K. F. Damasceno
- SENAI Institute of Advanced Health Systems Innovation, University Center SENAI CIMATEC, Salvador, Brazil
| | - Josiane D. V. Barbosa
- SENAI Institute of Advanced Health Systems Innovation, University Center SENAI CIMATEC, Salvador, Brazil
| | - Milena B. P. Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- SENAI Institute of Advanced Health Systems Innovation, University Center SENAI CIMATEC, Salvador, Brazil
| |
Collapse
|
20
|
Wang L, Sun Y, Yang L, Wang S, Liu C, Wang Y, Niu Y, Huang Z, Zhang J, Wang C, Dong L. Engineering an energy-dissipating hybrid tissue in vivo for obesity treatment. Cell Rep 2024; 43:114425. [PMID: 38970789 DOI: 10.1016/j.celrep.2024.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
Obesity is a global health challenge with limited therapeutic solutions. Here, we demonstrate the engineering of an energy-dissipating hybrid tissue (EDHT) in the body for weight control. EDHT is constructed by implanting a synthetic gel matrix comprising immunomodulatory signals and functional cells into the recipient mouse. The immunomodulatory signals induce the host stromal cells to create an immunosuppressive niche that protects the functional cells, which are overexpressing the uncoupling protein 1 (UCP1), from immune rejection. Consequently, these endogenous and exogenous cells co-develop a hybrid tissue that sustainedly produces UCP1 to accelerate the host's energy expenditure. Systematic experiments in high-fat diet (HFD) and transgenic (ob/ob) mice show that EDHT efficiently reduces body weight and relieves obesity-associated pathological conditions. Importantly, an 18-month observation for safety assessment excludes cell leakage from EDHT and reports no adverse physiological responses. Overall, EDHT demonstrates convincing efficacy and safety in controlling body weight.
Collapse
Affiliation(s)
- Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yajie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Lifang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Shaocong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Chunyan Liu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Yulian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Medical School, Nanjing University, Nanjing 210093, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China; National Resource Center for Mutant Mice, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
21
|
Cole J, Schulman R. Limiting the Broadcast Range of a Secreting Cell during Intercellular Signaling Using Protease-Mediated Degradation. ACS Synth Biol 2024; 13:2019-2028. [PMID: 38885472 DOI: 10.1021/acssynbio.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Synthetic biology is revolutionizing our approaches to biocomputing, diagnostics, and environmental monitoring through the use of designed genetic circuits that perform a function within a single cell. More complex functions can be performed by multiple cells that coordinate as they perform different subtasks. Cell-cell communication using molecular signals is particularly suited for aiding in this communication, but the number of molecules that can be used in different communication channels is limited. Here we investigate how proteases can limit the broadcast range of communicating cells. We find that adding barrierpepsin to Saccharomyces cerevisiae cells in two-dimensional multicellular networks that use α-factor signaling prevents cells beyond a specific radius from responding to α-factor signals. Such limiting of the broadcast range of cells could allow multiple cells to use the same signaling molecules to direct different communication processes and functions, provided that they are far enough from one another. These results suggest a means by which complex synthetic cellular networks using only a few signals for communication could be created by structuring a community of cells to create distinct broadcast environments.
Collapse
Affiliation(s)
- Joshua Cole
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
22
|
Garg S, Jana A, Khan J, Gupta S, Roy R, Gupta V, Ghosh S. Logic "AND Gate Circuit" Based Mussel Inspired Polydopamine Nanocomposite as Bioactive Antioxidant for Management of Oxidative Stress and Neurogenesis in Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36168-36193. [PMID: 38954488 DOI: 10.1021/acsami.4c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3β inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.
Collapse
Affiliation(s)
- Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
23
|
Wu RY, Wu CQ, Xie F, Xing X, Xu L. Building RNA-Mediated Artificial Signaling Pathways between Endogenous Genes. Acc Chem Res 2024; 57:1777-1789. [PMID: 38872074 DOI: 10.1021/acs.accounts.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
ConspectusSophisticated genetic networks play a pivotal role in orchestrating cellular responses through intricate signaling pathways across diverse environmental conditions. Beyond the inherent complexity of natural cellular signaling networks, the construction of artificial signaling pathways (ASPs) introduces a vast array of possibilities for reshaping cellular responses, enabling programmable control of living organisms. ASPs can be integrated with existing cellular networks and redirect output responses as desired, allowing seamless communication and coordination with other cellular processes, thereby achieving designable transduction within cells. Among diversified ASPs, establishing connections between originally independent endogenous genes is of particular significance in modifying the genetic networks, so that cells can be endowed with new capabilities to sense and deal with abnormal factors related to differentiated gene expression (i.e., solve the issues of the aberrant gene expression induced by either external or internal stimuli). In a typical scenario, the two genes X and Y in the cell are originally expressed independently. After the introduction of an ASP, changes in the expression of gene X may exert a designed impact on gene Y, subsequently inducing the cellular response related to gene Y. If X represents a disease signal and Y serves as a therapeutic module, the introduction of the ASP empowers cells with a new spontaneous defense system to handle potential risks, which holds great potential for both fundamental and translational studies.In this Account, we primarily review our endeavors in the construction of RNA-mediated ASPs between endogenous genes that can respond to differentiated RNA expression. In contrast to other molecules that may be restricted to specific pathways, synthetic RNA circuits can be easily utilized and expanded as a general platform for constructing ASPs with a high degree of programmability and tunability for diversified functionalities through predictable Watson-Crick base pairing. We first provide an overview of recent advancements in RNA-based genetic circuits, encompassing but not limited to utilization of RNA toehold switches, siRNA and CRISPR systems. Despite notable progress, most reported RNA circuits have to contain at least one exogenous RNA X as input or one engineered RNA Y as a target, which is not suitable for establishing endogenous gene connections. While exogenous RNAs can be engineered and controlled as desired, constructing a general and efficient platform for manipulation of naturally occurring RNAs poses a formidable challenge, especially for the mammalian system. With a focus on this goal, we are devoted to developing efficient strategies to manipulate cell responses by establishing RNA-mediated ASPs between endogenous genes, particularly in mammalian cells. Our step-by-step progress in engineering customized cell signaling circuits, from bacterial cells to mammalian cells, from gene expression regulation to phenotype control, and from small RNA to long mRNA of low abundance and more complex secondary structures, is systematically described. Finally, future perspectives and potential applications of these RNA-mediated ASPs between endogenous genes are also discussed.
