1
|
Pan J, Yan D, Liang Y, Yang L, Hu C, Chen M. Bioinformatic analysis constructs an optimal prognostic index for survival-related variables (OPISV) based on whole-genome expression data in Glioblastoma. Int J Biol Macromol 2024; 282:137184. [PMID: 39505178 DOI: 10.1016/j.ijbiomac.2024.137184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE Using clinical information and transcriptomic sequencing data from glioblastoma (GBM) patients in the TCGA database to perform gene-by-gene analysis that is aligned with individual patient characteristics and develop an optimal prognostic index of survival-related variables (OPISV) through iterative machine learning techniques to predict the prognosis of GBM patients. STUDY DESIGN The TCGA dataset was utilized as the training dataset, while two GEO datasets served as independent validation cohorts. Initially, survival analysis (p < 0.001***), differential gene expression analysis (p < 0.05*), and univariate Cox regression analysis (p < 0.05*) were employed to identify genes that are highly correlated with patient prognosis and exhibit significant differences in survival status. Subsequently, incorporating the non-excludable variable of age, a multivariate Cox regression analysis was performed in a stepwise manner to construct the OPISV. Finally, logistic and LASSO regressions were used to validate the association between the identified genes and patient survival. The OPISV performance is evaluated and its potential mechanisms are explored. RESULTS Age, CTSD, PTPRN, PTPRN2, NSUN5, DNAJC30 and SOX21 emerged as the optimal variables through multivariate Cox regression iterations. Further analysis characterized Age, PTPRN and DNAJC30 as independent prognostic risk factors for constructing OPISV, which is validated with external GEO datasets and GEPIA database. In OPISV_high populations, significantly upregulated GABAergic synapse function was exposed. Differential genes identified from gene clustering of the GABAergic synapse pathway and gene module highly correlated with GABAergic synapse in the WGCNA analysis are pointing unequivocally to the glioma progress. CONCLUSION OPISV is feasible for predicting patient survival, as it may serve as a potential mechanism underlying the involvement of GABAergic synapses in the progression of GBM.
Collapse
Affiliation(s)
- Junjia Pan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China; Department of Anesthesiology, the Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dejun Yan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yaoe Liang
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Lin Yang
- Department of Anesthesiology, the Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China; Rehabilitation Medicine Institute of Panyu District, Guangzhou, Guangdong, China
| | - Chun Hu
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
| | - Meilan Chen
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
2
|
Ku KB, Kim CW, Kim Y, Kang BH, La J, Kang I, Park WH, Ahn S, Lee SK, Lee HK. Inhibitory Fcγ receptor deletion enhances CD8 T cell stemness increasing anti-PD-1 therapy responsiveness against glioblastoma. J Immunother Cancer 2024; 12:e009449. [PMID: 39461881 PMCID: PMC11529582 DOI: 10.1136/jitc-2024-009449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Certain cancers present challenges for treatment because they are resistant to immune checkpoint blockade (ICB), attributed to low tumor mutational burden and the absence of T cell-inflamed features. Among these, glioblastoma (GBM) is notoriously resistant to ICB. To overcome this resistance, the identification of T cells with heightened stemness marked by T-cell factor 1 (TCF1) expression has gained attention. Several studies have explored ways to preserve stem-like T cells and prevent terminal exhaustion. In this study, we investigate a target that triggers stem-like properties in CD8 T cells to enhance the response to ICB in a murine GBM model. METHODS Using Fcgr2b-/- mice and a murine GL261 GBM model, we confirmed the efficacy of anti-programmed cell death protein-1 (PD-1) immunotherapy, observing improved survival. Analysis of immune cells using fluorescence-activated cell sorting and single-cell RNA sequencing delineated distinct subsets of tumor-infiltrating CD8 T cells in Fcgr2b-/- mice. The crucial role of the stem-like feature in the response to anti-PD-1 treatment for reinvigorating CD8 T cells was analyzed. Adoptive transfer of OT-I cells into OVA-expressing GL261 models and CD8 T cell depletion in Fcgr2b-/- mice confirmed the significance of Fcgr2b-/- CD8 T cells in enhancing the antitumor response. Last, S1P1 inhibitor treatment confirmed that the main source of tumor antigen-specific Fcgr2b-/- CD8 T cells is the tumor-draining lymph nodes (TdLNs). RESULTS In a murine GBM model, anti-PD-1 monotherapy and single-Fc fragment of IgG receptor IIb (FcγRIIB) deletion exhibit limited efficacy. However, their combination substantially improves survival by enhancing cytotoxicity and proliferative capacity in tumor-infiltrating Fcgr2b-/- CD8 T cells. The improved response to anti-PD-1 treatment is associated with the tumor-specific memory T cells (Ttsms) exhibiting high stemness characteristics within the tumor microenvironment (TME). Ttsms in the TdLN thrives in a protective environment, maintaining stem-like characteristics and serving as a secure source for tumor infiltration. This underscores the significance of FcγRIIB ablation in triggering Ttsms and enhancing ICB therapy against GBM. CONCLUSIONS Deletion of FcγRIIB on CD8 T cells leads to the generation of a Ttsms, which is localized in TdLN and protected from the immunosuppressive TME. Incorporating these highly stemness-equipped Ttsms enhances the response to anti-PD-1 therapy in immune-suppressed brain tumors.
Collapse
Affiliation(s)
- Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Infectious Disease Vaccine and Diagnosis Innovation, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chae Won Kim
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
- Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Yumin Kim
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Byeong Hoon Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Won Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Center, Konyang University, Daejeon 35365, Republic of Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
- KAIST Institute of Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Wang J, Cao M, Han L, Shangguan P, Liu Y, Zhong Y, Chen C, Wang G, Chen X, Lin M, Lu M, Luo Z, He M, Sung HHY, Niu G, Lam JWY, Shi B, Tang BZ. Blood-Brain Barrier-Penetrative Fluorescent Anticancer Agents Triggering Paraptosis and Ferroptosis for Glioblastoma Therapy. J Am Chem Soc 2024; 146:28783-28794. [PMID: 39394087 DOI: 10.1021/jacs.4c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Currently used drugs for glioblastoma (GBM) treatments are ineffective, primarily due to the significant challenges posed by strong drug resistance, poor blood-brain barrier (BBB) permeability, and the lack of tumor specificity. Here, we report two cationic fluorescent anticancer agents (TriPEX-ClO4 and TriPEX-PF6) capable of BBB penetration for efficient GBM therapy via paraptosis and ferroptosis induction. These aggregation-induced emission (AIE)-active agents specifically target mitochondria, effectively triggering ATF4/JNK/Alix-regulated paraptosis and GPX4-mediated ferroptosis. Specifically, they rapidly induce substantial mitochondria-derived vacuolation, accompanied by reactive oxygen species generation, decreased mitochondrial membrane potential, and intracellular Ca2+ overload, thereby disrupting metabolisms and inducing nonapoptotic cell death. In vivo imaging revealed that TriPEX-ClO4 and TriPEX-PF6 successfully traversed the BBB to target orthotopic glioma and initiated effective synergistic therapy postintravenous injection. Our AIE drugs emerged as the pioneering paraptosis inducers against drug-resistant GBM, significantly extending survival up to 40 days compared to Temozolomide (20 days) in drug-resistant GBM-bearing mice. These compelling results open up new venues for the development of fluorescent anticancer drugs and innovative treatments for brain diseases.
Collapse
Affiliation(s)
- Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Chaoyue Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ming Lin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mengya Lu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhengqun Luo
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Mu He
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Guangle Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, P. R. China
| |
Collapse
|
4
|
Elblová P, Lunova M, Henry SJ, Tu X, Calé A, Dejneka A, Havelková J, Petrenko Y, Jirsa M, Stephanopoulos N, Lunov O. Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2024; 498:155633. [PMID: 39372137 PMCID: PMC11448966 DOI: 10.1016/j.cej.2024.155633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
DNA nanotechnology is a rapidly growing field that provides exciting tools for biomedical applications. Targeting lysosomal functions with nanomaterials, such as DNA nanostructures (DNs), represents a rational and systematic way to control cell functionality. Here we present a versatile DNA nanostructure-based platform that can modulate a number of cellular functions depending on the concentration and surface decoration of the nanostructure. Utilizing different peptides for surface functionalization of DNs, we were able to rationally modulate lysosomal activity, which in turn translated into the control of cellular function, ranging from changes in cell morphology to modulation of immune signaling and cell death. Low concentrations of decalysine peptide-coated DNs induced lysosomal acidification, altering the metabolic activity of susceptible cells. In contrast, DNs coated with an aurein-bearing peptide promoted lysosomal alkalization, triggering STING activation. High concentrations of decalysine peptide-coated DNs caused lysosomal swelling, loss of cell-cell contacts, and morphological changes without inducing cell death. Conversely, high concentrations of aurein-coated DNs led to lysosomal rupture and mitochondrial damage, resulting in significant cytotoxicity. Our study holds promise for the rational design of a new generation of versatile DNA-based nanoplatforms that can be used in various biomedical applications, like the development of combinatorial anti-cancer platforms, efficient systems for endolysosomal escape, and nanoplatforms modulating lysosomal pH.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague 2, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Skylar J.W. Henry
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, United States
| | - Xinyi Tu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, United States
| | - Alicia Calé
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague 2, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Jarmila Havelková
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Yuriy Petrenko
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, United States
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| |
Collapse
|
5
|
Ismail M, Wang Y, Li Y, Liu J, Zheng M, Zou Y. Stimuli-Responsive Polymeric Nanocarriers Accelerate On-Demand Drug Release to Combat Glioblastoma. Biomacromolecules 2024; 25:6250-6282. [PMID: 39259212 DOI: 10.1021/acs.biomac.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with a poor prognosis and limited treatment options. Drug delivery by stimuli-responsive nanocarriers holds great promise for improving the treatment modalities of GBM. At the beginning of the review, we highlighted the stimuli-active polymeric nanocarriers carrying therapies that potentially boost anti-GBM responses by employing endogenous (pH, redox, hypoxia, enzyme) or exogenous stimuli (light, ultrasonic, magnetic, temperature, radiation) as triggers for controlled drug release mainly via hydrophobic/hydrophilic transition, degradability, ionizability, etc. Modifying these nanocarriers with target ligands further enhanced their capacity to traverse the blood-brain barrier (BBB) and preferentially accumulate in glioma cells. These unique features potentially lead to more effective brain cancer treatment with minimal adverse reactions and superior therapeutic outcomes. Finally, the review summarizes the existing difficulties and future prospects in stimuli-responsive nanocarriers for treating GBM. Overall, this review offers theoretical guidelines for developing intelligent and versatile stimuli-responsive nanocarriers to facilitate precise drug delivery and treatment of GBM in clinical settings.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yundong Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Zou
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
6
|
Chen T, Meng J, Yu K, Huang T, Zhao J. Chromatin Licensing and DNA Replication Factor 1 (CDT1) Is a Potential Prognostic Biomarker Involved in the Malignant Biological Behavior of Glioma. ACS Pharmacol Transl Sci 2024; 7:3131-3143. [PMID: 39416957 PMCID: PMC11475523 DOI: 10.1021/acsptsci.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Glioma is the primary malignant tumor with the highest incidence rate in the adult central nervous system. The application of bioinformatics methods to analyze the RNA sequences of multiple gliomas revealed that the CDT1 gene has a significant impact on the cell cycle of glioma cells. Subsequently, we comprehensively and systematically investigated the expression of CDT1 in gliomas through bioinformatics analysis, clinical tissue specimens, and in vitro functional experiments. Our study is the first to report the expression of CDT1 in glioma. Our findings demonstrate that CDT1 plays a crucial role in the proliferation and invasion of glioma. Additionally, our bioinformatics analysis identified several other genes and signaling pathways that are dysregulated in multifocal gliomas, providing potential targets for further research and drug development.
