1
|
Sukhikh N, Golyaev V, Laboureau N, Clavijo G, Rustenholz C, Marmonier A, Chesnais Q, Ogliastro M, Drucker M, Brault V, Pooggin MM. Deep Sequencing Analysis of Virome Components, Viral Gene Expression and Antiviral RNAi Responses in Myzus persicae Aphids. Int J Mol Sci 2024; 25:13199. [PMID: 39684909 DOI: 10.3390/ijms252313199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The green peach aphid (Myzus persicae) is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family Parvoviridae), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5'- and 3'-inverted terminal repeats. These sRNAs likely represent Dicer-dependent small interfering (si)RNAs, whose double-stranded RNA precursors are produced by readthrough transcription beyond poly(A) signals of the converging leftward and rightward transcription units, mapped here with Illumina reads. Additionally, the densovirus produced 26-28 nucleotide sRNAs, comprising those enriched in 5'-terminal uridine and mostly derived from readthrough transcripts and those enriched in adenosine at position 10 from their 5'-end and mostly derived from viral mRNAs. These sRNAs likely represent PIWI-interacting RNAs generated by a ping-pong mechanism. A novel ssRNA virus, reconstructed from sRNAs and classified into the family Flaviviridae, co-persisted with the densovirus and produced 22 nucleotide siRNAs from the entire genome. Aphids fed on plants versus artificial diets exhibited distinct RNAi responses affecting densovirus transcription and flavivirus subgenomic RNA production. In aphids vectoring turnip yellows virus (family Solemoviridae), a complete virus genome was reconstituted from 21, 22 and 24 nucleotide viral siRNAs likely acquired with plant phloem sap. Collectively, deep-sequencing analysis allowed for the identification and de novo reconstruction of M. persicae virome components and uncovered RNAi mechanisms regulating viral gene expression and replication.
Collapse
Affiliation(s)
- Natalia Sukhikh
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | - Victor Golyaev
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | - Nathalie Laboureau
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | | | | | | | | | - Mylène Ogliastro
- DGIMI, INRAE, Université de Montpellier, 34095 Montpellier, France
| | - Martin Drucker
- SVQV, INRAE, Université de Strasbourg, 68000 Colmar, France
| | | | - Mikhail M Pooggin
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| |
Collapse
|
2
|
Wen Z, Hu R, Pi Q, Zhang D, Duan J, Li Z, Li Q, Zhao X, Yang M, Zhao X, Liu D, Su Z, Li D, Zhang Y. DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3295-3311. [PMID: 39166471 PMCID: PMC11606427 DOI: 10.1111/pbi.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.
Collapse
Affiliation(s)
- Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Rujian Hu
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangning Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qian Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofei Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deshui Liu
- Beijing Life Science AcademyBeijingChina
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
3
|
Wagh SG, Bhor SA, Miyao A, Hirochika H, Toriba T, Hirano HY, Kobayashi K, Yaeno T, Nishiguchi M. Synergy between virus and three kingdom pathogens, fungus, bacterium and virus is lost in rice mutant lines of OsRDR1/6. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112244. [PMID: 39244093 DOI: 10.1016/j.plantsci.2024.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Co-infection, caused by multiple pathogen attacks on an organism, can lead to disease development or immunity. This complex interaction can be synergetic, co-existing, or antagonistic, ultimately influencing disease severity. The interaction between fungus, bacterium, and virus (three kingdom pathogens) is most prevalent. However, the underlying mechanisms of co-infection need to be explored further. In this study, we investigated the co-infection phenomenon in rice plants exposed to multiple pathogen species, specifically Rice necrosis mosaic virus (RNMV) and rice blast fungus (Magnaporthe oryzae, MO), bacterial leaf blight (Xanthomonas oryzae pv. oryzae, XO) or Cucumber mosaic virus (CMV). Our research showed that RNMV interacts synergistically with MO, XO, or CMV, increasing pathogen growth and lesion size. These findings suggest positive synergy in RNMV co-infections with three kingdom pathogens, increasing accumulation and symptoms. Additionally, to investigate the role of RNAi in pathogen synergism, we analyzed rice mutant lines deficient in RNA-dependent RNA polymerase 1 (OsRDR1) or 6 (OsRDR6). Notably, we observed the loss of synergy in each mutant line, highlighting the crucial role of OsRDR1 and OsRDR6 in maintaining the positive interaction between RNMV and three kingdom pathogens. Hence, our study emphasized the role of the RNA silencing pathway in the intricate landscape of pathogen interactions; the study's outcome could be applied to understand the plant defense response to improve crop yields.
Collapse
Affiliation(s)
- Sopan Ganpatrao Wagh
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; Global Change Research Institute of the Czech Academy of Sciences, Brno 60300, Czech Republic.
| | - Sachin Ashok Bhor
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan; National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Taiyo Toriba
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi 982-0215, Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Masamichi Nishiguchi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
4
|
Silvestri A, Bansal C, Rubio-Somoza I. After silencing suppression: miRNA targets strike back. TRENDS IN PLANT SCIENCE 2024; 29:1266-1276. [PMID: 38811245 DOI: 10.1016/j.tplants.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Within the continuous tug-of-war between plants and microbes, RNA silencing stands out as a key battleground. Pathogens, in their quest to colonize host plants, have evolved a diverse arsenal of silencing suppressors as a common strategy to undermine the host's RNA silencing-based defenses. When RNA silencing malfunctions in the host, genes that are usually targeted and silenced by microRNAs (miRNAs) become active and can contribute to the reprogramming of host cells, providing an additional defense mechanism. A growing body of evidence suggests that miRNAs may act as intracellular sensors to enable a rapid response to pathogen threats. Herein we review how plant miRNA targets play a crucial role in immune responses against different pathogens.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics, 08193 Barcelona, Spain
| | - Chandni Bansal
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics, 08193 Barcelona, Spain
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08001, Spain.
| |
Collapse
|
5
|
Zhan T, Tong L, Wang L, Dong J. CRISPR-based molecule-regulatory expression platform for specific immunotherapy of cancer. Front Oncol 2024; 14:1469319. [PMID: 39507755 PMCID: PMC11537849 DOI: 10.3389/fonc.2024.1469319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Cancer is still a major challenge of human health. The abnormality of intracellular cancer-related signal pathways is an important mechanism for the occurrence of cancer. Methods We used a molecular-senor to act on the endogenous signal molecules within the cell to redirect the abnormal signal flows in the cell to treat cancer. Based on CRISPR-dCas12f procedures, we combined aptamers and ribozymes to construct riboswitches, which served as molecular switches to reprogram sgRNAs, so that CRISPR-dCas12f redirected the intracellular anti-cancer signal flows after sensing specific input signal molecules. In addition, the activated molecular sensors and the inhibitory molecular sensors were constructed by combining transcription factors (VP64) and transcription inhibitors (KRAB) to specifically activate and inhibit target genes of interest. Results Our experimental results showed that the molecular sensors that we designed and constructed specifically sensed the endogenous signal molecules and then redirect the cancer related signal networks of cancer cells. In addition, corresponding logic gates were constructed to distinguish cancer cells from normal cells and redirect anticancer signal flows to trigger specific cancer immunotherapy. Conclusion The constructed molecular sensors constructed specifically recognized the signal molecules within the cell and redirected the endogenous signal pathway to reprogram the fate of cancer cells.
Collapse
|
6
|
Tan H, Liu Y, Guo H. The biogenesis, regulation and functions of transitive siRNA in plants. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39376148 DOI: 10.3724/abbs.2024160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a sequence-specific gene silencing mechanism that modulates gene expression in eukaryotes. As core molecules of RNAi, various sRNAs are encoded in the plant genome or derived from invading RNA molecules, and their biogenesis depends on distinct genetic pathways. Transitive small interfering RNAs (siRNAs), which are sRNAs produced from double-strand RNA (dsRNA) in a process that depends on RNA-dependent RNA polymerases (RDRs), can amplify and spread silencing signals to additional transcripts, thereby enabling a phenomenon termed "transitive RNAi". Members of this class of siRNAs function in various biological processes ranging from development to stress adaptation. In Arabidopsis thaliana, two RDRs participate in the generation of transitive siRNAs, acting cooperatively with various siRNA generation-related factors, such as the RNA-induced silencing complex (RISC) and aberrant RNAs. Transitive siRNAs are produced in diverse subcellular locations and structures under the control of various mechanisms, highlighting the intricacies of their biogenesis and functions. In this review, we discuss recent advances in understanding the molecular events of transitive siRNA biogenesis and its regulation, with a particular focus on factors involved in RDR recruitment. We aim to provide a comprehensive description of the generalized mechanism governing the biogenesis of transitive siRNAs. Additionally, we present an overview of the diverse biological functions of these siRNAs and raise some pressing questions in this area for further investigation.
