1
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Christofi E, O’Hanlon M, Curtis R, Barman A, Keen J, Nagy T, Barran P. Hybrid Mass Spectrometry Applied across the Production of Antibody Biotherapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:44-57. [PMID: 39573914 PMCID: PMC11697328 DOI: 10.1021/jasms.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 01/02/2025]
Abstract
Post expression from the host cells, biotherapeutics undergo downstream processing steps before final formulation. Mass spectrometry and biophysical characterization methods are valuable for examining conformational and stoichiometric changes at these stages, although typically not used in biomanufacturing, where stability is assessed via bulk property studies. Here we apply hybrid MS methods to understand how solution condition changes impact the structural integrity of a biopharmaceutical across the processing pipeline. As an exemplar product, we use the model IgG1 antibody, mAb4. Flexibility, stability, aggregation propensity, and bulk properties are evaluated in relation to perfusion media, purification stages, and formulation solutions. Comparisons with Herceptin, an extensively studied IgG1 antibody, were conducted in a mass spectrometry-compatible solution. Despite presenting similar charge state distributions (CSD) in native MS, mAb4, and Herceptin show distinct unfolding patterns in activated ion mobility mass spectrometry (aIM-MS) and differential scanning fluorimetry (DSF). Herceptin's greater structural stability and aggregation onset temperature (Tagg) are attributed to heavier glycosylation and kappa-class light chains, unlike the lambda-class light chains in mAb4. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed that mAb4 undergoes substantial structural changes during purification, marked by high flexibility, low melting temperature (Tm), and prevalent repulsive protein-protein interactions but transitions to a compact and stable structure in high-salt and formulated environments. Notably, in formulation, the third constant domain (CH3) of the heavy chain retains flexibility and is a region of interest for aggregation. Future work could translate features of interest from comprehensive studies like this to targeted approaches that could be utilized early in the development stage to aid in decision-making regarding targeted mutations or to guide the design space of bioprocesses and formulation choices.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael
Barber Centre for Collaborative Mass Spectrometry, MBCCMS, Princess Street, Manchester M17DN, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Mark O’Hanlon
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Robin Curtis
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| | - Arghya Barman
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Jeff Keen
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Tibor Nagy
- FUJIFILM
Diosynth Biotechnologies, Belasis Ave, Stockton-on-Tees, Billingham TS23 1LH, U.K.
| | - Perdita Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, MBCCMS, Princess Street, Manchester M17DN, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, Princess Street, Manchester M17DN, U.K.
| |
Collapse
|
3
|
Fitriana W, Sakai T, Duan L, Hengphasatporn K, Shigeta Y, Mashima T, Uda T, Hifumi E, Hirota S. Experimental and Computational Studies on Domain-Swapped Structure Stabilization of an Antibody Light Chain by Disulfide Bond Introduction. J Med Chem 2024; 67:22313-22321. [PMID: 39656517 DOI: 10.1021/acs.jmedchem.4c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Development of different platforms would be useful for designing functional antibodies to improve the efficiency of antibody-based drugs. Three-dimensional domain swapping (3D-DS) may occur in the variable region of antibody light chain #4C214A, and a pair of domain-swapped dimers may interact with each other to form a tetramer. In this study, to stabilize the 3D-DS dimer structure in #4C214A, Val2 in strand A (swapping region) and Thr97 in strand G were replaced with Cys residues, generating #4 V2C/T97C/C214A with a Cys2-Cys97 disulfide bond that cross-links strands A and G of different protomers. The #4 V2C/T97C/C214A tetramer did not dissociate into monomers at low protein concentration (6 μM); however, some of the tetramers were converted to monomers by disulfide bond reduction. Two-dimensional free energy profile analysis for the tetramerization of two 3D-DS dimers was performed by molecular dynamics simulation. These results show that disulfide bond introduction is useful for controlling the dimerization/dissociation of the variable region through 3D-DS.