Collapse
Affiliation(s)
- Tiange Chen
- Department
of Neurosurgery, Hainan General Hospital/Hainan
Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Jiawei Meng
- Department
of Laboratory Medicine, The Third Xiangya
Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ke Yu
- Department
of Laboratory Medicine, The Third Xiangya
Hospital, Central South University, Changsha, Hunan 410013, China
| | - Tianxiang Huang
- Department
of Neurosurgery, and National Clinical Research Center of Geriatric
Disorders, Xiangya Hospital, Central South
University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Jiannong Zhao
- Department
of Neurosurgery, Hainan General Hospital/Hainan
Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| |
Collapse
|
7
|
Valerius AR, Webb LM, Thomsen A, Lehrer EJ, Breen WG, Campian JL, Riviere-Cazaux C, Burns TC, Sener U. Review of Novel Surgical, Radiation, and Systemic Therapies and Clinical Trials in Glioblastoma. Int J Mol Sci 2024; 25:10570. [PMID: 39408897 PMCID: PMC11477105 DOI: 10.3390/ijms251910570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite an established standard of care including surgical resection, radiation therapy, and chemotherapy, GBM unfortunately is associated with a dismal prognosis. Therefore, researchers are extensively evaluating avenues to expand GBM therapy and improve outcomes in patients with GBM. In this review, we provide a broad overview of novel GBM therapies that have recently completed or are actively undergoing study in clinical trials. These therapies expand across medical, surgical, and radiation clinical trials. We additionally review methods for improving clinical trial design in GBM.
Collapse
Affiliation(s)
| | - Lauren M. Webb
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
| | - Eric J. Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - William G. Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Terry C. Burns
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA (U.S.)
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Tapescu I, Madsen PJ, Lowenstein PR, Castro MG, Bagley SJ, Fan Y, Brem S. The transformative potential of mRNA vaccines for glioblastoma and human cancer: technological advances and translation to clinical trials. Front Oncol 2024; 14:1454370. [PMID: 39399167 PMCID: PMC11466887 DOI: 10.3389/fonc.2024.1454370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Originally devised for cancer control, mRNA vaccines have risen to the forefront of medicine as effective instruments for control of infectious disease, notably their pivotal role in combating the COVID-19 pandemic. This review focuses on fundamental aspects of the development of mRNA vaccines, e.g., tumor antigens, vector design, and precise delivery methodologies, - highlighting key technological advances. The recent, promising success of personalized mRNA vaccines against pancreatic cancer and melanoma illustrates the potential value for other intractable, immunologically resistant, solid tumors, such as glioblastoma, as well as the potential for synergies with a combinatorial, immunotherapeutic approach. The impact and progress in human cancer, including pancreatic cancer, head and neck cancer, bladder cancer are reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is provided for the transformative potential of mRNA vaccines to advance cancer immunotherapy, with a particular focus on the opportunities and challenges of glioblastoma. The current landscape of glioblastoma immunotherapy and gene therapy is reviewed with an eye to combinatorial approaches harnessing RNA science. Preliminary preclinical and clinical data supports the concept that mRNA vaccines could be a viable, novel approach to prolong survival in patients with glioblastoma.
Collapse
Affiliation(s)
- Iulia Tapescu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter J. Madsen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Stephen J. Bagley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Fan
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
10
|
Piper K, Kumar JI, Domino J, Tuchek C, Vogelbaum MA. Consensus review on strategies to improve delivery across the blood-brain barrier including focused ultrasound. Neuro Oncol 2024; 26:1545-1556. [PMID: 38770775 PMCID: PMC11376463 DOI: 10.1093/neuonc/noae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 05/22/2024] Open
Abstract
Drug delivery to the central nervous system (CNS) has been a major challenge for CNS tumors due to the impermeability of the blood-brain barrier (BBB). There has been a multitude of techniques aimed at overcoming the BBB obstacle aimed at utilizing natural transport mechanisms or bypassing the BBB which we review here. Another approach that has generated recent interest in the recently published literature is to use new technologies (Laser Interstitial Thermal Therapy, LITT; or Low-Intensity Focused Ultrasound, LIFU) to temporarily increase BBB permeability. This review overviews the advantages, disadvantages, and major advances of each method. LIFU has been a major area of research to allow for chemotherapeutics to cross the BBB which has a particular emphasis in this review. While most of the advances remain in animal studies, there are an increasing number of translational clinical trials that will have results in the next few years.
Collapse
Affiliation(s)
- Keaton Piper
- Department of Neurosurgery, University of South Florida, Tampa, Florida, USA
| | - Jay I Kumar
- Department of Neurosurgery, University of South Florida, Tampa, Florida, USA
| | - Joseph Domino
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Chad Tuchek
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
11
|
Oishi T, Koizumi S, Kurozumi K. Mesenchymal stem cells as therapeutic vehicles for glioma. Cancer Gene Ther 2024; 31:1306-1314. [PMID: 38654128 DOI: 10.1038/s41417-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Glioma is a disease with a poor prognosis despite the availability of multimodality treatments, and the development of novel therapies is urgently needed. Challenges in glioma treatment include the difficulty for drugs to cross the blood-brain barrier when administered systemically and poor drug diffusion when administered locally. Mesenchymal stem cells exhibit advantages for glioma therapy because of their ability to pass through the blood-brain barrier and migrate to tumor cells and their tolerance to the immune system. Therefore, mesenchymal stem cells have been explored as vehicles for various therapeutic agents for glioma treatment. Mesenchymal stem cells loaded with chemotherapeutic drugs show improved penetration and tumor accumulation. For gene therapy, mesenchymal stem cells can be used as vehicles for suicide genes, the so-called gene-directed enzyme prodrug therapy. Mesenchymal stem cell-based oncolytic viral therapies have been attempted in recent years to enhance the efficacy of infection against the tumor, viral replication, and distribution of viral particles. Many uncertainties remain regarding the function and behavior of mesenchymal stem cells in gliomas. However, strategies to increase mesenchymal stem cell migration to gliomas may improve the delivery of therapeutic agents and enhance their anti-tumor effects, representing promising potential for patient treatment.
Collapse
Affiliation(s)
- Tomoya Oishi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
12
|
Bahojb Mahdavi SZ, Pouladi N, Amini M, Baradaran B, Najafi S, Vaghef Mehrabani S, Yari A, Ghobadi Alamdari S, Mokhtarzadeh AA. Let-7a-3p overexpression increases chemosensitivity to carmustine and synergistically promotes autophagy and suppresses cell survival in U87MG glioblastoma cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6903-6918. [PMID: 38587542 DOI: 10.1007/s00210-024-03060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
In terms of primary brain tumors, glioblastoma is one of the most aggressive and common brain tumors. The high resistance of glioblastoma to chemotherapy has made it vital to find alternative treatments and biological mechanisms to reduce the survival of cancer cells. Given that, the objective of the present research was to explore the potential of let-7a-3p when used in combination with carmustine in human glioblastoma cancer cells. Based on previous studies, the expression of let-7a is downregulated in the U87MG cell line. Let-7a-3p transfected into U87MG glioblastoma cells. Cell viability of the cells was assessed by MTT assay. The apoptotic induction in U87MG cancerous cells was determined through the utilization of DAPI and Annexin V/PI staining techniques. Moreover, the induction of autophagy and cell cycle arrest was evaluated by flow cytometry. Furthermore, cell migration was evaluated by the wound healing assay while colony formation assay was conducted to evaluate colony formation. Also, the expression of the relevant genes was evaluated using qRT-PCR. Transfection of let-7a-3p mimic in U87MG cells increased the expression of the miRNA and also increased the sensitivity of U87MG cells to carmustine. Let-7a-3p and carmustine induced sub-G1 and S phase cell cycle arrest, respectively. Combination treatment of let-7a-3p and carmustine synergistically increased arrested cells and induced apoptosis through regulating involved genes including P53, caspase-3, Bcl-2, and Bax. Combined treatment with let-7a-3p and carmustine also induced autophagy and increased the expression of the ATG5 and Beclin 1 (ATG6). Furthermore, let-7a-3p combined with carmustine inhibited cell migration via decreasing the expression of MMP-2. Moreover, the combination therapy decreased the ability of U87MG to form colonies through downregulating CD-44. In conclusion, our work suggests that combining let-7a-3p replacement therapy with carmustine treatment could be considered a promising strategy in treatment and can increase efficiency of glioblastoma chemotherapy.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Vaghef Mehrabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cell and Molecular Biology, Faculty of Basic Science, University of Maragheh, Maragheh, Iran
| | | |
Collapse
|
13
|
Ghosh S, Bhaskar R, Mishra R, Arockia Babu M, Abomughaid MM, Jha NK, Sinha JK. Neurological insights into brain-targeted cancer therapy and bioinspired microrobots. Drug Discov Today 2024; 29:104105. [PMID: 39029869 DOI: 10.1016/j.drudis.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Richa Mishra
- Department of Computer Science and Engineering, Parul University, Vadodara, Gujrat 391760, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
14
|
Ius T, Somma T, Pasqualetti F, Berardinelli J, Vitulli F, Caccese M, Cella E, Cenciarelli C, Pozzoli G, Sconocchia G, Zeppieri M, Gerardo C, Caffo M, Lombardi G. Local therapy in glioma: An evolving paradigm from history to horizons (Review). Oncol Lett 2024; 28:440. [PMID: 39081966 PMCID: PMC11287108 DOI: 10.3892/ol.2024.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Ius
- Unit of Neurosurgery, Head-Neck and Neurosciences Department, University Hospital of Udine, I-33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | | | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Francesca Vitulli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| | - Eugenia Cella
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
- Medical Oncology 2, San Martino Hospital-IRCCS, I-16131 Genoa Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Giacomo Pozzoli
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, I-33100 Udine, Italy
| | - Caruso Gerardo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| |
Collapse
|
15
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01447-x. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
16
|
Wang X, Hao X, Zhang Y, Wu Q, Zhou J, Cheng Z, Chen J, Liu S, Pan J, Wang Y, Fan JB. Bioinspired Adaptive Microdrugs Enhance the Chemotherapy of Malignant Glioma: Beyond Their Nanodrugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405165. [PMID: 38758975 DOI: 10.1002/adma.202405165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Solid nanoparticle-mediated drug delivery systems are usually confined to nanoscale due to the enhanced permeability and retention effect. However, they remain a great challenge for malignant glioma chemotherapy because of poor drug delivery efficiency and insufficient tumor penetration resulting from the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB). Inspired by biological microparticles (e.g., cells) with excellent adaptive deformation, it is demonstrated that the adaptive microdrugs (even up to 3.0 µm in size) are more efficient than their nanodrugs (less than 200 nm in size) to cross BBB/BBTB and penetrate into tumor tissues, achieving highly efficient chemotherapy of malignant glioma. The distinct delivery of the adaptive microdrugs is mainly attributed to the enhanced interfacial binding and endocytosis via adaptive deformation. As expected, the obtained adaptive microdrugs exhibit enhanced accumulation, deep penetration, and cellular internalization into tumor tissues in comparison with nanodrugs, significantly improving the survival rate of glioblastoma mice. It is believed that the bioinspired adaptive microdrugs enable them to efficiently cross physiological barriers and deeply penetrate tumor tissues for drug delivery, providing an avenue for the treatment of solid tumors.