Collapse
Affiliation(s)
- Ruo-Yue Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chao-Qun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fan Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Huang J, Xue S, Xie Y, Teixeira AP, Fussenegger M. Ultrashort-Peptide-Responsive Gene Switches for Regulation of Therapeutic Protein Expression in Mammalian Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309411. [PMID: 38741284 PMCID: PMC11267282 DOI: 10.1002/advs.202309411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Indexed: 05/16/2024]
Abstract
Despite the array of mammalian transgene switches available for regulating therapeutic protein expression in response to small molecules or physical stimuli, issues remain, including cytotoxicity of chemical inducers and limited biocompatibility of physical cues. This study introduces gene switches driven by short peptides comprising eight or fewer amino acid residues. Utilizing a competence regulator (ComR) and sigma factor X-inducing peptide (XIP) from Streptococcus vestibularis as the receptor and inducer, respectively, this study develops two strategies for a peptide-activated transgene control system. The first strategy involves fusing ComR with a transactivation domain and utilizes ComR-dependent synthetic promoters to drive expression of the gene-of-interest, activated by XIP, thereby confirming its membrane penetrability and intracellular functionality. The second strategy features an orthogonal synthetic receptor exposing ComR extracellularly (ComREXTRA), greatly increasing sensitivity with exceptional responsiveness to short peptides. In a proof-of-concept study, peptides are administered to type-1 diabetic mice with microencapsulated engineered human cells expressing ComREXTRA for control of insulin expression, restoring normoglycemia. It is envisioned that this system will encourage the development of short peptide drugs and promote the introduction of non-toxic, orthogonal, and highly biocompatible personalized biopharmaceuticals for gene- and cell-based therapies.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Shuai Xue
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Present address:
Key Laboratory of Growth Regulation and Translational Research of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Yu‐Qing Xie
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
25
|
Frenkel M, Raman S. Discovering mechanisms of human genetic variation and controlling cell states at scale. Trends Genet 2024; 40:587-600. [PMID: 38658256 PMCID: PMC11607914 DOI: 10.1016/j.tig.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Population-scale sequencing efforts have catalogued substantial genetic variation in humans such that variant discovery dramatically outpaces interpretation. We discuss how single-cell sequencing is poised to reveal genetic mechanisms at a rate that may soon approach that of variant discovery. The functional genomics toolkit is sufficiently modular to systematically profile almost any type of variation within increasingly diverse contexts and with molecularly comprehensive and unbiased readouts. As a result, we can construct deep phenotypic atlases of variant effects that span the entire regulatory cascade. The same conceptual approach to interpreting genetic variation should be applied to engineering therapeutic cell states. In this way, variant mechanism discovery and cell state engineering will become reciprocating and iterative processes towards genomic medicine.
Collapse
Affiliation(s)
- Max Frenkel
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, USA; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Department of Bacteriology, University of Wisconsin, Madison, WI, USA; Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
26
|
Islam F, Lewis MR, Craig JD, Leyendecker PM, Deans TL. Advancing in vivo reprogramming with synthetic biology. Curr Opin Biotechnol 2024; 87:103109. [PMID: 38520824 PMCID: PMC11162311 DOI: 10.1016/j.copbio.2024.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Reprogramming cells will play a fundamental role in shaping the future of cell therapies by developing new strategies to engineer cells for improved performance and higher-order physiological functions. Approaches in synthetic biology harness cells' natural ability to sense diverse signals, integrate environmental inputs to make decisions, and execute complex behaviors based on the health of the organism or tissue. In this review, we highlight strategies in synthetic biology to reprogram cells, and discuss how recent approaches in the delivery of modified mRNA have created new opportunities to alter cell function in vivo. Finally, we discuss how combining concepts from synthetic biology and the delivery of mRNA in vivo could provide a platform for innovation to advance in vivo cellular reprogramming.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Mitchell R Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - James D Craig
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Peyton M Leyendecker
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Leal-Alves C, Deng Z, Kermeci N, Shih SCC. Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms. LAB ON A CHIP 2024; 24:2834-2860. [PMID: 38712893 DOI: 10.1039/d3lc01090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synthetic biology is the design and modification of biological systems for specific functions, integrating several disciplines like engineering, genetics, and computer science. The field of synthetic biology is to understand biological processes within host organisms through the manipulation and regulation of their genetic pathways and the addition of biocontrol circuits to enhance their production capabilities. This pursuit serves to address global challenges spanning diverse domains that are difficult to tackle through conventional routes of production. Despite its impact, achieving precise, dynamic, and high-throughput manipulation of biological processes is still challenging. Microfluidics offers a solution to those challenges, enabling controlled fluid handling at the microscale, offering lower reagent consumption, faster analysis of biochemical reactions, automation, and high throughput screening. In this review, we diverge from conventional focus on automating the synthetic biology design-build-test-learn cycle, and instead, focus on microfluidic platforms and their role in advancing synthetic biology through its integration with host organisms - bacterial cells, yeast, fungi, animal cells - and cell-free systems. The review illustrates how microfluidic devices have been instrumental in understanding biological systems by showcasing microfluidics as an essential tool to create synthetic genetic circuits, pathways, and organisms within controlled environments. In conclusion, we show how microfluidics expedite synthetic biology applications across diverse domains including but not limited to personalized medicine, bioenergy, and agriculture.