Collapse
Affiliation(s)
- Wahyu Fitriana
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Medilux Research Center, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4-1 Kyudai-Shinmachi, Fukuoka 879-5593, Japan
| | - Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-Shi, Oita 870-1192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
4
|
Kjer-Hansen P, Phan TG, Weatheritt RJ. Protein isoform-centric therapeutics: expanding targets and increasing specificity. Nat Rev Drug Discov 2024; 23:759-779. [PMID: 39232238 DOI: 10.1038/s41573-024-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Most protein-coding genes produce multiple protein isoforms; however, these isoforms are commonly neglected in drug discovery. The expression of protein isoforms can be specific to a disease, tissue and/or developmental stage, and this specific expression can be harnessed to achieve greater drug specificity than pan-targeting of all gene products and to enable improved treatments for diseases caused by aberrant protein isoform production. In recent years, several protein isoform-centric therapeutics have been developed. Here, we collate these studies and clinical trials to highlight three distinct but overlapping modes of action for protein isoform-centric drugs: isoform switching, isoform introduction or depletion, and modulation of isoform activity. In addition, we discuss how protein isoforms can be used clinically as targets for cell type-specific drug delivery and immunotherapy, diagnostic biomarkers and sources of cancer neoantigens. Collectively, we emphasize the value of a focus on isoforms as a route to discovering drugs with greater specificity and fewer adverse effects. This approach could enable the targeting of proteins for which pan-inhibition of all isoforms is toxic and poorly tolerated.
Collapse
Affiliation(s)
- Peter Kjer-Hansen
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia.
| | - Tri Giang Phan
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Darlinghurst, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Huang Z, Braunstein Z, Chen J, Wei Y, Rao X, Dong L, Zhong J. Precision Medicine in Rheumatic Diseases: Unlocking the Potential of Antibody-Drug Conjugates. Pharmacol Rev 2024; 76:579-598. [PMID: 38622001 DOI: 10.1124/pharmrev.123.001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
In the era of precision medicine, antibody-drug conjugates (ADCs) have emerged as a cutting-edge therapeutic strategy. These innovative compounds combine the precision of monoclonal antibodies with the potent cell-killing or immune-modulating abilities of attached drug payloads. This unique strategy not only reduces off-target toxicity but also enhances the therapeutic effectiveness of drugs. Beyond their well established role in oncology, ADCs are now showing promising potential in addressing the unmet needs in the therapeutics of rheumatic diseases. Rheumatic diseases, a diverse group of chronic autoimmune diseases with varying etiologies, clinical presentations, and prognoses, often demand prolonged pharmacological interventions, creating a pressing need for novel, efficient, and low-risk treatment options. ADCs, with their ability to precisely target the immune components, have emerged as a novel therapeutic strategy in this context. This review will provide an overview of the core components and mechanisms behind ADCs, a summary of the latest clinical trials of ADCs for the treatment of rheumatic diseases, and a discussion of the challenges and future prospects faced by the development of next-generation ADCs. SIGNIFICANCE STATEMENT: There is a lack of efficient and low-risk targeted therapeutics for rheumatic diseases. Antibody-drug conjugates, a class of cutting-edge therapeutic drugs, have emerged as a promising targeted therapeutic strategy for rheumatic disease. Although there is limited literature summarizing the progress of antibody-drug conjugates in the field of rheumatic disease, updating the advancements in this area provides novel insights into the development of novel antirheumatic drugs.
Collapse
Affiliation(s)
- Zhiwen Huang
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Zachary Braunstein
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jun Chen
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Yingying Wei
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Xiaoquan Rao
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Lingli Dong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jixin Zhong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| |
Collapse
|
6
|
Bonadio JD, Bashiri G, Halligan P, Kegel M, Ahmed F, Wang K. Delivery technologies for therapeutic targeting of fibronectin in autoimmunity and fibrosis applications. Adv Drug Deliv Rev 2024; 209:115303. [PMID: 38588958 PMCID: PMC11111362 DOI: 10.1016/j.addr.2024.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibronectin (FN) is a critical component of the extracellular matrix (ECM) contributing to various physiological processes, including tissue repair and immune response regulation. FN regulates various cellular functions such as adhesion, proliferation, migration, differentiation, and cytokine release. Alterations in FN expression, deposition, and molecular structure can profoundly impact its interaction with other ECM proteins, growth factors, cells, and associated signaling pathways, thus influencing the progress of diseases such as fibrosis and autoimmune disorders. Therefore, developing therapeutics that directly target FN or its interaction with cells and other ECM components can be an intriguing approach to address autoimmune and fibrosis pathogenesis.