Collapse
Affiliation(s)
- Xuejiao Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiangrong Hao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yangning Zhang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qun Wu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510515, P. R. China
| | - Zhongman Cheng
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jianping Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Department of Radiotherapy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, P. R. China
| | - Sijia Liu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jiahao Pan
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jun-Bing Fan
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
17
|
Dell’Albani P, Carbone C, Sposito G, Spatuzza M, Chiacchio MA, Grasso R, Legnani L, Santonocito D, Puglia C, Parenti R, Puglisi G, Campisi A. Effect of Ferulic Acid Loaded in Nanoparticle on Tissue Transglutaminase Expression Levels in Human Glioblastoma Cell Line. Int J Mol Sci 2024; 25:8397. [PMID: 39125966 PMCID: PMC11312511 DOI: 10.3390/ijms25158397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers, characterized by a decrease in antioxidant levels. Evidence has demonstrated that ferulic acid (FA), a natural antioxidant particularly abundant in vegetables and fruits, could be a promising candidate for GBM treatment. Since FA shows a high instability that compromises its therapeutic application, it has been encapsulated into Nanostructured Lipid Carriers (NLCs) to improve its bioavailability in the brain. It has been demonstrated that tissue transglutaminase (TG2) is a multi-functional protein implicated in many physiological and pathological processes, including cancer. TG2 is also involved in GBM correlated with metastasis formation and drug resistance. Therefore, the evaluation of TG2 expression levels and its cellular localization are important to assess the anti-cancer effect of FA against GBM cancer. Our results have demonstrated that treatment with free FA and FA-NLCs in the U87-MG cancer cell line differently modified TG2 localization and expression levels. In the cells treated with free FA, TG2 appeared expressed both in the cytosol and in the nucleus, while the treatment with FA-NLCs showed that the protein is exclusively localized in the cytosol, exerting its pro-apoptotic effect. Therefore, our data suggest that FA loaded in NLCs could represent a promising natural agent for supplementing the current anti-cancer drugs used for the treatment of GBM.
Collapse
Affiliation(s)
- Paola Dell’Albani
- Institute for Biomedical Research and Innovation, CNR, Via P. Gaifami, 18, 95126 Catania, Italy; (P.D.); (M.S.)
| | - Claudia Carbone
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- NANOMED, Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Giovanni Sposito
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Michela Spatuzza
- Institute for Biomedical Research and Innovation, CNR, Via P. Gaifami, 18, 95126 Catania, Italy; (P.D.); (M.S.)
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy
| | - Maria Assunta Chiacchio
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
| | - Rosaria Grasso
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy;
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy;
| | - Debora Santonocito
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- NANOMED, Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Carmelo Puglia
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- NANOMED, Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123 Catania, Italy;
| | - Giovanni Puglisi
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
| | - Agatina Campisi
- Department of Drug Sciences and Health, University of Catania, 95125 Catania, Italy; (C.C.); (G.S.); (M.A.C.); (D.S.); (C.P.); (G.P.)
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
18
|
Gupta K, Perkerson RB, Parsons TM, Angom R, Amerna D, Burgess JD, Ren Y, McLean PJ, Mukhopadhyay D, Vibhute P, Wszolek ZK, Zubair AC, Quiñones-Hinojosa A, Kanekiyo T. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther 2024; 15:230. [PMID: 39075600 PMCID: PMC11287895 DOI: 10.1186/s13287-024-03847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Ralph B Perkerson
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ramacharan Angom
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Prasanna Vibhute
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
19
|
Li M, Zhang X, Zhou Y, Chu Y, Shen J, Cai Y, Sun X. Near Infrared-Activatable Biomimetic Nanoplatform for Tumor-Specific Drug Release, Penetration and Chemo-Photothermal Synergistic Therapy of Orthotopic Glioblastoma. Int J Nanomedicine 2024; 19:6999-7014. [PMID: 39011386 PMCID: PMC11249073 DOI: 10.2147/ijn.s466268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Glioblastoma multiforme (GBM), a highly invasive and prognostically challenging brain cancer, poses a significant hurdle for current treatments due to the existence of the blood-brain barrier (BBB) and the difficulty to maintain an effective drug accumulation in deep GBM lesions. Methods We present a biomimetic nanoplatform with angiopep-2-modified macrophage membrane, loaded with indocyanine green (ICG) templated self-assembly of SN38 (AM-NP), facilitating active tumor targeting and effective blood-brain barrier penetration through specific ligand-receptor interaction. Results Upon accumulation at tumor sites, these nanoparticles achieved high drug concentrations. Subsequent combination of laser irradiation and release of chemotherapy agent SN38 induced a synergistic chemo-photothermal therapy. Compared to bare nanoparticles (NPs) lacking cell membrane encapsulation, AM-NPs significantly suppressed tumor growth, markedly enhanced survival rates, and exhibited excellent biocompatibility with minimal side effects. Conclusion This NIR-activatable biomimetic camouflaging macrophage membrane-based nanoparticles enhanced drug delivery targeting ability through modifications of macrophage membranes and specific ligands. It simultaneously achieved synergistic chemo-photothermal therapy, enhancing treatment effectiveness. Compared to traditional treatment modalities, it provided a precise, efficient, and synergistic method that might have contributed to advancements in glioblastoma therapy.
Collapse
Affiliation(s)
- Ming Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yujie Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yuteng Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jie Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
20
|
Roncali L, Marionneau-Lambot S, Roy C, Eychenne R, Gouard S, Avril S, Chouin N, Riou J, Allard M, Rousseau A, Guérard F, Hindré F, Chérel M, Garcion E. Brain intratumoural astatine-211 radiotherapy targeting syndecan-1 leads to durable glioblastoma remission and immune memory in female mice. EBioMedicine 2024; 105:105202. [PMID: 38905749 PMCID: PMC11246004 DOI: 10.1016/j.ebiom.2024.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Glioblastoma (GB), the most aggressive brain cancer, remains a critical clinical challenge due to its resistance to conventional treatments. Here, we introduce a locoregional targeted-α-therapy (TAT) with the rat monoclonal antibody 9E7.4 targeting murine syndecan-1 (SDC1) coupled to the α-emitter radionuclide astatine-211 (211At-9E7.4). METHODS We orthotopically transplanted 50,000 GL261 cells of murine GB into the right striatum of syngeneic female C57BL/6JRj mice using stereotaxis. After MRI validation of tumour presence at day 11, TAT was injected at the same coordinates. Biodistribution, efficacy, toxicity, local and systemic responses were assessed following application of this protocol. The 9E7.4 monoclonal antibody was labelled with iodine-125 (125I) for biodistribution and with astatine-211 (211At) for the other experiments. FINDINGS The 211At-9E7.4 TAT demonstrated robust efficacy in reducing orthotopic tumours and achieved improved survival rates in the C57BL/6JRj model, reaching up to 70% with a minimal activity of 100 kBq. Targeting SDC1 ensured the cerebral retention of 211At over an optimal time window, enabling low-activity administration with a minimal toxicity profile. Moreover, TAT substantially reduced the occurrence of secondary tumours and provided resistance to new tumour development after contralateral rechallenge, mediated through the activation of central and effector memory T cells. INTERPRETATION The locoregional 211At-9E7.4 TAT stands as one of the most efficient TAT across all preclinical GB models. This study validates SDC1 as a pertinent therapeutic target for GB and underscores 211At-9E7.4 TAT as a promising advancement to improve the treatment and quality of life for patients with GB. FUNDING This work was funded by the French National Agency for Research (ANR) "France 2030 Investment Plan" Labex Iron [ANR-11-LABX-18-01], The SIRIC ILIAD [INCa-DGOS-INSERM-18011], the French program "Infrastructure d'Avenir en Biologie-Santé" (France Life Imaging) [ANR-11-INBS-0006], the PIA3 of the ANR, integrated to the "France 2030 Investment Plan" [ANR-21-RHUS-0012], and support from Inviscan SAS (Strasbourg, France). It was also related to: the ANR under the frame of EuroNanoMed III (project GLIOSILK) [ANR-19-ENM3-0003-01]; the "Région Pays-de-la-Loire" under the frame of the Target'In project; the "Ligue Nationale contre le Cancer" and the "Comité Départemental de Maine-et-Loire de la Ligue contre le Cancer" (CD49) under the frame of the FusTarG project and the "Tumour targeting, imaging and radio-therapies network" of the "Cancéropôle Grand-Ouest" (France). This work was also funded by the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Nantes, and the University of Angers.
Collapse
Affiliation(s)
- Loris Roncali
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Séverine Marionneau-Lambot
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CHU Nantes, Nantes Université, Service de médecine nucléaire, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Charlotte Roy
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France
| | - Romain Eychenne
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; GIP ARRONAX, F-44160, Saint-Herblain, France
| | - Sébastien Gouard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Sylvie Avril
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France
| | - Nicolas Chouin
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; ONIRIS, F-44000, Nantes, France
| | - Jérémie Riou
- CHU Angers, Université d'Angers, F-49000, Angers, France
| | - Mathilde Allard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - Audrey Rousseau
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; CHU Angers, Université d'Angers, F-49000, Angers, France
| | - François Guérard
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France
| | - François Hindré
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France
| | - Michel Chérel
- Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; CIMA (Centre d'Imagerie Multimodale Appliquée), Nantes Université, INSERM, CNRS, CRCI(2)NA, F-44000, Nantes, France; Institut de Cancérologie de l'Ouest, Service de médecine nucléaire, F-44160, Saint-Herblain, France.
| | - Emmanuel Garcion
- Université d'Angers, INSERM, CNRS, CRCI(2)NA, F-49000, Angers, France; PRIMEX (Plateforme de Radiobiologie et d'Imageries Expérimentales), Université d'Angers, SFR 4208, F-49000, Angers, France; PACEM (Plateforme d'Analyse Cellulaire et Moléculaire), Université d'Angers, SFR 4208, F-49000, Angers, France.
| |
Collapse
|
21
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
ter Linden E, Abels ER, van Solinge TS, Neefjes J, Broekman MLD. Overcoming Barriers in Glioblastoma-Advances in Drug Delivery Strategies. Cells 2024; 13:998. [PMID: 38920629 PMCID: PMC11201826 DOI: 10.3390/cells13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.