Collapse
Affiliation(s)
- Chiara Leal-Alves
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
| | - Zhiyang Deng
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
| | - Natalia Kermeci
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada
| | - Steve C C Shih
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada
| |
Collapse
|
28
|
Dai A, Zhang X, Wang X, Liu G, Wang Q, Yu F. Transcription factors in chimeric antigen receptor T-cell development. Hum Cell 2024; 37:571-581. [PMID: 38436882 DOI: 10.1007/s13577-024-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a new and innovative approach to treating cancers that has shown promising results in the treatment of lymphoma. However, it has been found to be less effective in the treatment of solid tumors. To overcome the limitation, researchers have explored the use of combined CAR-T therapy with other complementary regimens that target specific genes or biomarkers, which would enhance the synergistic therapeutic effects. Transcription factors (TFs) have been identified as potential markers that can regulate gene expression in CAR-T cells to enhance their cytotoxicity and safety. TFs are known to bind DNA specifically and recruit cofactor proteins to regulate the expression of target genes. By targeting TFs, it is possible to improve the anti-tumor response of CAR-T cells by altering their phenotype and transcriptional map, thereby increasing their effector function, such as reducing the exhaustion, enhancing the survival, and cytotoxicity of CAR-T cells. This review summarizes the application of transcription factors in CART therapy to enhance the synergistic therapeutic effect of CAR-T cells in the treatment of solid tumors and improve their anti-tumor responses.
Collapse
Affiliation(s)
- Anran Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiangzhi Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Guodong Liu
- Department of General Surgery, Suqian First People's Hospital, Suqian, 223800, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
29
|
Giraudot C, Alazard-Dany N, Lambert V. [Closed-loop synthetic gene circuits for cell-based therapies]. Med Sci (Paris) 2024; 40:437-444. [PMID: 38819279 DOI: 10.1051/medsci/2024054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Recent advances in synthetic biology have paved the way for new cellular therapies, using cells capable of autonomously treating chronic diseases. These cells integrate a set of genes functioning in a closed-loop synthetic circuit, delivering a therapeutic effector in response to a specific pathological signal. While promising in mice, these therapies face clinical challenges related to safety and feasibility of in vivo implementation. The latest generations of synthetic circuits aim to address these issues through advanced bioengineering strategies outlined in this article.
Collapse
Affiliation(s)
- Clélia Giraudot
- École normale supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France - Université de Lyon, VetAgro Sup, Marcy-l'Étoile, France
| | - Nathalie Alazard-Dany
- École normale supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | |
Collapse
|
30
|
Hwang J, Ye DY, Jung GY, Jang S. Mobile genetic element-based gene editing and genome engineering: Recent advances and applications. Biotechnol Adv 2024; 72:108343. [PMID: 38521283 DOI: 10.1016/j.biotechadv.2024.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Genome engineering has revolutionized several scientific fields, ranging from biochemistry and fundamental research to therapeutic uses and crop development. Diverse engineering toolkits have been developed and used to effectively modify the genome sequences of organisms. However, there is a lack of extensive reviews on genome engineering technologies based on mobile genetic elements (MGEs), which induce genetic diversity within host cells by changing their locations in the genome. This review provides a comprehensive update on the versatility of MGEs as powerful genome engineering tools that offers efficient solutions to challenges associated with genome engineering. MGEs, including DNA transposons, retrotransposons, retrons, and CRISPR-associated transposons, offer various advantages, such as a broad host range, genome-wide mutagenesis, efficient large-size DNA integration, multiplexing capabilities, and in situ single-stranded DNA generation. We focused on the components, mechanisms, and features of each MGE-based tool to highlight their cellular applications. Finally, we discussed the current challenges of MGE-based genome engineering and provided insights into the evolving landscape of this transformative technology. In conclusion, the combination of genome engineering with MGE demonstrates remarkable potential for addressing various challenges and advancing the field of genetic manipulation, and promises to revolutionize our ability to engineer and understand the genomes of diverse organisms.