Collapse
Affiliation(s)
- Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Fatima Ahmed
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Mohan S, Krishnan L, Madhusoodanan N, Sobha A, Jalaja R, Kumaran A, Vankadari N, Purushothaman J, Somappa SB. Linker-Based Pharmacophoric Design and Semisynthesis of Labdane Conjugates Active against Multi-Faceted Inflammatory Targets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6389-6401. [PMID: 38494644 DOI: 10.1021/acs.jafc.3c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Prolonged inflammation leads to the genesis of various inflammatory diseases such as atherosclerosis, cancer, inflammatory bowel disease, Alzheimer's, etc. The uncontrolled inflammatory response is characterized by the excessive release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1alpha (IL-1α), and inflammatory enzymes such as cyclooxygenase-2 (COX-2). Hence, the downregulation of these inflammatory mediators is an active therapy to control aberrant inflammation and tissue damage. To address this, herein, we present the rational design and synthesis of novel phytochemical entities (NPCEs) through strategic linker-based molecular hybridization of aromatic/heteroaromatic fragments with the labdane dialdehyde, isolated from the medicinally and nutritionally significant rhizomes of the plant Curcuma amada. To validate the anti-inflammatory potential, we employed a comprehensive in vitro study assessing its inhibitory effect on the COX-2 enzyme and other inflammatory mediators, viz., NO, TNF-α, IL-6, and IL-1α, in bacterial lipopolysaccharide-stimulated macrophages, as well as in-silico molecular modeling studies targeting the inflammation regulator COX-2 enzyme. Among the synthesized novel compounds, 5f exhibited the highest anti-inflammatory potential by inhibiting the COX-2 enzyme (IC50 = 17.67 ± 0.89 μM), with a 4-fold increased activity relative to the standard drug indomethacin (IC50 = 67.16 ± 0.17 μM). 5f also significantly reduced the levels of LPS-induced NO, TNF-α, IL-6, and IL-1α, much better than the positive control. Molecular mechanistic studies revealed that 5f suppressed the expression of COX-2 and pro-inflammatory cytokine release dose-dependently, which was associated with the inhibition of the NF-κB signaling pathway. This infers that the labdane derivative 5f is a promising lead candidate as an anti-inflammatory agent to further explore its therapeutic landscape.
Collapse
Affiliation(s)
- Sangeetha Mohan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Lekshmy Krishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Nithya Madhusoodanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anjali Sobha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Renjitha Jalaja
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Alaganandam Kumaran
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Jayamurthy Purushothaman
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
8
|
Albach FN, Burmester GR, Mucke J. [Therapeutic antibodies in rheumatology]. Z Rheumatol 2024; 83:98-104. [PMID: 37656186 DOI: 10.1007/s00393-023-01409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Emil von Behring's serum therapy for diphtheria was the first therapeutic use of antibodies. More than 100 years later, a new era in the treatment of rheumatic diseases began in 1998 with the approval of infliximab, an antibody directed against tumor necrosis factor alpha (TNF alpha). The special feature of antibody therapy is the ability to bind and neutralize antigens in a highly specific manner. In addition, target cells can be eliminated by activation of the immune system. These properties of the immune system are exploited in rheumatology to eliminate inflammatory cytokines or antibody-producing B lymphocytes. The tolerability is usually good but potential side effects, such as reactivation of tuberculosis with anti-TNF alpha treatment must be considered. Currently, 20 different antibodies and fusion proteins have been approved in Germany for the treatment of various inflammatory rheumatic diseases. Biosimilars can contribute to a price reduction after the patent protection expires. Many additional target antigens are being investigated and further structural innovations (e.g., bispecific antibodies, nanobodies or coupling with small molecules) are being developed.