Collapse
Affiliation(s)
- Esther ter Linden
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Erik R. Abels
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Thomas S. van Solinge
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Marike L. D. Broekman
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| |
Collapse
|
23
|
Wang Y, Tian J, Liu D, Li T, Mao Y, Zhu C. Microglia in radiation-induced brain injury: Cellular and molecular mechanisms and therapeutic potential. CNS Neurosci Ther 2024; 30:e14794. [PMID: 38867379 PMCID: PMC11168970 DOI: 10.1111/cns.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain, play a critical role in initiating and progressing the injury. This review aimed to summarize the latest advances in the cellular and molecular mechanisms and the therapeutic potential of microglia in radiation-induced brain injury. METHODS This article critically examines recent developments in understanding the role of microglia activation in radiation-induced brain injury. It elucidates associated mechanisms and explores novel research pathways and therapeutic options for managing this condition. RESULTS Post-irradiation, activated microglia release numerous inflammatory factors, exacerbating neuroinflammation and facilitating the onset and progression of radiation-induced damage. Therefore, controlling microglial activation and suppressing the secretion of related inflammatory factors is crucial for preventing radiation-induced brain injury. While microglial activation is a primary factor in neuroinflammation, the precise mechanisms by which radiation prompts this activation remain elusive. Multiple signaling pathways likely contribute to microglial activation and the progression of radiation-induced brain injury. CONCLUSIONS The intricate microenvironment and molecular mechanisms associated with radiation-induced brain injury underscore the crucial roles of immune cells in its onset and progression. By investigating the interplay among microglia, neurons, astrocytes, and peripheral immune cells, potential strategies emerge to mitigate microglial activation, reduce the release of inflammatory agents, and impede the entry of peripheral immune cells into the brain.
Collapse
Affiliation(s)
- Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Jiayu Tian
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Dandan Liu
- Department of Electrocardiogram, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Tao Li
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Department of PediatricsHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Yanna Mao
- Department of Hematology and Oncology, Children's Hospital Affiliated to Zhengzhou UniversityHenan Children's Hospital Zhengzhou Children's HospitalZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Department of PediatricsInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityKangfuqian Street 7Zhengzhou450052None SelectedChina
- Center for Brain Repair and Rehabilitation, Department of Clinical NeuroscienceInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgMedicinaregtan 11Göteborg40530Sweden
| |
Collapse
|
24
|
Abdelrahman Z, Abdelatty A, Luo J, McKnight AJ, Wang X. Stratification of glioma based on stemness scores in bulk and single-cell transcriptomes. Comput Biol Med 2024; 175:108304. [PMID: 38663352 DOI: 10.1016/j.compbiomed.2024.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 05/15/2024]
Abstract
BACKGROUND Brain tumours are known to have a high mortality and morbidity rate due to their localised and frequent invasive growth. The concept that glioma resistance could originate from the dissimilarity in the vulnerability of clonogenic glial stem cells to chemotherapeutic drugs and radiation has driven the scientific community to reexamine the comprehension of glioma growth and strategies that target these cells or modify their stemness. METHODS Based on the enrichment scores of 12 stemness signatures, we identified glioma subtypes in both tumour bulks and single cells by clustering analysis. Furthermore, we comprehensively compared molecular and clinical features among the glioma subtypes. RESULTS Consistently, in seven different datasets, hierarchical clustering uncovered three subtypes of glioma, termed Stem-H, Stem-M, and Stem-L, with high, medium, and low stemness signatures, respectively. Stem-H and Stem-L exhibited the most unfavorable and favourable overall and disease-free survival, respectively. Stem-H showed the highest enrichment scores of the EMT, invasion, proliferation, differentiation, and metastasis processes signatures, while Stem-L displayed the lowest. Stem-H harboured a greater proportion of late-stage tumours compared to Stem-L. Moreover, Stem-H manifested higher tumour mutation burden, DNA damage repair and cell cycle activity, intratumour heterogeneity, and a more frequent incidence of TP53 and EGFR mutations than Stem-L. In contrast, Stem-L had higher O6-Methylguanine-DNA Methyltransferase (MGMT) methylation levels. CONCLUSION The classification of glioma based on stemness may offer new insights into the biology of the tumour, as well as more accurate clinical management of the disease.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
| | - Alaa Abdelatty
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
25
|
Green GBH, Cox-Holmes AN, Backan O, Valbak O, Potier ACE, Chen D, Morrow CD, Willey CD, McFarland BC. Exploring Gut Microbiota Alterations with Trimethoprim-Sulfamethoxazole and Dexamethasone in a Humanized Microbiome Mouse Model. Microorganisms 2024; 12:1015. [PMID: 38792844 PMCID: PMC11124107 DOI: 10.3390/microorganisms12051015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Along with the standard therapies for glioblastoma, patients are commonly prescribed trimethoprim-sulfamethoxazole (TMP-SMX) and dexamethasone for preventing infections and reducing cerebral edema, respectively. Because the gut microbiota impacts the efficacy of cancer therapies, it is important to understand how these medications impact the gut microbiota of patients. Using mice that have been colonized with human microbiota, this study sought to examine how TMP-SMX and dexamethasone affect the gut microbiome. Two lines of humanized microbiota (HuM) Rag1-/- mice, HuM1Rag and HuM2Rag, were treated with either TMP-SMX or dexamethasone via oral gavage once a day for a week. Fecal samples were collected pre-treatment (pre-txt), one week after treatment initiation (1 wk post txt), and three weeks post-treatment (3 wk post txt), and bacterial DNA was analyzed using 16S rRNA-sequencing. The HuM1Rag mice treated with TMP-SMX had significant shifts in alpha diversity, beta diversity, and functional pathways at all time points, whereas in the HuM2Rag mice, it resulted in minimal changes in the microbiome. Likewise, dexamethasone treatment resulted in significant changes in the microbiome of the HuM1Rag mice, whereas the microbiome of the HuM2Rag mice was mostly unaffected. The results of our study show that routine medications used during glioblastoma treatment can perturb gut microbiota, with some microbiome compositions being more sensitive than others, and these treatments could potentially affect the overall efficacy of standard-of-care therapy.
Collapse
Affiliation(s)
- George B. H. Green
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Alexis N. Cox-Holmes
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Olivia Backan
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Olivia Valbak
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | - Anna Claire E. Potier
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
- Undergraduate Cancer Biology Program, Birmingham, AL 35294, USA
| | | | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| | - Christopher D. Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Ho YK, Woo JY, Loke KM, Deng LW, Too HP. Enhanced anti-tumor efficacy with multi-transgene armed mesenchymal stem cells for treating peritoneal carcinomatosis. J Transl Med 2024; 22:463. [PMID: 38750559 PMCID: PMC11097589 DOI: 10.1186/s12967-024-05278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have garnered significant interest for their tumor-tropic property, making them potential therapeutic delivery vehicles for cancer treatment. We have previously shown the significant anti-tumour activity in mice preclinical models and companion animals with naturally occurring cancers using non-virally engineered MSCs with a therapeutic transgene encoding cytosine deaminase and uracil phosphoribosyl transferase (CDUPRT) and green fluorescent protein (GFP). Clinical studies have shown improved response rate with combinatorial treatment of 5-fluorouracil and Interferon-beta (IFNb) in peritoneal carcinomatosis (PC). However, high systemic toxicities have limited the clinical use of such a regime. METHODS In this study, we evaluated the feasibility of intraperitoneal administration of non-virally engineered MSCs to co-deliver CDUPRT/5-Flucytosine prodrug system and IFNb to potentially enhance the cGAS-STING signalling axis. Here, MSCs were engineered to express CDUPRT or CDUPRT-IFNb. Expression of CDUPRT and IFNb was confirmed by flow cytometry and ELISA, respectively. The anti-cancer efficacy of the engineered MSCs was evaluated in both in vitro and in vivo model. ES2, HT-29 and Colo-205 were cocultured with engineered MSCs at various ratio. The cell viability with or without 5-flucytosine was measured with MTS assay. To further compare the anti-cancer efficacy of the engineered MSCs, peritoneal carcinomatosis mouse model was established by intraperitoneal injection of luciferase expressing ES2 stable cells. The tumour burden was measured through bioluminescence tracking. RESULTS Firstly, there was no changes in phenotypes of MSCs despite high expression of the transgene encoding CDUPRT and IFNb (CDUPRT-IFNb). Transwell migration assays and in-vivo tracking suggested the co-expression of multiple transgenes did not impact migratory capability of the MSCs. The superiority of CDUPRT-IFNb over CDUPRT expressing MSCs was demonstrated in ES2, HT-29 and Colo-205 in-vitro. Similar observations were observed in an intraperitoneal ES2 ovarian cancer xenograft model. The growth of tumor mass was inhibited by ~ 90% and 46% in the mice treated with MSCs expressing CDUPRT-IFNb or CDUPRT, respectively. CONCLUSIONS Taken together, these results established the effectiveness of MSCs co-expressing CDUPRT and IFNb in controlling and targeting PC growth. This study lay the foundation for the development of clinical trial using multigene-armed MSCs for PC.
Collapse
Affiliation(s)
- Yoon Khei Ho
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- AGeM Bio, Singapore, 119276, Singapore.
- Singapore Innovate, Singapore, 059911, Singapore.
| | - Jun Yung Woo
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kin Man Loke
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Wang XW, Fu H, Zhang YM. HIF-1α facilitates glioma proliferation and invasion by activating pyroptosis signaling axis. Chin Neurosurg J 2024; 10:14. [PMID: 38734702 PMCID: PMC11088077 DOI: 10.1186/s41016-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND HIF-1α is thought to be a novel regulator which contributes to carcinogenesis. However, the mechanism underlying the effect of HIF-1α in gliomas remains largely unknown. METHODS In the research, we demonstrate that HIF-lα mRNA and protein levels are elevated in glioma cells. The colony formation assays, transwell assays, and wound-healing assays showed that overexpression of HIF-1α promoted proliferation and invasion of glioma cells. RESULTS Overexpression of HIF-lα also increased the expression of inflammatory factors related to pyrolysis (TNF-α, IL-10, and IL-1β) and protein related to pyrolysis signal pathway (NLRP3, ASC, caspase-1, GSDMD, and GSDME). CONCLUSIONS Therefore, we speculate that HIF-1α promotes the proliferation and invasion of glial cells by regulating pyrolysis pathway. These results might provide a novel strategy and target for treatment of glioma.