Collapse
Affiliation(s)
- Jaeseong Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
31
|
Huang J, Xue S, Teixeira AP, Fussenegger M. A Gene-Switch Platform Interfacing with Reactive Oxygen Species Enables Transcription Fine-Tuning by Soluble and Volatile Pharmacologics and Food Additives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306333. [PMID: 38526196 PMCID: PMC11132055 DOI: 10.1002/advs.202306333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/12/2024] [Indexed: 03/26/2024]
Abstract
Synthetic biology aims to engineer transgene switches for precise therapeutic protein control in cell-based gene therapies. However, off-the-shelf trigger-inducible gene circuits are usually switched on by single or structurally similar molecules. This study presents a mammalian gene-switch platform that controls therapeutic gene expression by a wide range of molecules generating low, non-toxic levels of reactive oxygen species (ROS). In this system, KEAP1 (Kelch-like ECH-associated protein 1) serves as ROS sensor, regulating the translocation of NRF2 (nuclear factor erythroid 2-related factor 2) to the nucleus, where NRF2 binds to antioxidant response elements (ARE) to activate the expression of a gene of interest. It is found that a promoter containing eight-tandem ARE repeats is highly sensitive to the low ROS levels generated by the soluble and volatile molecules, which include food preservatives, food additives, pharmaceuticals, and signal transduction inducers. In a proof-of-concept study, it is shown that many of these compounds can independently trigger microencapsulated engineered cells to produce sufficient insulin to restore normoglycemia in experimental type-1 diabetic mice. It is believed that this system greatly extends the variety of small-molecule inducers available to drive therapeutic gene switches.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Shuai Xue
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Present address:
Key Laboratory of Growth Regulation and Translational Research of Zhejiang ProvinceSchool of Life Sciences, Westlake UniversityHangzhou, ZhejiangChina
| |
Collapse
|
32
|
De Carluccio G, Fusco V, di Bernardo D. Engineering a synthetic gene circuit for high-performance inducible expression in mammalian systems. Nat Commun 2024; 15:3311. [PMID: 38632224 PMCID: PMC11024104 DOI: 10.1038/s41467-024-47592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Inducible gene expression systems can be used to control the expression of a gene of interest by means of a small-molecule. One of the most common designs involves engineering a small-molecule responsive transcription factor (TF) and its cognate promoter, which often results in a compromise between minimal uninduced background expression (leakiness) and maximal induced expression. Here, we focus on an alternative strategy using quantitative synthetic biology to mitigate leakiness while maintaining high expression, without modifying neither the TF nor the promoter. Through mathematical modelling and experimental validations, we design the CASwitch, a mammalian synthetic gene circuit based on combining two well-known network motifs: the Coherent Feed-Forward Loop (CFFL) and the Mutual Inhibition (MI). The CASwitch combines the CRISPR-Cas endoribonuclease CasRx with the state-of-the-art Tet-On3G inducible gene system to achieve high performances. To demonstrate the potentialities of the CASwitch, we apply it to three different scenarios: enhancing a whole-cell biosensor, controlling expression of a toxic gene and inducible production of Adeno-Associated Virus (AAV) vectors.
Collapse
Affiliation(s)
- Giuliano De Carluccio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Virginia Fusco
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Naples, Italy.
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy.
| |
Collapse
|
33
|
Matys J, Kensy J, Gedrange T, Zawiślak I, Grzech-Leśniak K, Dobrzyński M. A Molecular Approach for Detecting Bacteria and Fungi in Healthcare Environment Aerosols: A Systematic Review. Int J Mol Sci 2024; 25:4154. [PMID: 38673740 PMCID: PMC11050369 DOI: 10.3390/ijms25084154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Molecular methods have become integral to microbiological research for microbial identification. This literature review focuses on the application of molecular methods in examining airborne bacteria and fungi in healthcare facilities. In January 2024, a comprehensive electronic search was carried out in esteemed databases including PubMed, Web of Science, and Scopus, employing carefully selected keywords such as ((bacteria) OR (virus) OR (fungi)) AND (aerosol) AND ((hospital) OR (healthcare) OR (dental office)) AND ((molecular) OR (PCR) OR (NGS) OR (RNA) OR (DNA) OR (metagenomic) OR (microarray)), following the PRISMA protocol. The review specifically targets healthcare environments with elevated concentrations of pathogenic bacteria. A total of 487 articles were initially identified, but only 13 met the inclusion criteria and were included in the review. The study disclosed that the prevalent molecular methodology for appraising aerosol quality encompassed the utilization of the PCR method, incorporating either 16S rRNA (bacteria) or 18S rRNA (fungi) amplification techniques. Notably, five diverse molecular techniques, specifically PFGE, DGGE, SBT, LAMP, and DNA hybridization methods, were implemented in five distinct studies. These molecular tests exhibited superior capabilities compared to traditional bacterial and fungal cultures, providing precise strain identification. Additionally, the molecular methods allowed the detection of gene sequences associated with antibiotic resistance. In conclusion, molecular testing offers significant advantages over classical microbiological culture, providing more comprehensive information.
Collapse
Affiliation(s)
- Jacek Matys
- Oral Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland; (T.G.); (K.G.-L.)
| | - Julia Kensy
- Faculty of Dentistry, Medical University of Wroclaw, 50-425 Wroclaw, Poland;
| | - Tomasz Gedrange
- Oral Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland; (T.G.); (K.G.-L.)
| | - Ireneusz Zawiślak
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland;
| | - Kinga Grzech-Leśniak
- Oral Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland; (T.G.); (K.G.-L.)
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland;
| |
Collapse
|
34
|
Wu CQ, Wu RY, Zhang QL, Wang LL, Wang Y, Dai C, Zhang CX, Xu L. Harnessing Catalytic RNA Circuits for Construction of Artificial Signaling Pathways in Mammalian Cells. Angew Chem Int Ed Engl 2024; 63:e202319309. [PMID: 38298112 DOI: 10.1002/anie.202319309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Engineering of genetic networks with artificial signaling pathways (ASPs) can reprogram cellular responses and phenotypes under different circumstances for a variety of diagnostic and therapeutic purposes. However, construction of ASPs between originally independent endogenous genes in mammalian cells is highly challenging. Here we report an amplifiable RNA circuit that can theoretically build regulatory connections between any endogenous genes in mammalian cells. We harness the system of catalytic hairpin assembly with combination of controllable CRISPR-Cas9 function to transduce the signals from distinct messenger RNA expression of trigger genes into manipulation of target genes. Through introduction of these RNA-based genetic circuits, mammalian cells are endowed with autonomous capabilities to sense the changes of RNA expression either induced by ligand stimuli or from various cell types and control the cellular responses and fates via apoptosis-related ASPs. Our design provides a generalized platform for construction of ASPs inside the genetic networks of mammalian cells based on differentiated RNA expression.