Collapse
Affiliation(s)
- Huijun Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuelin Liu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
7
|
Ali A, Shahbaz M, Ölmez F, Fatima N, Umar UUD, Ali MA, Akram M, Seelan JSS, Baloch FS. RNA interference: a promising biotechnological approach to combat plant pathogens, mechanism and future prospects. World J Microbiol Biotechnol 2024; 40:339. [PMID: 39358476 DOI: 10.1007/s11274-024-04143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Plant pathogens and other biological pests represent significant obstacles to crop Protection worldwide. Even though there are many effective conventional methods for controlling plant diseases, new methods that are also effective, environmentally safe, and cost-effective are required. While plant breeding has traditionally been used to manipulate the plant genome to develop resistant cultivars for controlling plant diseases, the emergence of genetic engineering has introduced a completely new approach to render plants resistant to bacteria, nematodes, fungi, and viruses. The RNA interference (RNAi) approach has recently emerged as a potentially useful tool for mitigating the inherent risks associated with the development of conventional transgenics. These risks include the use of specific transgenes, gene control sequences, or marker genes. Utilizing RNAi to silence certain genes is a promising solution to this dilemma as disease-resistant transgenic plants can be generated within a legislative structure. Recent investigations have shown that using target double stranded RNAs via an effective vector system can produce significant silencing effects. Both dsRNA-containing crop sprays and transgenic plants carrying RNAi vectors have proven effective in controlling plant diseases that threaten commercially significant crop species. This article discusses the methods and applications of the most recent RNAi technology for reducing plant diseases to ensure sustainable agricultural yields.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia
| | - Fatih Ölmez
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, 54000, Lahore, Punjab, Pakistan
| | - Ummad Ud Din Umar
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus, Bosan Road, 60800, Multan, Pakistan
| | - Md Arshad Ali
- Biotechnology Program, Faculty of Science and Natural, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, 63100, Bahawalpur, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Malaysia.
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, 33343, Yenişehir Mersin, Turkey.
| |
Collapse
|
8
|
Olmo-Uceda MJ, Ambrós S, Corrêa RL, Elena SF. Transcriptomic insights into the epigenetic modulation of turnip mosaic virus evolution in Arabidopsis thaliana. BMC Genomics 2024; 25:897. [PMID: 39350047 PMCID: PMC11441173 DOI: 10.1186/s12864-024-10798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Plant-virus interaction models propose that a virus's ability to infect a host genotype depends on the compatibility between virulence and resistance genes. Recently, we conducted an evolution experiment in which lineages of turnip mosaic virus (TuMV) were passaged in Arabidopsis thaliana genotypes carrying mutations in components of the DNA methylation and the histone demethylation epigenetic pathways. All evolved lineages increased infectivity, virulence and viral load in a host genotype-dependent manner. RESULTS To better understand the underlying reasons for these evolved relationships, we delved into the transcriptomic responses of mutant and WT plant genotypes in mock conditions and infected with either the ancestral or evolved viruses. Such a comparison allowed us to classify every gene into nine basic expression profiles. Regarding the targets of viral adaptation, our analyses allowed the identification of common viral targets as well as host genotype-specific genes and categories of biological processes. As expected, immune response-related genes were found to be altered upon infection. However, we also noticed the pervasive over-representation of other functional groups, suggesting that viral adaptation was not solely driven by the level of expression of plant resistance genes. In addition, a significant association between the presence of transposable elements within or upstream the differentially expressed genes was observed. Finally, integration of transcriptomic data into a virus-host protein-protein interaction network highlighted the most impactful interactions. CONCLUSIONS These findings shed extra light on the complex dynamics between plants and viruses, indicating that viral infectivity depends on various factors beyond just the plant's resistance genes.
Collapse
Affiliation(s)
- María J Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (I 2 SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, Valencia, 46980, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (I 2 SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, Valencia, 46980, Spain
| | - Régis L Corrêa
- Instituto de Biología Integrativa de Sistemas (I 2 SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, Valencia, 46980, Spain
- Departmento de Genética, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I 2 SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, Valencia, 46980, Spain.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| |
Collapse
|
9
|
Ros-Moner E, Jiménez-Góngora T, Villar-Martín L, Vogrinec L, González-Miguel VM, Kutnjak D, Rubio-Somoza I. Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha. Nat Commun 2024; 15:8326. [PMID: 39333479 PMCID: PMC11436993 DOI: 10.1038/s41467-024-52610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
After plants transitioned from water to land around 450 million years ago, they faced novel pathogenic microbes. Their colonization of diverse habitats was driven by anatomical innovations like roots, stomata, and vascular tissue, which became central to plant-microbe interactions. However, the impact of these innovations on plant immunity and pathogen infection strategies remains poorly understood. Here, we explore plant-virus interactions in the bryophyte Marchantia polymorpha to gain insights into the evolution of these relationships. Virome analysis reveals that Marchantia is predominantly associated with RNA viruses. Comparative studies with tobacco mosaic virus (TMV) show that Marchantia shares core defense responses with vascular plants but also exhibits unique features, such as a sustained wound response preventing viral spread. Additionally, general defense responses in Marchantia are equivalent to those restricted to vascular tissues in Nicotiana, suggesting that evolutionary acquisition of developmental innovations results in re-routing of defense responses in vascular plants.
Collapse
Affiliation(s)
- Eric Ros-Moner
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Tamara Jiménez-Góngora
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Luis Villar-Martín
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Lana Vogrinec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Víctor M González-Miguel
- Data Analysis area, Bioinformatics Core Unit, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
10
|
Ramadan A, Oka K, Miura K. Silencing of RDR1 and RDR6 genes by a single RNAi enhances lettuce's capacity to express recombinant proteins in transient assays. PLANT CELL REPORTS 2024; 43:237. [PMID: 39313743 DOI: 10.1007/s00299-024-03324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
KEY MESSAGE Enhanced recombinant protein expression was achieved in Salinas lettuce and commercial lettuce by designing a unique RNAi that knockdown the gene-silencing mechanism in transient assays. Improved yields of recombinant proteins (RP) are necessary for protein-production efficiency and ease of purification. Achieving high yield in non-tobacco plants will enable diverse plants to be used as hosts in transient protein-expression systems. With improved protein yield, lettuce (Lactuca sativa) could take the lead as a plant host for RP production. Therefore, this study aimed to improve RP production in lettuce var. Salinas by designing a single RNA interference (RNAi) construct targeting LsRDR1 and LsRDR6 using the Tsukuba system vector. Two RNAi constructs, RNAi-1 and RNAi-2, targeting common regions of LsRDR1 and LsRDR6 with 75% and 76% similarity, respectively, were employed to evaluate simultaneous gene silencing. Quantitative transcription analysis demonstrated that both RNAi constructs effectively knocked down LsRDR6 and LsRDR1, but not LsRDR2, at both 3 and 5 days post-infiltration (dpi), with RNAi-1 exhibited slightly higher efficiency. Based on the protein yield, co-expression of RNAi-1 with enhanced green fluorescent protein (EGFP) increased EGFP expression by approximately 4.9-fold and 3.7-fold at 3 dpi and 5 dpi, respectively, compared to control. A similar but slightly lower increase (2.4-fold and 2.33-fold) was observed in commercial lettuce at 3 and 5 dpi, respectively. To confirm these results, co-infiltration with Bet v 1, a major allergen from birch pollen, resulted in a 2.5-fold increase in expression in Salinas lettuce at 5 dpi. This study marks a significant advancement in enhancing transient protein production in lettuce, elevating its potential as a host for recombinant protein production.
Collapse
Affiliation(s)
- Abdelaziz Ramadan
- Graduate School of Life and Earth Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kaho Oka
- Graduate School of Life and Earth Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Earth Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan.
- Gene Research Center, University of Tsukuba, Tsukuba, Japan, 1-1-1 Tennoudai, Ibaraki, 305-8572.
| |
Collapse
|
11
|
Zhu Q, Ahmad A, Shi C, Tang Q, Liu C, Ouyang B, Deng Y, Li F, Cao X. Protein arginine methyltransferase 6 mediates antiviral immunity in plants. Cell Host Microbe 2024; 32:1566-1578.e5. [PMID: 39106871 DOI: 10.1016/j.chom.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024]
Abstract
Viral suppressor RNA silencing (VSR) is essential for successful infection. Nucleotide-binding and leucine-rich repeat (NLR)-based and autophagy-mediated immune responses have been reported to target VSR as counter-defense strategies. Here, we report a protein arginine methyltransferase 6 (PRMT6)-mediated defense mechanism targeting VSR. The knockout and overexpression of PRMT6 in tomato plants lead to enhanced and reduced disease symptoms, respectively, during tomato bush stunt virus (TBSV) infection. PRMT6 interacts with and inhibits the VSR function of TBSV P19 by methylating its key arginine residues R43 and R115, thereby reducing its dimerization and small RNA-binding activities. Analysis of the natural tomato population reveals that two major alleles associated with high and low levels of PRMT6 expression are significantly associated with high and low levels of viral resistance, respectively. Our study establishes PRMT6-mediated arginine methylation of VSR as a mechanism of plant immunity against viruses.