Collapse
Affiliation(s)
- Xin-Wei Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300142, China
| | - Hao Fu
- Department of General Medicine, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Ya-Min Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300142, China.
| |
Collapse
|
28
|
Lin X, Gao W, Huang C, Wu M, She X. Causal relationship between inflammatory proteins and glioblastoma: a two-sample bi‑directional mendelian randomization study. Front Genet 2024; 15:1391921. [PMID: 38784036 PMCID: PMC11111920 DOI: 10.3389/fgene.2024.1391921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Background: Observational studies have indicated a potential correlation between glioblastoma and circulating inflammatory proteins. Further investigation is required to establish a causal relationship between these two factors. Methods: We performed a Mendelian randomization (MR) analysis using genome-wide association study (GWAS) summary of 91 circulating inflammation-related proteins (N = 14,824) to assess their causal impact on glioblastoma. The GWAS summary data for glioblastoma included 243 cases and 287,137 controls. The inverse variance weighted (IVW) method was used as the primary analytical method to assess causality. Four additional MR methods [simple mode, MR-Egger, weighted median, and weighted mode] were used to supplement the IVW results. Furthermore, several sensitivity analyses were performed to assess heterogeneity, horizontal pleiotropy, and stability. Reverse MR analysis was also performed. glioblastoma transcriptomic data from The Cancer Genome Atlas (TCGA) were analyzed to validate the findings obtained through MR, while pathway and functional enrichment analyses were conducted to predict the potential underlying mechanisms. Results: Our findings from employing the inverse variance weighted method in our forward MR analysis provide robust evidence supporting a potential association between glioblastoma and elevated levels of Cystatin D, as well as decreased levels of fibroblast growth factor 21 (FGF21) in the circulation. Moreover, our reverse MR analysis revealed that glioblastoma may contribute to increased concentrations of C-X-C motif chemokine 9 (CXCL9) and Interleukin-33 (IL-33) in the bloodstream. Transcriptomic analysis showed that FGF21 expression was inversely associated with the risk of developing glioblastoma, whereas an increased risk was linked to elevated levels of CXCL9 and IL-33. Pathway and functional enrichment analyses suggested that Cystatin D might exert its effects on glioblastoma through intracellular protein transport, whereas FGF21 might affect glioblastoma via glucose response mechanisms. Conclusion: These results indicate that FGF21 is a significant factor in glioblastoma susceptibility. Glioblastoma also affects the expression of inflammatory proteins such as C-X-C motif chemokine 9 and Interleukin-33, providing new insights into the mechanisms of glioblastoma genesis and clinical research.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Huang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
29
|
Ling G, Guo T, Guo F, Piao H. Effectiveness and Safety of Ultra-low-dose Fluorescein Sodium-Guided Resection of Malignant Glioma. World Neurosurg 2024; 185:e774-e785. [PMID: 38432505 DOI: 10.1016/j.wneu.2024.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND This study analyzed the effectiveness and safety of ultra-low dose fluorescein sodium (FL)-guided malignant glioma resection and its potential to predict the pathological characteristics of glioma. METHODS Sixty patients who underwent FL-guided glioma resection were randomly divided into test (1 mg/kg) and control (5 mg/kg) groups. A retrospective analysis included 30 patients with gliomas who did not undergo FL-guided surgery; these patients were included as a blank control group. Surgical outcomes, Karnofsky performance scores (KPS), and progression-free survival (PFS) at 6 months postoperatively were compared between the 3 groups. The sensitivity and specificity of FL and the relationship between the intensity of FL and Glial fibrillary acidic protein (GFAP) or Ki-67 expression were compared. RESULTS The total tumor resection rates in the test, control, and blank control groups were 90% (27/30), 86.7% (26/30), and 60% (18/30), respectively. There were significant differences (P < 0.05) in the extent of resection, KPS, and PFS at 6 months after surgery between the test and control groups and the blank control group; however, no significant differences (P > 0.05) were observed between the test and control groups. The intensity of FL and the Ki67 positivity rate (P < 0.05) were directly proportional, but this relationship was not observed with GFAP. CONCLUSIONS Ultra-low-dose FL-guided resection of malignant gliomas is safe and effective. The Ki67 positivity rate was directly proportional to the intensity of FL, indicating its potential to predict gliomas during pathological examination.
Collapse
Affiliation(s)
- Guoyuan Ling
- Graduate School, Dalian Medical University, Liaoning Province, China; Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tangjun Guo
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
| |
Collapse
|
30
|
Handl V, Waldherr L, Arbring Sjöström T, Abrahamsson T, Seitanidou M, Erschen S, Gorischek A, Bernacka-Wojcik I, Saarela H, Tomin T, Honeder SE, Distl J, Huber W, Asslaber M, Birner-Grünberger R, Schäfer U, Berggren M, Schindl R, Patz S, Simon DT, Ghaffari-Tabrizi-Wizsy N. Continuous iontronic chemotherapy reduces brain tumor growth in embryonic avian in vivo models. J Control Release 2024; 369:668-683. [PMID: 38548064 DOI: 10.1016/j.jconrel.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Local and long-lasting administration of potent chemotherapeutics is a promising therapeutic intervention to increase the efficiency of chemotherapy of hard-to-treat tumors such as the most lethal brain tumors, glioblastomas (GBM). However, despite high toxicity for GBM cells, potent chemotherapeutics such as gemcitabine (Gem) cannot be widely implemented as they do not efficiently cross the blood brain barrier (BBB). As an alternative method for continuous administration of Gem, we here operate freestanding iontronic pumps - "GemIPs" - equipped with a custom-synthesized ion exchange membrane (IEM) to treat a GBM tumor in an avian embryonic in vivo system. We compare GemIP treatment effects with a topical metronomic treatment and observe that a remarkable growth inhibition was only achieved with steady dosing via GemIPs. Daily topical drug administration (at the maximum dosage that was not lethal for the embryonic host organism) did not decrease tumor sizes, while both treatment regimes caused S-phase cell cycle arrest and apoptosis. We hypothesize that the pharmacodynamic effects generate different intratumoral drug concentration profiles for each technique, which causes this difference in outcome. We created a digital model of the experiment, which proposes a fast decay in the local drug concentration for the topical daily treatment, but a long-lasting high local concentration of Gem close to the tumor area with GemIPs. Continuous chemotherapy with iontronic devices opens new possibilities in cancer treatment: the long-lasting and highly local dosing of clinically available, potent chemotherapeutics to greatly enhance treatment efficiency without systemic side-effects. SIGNIFICANCE STATEMENT: Iontronic pumps (GemIPs) provide continuous and localized administration of the chemotherapeutic gemcitabine (Gem) for treating glioblastoma in vivo. By generating high and constant drug concentrations near the vascularized growing tumor, GemIPs offer an efficient and less harmful alternative to systemic administration. Continuous GemIP dosing resulted in remarkable growth inhibition, superior to daily topical Gem application at higher doses. Our digital modelling shows the advantages of iontronic chemotherapy in overcoming limitations of burst release and transient concentration profiles, and providing precise control over dosing profiles and local distribution. This technology holds promise for future implants, could revolutionize treatment strategies, and offers a new platform for studying the influence of timing and dosing dependencies of already-established drugs in the fight against hard-to-treat tumors.
Collapse
Affiliation(s)
- Verena Handl
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Linda Waldherr
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, Austria, Auenbruggerplatz 30, 8036 Graz, Austria
| | - Theresia Arbring Sjöström
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Maria Seitanidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Sabine Erschen
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Astrid Gorischek
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Iwona Bernacka-Wojcik
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Helena Saarela
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
| | - Sophie Elisabeth Honeder
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Joachim Distl
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Waltraud Huber
- Otto Loewi Research Center, Division of Immunology, Research Unit CAM Lab, Medical University of Graz, 8010 Graz, Austria
| | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Ruth Birner-Grünberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Ute Schäfer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8010 Graz, Austria
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Rainer Schindl
- Gottfried Schatz Research Center - Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, Austria, Auenbruggerplatz 30, 8036 Graz, Austria.
| | - Silke Patz
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, 8010 Graz, Austria.
| | - Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden.
| | - Nassim Ghaffari-Tabrizi-Wizsy
- Otto Loewi Research Center, Division of Immunology, Research Unit CAM Lab, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
31
|
Valerius AR, Webb LM, Sener U. Novel Clinical Trials and Approaches in the Management of Glioblastoma. Curr Oncol Rep 2024; 26:439-465. [PMID: 38546941 DOI: 10.1007/s11912-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss a wide variety of novel therapies recently studied or actively undergoing study in patients with glioblastoma. This review also discusses current and future strategies for improving clinical trial design in patients with glioblastoma to maximize efficacy in discovering effective treatments. RECENT FINDINGS Over the years, there has been significant expansion in therapy modalities studied in patients with glioblastoma. These therapies include, but are not limited to, targeted molecular therapies, DNA repair pathway targeted therapies, immunotherapies, vaccine therapies, and surgically targeted radiotherapies. Glioblastoma is the most common malignant primary brain tumor in adults and unfortunately remains with poor overall survival following the current standard of care. Given the dismal prognosis, significant clinical and research efforts are ongoing with the goal of improving patient outcomes and enhancing quality and quantity of life utilizing a wide variety of novel therapies.
Collapse
Affiliation(s)
| | - Lauren M Webb
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Yue Q, Wang Z, Shen Y, Lan Y, Zhong X, Luo X, Yang T, Zhang M, Zuo B, Zeng T, Lu J, Wang Y, Liu B, Guo H. Histone H3K9 Lactylation Confers Temozolomide Resistance in Glioblastoma via LUC7L2-Mediated MLH1 Intron Retention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309290. [PMID: 38477507 PMCID: PMC11109612 DOI: 10.1002/advs.202309290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Indexed: 03/14/2024]
Abstract
Temozolomide (TMZ) resistance remains the major obstacle in the treatment of glioblastoma (GBM). Lactylation is a novel post-translational modification that is involved in various tumors. However, whether lactylation plays a role in GBM TMZ resistance remains unclear. Here it is found that histone H3K9 lactylation (H3K9la) confers TMZ resistance in GBM via LUC7L2-mediated intron 7 retention of MLH1. Mechanistically, lactylation is upregulated in recurrent GBM tissues and TMZ-resistant cells, and is mainly concentrated in histone H3K9. Combined multi-omics analysis, including CUT&Tag, SLAM-seq, and RNA-seq, reveals that H3K9 lactylation is significantly enriched in the LUC7L2 promoter and activates LUC7L2 transcription to promote its expression. LUC7L2 mediates intron 7 retention of MLH1 to reduce MLH1 expression, and thereby inhibit mismatch repair (MMR), ultimately leading to GBM TMZ resistance. Of note, it is identified that a clinical anti-epileptic drug, stiripentol, which can cross the blood-brain barrier and inhibit lactate dehydrogenase A/B (LDHA/B) activity, acts as a lactylation inhibitor and renders GBM cells more sensitive to TMZ in vitro and in vivo. These findings not only shed light on the mechanism of lactylation in GBM TMZ resistance but also provide a potential combined therapeutic strategy for clinical GBM treatment.