Collapse
Affiliation(s)
- Chao-Qun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ruo-Yue Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiu-Long Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- School of Pharmacy and Medical Technology, Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine of Fujian Province, Putian University, Putian, 351100, China
| | - Liang-Liang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chu Dai
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chen-Xi Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
35
|
Chao G, Zukin S, Fortuna PRJ, Boettner B, Church GM. Progress and limitations in engineering cellular adhesion for research and therapeutics. Trends Cell Biol 2024; 34:277-287. [PMID: 37580241 DOI: 10.1016/j.tcb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
Intercellular interactions form the cornerstone of multicellular biology. Despite advances in protein engineering, researchers artificially directing physical cell interactions still rely on endogenous cell adhesion molecules (CAMs) alongside off-target interactions and unintended signaling. Recently, methods for directing cellular interactions have been developed utilizing programmable domains such as coiled coils (CCs), nanobody-antigen, and single-stranded DNA (ssDNA). We first discuss desirable molecular- and systems-level properties in engineered CAMs, using the helixCAM platform as a benchmark. Next, we propose applications for engineered CAMs in immunology, developmental biology, tissue engineering, and neuroscience. Biologists in various fields can readily adapt current engineered CAMs to establish control over cell interactions, and their utilization in basic and translational research will incentivize further expansion in engineered CAM capabilities.
Collapse
Affiliation(s)
- George Chao
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Stefan Zukin
- Wyss Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Wyss Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Zhu L, Wang J. Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308879. [PMID: 38353329 DOI: 10.1002/advs.202308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Recent developments in single-cell sequencing technology enable the acquisition of entire transcriptome data. Understanding the underlying mechanism and identifying the driving force of transcriptional regulation governing cell function directly from these data remains challenging. This study reconstructs a continuous vector field of the cell cycle based on discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium dynamic landscape-flux. It reveals that large fluctuations disrupt the global landscape and genetic perturbations alter landscape-flux, thus identifying key genes in maintaining cell cycle dynamics and predicting associated functional effects. Additionally, it quantifies the fundamental energy cost of the cell cycle initiation and unveils that sustaining the cell cycle requires curl flux and dissipation to maintain the oscillatory phase coherence. This study enables the inference of the cell cycle gene regulatory networks directly from the single-cell transcriptomic data, including the feedback mechanisms and interaction intensity. This provides a golden opportunity to experimentally verify the landscape-flux theory and also obtain its associated quantifications. It also offers a unique framework for combining the landscape-flux theory and single-cell high-through sequencing experiments for understanding the underlying mechanisms of the cell cycle and can be extended to other nonequilibrium biological processes, such as differentiation development and disease pathogenesis.
Collapse
Affiliation(s)
- Ligang Zhu
- College of Physics, Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
- Department of Chemistry, Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
37
|
Mansouri M, Fussenegger M. Small-Molecule Regulators for Gene Switches to Program Mammalian Cell Behaviour. Chembiochem 2024; 25:e202300717. [PMID: 38081780 DOI: 10.1002/cbic.202300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Synthetic or natural small molecules have been extensively employed as trigger signals or inducers to regulate engineered gene circuits introduced into living cells in order to obtain desired outputs in a controlled and predictable manner. Here, we provide an overview of small molecules used to drive synthetic-biology-based gene circuits in mammalian cells, together with examples of applications at different levels of control, including regulation of DNA manipulation, RNA synthesis and editing, and protein synthesis, maturation, and trafficking. We also discuss the therapeutic potential of these small-molecule-responsive gene circuits, focusing on the advantages and disadvantages of using small molecules as triggers, the mechanisms involved, and the requirements for selecting suitable molecules, including efficiency, specificity, orthogonality, and safety. Finally, we explore potential future directions for translation of these devices to clinical medicine.
Collapse
Affiliation(s)
- Maysam Mansouri
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
- University of Basel, Faculty of Science, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| |
Collapse
|
38
|
Wang X, Zhang W, Wang Y, Zhu X, Liu Z, Liu M, Wu Z, Li B, Liu S, Liao S, Zhu P, Liu B, Li C, Wang Y, Chen Z. Logic "AND Gate Circuit"-Based Gasdermin Protein Expressing Nanoplatform Induces Tumor-Specific Pyroptosis to Enhance Cancer Immunotherapy. ACS NANO 2024; 18:6946-6962. [PMID: 38377037 DOI: 10.1021/acsnano.3c09405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pyroptosis mediated by gasdermin protein has shown great potential in cancer immunotherapies. However, the low expression of gasdermin proteins and the systemic toxicity of nonspecific pyroptosis limit its clinical application. Here, we designed a synthetic biology strategy to construct a tumor-specific pyroptosis-inducing nanoplatform M-CNP/Mn@pPHS, in which a pyroptosis-inducing plasmid (pPHS) was loaded onto a manganese (Mn)-doped calcium carbonate nanoparticle and wrapped in a tumor-derived cell membrane. M-CNP/Mn@pPHS showed an efficient tumor targeting ability. After its internalization by tumor cells, the degradation of M-CNP/Mn@pPHS in the acidic endosomal environment allowed the efficient endosomal escape of plasmid pPHS. To trigger tumor-specific pyroptosis, pPHS was designed according to the logic "AND gate circuit" strategy, with Hif-1α and Sox4 as two input signals and gasdermin D induced pyroptosis as output signal. Only in cells with high expression of Hif-1α and Sox4 simultaneously will the output signal gasdermin D be expressed. Since Hif-1α and Sox4 are both specifically expressed in tumor cells, M-CNP/Mn@pPHS induces the tumor-specific expression of gasdermin D and thus pyroptosis, triggering an efficient immune response with little systemic toxicity. The Mn2+ released from the nanoplatform further enhanced the antitumor immune response by stimulating the cGAS-STING pathway. Thus, M-CNP/Mn@pPHS efficiently inhibited tumor growth with 79.8% tumor regression in vivo. We demonstrate that this logic "AND gate circuit"-based gasdermin nanoplatform is a promising strategy for inducing tumor-specific pyroptosis with little systemic toxicity.