Collapse
Affiliation(s)
- Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ayaz Ahmad
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyan Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Zhang D, Jue D, Smith N, Zhong C, Finnegan EJ, de Feyter R, Wang MB, Greaves I. Asymmetric bulges within hairpin RNA transgenes influence small RNA size, secondary siRNA production and viral defence. Nucleic Acids Res 2024; 52:9904-9916. [PMID: 38967001 PMCID: PMC11381321 DOI: 10.1093/nar/gkae573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Small RNAs (sRNAs) are essential for normal plant development and range in size classes of 21-24 nucleotides. The 22nt small interfering RNAs (siRNAs) and miRNAs are processed by Dicer-like 2 (DCL2) and DCL1 respectively and can initiate secondary siRNA production from the target transcript. 22nt siRNAs are under-represented due to competition between DCL2 and DCL4, while only a small number of 22nt miRNAs exist. Here we produce abundant 22nt siRNAs and other siRNA size classes using long hairpin RNA (hpRNA) transgenes. By introducing asymmetric bulges into the antisense strand of hpRNA, we shifted the dominant siRNA size class from 21nt of the traditional hpRNA to 22, 23 and 24nt of the asymmetric hpRNAs. The asymmetric hpRNAs effectively silenced a β-glucuronidase (GUS) reporter transgene and the endogenous ethylene insensitive-2 (EIN2) and chalcone synthase (CHS) genes. Furthermore, plants containing the asymmetric hpRNA transgenes showed increased amounts of 21nt siRNAs downstream of the hpRNA target site compared to plants with the traditional hpRNA transgenes. This indicates that these asymmetric hpRNAs are more effective at inducing secondary siRNA production to amplify silencing signals. The 22nt asymmetric hpRNA constructs enhanced virus resistance in plants compared to the traditional hpRNA constructs.
Collapse
Affiliation(s)
- Daai Zhang
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Dengwei Jue
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Neil Smith
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Chengcheng Zhong
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - E Jean Finnegan
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Robert de Feyter
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Ming-Bo Wang
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Ian Greaves
- Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia
| |
Collapse
|
13
|
Pouclet A, Pflieger D, Merret R, Carpentier MC, Schiaffini M, Zuber H, Gagliardi D, Garcia D. Multi-transcriptomics identifies targets of the endoribonuclease DNE1 and highlights its coordination with decapping. THE PLANT CELL 2024; 36:3674-3688. [PMID: 38869231 PMCID: PMC11371186 DOI: 10.1093/plcell/koae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Decapping is a crucial step in mRNA degradation in eucaryotes and requires the formation of a holoenzyme complex between the decapping enzyme DECAPPING 2 (DCP2) and the decapping enhancer DCP1. In Arabidopsis (Arabidopsis thaliana), DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a direct protein partner of DCP1. The function of both DNE1 and decapping is necessary to maintain phyllotaxis, the regularity of organ emergence in the apex. In this study, we combined in vivo mRNA editing, RNA degradome sequencing, transcriptomics, and small RNA-omics to identify targets of DNE1 and study how DNE1 and DCP2 cooperate in controlling mRNA fate. Our data reveal that DNE1 mainly contacts and cleaves mRNAs in the coding sequence and has sequence cleavage preferences. DNE1 targets are also degraded through decapping, and both RNA degradation pathways influence the production of mRNA-derived small interfering RNAs. Finally, we detected mRNA features enriched in DNE1 targets including RNA G-quadruplexes and translated upstream open reading frames. Combining these four complementary high-throughput sequencing strategies greatly expands the range of DNE1 targets and allowed us to build a conceptual framework describing the influence of DNE1 and decapping on mRNA fate. These data will be crucial to unveil the specificity of DNE1 action and understand its importance for developmental patterning.
Collapse
Affiliation(s)
- Aude Pouclet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Rémy Merret
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096, 66000 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096, 66000 Perpignan, France
| | - Marlene Schiaffini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
14
|
Choi J, Browning S, Schmitt-Keichinger C, Fuchs M. Mutations in the WG and GW motifs of the three RNA silencing suppressors of grapevine fanleaf virus alter their systemic suppression ability and affect virus infectivity. Front Microbiol 2024; 15:1451285. [PMID: 39188317 PMCID: PMC11345138 DOI: 10.3389/fmicb.2024.1451285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine (Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1BHel, as well as their fused form (1ABHel). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1BHel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta, and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1ABHel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1ABHel. This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2, NbDCL4,, and NbRDR6 expression by 1BHel. This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta. Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
Collapse
Affiliation(s)
- Jiyeong Choi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| | - Scottie Browning
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| | - Corinne Schmitt-Keichinger
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, France
- INRAE, SVQV UMR 1131, Université de Strasbourg, Colmar, France
| | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY, United States
| |
Collapse
|
15
|
Kumar R, Chanda B, Adkins S, Kousik CS. Comparative transcriptome analysis of resistant and susceptible watermelon genotypes reveals the role of RNAi, callose, proteinase, and cell wall in squash vein yellowing virus resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1426647. [PMID: 39157511 PMCID: PMC11327015 DOI: 10.3389/fpls.2024.1426647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Watermelon (Citrullus lanatus) is the third largest fruit crop in the world in term of production. However, it is susceptible to several viruses. Watermelon vine decline (WVD), caused by whitefly-transmitted squash vein yellowing virus (SqVYV), is a disease that has caused over $60 million in losses in the US and continues to occur regularly in southeastern states. Understanding the molecular mechanisms underlying resistance to SqVYV is important for effective disease management. A time-course transcriptomic analysis was conducted on resistant (392291-VDR) and susceptible (Crimson Sweet) watermelon genotypes inoculated with SqVYV. Significantly higher levels of SqVYV were observed over time in the susceptible compared to the resistant genotype. The plasmodesmata callose binding protein (PDCB) gene, which is responsible for increased callose deposition in the plasmodesmata, was more highly expressed in the resistant genotype than in the susceptible genotype before and after inoculation, suggesting the inhibition of cell-to-cell movement of SqVYV. The potential role of the RNA interference (RNAi) pathway was observed in the resistant genotype based on differential expression of eukaryotic initiation factor (eIF), translin, DICER, ribosome inactivating proteins, RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) genes after inoculation. The significant differential expression of hormone-related genes, including those involved in the ethylene, jasmonic acid, auxin, cytokinin, gibberellin, and salicylic acid signaling pathways, was observed, emphasizing their regulatory roles in the defense response. Genes regulating pectin metabolism, cellulose synthesis, cell growth and development, xenobiotic metabolism, and lignin biosynthesis were overexpressed in the susceptible genotype, suggesting that alterations in cell wall integrity and growth processes result in disease symptom development. These findings will be helpful for further functional studies and the development of SqVYV-resistant watermelon cultivars.
Collapse
Affiliation(s)
- Rahul Kumar
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
- ORISE participant, USVL, USDA-ARS, Charleston, SC, United States
| | - Bidisha Chanda
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
| | - Scott Adkins
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| | - Chandrasekar S. Kousik
- Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory (USVL), United States Department of Agriculture, Charleston, SC, United States
| |
Collapse
|
16
|
Cao C, Hu B, Li H, Wei Z, Li L, Zhang H, Chen J, Sun Z, Xu Z, Li Y. Metatranscriptome and small RNA sequencing revealed a mixed infection of newly identified bymovirus and bean yellow mosaic virus on peas. Virology 2024; 596:110116. [PMID: 38788336 DOI: 10.1016/j.virol.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Peas (Pisum sativum L.) are widely cultivated in temperate regions and are susceptible hosts for various viruses across different families. The discovery and identification of new viruses in peas has significant implications for field disease management. Here, we identified a mixed infection of two viruses from field-collected peas exhibiting virus-like symptoms using metatranscriptome and small RNA sequencing techniques. Upon identification, one of the viruses was determined to be a newly isolated and discovered bymovirus from peas, named "pea bymovirus 1 (PBV1)". The other was identified as a novel variant of bean yellow mosaic virus (BYMV-HZ1). Subsequently, mechanical inoculation and RT-PCR assays confirmed that both viruses could be inoculated back onto peas and tobaccos, showing mixed infection by PBV1 and BYMV-HZ1. To our knowledge, this is the first isolation of a bymovirus from pea and the first documented case of mixed infection of peas by PBV1 and BYMV-HZ1 in China.