Collapse
Affiliation(s)
- Qu Yue
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Zhao Wang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yixiong Shen
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yufei Lan
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Xiangyang Zhong
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Xin Luo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Tao Yang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Manqing Zhang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Boming Zuo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Tianci Zeng
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Jiankun Lu
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Yuankai Wang
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Boyang Liu
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| | - Hongbo Guo
- Department of Neurosurgery CenterThe National Key Clinical SpecialtyThe Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular DiseaseGuangdong Provincial Key Laboratory on Brain Function Repair and RegenerationThe Neurosurgery Institute of Guangdong ProvinceZhujiang HospitalSouthern Medical UniversityGuangzhou510282China
| |
Collapse
|
33
|
Kim J, Choi H, Jeun SS, Ahn S. From lymphopenia to restoration: IL-7 immunotherapy for lymphocyte recovery in glioblastoma. Cancer Lett 2024; 588:216714. [PMID: 38369003 DOI: 10.1016/j.canlet.2024.216714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Glioblastoma, the most prevalent malignant primary brain tumor, presents substantial treatment challenges because of its inherent aggressiveness and limited therapeutic options. Lymphopenia, defined as reduced peripheral blood lymphocyte count, commonly occurs as a consequence of the disease and its treatment. Recent studies have associated lymphopenia with a poor prognosis. Factors that contribute to lymphopenia include radiotherapy, chemotherapy, and the tumor itself. Patients who are female, older, using dexamethasone, or receiving higher doses of radiation therapy are particularly vulnerable to this condition. Several preclinical studies have explored the use of interleukin-7, a crucial cytokine for lymphocyte homeostasis, to restore lymphocyte counts and potentially rebuild the immune system to combat glioblastoma cells. With the development of recombinant interleukin-7 for prolonged activity in the body, various clinical trials are underway to explore this treatment in patients with glioblastoma. Our study provides a comprehensive summary of the incidence of lymphopenia, its potential biological background, and the associated clinical risk factors. Furthermore, we reviewed several clinical trials using IL-7 cytokine therapy in glioblastoma patients. We propose IL-7 as a promising immunotherapeutic strategy for glioblastoma treatment. We are optimistic that our study will enhance understanding of the complex interplay between lymphopenia and glioblastoma and will pave the way for the development of more effective treatment modalities.
Collapse
Affiliation(s)
- Joonseok Kim
- College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Xiong S, Qin B, Liu C, Pan Y. Editorial: Immunosuppression mechanisms and immunotherapy strategies in glioblastoma. Front Cell Neurosci 2024; 18:1411330. [PMID: 38725447 PMCID: PMC11080981 DOI: 10.3389/fncel.2024.1411330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Sihan Xiong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bing Qin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuang Liu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Kappel AD, Jha R, Guggilapu S, Smith WJ, Feroze AH, Dmytriw AA, Vicenty-Padilla J, Alcedo Guardia RE, Gessler FA, Patel NJ, Du R, See AP, Peruzzi PP, Aziz-Sultan MA, Bernstock JD. Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era. Cancers (Basel) 2024; 16:1594. [PMID: 38672676 PMCID: PMC11049132 DOI: 10.3390/cancers16081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
High-grade gliomas (HGGs) have a poor prognosis and are difficult to treat. This review examines the evolving landscape of endovascular therapies for HGGs. Recent advances in endovascular catheter technology and delivery methods allow for super-selective intra-arterial cerebral infusion (SSIACI) with increasing precision. This treatment modality may offer the ability to deliver anti-tumoral therapies directly to tumor regions while minimizing systemic toxicity. However, challenges persist, including blood-brain barrier (BBB) penetration, hemodynamic complexities, and drug-tumor residence time. Innovative adjunct techniques, such as focused ultrasound (FUS) and hyperosmotic disruption, may facilitate BBB disruption and enhance drug penetration. However, hemodynamic factors that limit drug residence time remain a limitation. Expanding therapeutic options beyond chemotherapy, including radiotherapy and immunobiologics, may motivate future investigations. While preclinical and clinical studies demonstrate moderate efficacy, larger randomized trials are needed to validate the clinical benefits. Additionally, future directions may involve endovascular sampling for peri-tumoral surveillance; changes in drug formulations to prolong residence time; and the exploration of non-pharmaceutical therapies, like radioembolization and photodynamic therapy. Endovascular strategies hold immense potential in reshaping HGG treatment paradigms, offering targeted and minimally invasive approaches. However, overcoming technical challenges and validating clinical efficacy remain paramount for translating these advancements into clinical care.
Collapse
Affiliation(s)
- Ari D. Kappel
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
| | - Saibaba Guggilapu
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
| | - William J. Smith
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Abdullah H. Feroze
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Adam A. Dmytriw
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Juan Vicenty-Padilla
- Neurosurgery Section, School of Medicine University of Puerto Rico, Medical Sciences Campus, San Juan P.O. Box 365067, Puerto Rico (R.E.A.G.)
| | - Rodolfo E. Alcedo Guardia
- Neurosurgery Section, School of Medicine University of Puerto Rico, Medical Sciences Campus, San Juan P.O. Box 365067, Puerto Rico (R.E.A.G.)
| | - Florian A. Gessler
- Department of Neurosurgery, Rostock University Hospital, 18057 Rostock, Germany
| | - Nirav J. Patel
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rose Du
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Alfred P. See
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Pier Paolo Peruzzi
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Mohammad A. Aziz-Sultan
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
36
|
Stummer W, Müther M, Spille D. Beyond fluorescence-guided resection: 5-ALA-based glioblastoma therapies. Acta Neurochir (Wien) 2024; 166:163. [PMID: 38563988 PMCID: PMC10987337 DOI: 10.1007/s00701-024-06049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma is the most common primary malignant brain tumor. Despite advances in multimodal concepts over the last decades, prognosis remains poor. Treatment of patients with glioblastoma remains a considerable challenge due to the infiltrative nature of the tumor, rapid growth rates, and tumor heterogeneity. Standard therapy consists of maximally safe microsurgical resection followed by adjuvant radio- and chemotherapy with temozolomide. In recent years, local therapies have been extensively investigated in experimental as well as translational levels. External stimuli-responsive therapies such as Photodynamic Therapy (PDT), Sonodynamic Therapy (SDT) and Radiodynamic Therapy (RDT) can induce cell death mechanisms via generation of reactive oxygen species (ROS) after administration of five-aminolevulinic acid (5-ALA), which induces the formation of sensitizing porphyrins within tumor tissue. Preliminary data from clinical trials are available. The aim of this review is to summarize the status of such therapeutic approaches as an adjunct to current standard therapy in glioblastoma.
Collapse
Affiliation(s)
- Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Michael Müther
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Dorothee Spille
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| |
Collapse
|
37
|
Pruis IJ, van Doormaal PJ, Balvers RK, van den Bent MJ, Harteveld AA, de Jong LC, Konijnenberg MW, Segbers M, Valkema R, Verburg FA, Smits M, Veldhuijzen van Zanten SEM. Potential of PSMA-targeting radioligand therapy for malignant primary and secondary brain tumours using super-selective intra-arterial administration: a single centre, open label, non-randomised prospective imaging study. EBioMedicine 2024; 102:105068. [PMID: 38518652 PMCID: PMC10981001 DOI: 10.1016/j.ebiom.2024.105068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND The aim of this study was to provide quantitative evidence for the potential of PSMA-targeting radioligand therapy (RLT) as treatment approach for malignant brain tumours, and to explore whether tumour uptake could be enhanced by super-selective intra-arterial (ssIA)-administration. METHODS Ten patients (n = 5 high-grade glioma, n = 5 brain metastasis) received 1.5 MBq/kg [68Ga]Ga-PSMA-11 intravenously and, within 7 days, intra-arterially (i.e., selectively in tumour-feeding arteries), followed twice by PET-MRI at 90, 165 and 240 min post-injection. Patient safety was monitored for each procedure. Standardised uptake values (SUVs) were obtained for tumour, healthy-brain, salivary glands and liver. Tumour-to-salivary-gland (T/SG) and tumour-to-liver (T/L) uptake-ratios were calculated. FINDINGS No adverse events requiring study termination occurred. All patients showed uptake of [68Ga]Ga-PSMA-11 at the tumour site. Uptake was a median 15-fold higher following ssIA-administration (SUVmax median: 142.8, IQR: 102.8-245.9) compared to IV-administration (10.5, IQR:7.5-13.0). According to the bootstrap analysis, mean SUVmax after ssIA (168.8, 95% CI: 110.6-227.0) was well beyond the 95% confidence-interval of IV administration (10.5, 95% CI: 8.4-12.7). Uptake in healthy-brain was negligible, independent of administration route (SUVmean <0.1-0.1). Off-target uptake was comparable, resulting in more favourable T/SG- and T/L-ratios of 8.4 (IQR: 4.4-11.5) and 26.5 (IQR: 14.0-46.4) following ssIA, versus 0.5 (IQR: 0.4-0.7) and 1.8 (IQR: 1.0-2.7) for IV-administration. INTERPRETATION ssIA-administration is safe and leads to a median fifteen-fold higher radioligand uptake at the tumour site, therewith qualifying more patients for treatment and enhancing the potential of therapy. These results open new avenues for the development of effective RLT-based treatment strategies for patients with brain tumours. FUNDING Semmy Foundation.
Collapse
Affiliation(s)
- Ilanah J Pruis
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Pieter Jan van Doormaal
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Rutger K Balvers
- Brain Tumour Centre, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; Department of Neurosurgery, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Martin J van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Anita A Harteveld
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Linda C de Jong
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Mark W Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Marcel Segbers
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Roelf Valkema
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Frederik A Verburg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; Medical Delta, Delft, Huismansingel 4, 2629 JH, Delft, the Netherlands
| | - Sophie E M Veldhuijzen van Zanten
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| |
Collapse
|
38
|
Lohmeier J, Radbruch H, Brenner W, Hamm B, Hansen B, Tietze A, Makowski MR. Detection of recurrent high-grade glioma using microstructure characteristics of distinct metabolic compartments in a multimodal and integrative 18F-FET PET/fast-DKI approach. Eur Radiol 2024; 34:2487-2499. [PMID: 37672058 PMCID: PMC10957712 DOI: 10.1007/s00330-023-10141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVES Differentiation between high-grade glioma (HGG) and post-treatment-related effects (PTRE) is challenging, but advanced imaging techniques were shown to provide benefit. We aim to investigate microstructure characteristics of metabolic compartments identified from amino acid PET and to evaluate the diagnostic potential of this multimodal and integrative O-(2-18F-fluoroethyl)-L-tyrosine-(FET)-PET and fast diffusion kurtosis imaging (DKI) approach for the detection of recurrence and IDH genotyping. METHODS Fifty-nine participants with neuropathologically confirmed recurrent HGG (n = 39) or PTRE (n = 20) were investigated using static 18F-FET PET and a fast-DKI variant. PET and advanced diffusion metrics of metabolically defined (80-100% and 60-75% areas of 18F-FET uptake) compartments were assessed. Comparative analysis was performed using Mann-Whitney U tests with Holm-Šídák multiple-comparison test and Wilcoxon signed-rank test. Receiver operating characteristic (ROC) curves, regression, and Spearman's correlation analysis were used for statistical evaluations. RESULTS Compared to PTRE, recurrent HGG presented increased 18F-FET uptake and diffusivity (MD60), but lower (relative) mean kurtosis tensor (rMKT60) and fractional anisotropy (FA60) (respectively p < .05). Diffusion metrics determined from the metabolic periphery showed improved diagnostic performance - most pronounced for FA60 (AUC = 0.86, p < .001), which presented similar benefit to 18F-FET PET (AUC = 0.86, p < .001) and was negatively correlated with amino acid uptake (rs = - 0.46, p < .001). When PET and DKI metrics were evaluated in a multimodal biparametric approach, TBRmax + FA60 showed highest diagnostic accuracy (AUC = 0.93, p < .001), which improved the detection of relapse compared to PET alone (difference in AUC = 0.069, p = .04). FA60 and MD60 distinguished the IDH genotype in the post-treatment setting. CONCLUSION Detection of glioma recurrence benefits from a multimodal and integrative PET/DKI approach, which presented significant diagnostic advantage to the assessment based on PET alone. CLINICAL RELEVANCE STATEMENT A multimodal and integrative 18F-FET PET/fast-DKI approach for the non-invasive microstructural characterization of metabolic compartments provided improved diagnostic capability for differentiation between recurrent glioma and post-treatment-related changes, suggesting a role for the diagnostic workup of patients in post-treatment settings. KEY POINTS • Multimodal PET/MRI with integrative analysis of 18F-FET PET and fast-DKI presents clinical benefit for the assessment of CNS cancer, particularly for the detection of recurrent high-grade glioma. • Microstructure markers of the metabolic periphery yielded biologically pertinent estimates characterising the tumour microenvironment, and, thereby, presented improved diagnostic accuracy with similar accuracy to amino acid PET. • Combined 18F-FET PET/fast-DKI achieved the best diagnostic performance for detection of high-grade glioma relapse with significant benefit to the assessment based on PET alone.