Collapse
Affiliation(s)
- Fredrik N Albach
- Klinik für Rheumatologie und klinische Immunologie, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Gerd-Rüdiger Burmester
- Klinik für Rheumatologie und klinische Immunologie, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Johanna Mucke
- Klinik für Rheumatologie, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| |
Collapse
|
9
|
Sun YS, Huang DF, Chen WS, Liao HT, Chen MH, Tsai MT, Yang CY, Lai CC, Tsai CY. Risk Factors and Incidence of Serious Infections in Patients With Systemic Lupus Erythematosus Undergoing Rituximab Therapy. J Rheumatol 2024; 51:160-167. [PMID: 37839817 DOI: 10.3899/jrheum.2023-0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE To evaluate the risk and protective factors of serious infection (SI) in patients with systemic lupus erythematosus (SLE) within 180 days of rituximab (RTX) treatment. METHODS Patients with SLE treated with RTX were analyzed. SI was defined as any infectious disease requiring hospitalization. The clinical characteristics, laboratory profiles, medications, and incidence rate (IR) are presented. Multivariate Cox proportional hazards models and Kaplan-Meier analysis for risk factors of SI were performed. RESULTS A total of 174 patients with SLE receiving RTX treatment were enrolled. The overall IR of SIs was 51.0/100 patient-years (PYs). Pneumonia (30.4/100 PYs), followed by soft tissue infections, intra-abdominal infections, and Pneumocystis jiroveci pneumonia (all 6.1/100 PYs) were the leading types of SIs. Twelve patients died during the 180-day follow-up (crude mortality rate: 14.6/100 PYs). Chronic kidney disease (CKD), defined as an estimated glomerular filtration rate < 60 mL/min/1.73 m2 (hazard ratio [HR] 2.88, 95% CI 1.30-6.38), and a background prednisolone (PSL) equivalent dosage ≥ 15 mg/day (HR 3.50, 95% CI 1.57-7.78) were risk factors for SIs among all patients with SLE. Kaplan-Meier analysis confirmed the risk of SI for patients with SLE with CKD and a background PSL equivalent dosage ≥ 15 mg/day (log-rank P = 0.001 and 0.02, respectively). Hydroxychloroquine (HCQ) reduced the risk of SIs in patients with SLE (HR 0.35, 95% CI 0.15-0.82; log-rank P = 0.003). CONCLUSION SI was prevalent in patients with SLE after RTX treatment. Patients with SLE with CKD and high-dose glucocorticoid use required constant vigilance. HCQ may reduce the risk of SI among patients with SLE administered RTX.
Collapse
Affiliation(s)
- Yi-Syuan Sun
- Y.S. Sun, MD, W.S. Chen, MD, H.T. Liao, MD, M.H. Chen, MD, PhD, C.C. Lai, MD, PhD, Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Veterans General Hospital, and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - De-Feng Huang
- D.F. Huang, MD, Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei
| | - Wei-Sheng Chen
- Y.S. Sun, MD, W.S. Chen, MD, H.T. Liao, MD, M.H. Chen, MD, PhD, C.C. Lai, MD, PhD, Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Veterans General Hospital, and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Hsien-Tzung Liao
- Y.S. Sun, MD, W.S. Chen, MD, H.T. Liao, MD, M.H. Chen, MD, PhD, C.C. Lai, MD, PhD, Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Veterans General Hospital, and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Ming-Han Chen
- Y.S. Sun, MD, W.S. Chen, MD, H.T. Liao, MD, M.H. Chen, MD, PhD, C.C. Lai, MD, PhD, Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Veterans General Hospital, and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Ming-Tsun Tsai
- M.T. Tsai, MD, PhD, Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, and Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, and Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Chih-Yu Yang
- C.Y. Yang, MD, PhD, Division of Nephrology, Department of Medicine, Veterans General Hospital, and Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, and Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, and Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, and Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
| | - Chien-Chih Lai
- Y.S. Sun, MD, W.S. Chen, MD, H.T. Liao, MD, M.H. Chen, MD, PhD, C.C. Lai, MD, PhD, Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Veterans General Hospital, and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei;
| | - Chang-Youh Tsai
- C.Y. Tsai, MD, PhD, Division of Immunology and Rheumatology, Department of Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan.
| |
Collapse
|
10
|
Sakai T, Mashima T, Kobayashi N, Ogata H, Duan L, Fujiki R, Hengphasatporn K, Uda T, Shigeta Y, Hifumi E, Hirota S. Structural and thermodynamic insights into antibody light chain tetramer formation through 3D domain swapping. Nat Commun 2023; 14:7807. [PMID: 38065949 PMCID: PMC10709643 DOI: 10.1038/s41467-023-43443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Overexpression of antibody light chains in small plasma cell clones can lead to misfolding and aggregation. On the other hand, the formation of amyloid fibrils from antibody light chains is related to amyloidosis. Although aggregation of antibody light chain is an important issue, atomic-level structural examinations of antibody light chain aggregates are sparse. In this study, we present an antibody light chain that maintains an equilibrium between its monomeric and tetrameric states. According to data from X-ray crystallography, thermodynamic and kinetic measurements, as well as theoretical studies, this antibody light chain engages in 3D domain swapping within its variable region. Here, a pair of domain-swapped dimers creates a tetramer through hydrophobic interactions, facilitating the revelation of the domain-swapped structure. The negative cotton effect linked to the β-sheet structure, observed around 215 nm in the circular dichroism (CD) spectrum of the tetrameric variable region, is more pronounced than that of the monomer. This suggests that the monomer contains less β-sheet structures and exhibits greater flexibility than the tetramer in solution. These findings not only clarify the domain-swapped structure of the antibody light chain but also contribute to controlling antibody quality and advancing the development of future molecular recognition agents and drugs.