Collapse
Affiliation(s)
- Chen Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Huajuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongtian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Qi J, Li Y, Yao X, Li G, Xu W, Chen L, Xie Z, Gu J, Wu H, Li Z. Rational design of ROS scavenging and fluorescent gold nanoparticles to deliver siRNA to improve plant resistance to Pseudomonas syringae. J Nanobiotechnology 2024; 22:446. [PMID: 39075467 PMCID: PMC11285324 DOI: 10.1186/s12951-024-02733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Bacterial diseases are one of the most common issues that result in crop loss worldwide, and the increasing usage of chemical pesticides has caused the occurrence of resistance in pathogenic bacteria and environmental pollution problems. Nanomaterial mediated gene silencing is starting to display powerful efficiency and environmental friendliness for improving plant disease resistance. However, the internalization of nanomaterials and the physiological mechanisms behind nano-improved plant disease resistance are still rarely understood. We engineered the polyethyleneimine (PEI) functionalized gold nanoparticles (PEI-AuNPs) with fluorescent properties and ROS scavenging activity to act as siRNA delivery platforms. Besides the loading, protection, and delivery of nucleic acid molecules in plant mature leaf cells by PEI-AuNPs, its fluorescent property further enables the traceability of the distribution of the loaded nucleic acid molecules in cells. Additionally, the PEI-AuNPs-based RNAi delivery system successfully mediated the silencing of defense-regulated gene AtWRKY1. Compared to control plants, the silenced plants performed better resistance to Pseudomonas syringae, showing a reduced bacterial number, decreased ROS content, increased antioxidant enzyme activities, and improved chlorophyll fluorescence performance. Our results showed the advantages of AuNP-based RNAi technology in improving plant disease resistance, as well as the potential of plant nanobiotechnology to protect agricultural production.
Collapse
Affiliation(s)
- Jie Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yanhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xue Yao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guangjing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenying Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Lingling Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhouli Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiangjiang Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 511464, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 511464, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 511464, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 511464, China.
| | - Zhaohu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
18
|
Lozano-Durán R. Viral Recognition and Evasion in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:655-677. [PMID: 39038248 DOI: 10.1146/annurev-arplant-060223-030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Center for Molecular Plant Biology (ZMBP), Eberhard-Karls University Tübingen, Tübingen, Germany;
| |
Collapse
|
19
|
Carr JP. Engineered Resistance to Tobamoviruses. Viruses 2024; 16:1007. [PMID: 39066170 PMCID: PMC11281658 DOI: 10.3390/v16071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.
Collapse
Affiliation(s)
- John Peter Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
20
|
Ludman M, Anita S, Fátyol K. Deficiency of multiple RNA silencing-associated genes may contribute to the increased susceptibility of Nicotiana benthamiana to viruses. PLANT CELL REPORTS 2024; 43:177. [PMID: 38898307 PMCID: PMC11186921 DOI: 10.1007/s00299-024-03262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
KEY MESSAGE Recently published high-quality reference genome assemblies indicate that, in addition to RDR1-deficiency, the loss of several key RNA silencing-associated genes may contribute to the hypersusceptibility of Nicotiana benthamiana to viruses.
Collapse
Affiliation(s)
- Márta Ludman
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A0020U 4, Gödöllő, 2100, Hungary
| | - Schamberger Anita
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A0020U 4, Gödöllő, 2100, Hungary
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary
| | - Károly Fátyol
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A0020U 4, Gödöllő, 2100, Hungary.
| |
Collapse
|
21
|
Hayashi S, Souvan JM, Bally J, de Felippes FF, Waterhouse PM. Exploring the source of TYLCV resistance in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1404160. [PMID: 38863537 PMCID: PMC11165019 DOI: 10.3389/fpls.2024.1404160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Tomato Yellow Leaf Curl Virus (TYLCV) is one of the most devastating pathogens of tomato, worldwide. It is vectored by the globally prevalent whitefly, Bemisia tabaci, and is asymptomatic in a wide range of plant species that act as a virus reservoir. The most successful crop protection for tomato in the field has been from resistance genes, of which five loci have been introgressed fromwild relatives. Of these, the Ty-1/Ty-3 locus, which encodes an RNA-dependent RNA polymerase 3 (RDR3), has been the most effective. Nevertheless, several TYLCV strains that break this resistance are beginning to emerge, increasing the need for new sources of resistance. Here we use segregation analysis and CRISPR-mediated gene dysfunctionalisation to dissect the differential response of two isolates of Nicotiana benthamiana to TYLCV infection. Our study indicates the presence of a novel non-RDR3, but yet to be identified, TYLCV resistance gene in a wild accession of N. benthamiana. This gene has the potential to be incorporated into tomatoes.
Collapse
Affiliation(s)
- Satomi Hayashi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacqueline M. Souvan
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julia Bally
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Felipe F. de Felippes
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Ali S, Tyagi A, Mir ZA. Plant Immunity: At the Crossroads of Pathogen Perception and Defense Response. PLANTS (BASEL, SWITZERLAND) 2024; 13:1434. [PMID: 38891243 PMCID: PMC11174815 DOI: 10.3390/plants13111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Plants are challenged by different microbial pathogens that affect their growth and productivity. However, to defend pathogen attack, plants use diverse immune responses, such as pattern-triggered immunity (PTI), effector-triggered immunity (ETI), RNA silencing and autophagy, which are intricate and regulated by diverse signaling cascades. Pattern-recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat (NLR) receptors are the hallmarks of plant innate immunity because they can detect pathogen or related immunogenic signals and trigger series of immune signaling cascades at different cellular compartments. In plants, most commonly, PRRs are receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that function as a first layer of inducible defense. In this review, we provide an update on how plants sense pathogens, microbe-associated molecular patterns (PAMPs or MAMPs), and effectors as a danger signals and activate different immune responses like PTI and ETI. Further, we discuss the role RNA silencing, autophagy, and systemic acquired resistance as a versatile host defense response against pathogens. We also discuss early biochemical signaling events such as calcium (Ca2+), reactive oxygen species (ROS), and hormones that trigger the activation of different plant immune responses. This review also highlights the impact of climate-driven environmental factors on host-pathogen interactions.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB R2M 0TB, Canada;
| |
Collapse
|
23
|
Chen X, Jiang Y, Wang C, Yue L, Li X, Cao X, White JC, Wang Z, Xing B. Selenium Nanomaterials Enhance Sheath Blight Resistance and Nutritional Quality of Rice: Mechanisms of Action and Human Health Benefit. ACS NANO 2024; 18:13084-13097. [PMID: 38727520 DOI: 10.1021/acsnano.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In the current work, the foliar application of selenium nanomaterials (Se0 NMs) suppressed sheath blight in rice (Oryza sativa). The beneficial effects were nanoscale specific and concentration dependent. Specifically, foliar amendment of 5 mg/L Se0 NMs decreased the disease severity by 68.8% in Rhizoctonia solani-infected rice; this level of control was 1.57- and 2.20-fold greater than that of the Se ions with equivalent Se mass and a commercially available pesticide (Thifluzamide). Mechanistically, (1) the controlled release ability of Se0 NMs enabled a wider safe concentration range and greater bioavailability to Se0 NMs, and (2) transcriptomic and metabolomic analyses demonstrated that Se0 NMs simultaneously promoted the salicylic acid- and jasmonic-acid-dependent acquired disease resistance pathways, antioxidative system, and flavonoid biosynthesis. Additionally, Se0 NMs improved rice yield by 31.1%, increased the nutritional quality by 6.4-7.2%, enhanced organic Se content by 44.8%, and decreased arsenic and cadmium contents by 38.7 and 42.1%, respectively, in grains as compared with infected controls. Human simulated gastrointestinal tract model results showed that the application of Se0 NMs enhanced the bioaccessibility of Se in grains by 22.0% and decreased the bioaccessibility of As and Cd in grains by 20.3 and 13.4%, respectively. These findings demonstrate that Se0 NMs can serve as an effective and sustainable strategy to increase food quality and security.
Collapse
Affiliation(s)
- Xiaofei Chen
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Jiang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven Connecticut 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Ledford WC, Silvestri A, Fiorilli V, Roth R, Rubio-Somoza I, Lanfranco L. A journey into the world of small RNAs in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2024; 242:1534-1544. [PMID: 37985403 DOI: 10.1111/nph.19394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is a mutualistic interaction between fungi and most land plants that is underpinned by a bidirectional exchange of nutrients. AM development is a tightly regulated process that encompasses molecular communication for reciprocal recognition, fungal accommodation in root tissues and activation of symbiotic function. As such, a complex network of transcriptional regulation and molecular signaling underlies the cellular and metabolic reprogramming of host cells upon AM fungal colonization. In addition to transcription factors, small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that orchestrates AM development. In addition to controlling cell-autonomous processes, plant sRNAs also function as mobile signals capable of moving to different organs and even to different plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their function in the AM symbiosis remains largely unknown. Here, we discuss the contribution of host sRNAs in the development of AM symbiosis by considering their role in the transcriptional reprogramming of AM fungal colonized cells. We also describe the characteristics of AM fungal-derived sRNAs and emerging evidence for the bidirectional transfer of functional sRNAs between the two partners to mutually modulate gene expression and control the symbiosis.