Collapse
Affiliation(s)
- Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenyan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zimai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meiyi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zixian Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingyu Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijia Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shixin Liao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Center for Stem Cell and Regenerative Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Benyu Liu
- Center for Stem Cell and Regenerative Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Zhongke Jianlan Medical Research Institute, Beijing 100190, China
| | - Yongchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Öztürk D, Atay FM, Özbay H. Chaos in gene regulatory networks: Effects of time delays and interaction structure. CHAOS (WOODBURY, N.Y.) 2024; 34:033102. [PMID: 38427936 DOI: 10.1063/5.0172767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
In biological system models, gene expression levels are typically described by regulatory feedback mechanisms. Many studies of gene network models focus on dynamical interactions between components, but often overlook time delays. Here we present an extended model for gene regulatory networks with time delayed negative feedback, which is described by delay differential equations. We analyze nonlinear properties of the model in terms of chaos and compare the conditions with the benchmark homogeneous gene regulatory network model. Chaotic dynamics depend strongly on the inclusion of time delays, but the minimum motifs that show chaos differ when both original and extended models are considered. Our results suggest that, for a particular higher order extension of the gene network, it is possible to observe chaotic dynamics in a two-gene system without adding any self-inhibition. This finding can be explained as a result of modification of the original benchmark model induced by previously unmodeled dynamics. We argue that the inclusion of additional parameters in regulatory gene circuit models substantially enhances the likelihood of observing non-periodic dynamics.
Collapse
Affiliation(s)
- Dilan Öztürk
- Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
- Control Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Fatihcan M Atay
- Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
| | - Hitay Özbay
- Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
40
|
Ding Y, Tous C, Choi J, Chen J, Wong WW. Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells. Nat Commun 2024; 15:1572. [PMID: 38383558 PMCID: PMC10881482 DOI: 10.1038/s41467-024-45795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
RNA plays an indispensable role in mammalian cell functions. Cas13, a class of RNA-guided ribonuclease, is a flexible tool for modifying and regulating coding and non-coding RNAs, with enormous potential for creating new cell functions. However, the lack of control over Cas13 activity has limited its cell engineering capability. Here, we present the CRISTAL (Control of RNA with Inducible SpliT CAs13 Orthologs and Exogenous Ligands) platform. CRISTAL is powered by a collection (10 total) of orthogonal split inducible Cas13 effectors that can be turned ON or OFF via small molecules in multiple cell types, providing precise temporal control. Also, we engineer Cas13 logic circuits that can respond to endogenous signaling and exogenous small molecule inputs. Furthermore, the orthogonality, low leakiness, and high dynamic range of our inducible Cas13d and Cas13b enable the design and construction of a robust incoherent feedforward loop, leading to near-perfect and tunable adaptation response. Finally, using our inducible Cas13 effectors, we achieve simultaneous multiplexed control of multiple genes in vitro and in mice. Together, our CRISTAL design represents a powerful platform for precisely regulating RNA dynamics to advance cell engineering and elucidate RNA biology.
Collapse
Affiliation(s)
- Yage Ding
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA
| | - Cristina Tous
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA
| | - Jaehoon Choi
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA
| | - Jingyao Chen
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA, 2215, USA.
| |
Collapse
|
41
|
Company C, Schmitt MJ, Dramaretska Y, Serresi M, Kertalli S, Jiang B, Yin JA, Aguzzi A, Barozzi I, Gargiulo G. Logical design of synthetic cis-regulatory DNA for genetic tracing of cell identities and state changes. Nat Commun 2024; 15:897. [PMID: 38316783 PMCID: PMC10844330 DOI: 10.1038/s41467-024-45069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Descriptive data are rapidly expanding in biomedical research. Instead, functional validation methods with sufficient complexity remain underdeveloped. Transcriptional reporters allow experimental characterization and manipulation of developmental and disease cell states, but their design lacks flexibility. Here, we report logical design of synthetic cis-regulatory DNA (LSD), a computational framework leveraging phenotypic biomarkers and trans-regulatory networks as input to design reporters marking the activity of selected cellular states and pathways. LSD uses bulk or single-cell biomarkers and a reference genome or custom cis-regulatory DNA datasets with user-defined boundary regions. By benchmarking validated reporters, we integrate LSD with a computational ranking of phenotypic specificity of putative cis-regulatory DNA. Experimentally, LSD-designed reporters targeting a wide range of cell states are functional without minimal promoters. Applied to broadly expressed genes from human and mouse tissues, LSD generates functional housekeeper-like sLCRs compatible with size constraints of AAV vectors for gene therapy applications. A mesenchymal glioblastoma reporter designed by LSD outperforms previously validated ones and canonical cell surface markers. In genome-scale CRISPRa screens, LSD facilitates the discovery of known and novel bona fide cell-state drivers. Thus, LSD captures core principles of cis-regulation and is broadly applicable to studying complex cell states and mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Carlos Company
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Sonia Kertalli
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Ben Jiang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Jiang-An Yin
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany.
| |
Collapse
|
42
|
Wang X, Liang Q, Luo Y, Ye J, Yu Y, Chen F. Engineering the next generation of theranostic biomaterials with synthetic biology. Bioact Mater 2024; 32:514-529. [PMID: 38026437 PMCID: PMC10660023 DOI: 10.1016/j.bioactmat.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Biomaterials have evolved from inert materials to responsive entities, playing a crucial role in disease diagnosis, treatment, and modeling. However, their advancement is hindered by limitations in chemical and mechanical approaches. Synthetic biology enabling the genetically reprograming of biological systems offers a new paradigm. It has achieved remarkable progresses in cell reprogramming, engineering designer cells for diverse applications. Synthetic biology also encompasses cell-free systems and rational design of biological molecules. This review focuses on the application of synthetic biology in theranostics, which boost rapid development of advanced biomaterials. We introduce key fundamental concepts of synthetic biology and highlight frontier applications thereof, aiming to explore the intersection of synthetic biology and biomaterials. This integration holds tremendous promise for advancing biomaterial engineering with programable complex functions.