Collapse
Affiliation(s)
- Johannes Lohmeier
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, 8000, Aarhus C, Denmark
| | - Anna Tietze
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Technical University Munich, Ismaninger Str. 22, 81675, München, Germany
| |
Collapse
|
39
|
Wang H, Argenziano MG, Yoon H, Boyett D, Save A, Petridis P, Savage W, Jackson P, Hawkins-Daarud A, Tran N, Hu L, Al Dalahmah O, Bruce JN, Grinband J, Swanson KR, Canoll P, Li J. Biologically-informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post-treatment glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-3891425. [PMID: 38585856 PMCID: PMC10996806 DOI: 10.21203/rs.3.rs-3891425/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of glioblastoma (GBM). This heterogeneity is further exacerbated during GBM recurrence, as treatment-induced reactive changes produce additional intratumoral heterogeneity that is ambiguous to differentiate on clinical imaging. There is an urgent need to develop non-invasive approaches to map the heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We propose to predictively fuse Magnetic Resonance Imaging (MRI) with the underlying intratumoral heterogeneity in recurrent GBM using machine learning (ML) by leveraging image-localized biopsies with their associated locoregional MRI features. To this end, we develop BioNet, a biologically-informed neural network model, to predict regional distributions of three tissue-specific gene modules: proliferating tumor, reactive/inflammatory cells, and infiltrated brain tissue. BioNet offers valuable insights into the integration of multiple implicit and qualitative biological domain knowledge, which are challenging to describe in mathematical formulations. BioNet performs significantly better than a range of existing methods on cross-validation and blind test datasets. Voxel-level prediction maps of the gene modules by BioNet help reveal intratumoral heterogeneity, which can improve surgical targeting of confirmatory biopsies and evaluation of neuro-oncological treatment effectiveness. The non-invasive nature of the approach can potentially facilitate regular monitoring of the gene modules over time, and making timely therapeutic adjustment. These results also highlight the emerging role of ML in precision medicine.
Collapse
Affiliation(s)
- Hairong Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyunsoo Yoon
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Akshay Save
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Petros Petridis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - William Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Pamela Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Nhan Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
| | - Leland Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Osama Al Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Grinband
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
40
|
Wu J, Jiao N, Lin D, Li N, Ma T, Tung S, Cheng W, Wu A, Liu L. Dual-Responsive Nanorobot-Based Marsupial Robotic System for Intracranial Cross-Scale Targeting Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306876. [PMID: 37899660 DOI: 10.1002/adma.202306876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Indexed: 10/31/2023]
Abstract
Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported. For primary targeting on macroscale, the continuum robot enters the cranial cavity through a minimally invasive channel (e.g., Ommaya device) in the skull and transports the nanorobots to pathogenic regions. Upon circumventing the blood-brain barrier, the released nanorobots perform secondary targeting on microscale to further enhance the spatial resolution of drug delivery. In vitro experiments against primary glioblastoma cells derived from different patients are conducted for personalized treatment guidance. The operation feasibility within organisms is shown in ex vivo swine brain experiments. The biosafety of the treatment system is suggested in in vivo experiments. Owing to the hierarchical targeting method, the targeting rate, targeting accuracy, and treatment efficacy have improved greatly. The marsupial robotic system offers a novel intracranial local therapeutic strategy and constitutes a key milestone in the development of glioblastoma treatment platforms.
Collapse
Affiliation(s)
- Junfeng Wu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyang Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Arkansas, 72701, USA
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
41
|
Zhou C, Xu H, Luo J. Meningeal lymphatic vasculature, a general target for glioblastoma therapy? FUNDAMENTAL RESEARCH 2024; 4:267-269. [PMID: 38933521 PMCID: PMC11197748 DOI: 10.1016/j.fmre.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma (GBM) causes nearly universal mortality as a result of the failure of conventional therapies including surgical resection, targeted radiation therapy, and chemotherapy. An increasingly important treatment option is combining immunotherapy with other therapies in both preclinical and clinical studies. The central nervous system (CNS) has been historically considered an immune privileged area, but increasing evidence, including the recent rediscovery of meningeal lymphatic vessels (MLVs), has overturned this notion. MLVs are populated by multiple immune cells and connect the CNS to the periphery by draining cerebrospinal fluid with soluble CNS antigens and immune cells into cervical lymph nodes. In the past few years, more and more studies have indicated that MLVs are involved in the regulation of inflammation and the immune response in the pathogenesis of various CNS diseases including GBM. Here, we explore the critical interlinkages between MLVs and GBM therapies including chemotherapy, radiotherapy and immunotherapy, and propose the meningeal lymphatic vasculature as a general target for GBM therapy.
Collapse
Affiliation(s)
| | | | - Jincai Luo
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Lansangan C, Khoobchandani M, Jain R, Rudensky S, Perry CC, Patil R. Designing Gold Nanoparticles for Precise Glioma Treatment: Challenges and Alternatives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1153. [PMID: 38473623 DOI: 10.3390/ma17051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a glioma and the most aggressive type of brain tumor with a dismal average survival time, despite the standard of care. One promising alternative therapy is boron neutron capture therapy (BNCT), which is a noninvasive therapy for treating locally invasive malignant tumors, such as glioma. BNCT involves boron-10 isotope capturing neutrons to form boron-11, which then releases radiation directly into tumor cells with minimal damage to healthy tissues. This therapy lacks clinically approved targeted blood-brain-barrier-permeating delivery vehicles for the central nervous system (CNS) entry of therapeutic boron-10. Gold nanoparticles (GNPs) are selective and effective drug-delivery vehicles because of their desirable properties, facile synthesis, and biocompatibility. This review discusses biomedical/therapeutic applications of GNPs as a drug delivery vehicle, with an emphasis on their potential for carrying therapeutic drugs, imaging agents, and GBM-targeting antibodies/peptides for treating glioma. The constraints of GNP therapeutic efficacy and biosafety are discussed.
Collapse
Affiliation(s)
- Cedric Lansangan
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Menka Khoobchandani
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Ruchit Jain
- Department of Surgery, Government Medical College, Miraj 416410, India
| | - Serge Rudensky
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Christopher C Perry
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| | - Rameshwar Patil
- Division of Cancer Science, Departments of Basic Sciences and Neurosurgery, School of Medicine, Loma Linda University (LLU), 11175 Campus St., Loma Linda, CA 92350, USA
| |
Collapse
|
43
|
Shaha S, Rodrigues D, Mitragotri S. Locoregional drug delivery for cancer therapy: Preclinical progress and clinical translation. J Control Release 2024; 367:737-767. [PMID: 38325716 DOI: 10.1016/j.jconrel.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies. With the improvement in real-time imaging technologies and tools for direct access to tumor lesions, the clinical applicability of locoregional drug delivery is becoming more prominent. Theoretically, locoregional treatments can bypass challenges faced by systemic drug delivery. Preclinically, locoregional delivery of drugs has demonstrated enhanced therapeutic efficacy with limited off-target effects while still yielding an abscopal effect. Clinically, an array of locoregional strategies is under investigation for the delivery of drugs ranging in target and size. Locoregional tumor treatment strategies can be classified into two main categories: 1) direct drug infusion via injection or implanted port and 2) extended drug elution via injected or implanted depot. The number of studies investigating locoregional drug delivery strategies for cancer treatment is rising exponentially, in both preclinical and clinical settings, with some approaches approved for clinical use. Here, we highlight key preclinical advances and the clinical relevance of such locoregional delivery strategies in the treatment of cancer. Furthermore, we critically analyze 949 clinical trials involving locoregional drug delivery and discuss emerging trends.
Collapse
Affiliation(s)
- Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Ballestín A, Armocida D, Ribecco V, Seano G. Peritumoral brain zone in glioblastoma: biological, clinical and mechanical features. Front Immunol 2024; 15:1347877. [PMID: 38487525 PMCID: PMC10937439 DOI: 10.3389/fimmu.2024.1347877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma is a highly aggressive and invasive tumor that affects the central nervous system (CNS). With a five-year survival rate of only 6.9% and a median survival time of eight months, it has the lowest survival rate among CNS tumors. Its treatment consists of surgical resection, subsequent fractionated radiotherapy and concomitant and adjuvant chemotherapy with temozolomide. Despite the implementation of clinical interventions, recurrence is a common occurrence, with over 80% of cases arising at the edge of the resection cavity a few months after treatment. The high recurrence rate and location of glioblastoma indicate the need for a better understanding of the peritumor brain zone (PBZ). In this review, we first describe the main radiological, cellular, molecular and biomechanical tissue features of PBZ; and subsequently, we discuss its current clinical management, potential local therapeutic approaches and future prospects.