Collapse
Affiliation(s)
- William Conrad Ledford
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Alessandro Silvestri
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| | - Ronelle Roth
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08001, Spain
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10125, Italy
| |
Collapse
|
26
|
Chen G, Han Q, Li WX, Hai R, Ding SW. Live-attenuated virus vaccine defective in RNAi suppression induces rapid protection in neonatal and adult mice lacking mature B and T cells. Proc Natl Acad Sci U S A 2024; 121:e2321170121. [PMID: 38630724 PMCID: PMC11046691 DOI: 10.1073/pnas.2321170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Global control of infectious diseases depends on the continuous development and deployment of diverse vaccination strategies. Currently available live-attenuated and killed virus vaccines typically take a week or longer to activate specific protection by the adaptive immunity. The mosquito-transmitted Nodamura virus (NoV) is attenuated in mice by mutations that prevent expression of the B2 viral suppressor of RNA interference (VSR) and consequently, drastically enhance in vivo production of the virus-targeting small-interfering RNAs. We reported recently that 2 d after immunization with live-attenuated VSR-disabled NoV (NoVΔB2), neonatal mice become fully protected against lethal NoV challenge and develop no detectable infection. Using Rag1-/- mice that produce no mature B and T lymphocytes as a model, here we examined the hypothesis that adaptive immunity is dispensable for the RNAi-based protective immunity activated by NoVΔB2 immunization. We show that immunization of both neonatal and adult Rag1-/- mice with live but not killed NoVΔB2 induces full protection against NoV challenge at 2 or 14 d postimmunization. Moreover, NoVΔB2-induced protective antiviral immunity is virus-specific and remains effective in adult Rag1-/- mice 42 and 90 d after a single-shot immunization. We conclude that immunization with the live-attenuated VSR-disabled RNA virus vaccine activates rapid and long-lasting protective immunity against lethal challenges by a distinct mechanism independent of the adaptive immunity mediated by B and T cells. Future studies are warranted to determine whether additional animal and human viruses attenuated by VSR inactivation induce similar protective immunity in healthy and adaptive immunity-compromised individuals.
Collapse
Affiliation(s)
- Gang Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA92521
| |
Collapse
|
27
|
Quevarec L, Brasseur G, Aragnol D, Robaglia C. Tracking the early events of photosymbiosis evolution. TRENDS IN PLANT SCIENCE 2024; 29:406-412. [PMID: 38016867 DOI: 10.1016/j.tplants.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Oxygenic photosynthesis evolved in cyanobacteria around 3.2 giga-annum (Ga) ago and was acquired by eukaryotes starting around 1.8 Ga ago by endosymbiosis. Photosymbiosis results either from integration of a photosynthetic bacteria by heterotrophic eukaryotes (primary photosymbiosis) or by successive integration of photosymbiotic eukaryotes by heterotrophic eukaryotes (secondary photosymbiosis). Primary endosymbiosis is thought to have been a rare event, whereas secondary and higher-order photosymbiosis evolved multiple times independently in different taxa. Despite its recurrent evolution, the molecular and cellular mechanisms underlying photosymbiosis are unknown. In this opinion, we discuss the primary events leading to the establishment of photosymbiosis, and we present recent research suggesting that, in some cases, domestication occurred instead of symbiosis, and how oxygen and host immunity can be involved in symbiont maintenance.
Collapse
Affiliation(s)
- Loïc Quevarec
- Aix Marseille Université, CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, 13009 Marseille, France; Laboratoire de Chimie Bactérienne, IMM, CNRS, Aix-Marseille Université, 13402 Marseille, France
| | - Gaël Brasseur
- Laboratoire de Chimie Bactérienne, IMM, CNRS, Aix-Marseille Université, 13402 Marseille, France
| | - Denise Aragnol
- Aix Marseille Université, CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, 13009 Marseille, France
| | - Christophe Robaglia
- Aix Marseille Université, CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, 13009 Marseille, France.
| |
Collapse
|
28
|
Wang H, Yu R, Zhu Q, Tian Z, Li F. A highly sensitive biotin-based probe for small RNA northern blot and its application in dissecting miRNA function in pepper. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:263-276. [PMID: 38078656 DOI: 10.1111/tpj.16585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 04/02/2024]
Abstract
Small RNAs play important roles in regulation of plant development and response to various stresses. Northern blot is an important technique in small RNA research. Isotope- and biotin- (or digoxigenin) labeled probes are frequently used in small RNA northern blot. However, isotope-based probe is limited by strict environmental regulation and availability in many places in the world while biotin-based probe is usually suffered from low sensitivity. In this study, we developed a T4 DNA polymerase-based method for incorporation of a cluster of 33 biotin-labeled C in small RNA probe (T4BC33 probe). T4BC33 probe reaches similar sensitivity as 32P-labeled probe in dot blot and small RNA northern blot experiments. Addition of locked nucleic acids in T4BC33 probe further enhanced its sensitivity in detecting low-abundance miRNAs. With newly developed northern blot method, expression of miR6027 and miR6149 family members was validated. Northern blot analysis also confirmed the successful application of virus-based miRNA silencing in pepper, knocking down accumulation of Can-miR6027a and Can-miR6149L. Importantly, further analysis showed that knocking-down Can-miR6027a led to upregulation of a nucleotide binding-leucine rich repeat domain protein coding gene (CaRLb1) and increased immunity against Phytophthora capsici in pepper leaves. Our study provided a highly sensitive and convenient method for sRNA research and identified new targets for genetic improvement of pepper immunity against P. capsici.
Collapse
Affiliation(s)
- Hongzheng Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruimin Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiangqiang Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| |
Collapse
|
29
|
Barre-Villeneuve C, Laudié M, Carpentier MC, Kuhn L, Lagrange T, Azevedo-Favory J. The unique dual targeting of AGO1 by two types of PRMT enzymes promotes phasiRNA loading in Arabidopsis thaliana. Nucleic Acids Res 2024; 52:2480-2497. [PMID: 38321923 PMCID: PMC10954461 DOI: 10.1093/nar/gkae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Arginine/R methylation (R-met) of proteins is a widespread post-translational modification (PTM), deposited by a family of protein arginine/R methyl transferase enzymes (PRMT). Regulations by R-met are involved in key biological processes deeply studied in metazoan. Among those, post-transcriptional gene silencing (PTGS) can be regulated by R-met in animals and in plants. It mainly contributes to safeguard processes as protection of genome integrity in germlines through the regulation of piRNA pathway in metazoan, or response to bacterial infection through the control of AGO2 in plants. So far, only PRMT5 has been identified as the AGO/PIWI R-met writer in higher eukaryotes. We uncovered that AGO1, the main PTGS effector regulating plant development, contains unique R-met features among the AGO/PIWI superfamily, and outstanding in eukaryotes. Indeed, AGO1 contains both symmetric (sDMA) and asymmetric (aDMA) R-dimethylations and is dually targeted by PRMT5 and by another type I PRMT in Arabidopsis thaliana. We showed also that loss of sDMA didn't compromise AtAGO1 subcellular trafficking in planta. Interestingly, we underscored that AtPRMT5 specifically promotes the loading of phasiRNA in AtAGO1. All our observations bring to consider this dual regulation of AtAGO1 in plant development and response to environment, and pinpoint the complexity of AGO1 post-translational regulation.
Collapse
Affiliation(s)
- Clément Barre-Villeneuve
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michèle Laudié
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Marie-Christine Carpentier
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg – Esplanade, CNRS FR1589, Université de Strasbourg, IBMC, 2 allée Konrad Roentgen, F-67084 Strasbourg, France
- Fédération de Recherche CNRS FR1589, France
| | - Thierry Lagrange
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Jacinthe Azevedo-Favory
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
30
|
Wang J, Zhang Q, Tung J, Zhang X, Liu D, Deng Y, Tian Z, Chen H, Wang T, Yin W, Li B, Lai Z, Dinesh-Kumar SP, Baker B, Li F. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. MOLECULAR PLANT 2024; 17:423-437. [PMID: 38273657 DOI: 10.1016/j.molp.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research. However, genomic studies of these species have lagged. Here we report the chromosome-level reference genome assemblies for N. benthamiana and N. tabacum with an estimated 99.5% and 99.8% completeness, respectively. Sensitive transcription start and termination site sequencing methods were developed and used for accurate gene annotation in N. tabacum. Comparative analyses revealed evidence for the parental origins and chromosome structural changes, leading to hybrid genome formation of each species. Interestingly, the antiviral silencing genes RDR1, RDR6, DCL2, DCL3, and AGO2 were lost from one or both subgenomes in N. benthamiana, while both homeologs were kept in N. tabacum. Furthermore, the N. benthamiana genome encodes fewer immune receptors and signaling components than that of N. tabacum. These findings uncover possible reasons underlying the hypersusceptible nature of N. benthamiana. We developed the user-friendly Nicomics (http://lifenglab.hzau.edu.cn/Nicomics/) web server to facilitate better use of Nicotiana genomic resources as well as gene structure and expression analyses.
Collapse
Affiliation(s)
- Jubin Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330299, China
| | - Qingling Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jeffrey Tung
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94706, USA
| | - Xi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dan Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weixiao Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Zhibing Lai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Barbara Baker
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94706, USA.