Collapse
Affiliation(s)
- Xiang Wang
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qianyi Liang
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yixuan Luo
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianwen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yin Yu
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fei Chen
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
43
|
Franko N, da Silva Santinha AJ, Xue S, Zhao H, Charpin-El Hamri G, Platt RJ, Teixeira AP, Fussenegger M. Integrated compact regulators of protein activity enable control of signaling pathways and genome-editing in vivo. Cell Discov 2024; 10:9. [PMID: 38263404 PMCID: PMC10805712 DOI: 10.1038/s41421-023-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024] Open
Abstract
Viral proteases and clinically safe inhibitors were employed to build integrated compact regulators of protein activity (iCROP) for post-translational regulation of functional proteins by tunable proteolytic activity. In the absence of inhibitor, the co-localized/fused protease cleaves a target peptide sequence introduced in an exposed loop of the protein of interest, irreversibly fragmenting the protein structure and destroying its functionality. We selected three proteases and demonstrated the versatility of the iCROP framework by validating it to regulate the functional activity of ten different proteins. iCROP switches can be delivered either as mRNA or DNA, and provide rapid actuation kinetics with large induction ratios, while remaining strongly suppressed in the off state without inhibitor. iCROPs for effectors of the NF-κB and NFAT signaling pathways were assembled and confirmed to enable precise activation/inhibition of downstream events in response to protease inhibitors. In lipopolysaccharide-treated mice, iCROP-sr-IκBα suppressed cytokine release ("cytokine storm") by rescuing the activity of IκBα, which suppresses NF-κB signaling. We also constructed compact inducible CRISPR-(d)Cas9 variants and showed that iCROP-Cas9-mediated knockout of the PCSK9 gene in the liver lowered blood LDL-cholesterol levels in mice. iCROP-based protein switches will facilitate protein-level regulation in basic research and translational applications.
Collapse
Affiliation(s)
- Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Haijie Zhao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard Lyon 1, Villeurbanne, Cedex, France
| | | | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
44
|
Wang Y, Ji Y, Sun L, Huang Z, Ye S, Xuan W. A Sirtuin-Dependent T7 RNA Polymerase Variant. ACS Synth Biol 2024; 13:54-60. [PMID: 38117980 DOI: 10.1021/acssynbio.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Transcriptional regulation is of great significance for cells to maintain homeostasis and, meanwhile, represents an innovative but less explored means to control biological processes in synthetic biology and bioengineering. Herein we devised a T7 RNA polymerase (T7RNAP) variant through replacing an essential lysine located in the catalytic core (K631) with Nε-acetyl-l-lysine (AcK) via genetic code expansion. This T7RNAP variant requires the deacetylase activity of NAD-dependent sirtuins to recover its enzymatic activities and thereby sustains sirtuin-dependent transcription of the gene of interest in live cells including bacteria and mammalian cells as well as in in vitro systems. This T7RNAP variant could link gene transcription to sirtuin expression and NAD availability, thus holding promise to support some relevant research.
Collapse
Affiliation(s)
- Yongan Wang
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yanli Ji
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin Sun
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhifen Huang
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Hoffman M, Cheah KMH, Wittrup KD. A Novel Gain-of-Signal Assay to Detect Targeted Protein Degradation. ACS Synth Biol 2024; 13:220-229. [PMID: 38171010 DOI: 10.1021/acssynbio.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Targeted protein degradation offers a promising avenue for expanding therapeutic development to previously inaccessible proteins of interest by regulating the target abundance rather than activity. However, current methods to screen for effective degraders serve as major bottlenecks for the development of degrader therapies. Here, we develop a novel assay platform for identification and characterization of macromolecules capable of inducing targeted degradation of oncogenic phosphatase SHP2. Unlike traditional reporter assays that utilize loss-of-signal readouts to detect degradation, our assay platform expresses a robust fluorescence signal in response to the depletion of a target protein and incorporates additional measures intended to prevent undesirable false positives. Using this gain-of-signal assay, we successfully identified novel macromolecule SHP2 degraders from a screen of 192 candidates and proposed design principles for further development of macromolecule degraders. This work demonstrates a proof of concept for gain-of-signal assays as a tool for screening targeted degrader candidates.