Collapse
Affiliation(s)
- Alberto Ballestín
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Daniele Armocida
- Human Neurosciences Department, Neurosurgery Division, Sapienza University, Rome, Italy
| | - Valentino Ribecco
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| | - Giorgio Seano
- Tumor Microenvironment Laboratory, UMR3347 CNRS/U1021 INSERM, Institut Curie, Orsay, France
| |
Collapse
|
45
|
Jiang S, Li W, Yang J, Zhang T, Zhang Y, Xu L, Hu B, Li Z, Gao H, Huang Y, Ruan S. Cathepsin B-Responsive Programmed Brain Targeted Delivery System for Chemo-Immunotherapy Combination Therapy of Glioblastoma. ACS NANO 2024; 18:6445-6462. [PMID: 38358804 DOI: 10.1021/acsnano.3c11958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Tumor-associated macrophages (TAMs) are closely related to the progression of glioblastoma multiform (GBM) and its development of therapeutic resistance to conventional chemotherapy. TAM-targeted therapy combined with conventional chemotherapy has emerged as a promising strategy to combat GBM. However, the presence of the blood-brain barrier (BBB) severely limits the therapeutic efficacy. Meanwhile, the lack of ability to distinguish different targeted cells also poses a challenge for precise therapy. Herein, we propose a cathepsin B (CTSB)-responsive programmed brain-targeted delivery system (D&R-HM-MCA) for simultaneous TAM-targeted and GBM-targeted delivery. D&R-HM-MCA could cross the BBB via low density lipoprotein receptor-associated protein 1 (LRP1)-mediated transcytosis. Upon reaching the GBM site, the outer angiopep-2 modification could be detached from D&R-HM-MCA via cleavage of the CTSB-responsive peptide, which could circumvent abluminal LRP1-mediated efflux. The exposed p-aminophenyl-α-d-mannopyranoside (MAN) modification could further recognize glucose transporter-1 (GLUT1) on GBM and macrophage mannose receptor (MMR) on TAMs. D&R-HM-MCA could achieve chemotherapeutic killing of GBM and simultaneously induce TAM polarization from anti-inflammatory M2 phenotype to pro-inflammatory M1 phenotype, thus resensitizing the chemotherapeutic response and improving anti-GBM immune response. This CTSB-responsive brain-targeted delivery system not only can improve brain delivery efficiency, but also can enable the combination of chemo-immunotherapy against GBM. The effectiveness of this strategy may provide thinking for designing more functional brain-targeted delivery systems and more effective therapeutic regimens.
Collapse
Affiliation(s)
- Shaoping Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenpei Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jun Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tian Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuquan Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Xu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaobo Ruan
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
46
|
de Oliveira KG, Bång-Rudenstam A, Beyer S, Boukredine A, Talbot H, Governa V, Johansson MC, Månsson AS, Forsberg-Nilsson K, Bengzon J, Malmström J, Welinder C, Belting M. Decoding of the surfaceome and endocytome in primary glioblastoma cells identifies potential target antigens in the hypoxic tumor niche. Acta Neuropathol Commun 2024; 12:35. [PMID: 38414005 PMCID: PMC10898066 DOI: 10.1186/s40478-024-01740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Immunotherapies with antibody-drug-conjugates (ADC) and CAR-T cells, targeted at tumor surface antigens (surfaceome), currently revolutionize clinical oncology. However, target identification warrants a better understanding of the surfaceome and how it is modulated by the tumor microenvironment. Here, we decode the surfaceome and endocytome and its remodeling by hypoxic stress in glioblastoma (GBM), the most common and aggressive brain tumor in adults. We employed a comprehensive approach for global and dynamic profiling of the surfaceome and endocytosed (endocytome) proteins and their regulation by hypoxia in patient-derived GBM cultures. We found a heterogeneous surface-endocytome profile and a divergent response to hypoxia across GBM cultures. We provide a quantitative ranking of more than 600 surface resident and endocytosed proteins, and their regulation by hypoxia, serving as a resource to the cancer research community. As proof-of-concept, the established target antigen CD44 was identified as a commonly and abundantly expressed surface protein with high endocytic activity. Among hypoxia induced proteins, we reveal CXADR, CD47, CD81, BSG, and FXYD6 as potential targets of the stressed GBM niche. We could validate these findings by immunofluorescence analyses in patient tumors and by increased expression in the hypoxic core of GBM spheroids. Selected candidates were finally confronted by treatment studies, showing their high capacity for internalization and ADC delivery. Importantly, we highlight the limited correlation between transcriptomics and proteomics, emphasizing the critical role of membrane protein enrichment strategies and quantitative mass spectrometry. Our findings provide a comprehensive understanding of the surface-endocytome and its remodeling by hypoxia in GBM as a resource for exploration of targets for immunotherapeutic approaches in GBM.
Collapse
Affiliation(s)
- Kelin Gonçalves de Oliveira
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Anna Bång-Rudenstam
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Sarah Beyer
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Axel Boukredine
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Hugo Talbot
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Valeria Governa
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Maria C Johansson
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Ann-Sofie Månsson
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Johan Bengzon
- Department of Clinical Sciences, Section of Neurosurgery, Lund University, Lund, Sweden
| | - Johan Malmström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden.
- Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
47
|
Zhu E, Wang J, Shi W, Jing Q, Ai P, Shan D, Ai Z. Optimizing adjuvant treatment options for patients with glioblastoma. Front Neurol 2024; 15:1326591. [PMID: 38456152 PMCID: PMC10919147 DOI: 10.3389/fneur.2024.1326591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Background This study focused on minimizing the costs and toxic effects associated with unnecessary chemotherapy. We sought to optimize the adjuvant therapy strategy, choosing between radiotherapy (RT) and chemoradiotherapy (CRT), for patients based on their specific characteristics. This selection process utilized an innovative deep learning method. Methods We trained six machine learning (ML) models to advise on the most suitable treatment for glioblastoma (GBM) patients. To assess the protective efficacy of these ML models, we employed various metrics: hazards ratio (HR), inverse probability treatment weighting (IPTW)-adjusted HR (HRa), the difference in restricted mean survival time (dRMST), and the number needed to treat (NNT). Results The Balanced Individual Treatment Effect for Survival data (BITES) model emerged as the most effective, demonstrating significant protective benefits (HR: 0.53, 95% CI, 0.48-0.60; IPTW-adjusted HR: 0.65, 95% CI, 0.55-0.78; dRMST: 7.92, 95% CI, 7.81-8.15; NNT: 1.67, 95% CI, 1.24-2.41). Patients whose treatment aligned with BITES recommendations exhibited notably better survival rates compared to those who received different treatments, both before and after IPTW adjustment. In the CRT-recommended group, a significant survival advantage was observed when choosing CRT over RT (p < 0.001). However, this was not the case in the RT-recommended group (p = 0.06). Males, older patients, and those whose tumor invasion is confined to the ventricular system were more frequently advised to undergo RT. Conclusion Our study suggests that BITES can effectively identify GBM patients likely to benefit from CRT. These ML models show promise in transforming the complex heterogeneity of real-world clinical practice into precise, personalized treatment recommendations.
Collapse
Affiliation(s)
- Enzhao Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Jiayi Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Weizhong Shi
- Shanghai Hospital Development Center, Shanghai, China
| | - Qi Jing
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pu Ai
- School of Medicine, Tongji University, Shanghai, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Zisheng Ai
- Department of Medical Statistics, School of Medicine, Tongji University, Shanghai, China
- Clinical Research Center for Mental Disorders, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
48
|
Kudruk S, Forsyth CM, Dion MZ, Hedlund Orbeck JK, Luo J, Klein RS, Kim AH, Heimberger AB, Mirkin CA, Stegh AH, Artzi N. Multimodal neuro-nanotechnology: Challenging the existing paradigm in glioblastoma therapy. Proc Natl Acad Sci U S A 2024; 121:e2306973121. [PMID: 38346200 PMCID: PMC10895370 DOI: 10.1073/pnas.2306973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.
Collapse
Affiliation(s)
- Sergej Kudruk
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Connor M. Forsyth
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Michelle Z. Dion
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jenny K. Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Jingqin Luo
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO63110
| | - Albert H. Kim
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Amy B. Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Alexander H. Stegh
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Medicine, Engineering in Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA02115
| |
Collapse
|
49
|
Chehri B, Liu K, Vaseghi G, Seyfoori A, Akbari M. In Vitro Glioblastoma Model on a Plate for Localized Drug Release Study from a 3D-Printed Drug-Eluted Hydrogel Mesh. Cells 2024; 13:363. [PMID: 38391976 PMCID: PMC10887613 DOI: 10.3390/cells13040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive type of brain tumor that has limited treatment options. Current standard therapies, including surgery followed by radiotherapy and chemotherapy, are not very effective due to the rapid progression and recurrence of the tumor. Therefore, there is an urgent need for more effective treatments, such as combination therapy and localized drug delivery systems that can reduce systemic side effects. Recently, a handheld printer was developed that can deliver drugs directly to the tumor site. In this study, the feasibility of using this technology for localized co-delivery of temozolomide (TMZ) and deferiprone (DFP) to treat glioblastoma is showcased. A flexible drug-loaded mesh (GlioMesh) loaded with poly (lactic-co-glycolic acid) (PLGA) microparticles is printed, which shows the sustained release of both drugs for up to a month. The effectiveness of the printed drug-eluting mesh in terms of tumor toxicity and invasion inhibition is evaluated using a 3D micro-physiological system on a plate and the formation of GBM tumoroids within the microenvironment. The proposed in vitro model can identify the effective combination doses of TMZ and DFP in a sustained drug delivery platform. Additionally, our approach shows promise in GB therapy by enabling localized delivery of multiple drugs, preventing off-target cytotoxic effects.
Collapse
Affiliation(s)
- Behnad Chehri
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.C.); (K.L.); (G.V.)
| | - Kaiwen Liu
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.C.); (K.L.); (G.V.)
| | - Golnaz Vaseghi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.C.); (K.L.); (G.V.)
| | - Amir Seyfoori
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.C.); (K.L.); (G.V.)
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.C.); (K.L.); (G.V.)
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
50
|
Hu S, Sun C, Chen M, Zhou J. Marital Status as an Independent Prognostic Factor in Patients with Glioblastoma: A Population-Based Study. World Neurosurg 2024; 182:e559-e569. [PMID: 38061540 DOI: 10.1016/j.wneu.2023.11.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND This study was aimed to investigate the effects of marital status on overall survival (OS) and cancer-specific survival (CSS) in patients with glioblastoma (GBM) and to develop nomograms for predicting prognosis in GBM patients. METHODS All patients were selected from the Surveillance, Epidemiology, and End Results cancer registry program. We used propensity score matching to balance the baseline characteristics of married and unmarried patients. The effects of marital status on OS and CSS were then assessed using Kaplan-Meier curves and Cox proportional hazard regression, and the magnitude of each factor was visualized in the form of forest maps. The impact of marriage on the survival of GBM patients was further explored by stratifying several demographic factors. Finally, the nomograms were constructed and verified based on Cox proportional risk regression model. RESULTS A total of 17,517 patients with GBM (11,818 married patients, 67.5%) were enrolled in the study cohort. After propensity score matching, there were 5699 patients in both the married and unmarried groups. Multivariate Cox regression analysis showed that both married and single patients had better OS (married: hazard ratio [HR] 0.824, 95% confidence interval [CI]: 0.788-0.862, P < 0.001; single: HR 0.764, 95% CI: 0.722-0.808, P < 0.001) and CSS (married: HR 0.833, 95% CI: 0.796-0.872, P < 0.001; single: HR 0.761, 95% CI: 0.718-0.806, P < 0.001) than divorced, separated, and widowed patients. CONCLUSIONS Marital status was an independent prognostic factor in patients with GBM. The nomograms constructed in this study could help medical professionals to provide personalized prognostic assessment and treatment decisions for patients with GBM.
Collapse
Affiliation(s)
- Shaobo Hu
- Department of Neurosurgery, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, Zhejiang, China.
| | - Chengfeng Sun
- Department of Neurosurgery, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Maosong Chen
- Department of Neurosurgery, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jiang Zhou
- Department of Neurosurgery, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|