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
31
|
Fang R. Microbe-induced gene silencing explores interspecies RNAi and opens up possibilities of crop protection. SCIENCE CHINA. LIFE SCIENCES 2024; 67:626-628. [PMID: 38155277 DOI: 10.1007/s11427-023-2477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/01/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Zhang Y, Tian X, Xu H, Zhan B, Zhou C, Li S, Zhang Z. Knockout of SlDCL2b attenuates the resistance of tomato to potato spindle tuber viroid infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13441. [PMID: 38462774 PMCID: PMC10925824 DOI: 10.1111/mpp.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
RNA interference, or RNA silencing, is an important defence mechanism against viroid infection in plants. Plants encode multiple DICER-LIKE (DCL) proteins that are key components of the RNA silencing pathway. However, the roles of different DCLs in defence responses against viroid infection remain unclear. Here, we determined the function of tomato DCL2b (SlDCL2b) in defence responses against potato spindle tuber viroid (PSTVd) infection using SlDCL2b loss-of-function tomato mutant plants. Compared with wild-type plants, mutant plants were more susceptible to PSTVd infection, developing more severe symptoms earlier and accumulating higher levels of PSTVd RNAs. Moreover, we verified the feedback mechanism for the regulation of SlDCL2b expression by miR6026. Functional blocking of tomato miR6026, by expressing its target mimics, can enhance resistance to PSTVd infection in tomato plants. These findings deepen the current understanding of RNAi-based resistance against viroid infection and provide a potentially new strategy for viroid control.
Collapse
Affiliation(s)
- Yuhong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiaxia Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- Citrus Research InstituteSouthwest UniversityChongqingChina
| | - Huiyuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Changyong Zhou
- Citrus Research InstituteSouthwest UniversityChongqingChina
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
33
|
Hoffmann G, Incarbone M. A resilient bunch: stem cell antiviral immunity in plants. THE NEW PHYTOLOGIST 2024; 241:1415-1420. [PMID: 38058221 DOI: 10.1111/nph.19456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Stem cells are vital for plant development and reproduction. The stem cells within shoot apical meristems are known to possess exceptionally effective antiviral defenses against pathogenic viruses which preclude their infection, yet how this is achieved remains poorly understood and scarcely investigated. In this Tansley Insight, we connect very recent experimental results with previous work to summarize the known molecular mechanisms determining stem cell antiviral immunity. More broadly, we attempt to define the viral features triggering immunity and the global consequences of virus infection in these essential cells. This brief article will highlight how these phenomena are fascinating, complex and often crucial for virus-host interactions, while emphasizing the potential for discovery in their investigation.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| | - Marco Incarbone
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| |
Collapse
|
34
|
Olmo R, Quijada NM, Morán-Diez ME, Hermosa R, Monte E. Identification of Tomato microRNAs in Late Response to Trichoderma atroviride. Int J Mol Sci 2024; 25:1617. [PMID: 38338899 PMCID: PMC10855890 DOI: 10.3390/ijms25031617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The tomato (Solanum lycopersicum) is an important crop worldwide and is considered a model plant to study stress responses. Small RNAs (sRNAs), 21-24 nucleotides in length, are recognized as a conserved mechanism for regulating gene expression in eukaryotes. Plant endogenous sRNAs, such as microRNA (miRNA), have been involved in disease resistance. High-throughput RNA sequencing was used to analyze the miRNA profile of the aerial part of 30-day-old tomato plants after the application of the fungus Trichoderma atroviride to the seeds at the transcriptional memory state. Compared to control plants, ten differentially expressed (DE) miRNAs were identified in those inoculated with Trichoderma, five upregulated and five downregulated, of which seven were known (miR166a, miR398-3p, miR408, miR5300, miR6024, miR6027-5p, and miR9471b-3p), and three were putatively novel (novel miR257, novel miR275, and novel miR1767). miRNA expression levels were assessed using real-time quantitative PCR analysis. A plant sRNA target analysis of the DE miRNAs predicted 945 potential target genes, most of them being downregulated (84%). The analysis of KEGG metabolic pathways showed that most of the targets harbored functions associated with plant-pathogen interaction, membrane trafficking, and protein kinases. Expression changes of tomato miRNAs caused by Trichoderma are linked to plant defense responses and appear to have long-lasting effects.
Collapse
Affiliation(s)
| | | | | | | | - Enrique Monte
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37185 Villamayor, Salamanca, Spain; (R.O.); (N.M.Q.); (M.E.M.-D.); (R.H.)
| |
Collapse
|
35
|
Ye X, Ding D, Chen Y, Liu C, Li Z, Lou B, Zhou Y. Identification of RNA silencing suppressor encoded by citrus chlorotic dwarf-associated virus. Front Microbiol 2024; 15:1328289. [PMID: 38333582 PMCID: PMC10850569 DOI: 10.3389/fmicb.2024.1328289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction Citrus chlorotic dwarf-associated virus (CCDaV) is an economically important citrus virus associated with leaf curling, deformation, and chlorosis found in China. Plants have evolved RNA silencing to defend against viral infections; however, the mechanism by which CCDaV suppresses RNA silencing in citrus remains unknown. Methods Six proteins encoded by CCDaV were ectopically expressed in Nicotiana benthamiana 16c using the pCHF3 vector to identify RNA-silencing suppression activities. Results V2 protein encoded by CCDaV suppressed local RNA silencing and systemic RNA silencing triggered by GFP RNA, but did not impede short-distance movement of the RNA silencing signal in N. benthamiana 16c. GFP fluorescence observations showed that the ability of V2 protein to suppress RNA silencing was weaker than tomato bushy stunt virus P19. Deletion analysis showed that the putative nuclear localization signal (NLS, 25-54 aa) was involved in the RNA silencing suppression activity of V2 protein. Furthermore, V2 protein cannot block dsRNA-triggered RNA silencing. The subcellular localization assay suggested that V2 protein was localized to nucleus of N. benthamiana. Conclusion Overall, the results of this study demonstrate that CCDaV-V2 acts as an activity of silencing suppression. This is the first reported RNA-silencing suppressor encoded by Citlodavirus and will be valuable in revealing the molecular mechanism of CCDaV infection.
Collapse
Affiliation(s)
- Xiao Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/Citrus Research Institute, Southwest University, Chongqing, China
| | - Dongdong Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/Citrus Research Institute, Southwest University, Chongqing, China
| | - Yuan Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/Citrus Research Institute, Southwest University, Chongqing, China
| | - Chuang Liu
- Lemon Industry Development Center, Anyue, Sichuan, China
| | - Zhongan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/Citrus Research Institute, Southwest University, Chongqing, China
| | - Binghai Lou
- Guangxi Citrus Breeding and Cultivation Research Center of Engineering Technology/Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Yan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Zhang X, Wang D, Zhao P, Sun Y, Fang RX, Ye J. Near-infrared light and PIF4 promote plant antiviral defense by enhancing RNA interference. PLANT COMMUNICATIONS 2024; 5:100644. [PMID: 37393430 PMCID: PMC10811336 DOI: 10.1016/j.xplc.2023.100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
The molecular mechanism underlying phototherapy and light treatment, which utilize various wavelength spectra of light, including near-infrared (NIR), to cure human and plant diseases, is obscure. Here we revealed that NIR light confers antiviral immunity by positively regulating PHYTOCHROME-INTERACTING FACTOR 4 (PIF4)-activated RNA interference (RNAi) in plants. PIF4, a central transcription factor involved in light signaling, accumulates to high levels under NIR light in plants. PIF4 directly induces the transcription of two essential components of RNAi, RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) and ARGONAUTE 1 (AGO1), which play important roles in resistance to both DNA and RNA viruses. Moreover, the pathogenic determinant βC1 protein, which is evolutionarily conserved and encoded by betasatellites, interacts with PIF4 and inhibits its positive regulation of RNAi by disrupting PIF4 dimerization. These findings shed light on the molecular mechanism of PIF4-mediated plant defense and provide a new perspective for the exploration of NIR antiviral treatment.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingzhi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Tripathi RK, Goyal L, Singh S. Potential Therapeutic Approach using Aromatic l-amino Acid Decarboxylase and Glial-derived Neurotrophic Factor Therapy Targeting Putamen in Parkinson's Disease. Curr Gene Ther 2024; 24:278-291. [PMID: 38310455 DOI: 10.2174/0115665232283842240102073002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by specific loss of dopaminergic neurons, resulting in impaired motor movement. Its prevalence is twice as compared to the previous 25 years and affects more than 10 million individuals. Lack of treatment still uses levodopa and other options as disease management measures. Treatment shifts to gene therapy (GT), which utilizes direct delivery of specific genes at the targeted area. Therefore, the use of aromatic L-amino acid decarboxylase (AADC) and glial-derived neurotrophic factor (GDNF) therapy achieves an effective control to treat PD. Patients diagnosed with PD may experience improved therapeutic outcomes by reducing the frequency of drug administration while utilizing provasin and AADC as dopaminergic protective therapy. Enhancing the enzymatic activity of tyrosine hydroxylase (TH), glucocorticoid hormone (GCH), and AADC in the striatum would be useful for external L-DOPA to restore the dopamine (DA) level. Increased expression of glutamic acid decarboxylase (GAD) in the subthalamic nucleus (STN) may also be beneficial in PD. Targeting GDNF therapy specifically to the putaminal region is clinically sound and beneficial in protecting the dopaminergic neurons. Furthermore, preclinical and clinical studies supported the role of GDNF in exhibiting its neuroprotective effect in neurological disorders. Another Ret receptor, which belongs to the tyrosine kinase family, is expressed in dopaminergic neurons and sounds to play a vital role in inhibiting the advancement of PD. GDNF binding on those receptors results in the formation of a receptor-ligand complex. On the other hand, venous delivery of recombinant GDNF by liposome-based and encapsulated cellular approaches enables the secure and effective distribution of neurotrophic factors into the putamen and parenchyma. The current review emphasized the rate of GT target GDNF and AADC therapy, along with the corresponding empirical evidence.