Collapse
Affiliation(s)
- Megan Hoffman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keith Ming Hong Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Plaper T, Merljak E, Fink T, Satler T, Ljubetič A, Lainšček D, Jazbec V, Benčina M, Stevanoska S, Džeroski S, Jerala R. Designed allosteric protein logic. Cell Discov 2024; 10:8. [PMID: 38228615 DOI: 10.1038/s41421-023-00635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
The regulation of protein function by external or internal signals is one of the key features of living organisms. The ability to directly control the function of a selected protein would represent a valuable tool for regulating biological processes. Here, we present a generally applicable regulation of proteins called INSRTR, based on inserting a peptide into a loop of a target protein that retains its function. We demonstrate the versatility and robustness of coiled-coil-mediated regulation, which enables designs for either inactivation or activation of selected protein functions, and implementation of two-input logic functions with rapid response in mammalian cells. The selection of insertion positions in tested proteins was facilitated by using a predictive machine learning model. We showcase the robustness of the INSRTR strategy on proteins with diverse folds and biological functions, including enzymes, signaling mediators, DNA binders, transcriptional regulators, reporters, and antibody domains implemented as chimeric antigen receptors in T cells. Our findings highlight the potential of INSRTR as a powerful tool for precise control of protein function, advancing our understanding of biological processes and developing biotechnological and therapeutic interventions.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Tina Fink
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Tadej Satler
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Sintija Stevanoska
- Department of knowledge technologies, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Sašo Džeroski
- Department of knowledge technologies, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
- Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Mansouri M, Fussenegger M. Posttranslational Remote Control Mediated by Physical Inducers for Rapid Protein Release in Engineered Mammalian Cells. Methods Mol Biol 2024; 2774:233-241. [PMID: 38441768 DOI: 10.1007/978-1-0716-3718-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Physical cues such as light, heat, or an electrical field can be utilized for traceless, on-demand activation of the expression of a desired therapeutic gene in appropriately engineered cells with excellent spatiotemporal resolution, good inducibility, and simple reversibility. A similar approach can be applied to build a depolarization-based protein secretion system that enables rapid release of a therapeutic protein pre-stored in intracellular vesicles in mammalian cells. Here, we present a protocol to create designer β-cells that exhibit light-controllable rapid release (within 15 min) of a pre-synthesized proinsulin-nanoluciferase construct from vesicular stores. The construct is cleaved extracellularly to afford secreted insulin as a therapeutic protein and nanoluciferase as a reporter molecule. Such posttranslational remote control offers a much faster response than expression-based systems.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
48
|
Wei K, He M, Zhang J, Zhao C, Nie C, Zhang T, Liu Y, Chen T, Jiang J, Chu X. A DNA Logic Circuit Equipped with a Biological Amplifier Loaded into Biomimetic ZIF-8 Nanoparticles Enables Accurate Identification of Specific Cancers In Vivo. Angew Chem Int Ed Engl 2023; 62:e202307025. [PMID: 37615278 DOI: 10.1002/anie.202307025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
DNA logic circuits (DLC) enable the accurate identification of specific cell types, such as cancer cells, but they face the challenges of weak output signals and a lack of competent platforms that can efficiently deliver DLC components to the target site in the living body. To address these issues, we rationally introduced a cascaded biological amplifier module based on the Primer Exchange Reaction inspired by electronic circuit amplifier devices. As a paradigm, three abnormally expressed Hela cell microRNAs (-30a, -17, and -21) were chosen as "AND" gate inputs. DLC response to these inputs was boosted by the amplifier markedly enhancing the output signal. More importantly, the encapsulation of DLC and amplifier components into ZIF-8 nanoparticles resulted in their efficient delivery to the target site, successfully distinguishing the Hela tumor subtype from other tumors in vivo. Thus, we envision that this strategy has great potential for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Kaiji Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chuan Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yi Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
49
|
Vlahos AE, Call CC, Kadaba SE, Guo S, Gao XJ. Compact Programmable Control of Protein Secretion in Mammalian Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560774. [PMID: 37873144 PMCID: PMC10592972 DOI: 10.1101/2023.10.04.560774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synthetic biology currently holds immense potential to engineer the spatiotemporal control of intercellular signals for biomedicine. Programming behaviors using protein-based circuits has advantages over traditional gene circuits such as compact delivery and direct interactions with signaling proteins. Previously, we described a generalizable platform called RELEASE to enable the control of intercellular signaling through the proteolytic removal of ER-retention motifs compatible with pre-existing protease-based circuits. However, these tools lacked the ability to reliably program complex expression profiles and required numerous proteases, limiting delivery options. Here, we harness the recruitment and antagonistic behavior of endogenous 14-3-3 proteins to create RELEASE-NOT to turn off protein secretion in response to protease activity. By combining RELEASE and RELEASE-NOT, we establish a suite of protein-level processing and output modules called Compact RELEASE (compRELEASE). This innovation enables functions such as logic processing and analog signal filtering using a single input protease. Furthermore, we demonstrate the compactness of the post-translational design by using polycistronic single transcripts to engineer cells to control protein secretion via lentiviral integration and leverage mRNA delivery to selectively express cell surface proteins only in engineered cells harboring inducible proteases. CompRELEASE enables complex control of protein secretion and enhances the potential of synthetic protein circuits for therapeutic applications, while minimizing the overall genetic payload.
Collapse
Affiliation(s)
- Alexander E. Vlahos
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Connor C. Call
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Samarth E. Kadaba
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Siqi Guo
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- The Chinese Undergraduate Visiting Research (UGVR) Program, Stanford, CA, 94305, USA
| | - Xiaojing J. Gao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
50
|
Zeng J, Zeng XX. Systems Medicine for Precise Targeting of Glioblastoma. Mol Biotechnol 2023; 65:1565-1584. [PMID: 36859639 PMCID: PMC9977103 DOI: 10.1007/s12033-023-00699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Glioblastoma (GBM) is a malignant cancer that is fatal even after standard therapy and the effects of current available therapeutics are not promising due its complex and evolving epigenetic and genetic profile. The mysteries that lead to GBM intratumoral heterogeneity and subtype transitions are not entirely clear. Systems medicine is an approach to view the patient in a whole picture integrating systems biology and synthetic biology along with computational techniques. Since the GBM oncogenesis involves genetic mutations, various therapies including gene therapeutics based on CRISPR-Cas technique, MicroRNAs, and implanted synthetic cells endowed with synthetic circuits against GBM with neural stem cells and mesenchymal stem cells acting as potential vehicles carrying therapeutics via the intranasal route, avoiding the risks of invasive methods in order to reach the GBM cells in the brain are discussed and proposed in this review. Systems medicine approach is a rather novel strategy, and since the GBM of a patient is complex and unique, thus to devise an individualized treatment strategy to tailor personalized multimodal treatments for the individual patient taking into account the phenotype of the GBM, the unique body health profile of the patient and individual responses according to the systems medicine concept might show potential to achieve optimum effects.
Collapse
Affiliation(s)
- Jie Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou, 213022 Jiangsu People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan, 528000 Guangdong People’s Republic of China
| |
Collapse
|