Collapse
Affiliation(s)
- Raman Kumar Tripathi
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
38
|
Wang J, Hsu Y, Lee Y, Lin N. Importin α2 participates in RNA interference against bamboo mosaic virus accumulation in Nicotiana benthamiana via NbAGO10a-mediated small RNA clearance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13422. [PMID: 38279848 PMCID: PMC10799208 DOI: 10.1111/mpp.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/29/2024]
Abstract
Karyopherins, the nucleocytoplasmic transporters, participate in multiple RNA silencing stages by transporting associated proteins into the nucleus. Importin α is a member of karyopherins and has been reported to facilitate virus infection via nuclear import of viral proteins. Unlike other RNA viruses, silencing of importin α2 (α2i) by virus-induced gene silencing (VIGS) boosted the titre of bamboo mosaic virus (BaMV) in protoplasts, and inoculated and systemic leaves of Nicotiana benthamiana. The enhanced BaMV accumulation in importin α2i plants was linked to reduced levels of RDR6-dependent secondary virus-derived small-interfering RNAs (vsiRNAs). Small RNA-seq revealed importin α2 silencing did not affect the abundance of siRNAs derived from host mRNAs but significantly reduced the 21 and 22 nucleotide vsiRNAs in BaMV-infected plants. Deletion of BaMV TGBp1, an RNA silencing suppressor, compromised importin α2i-mediated BaMV enhancement. Moreover, silencing of importin α2 upregulated NbAGO10a, a proviral protein recruited by TGBp1 for BaMV vsiRNAs clearance, but hindered the nuclear import of NbAGO10a. Taken together, these results indicate that importin α2 acts as a negative regulator of BaMV invasion by controlling the expression and nucleocytoplasmic shuttling of NbAGO10a, which removes vsiRNAs via the TGBp1-NbAGO10a-SDN1 pathway. Our findings reveal the hidden antiviral mechanism of importin α2 in countering BaMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Jiun‐Da Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Yun‐Shien Lee
- Department of BiotechnologyMing Chuan UniversityTaipeiTaiwan
| | - Na‐Sheng Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
39
|
DeMell A, Mendoza MR, Scholthof HB. A tomato bushy stunt virus-based vector for simultaneous editing and sensing to survey the host antiviral RNA silencing machinery. PNAS NEXUS 2024; 3:pgad436. [PMID: 38264147 PMCID: PMC10805433 DOI: 10.1093/pnasnexus/pgad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
A tomato bushy stunt virus (TBSV)-derived vector system was applied for the delivery of CRISPR/Cas9 gene editing materials, to facilitate rapid, transient assays of host-virus interactions involved in the RNA silencing pathway. Toward this, single guide RNAs designed to target key components of the virus-induced host RNA silencing pathway (AGO2, DCL2, HEN1) were inserted into TBSV-based GFP-expressing viral vectors TBSV-GFP (TG) and its P19 defective mutant TGΔP19. This produced rapid, efficient, and specific gene editing in planta. Targeting AGO2, DCL2, or HEN1 partially rescued the lack of GFP accumulation otherwise associated with TGΔP19. Since the rescue phenotypes are normally only observed in the presence of the P19 silencing suppressor, the results support that the DCL2, HEN1, and AGO2 proteins are involved in anti-TBSV RNA silencing. Additionally, we show that knockdown of the RNA silencing machinery increases cargo expression from a nonviral binary Cas9 vector. The TBSV-based gene editing technology described in this study can be adapted for transient heterologous expression, rapid gene function screens, and molecular interaction studies in many plant species considering the wide host range of TBSV. In summary, we demonstrate that a plant virus can be used to establish gene editing while simultaneously serving as an accumulation sensor for successful targeting of its homologous antiviral silencing machinery components.
Collapse
Affiliation(s)
- April DeMell
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Present address: Plant Biology, UC Davis, Davis, CA, USA
| | - Maria R Mendoza
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Present address: Fujifilm Diosynth Biotechnologies Texas, College Station, TX, USA
| | - Herman B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
40
|
Wu WC, Chen IH, Hou PY, Wang LH, Tsai CH, Cheng CP. The phosphorylation of the movement protein TGBp1 regulates the accumulation of the Bamboo mosaic virus. J Gen Virol 2024; 105. [PMID: 38189334 DOI: 10.1099/jgv.0.001945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Phosphorylation and dephosphorylation of viral movement proteins plays a crucial role in regulating virus movement. Our study focused on investigating the movement protein TGBp1 of Bamboo mosaic virus (BaMV), which is a single-stranded positive-sense RNA virus. Specifically, we examined four potential phosphorylation sites (S15, S18, T58, and S247) within the TGBp1 protein. To study the impact of phosphorylation, we introduced amino acid substitutions at the selected sites. Alanine substitutions were used to prevent phosphorylation, while aspartate substitutions were employed to mimic phosphorylation. Our findings suggest that mimicking phosphorylation at S15, S18 and T58 of TGBp1 might be linked to silencing suppressor activities. The phosphorylated form at these sites exhibits a loss of silencing suppressor activity, leading to reduced viral accumulation in the inoculated leaves. Furthermore, mimicking phosphorylation at residues S15 and S18 could diminish viral accumulation at the single-cell level, while doing so at residue T58 could influence virus movement. However, mimicking phosphorylation at residue S247 does not appear to be relevant to both functions of TGBp1. Overall, our study provides insights into the functional significance of specific phosphorylation sites in BaMV TGBp1, illuminating the regulatory mechanisms involved in virus movement and silencing suppression.
Collapse
Affiliation(s)
- Wan-Chen Wu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Pei-Yu Hou
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - Lan-Hui Wang
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Chi-Ping Cheng
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970, Taiwan, ROC
| |
Collapse
|
41
|
Sharma S, Prasad A, Prasad M. Selective autophagy: the fulcrum of plant-virus interaction. TRENDS IN PLANT SCIENCE 2024; 29:4-6. [PMID: 37839927 DOI: 10.1016/j.tplants.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Selective autophagy receptors play both proviral and antiviral roles during plant-virus interaction. However, little is known about the balance between such contradictory dual roles of these receptors. Tong et al. have deciphered the temporal regulation of antiviral and antiplant roles of a selective autophagy receptor, a virus-induced small peptide 1 (VISP1).
Collapse
Affiliation(s)
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
42
|
Romero-Rodríguez B, Petek M, Jiao C, Križnik M, Zagorščak M, Fei Z, Bejarano ER, Gruden K, Castillo AG. Transcriptional and epigenetic changes during tomato yellow leaf curl virus infection in tomato. BMC PLANT BIOLOGY 2023; 23:651. [PMID: 38110861 PMCID: PMC10726652 DOI: 10.1186/s12870-023-04534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, generating new insights into the molecular mechanisms underlying plant-virus interactions. However, an integrative study of the changes in the host transcriptome, small RNA profile and methylome during a geminivirus infection has not been performed yet. Using a time-scale approach, we aim to decipher the gene regulation in tomato in response to the infection with the geminivirus, tomato yellow leaf curl virus (TYLCV). RESULTS We showed that tomato undergoes substantial transcriptional and post-transcriptional changes upon TYLCV infection and identified the main altered regulatory pathways. Interestingly, although the principal plant defense-related processes, gene silencing and the immune response were induced, this cannot prevent the establishment of the infection. Moreover, we identified extra- and intracellular immune receptors as targets for the deregulated microRNAs (miRNAs) and established a network for those that also produced phased secondary small interfering RNAs (phasiRNAs). On the other hand, there were no significant genome-wide changes in tomato methylome at 14 days post infection, the time point at which the symptoms were general, and the amount of viral DNA had reached its maximum level, but we were able to identify differentially methylated regions that could be involved in the transcriptional regulation of some of the differentially expressed genes. CONCLUSION We have conducted a comprehensive and reliable study on the changes at transcriptional, post-transcriptional and epigenetic levels in tomato throughout TYLCV infection. The generated genomic information is substantial for understanding the genetic, molecular and physiological changes caused by TYLCV infection in tomato.
Collapse
Affiliation(s)
- Beatriz Romero-Rodríguez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Chen Jiao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- The Key Lab of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000, Ljubljana, Slovenia
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Científicas (UMA-CSIC), Boulevard Louis Pasteur, 49, Málaga, 29010, Spain.
| |
Collapse
|
43
|
Chen A, Halilovic L, Shay JH, Koch A, Mitter N, Jin H. Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102441. [PMID: 37696727 PMCID: PMC10777890 DOI: 10.1016/j.pbi.2023.102441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 09/13/2023]
Abstract
Spray-induced gene silencing (SIGS) is a powerful and eco-friendly method for crop protection. Based off the discovery of RNA uptake ability in many fungal pathogens, the application of exogenous RNAs targeting pathogen/pest genes results in gene silencing and infection inhibition. However, SIGS remains hindered by the rapid degradation of RNA in the environment. As extracellular vesicles are used by plants, animals, and microbes in nature to transport RNAs for cross-kingdom/species RNA interference between hosts and microbes/pests, nanovesicles and other nanoparticles have been used to prevent RNA degradation. Efforts examining the effect of nanoparticles on RNA stability and internalization have identified key attributes that can inform better nanocarrier designs for SIGS. Understanding sRNA biogenesis, cross-kingdom/species RNAi, and how plants and pathogens/pests naturally interact are paramount for the design of SIGS strategies. Here, we focus on nanotechnology advancements for the engineering of innovative RNA-based disease control strategies against eukaryotic pathogens and pests.
Collapse
Affiliation(s)
- Angela Chen
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Lida Halilovic
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jia-Hong Shay
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Aline Koch
- Institute of Plant Sciences Cell Biology and Plant Biochemistry, Plant RNA Transport, University of Regensburg, Regensburg, Germany
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
44
|
Ma L, Zhang X, Deng Z, Zhang P, Wang T, Li R, Li J, Cheng K, Wang J, Ma N, Qu G, Zhu B, Fu D, Luo Y, Li F, Zhu H. Dicer-like2b suppresses the wiry leaf phenotype in tomato induced by tobacco mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1737-1747. [PMID: 37694805 DOI: 10.1111/tpj.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Dicer-like (DCL) proteins are principal components of RNA silencing, a major defense mechanism against plant virus infections. However, their functions in suppressing virus-induced disease phenotypes remain largely unknown. Here, we identified a role for tomato (Solanum lycopersicum) DCL2b in regulating the wiry leaf phenotype during defense against tobacco mosaic virus (TMV). Knocking out SlyDCL2b promoted TMV accumulation in the leaf primordium, resulting in a wiry phenotype in distal leaves. Biochemical and bioinformatics analyses showed that 22-nt virus-derived small interfering RNAs (vsiRNAs) accumulated less abundantly in slydcl2b mutants than in wild-type plants, suggesting that SlyDCL2b-dependent 22-nt vsiRNAs are required to exclude virus from leaf primordia. Moreover, the wiry leaf phenotype was accompanied by upregulation of Auxin Response Factors (ARFs), resulting from a reduction in trans-acting siRNAs targeting ARFs (tasiARFs) in TMV-infected slydcl2b mutants. Loss of tasiARF production in the slydcl2b mutant was in turn caused by inhibition of miRNA390b function. Importantly, silencing SlyARF3 and SlyARF4 largely restored the wiry phenotype in TMV-infected slydcl2b mutants. Our work exemplifies the complex relationship between RNA viruses and the endogenous RNA silencing machinery, whereby SlyDCL2b protects the normal development of newly emerging organs by excluding virus from these regions and thus maintaining developmental silencing.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiqi Deng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Peiyu Zhang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tian Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ran Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jubin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
45
|
Ontiveros I, Fernández-Pozo N, Esteve-Codina A, López-Moya JJ, Díaz-Pendón JA. Enhanced Susceptibility to Tomato Chlorosis Virus (ToCV) in Hsp90- and Sgt1-Silenced Plants: Insights from Gene Expression Dynamics. Viruses 2023; 15:2370. [PMID: 38140611 PMCID: PMC10747942 DOI: 10.3390/v15122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies.
Collapse
Affiliation(s)
- Irene Ontiveros
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Noé Fernández-Pozo
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Juan Antonio Díaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| |
Collapse
|
46
|
Ludman M, Szalai G, Janda T, Fátyol K. Hierarchical contribution of Argonaute proteins to antiviral protection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6760-6772. [PMID: 37603044 PMCID: PMC10662219 DOI: 10.1093/jxb/erad327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Antiviral RNAi is the main protective measure employed by plants in the fight against viruses. The main steps of this process have been clarified in recent years, primarily relying on the extensive genetic resources of Arabidopsis thaliana. Our knowledge of viral diseases of crops, however, is still limited, mainly due to the fact that A. thaliana is a non-host for many agriculturally important viruses. In contrast, Nicotiana benthamiana has an unparalleled susceptibility to viruses and, since it belongs to the Solanaceae family, it is considered an adequate system for modeling infectious diseases of crops such as tomatoes. We used a series of N. benthamiana mutants created by genome editing to analyze the RNAi response elicited by the emerging tomato pathogen, pepino mosaic virus (PepMV). We uncovered hierarchical roles of several Argonaute proteins (AGOs) in anti-PepMV defense, with the predominant contribution of AGO2. Interestingly, the anti-PepMV activities of AGO1A, AGO5, and AGO10 only become apparent when AGO2 is mutated. Taken together, our results prove that hierarchical actions of several AGOs are needed for the plant to build effective anti-PepMV resistance. The genetic resources created here will be valuable assets for analyzing RNAi responses triggered by other agriculturally important pathogenic viruses.
Collapse
Affiliation(s)
- Márta Ludman
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert u. 4. Gödöllő 2100Hungary
| | - Gabriella Szalai
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2. Martonvásár 2462Hungary
| | - Tibor Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2. Martonvásár 2462Hungary
| | - Károly Fátyol
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert u. 4. Gödöllő 2100Hungary
| |
Collapse
|
47
|
Scholthof HB, Scholthof KBG. Plant virology: an RNA treasure trove. TRENDS IN PLANT SCIENCE 2023; 28:1277-1289. [PMID: 37495453 DOI: 10.1016/j.tplants.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Key principles pertaining to RNA biology not infrequently have their origins in plant virology. Examples have arisen from studies on viral RNA-intrinsic properties and the infection process from gene expression, replication, movement, and defense evasion to biotechnological applications. Since RNA is at the core of the central dogma in molecular biology, how plant virology assisted in the reinforcement or adaptations of this concept, while at other instances shook up elements of the doctrine, is discussed. Moreover, despite the negative effects of viral diseases in agriculture worldwide, plant viruses can be considered a scientific treasure trove. Today they remain tools of discovery for biotechnology, studying evolution, cell biology, and host-microbe interactions.
Collapse
Affiliation(s)
- Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA.
| | - Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA
| |
Collapse
|
48
|
Samarskaya VO, Spechenkova N, Ilina I, Suprunova TP, Kalinina NO, Love AJ, Taliansky ME. A Non-Canonical Pathway Induced by Externally Applied Virus-Specific dsRNA in Potato Plants. Int J Mol Sci 2023; 24:15769. [PMID: 37958754 PMCID: PMC10650801 DOI: 10.3390/ijms242115769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The external application of double-stranded RNA (dsRNA) has recently been developed as a non-transgenic approach for crop protection against pests and pathogens. This novel and emerging approach has come to prominence due to its safety and environmental benefits. It is generally assumed that the mechanism of dsRNA-mediated antivirus RNA silencing is similar to that of natural RNA interference (RNAi)-based defence against RNA-containing viruses. There is, however, no direct evidence to support this idea. Here, we provide data on the high-throughput sequencing (HTS) analysis of small non-coding RNAs (sRNA) as hallmarks of RNAi induced by infection with the RNA-containing potato virus Y (PVY) and also by exogenous application of dsRNA which corresponds to a fragment of the PVY genome. Intriguingly, in contrast to PVY-induced production of discrete 21 and 22 nt sRNA species, the externally administered PVY dsRNA fragment led to generation of a non-canonical pool of sRNAs, which were present as ladders of ~18-30 nt in length; suggestive of an unexpected sRNA biogenesis pathway. Interestingly, these non-canonical sRNAs are unable to move systemically and also do not induce transitive amplification. These findings may have significant implications for further developments in dsRNA-mediated crop protection.
Collapse
Affiliation(s)
- Viktoriya O. Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
| | | | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Michael E. Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (V.O.S.); (N.S.); (I.I.); (N.O.K.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| |
Collapse
|
49
|
Naveed H, Islam W, Jafir M, Andoh V, Chen L, Chen K. A Review of Interactions between Plants and Whitefly-Transmitted Begomoviruses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3677. [PMID: 37960034 PMCID: PMC10648457 DOI: 10.3390/plants12213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
50
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|