Collapse
Affiliation(s)
- Takahiro Sakai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Lian Duan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ryo Fujiki
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Taizo Uda
- Nanotechnology Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), 4‑1 Kyudai‑Shinmachi, Fukuoka, 879‑5593, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870‑1192, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
11
|
Qin Y, Jin J, Zhang J, Wang H, Liu L, Zhang Y, Ling S, Hu J, Li N, Wang J, Lv C, Yang X. A fully human monoclonal antibody targeting Semaphorin 5A alleviates the progression of rheumatoid arthritis. Biomed Pharmacother 2023; 168:115666. [PMID: 37832409 DOI: 10.1016/j.biopha.2023.115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune disease worldwide. Although progress has been made in RA treatment in recent decades, remission cannot be effectively achieved for a considerable proportion of RA patients. Thus, novel potential targets for therapeutic strategies are needed. Semaphorin 5A (SEMA5A) plays a pivotal role in RA progression by facilitating pannus formation, and it is a promising therapeutic target. In this study, we sought to develop an antibody treatment strategy targeting SEMA5A and evaluate its therapeutic effect using a collagen-induced arthritis (CIA) model. We generated SYD12-12, a fully human SEMA5A blocking antibody, through phage display technology. SYD12-12 intervention effectively inhibited angiogenesis and aggressive phenotypes of RA synoviocytes in vitro and dose-dependently inhibited synovial hyperplasia, pannus formation, bone destruction in CIA mice. Notably, SYD12-12 also improved the Treg/Th17 imbalance in CIA mice. We confirmed through immunofluorescence and molecular docking that SYD12-12 integrated with the unique TSP-1 domain of SEMA5A. In conclusion, we developed and characterized a fully human SEMA5A-blocking antibody for the first time. SYD12-12 effectively alleviated disease progression in CIA mice by inhibiting pannus formation and improving the Treg/Th17 imbalance, demonstrating its potential for the RA treatment.
Collapse
Affiliation(s)
- Yang Qin
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Jin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanwen Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jinzhu Hu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nuan Li
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianguang Wang
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chen Lv
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
12
|
Zhu H, Luo H, Chang R, Yang Y, Liu D, Ji Y, Qin H, Rong H, Yin J. Protein-based delivery systems for RNA delivery. J Control Release 2023; 363:253-274. [PMID: 37741460 DOI: 10.1016/j.jconrel.2023.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
Collapse
Affiliation(s)
- Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City 550014, Guizhou Province, China.
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Sun J, Xi L, Zhang D, Gao F, Wang L, Yang G. A novel tumor immunotherapy-related signature for risk stratification, prognosis prediction, and immune status in hepatocellular carcinoma. Sci Rep 2023; 13:18709. [PMID: 37907783 PMCID: PMC10618198 DOI: 10.1038/s41598-023-46252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023] Open
Abstract
Immunotherapy as a strategy to deal with cancer is increasingly being used clinically, especially in hepatocellular carcinoma (HCC). We aim to create an immunotherapy-related signature that can play a role in predicting HCC patients' survival and therapeutic outcomes. Immunotherapy-related genes were discovered first. Clinical information and gene expression data were extracted from GSE140901. By a series of bioinformatics methods to analyze, overlapping genes were used to build an immunotherapy-related signature that could contribute to predict both the prognosis of people with hepatocellular carcinoma and responder to immune checkpoint blockade therapy of them in TCGA database. Differences of the two groups in immune cell subpopulations were then compared. Furthermore, A nomogram was constructed, based on the immunotherapy-related signature and clinicopathological features, and proved to be highly predictive. Finally, immunohistochemistry assays were performed in HCC tissue and normal tissue adjacent tumors to verify the differences of the four genes expression. As a result of this study, a prognostic protein profile associated with immunotherapy had been created, which could be applied to predict patients' response to immunotherapy and may provide a new perspective as clinicians focus on non-apoptotic treatment for patients with HCC.
Collapse
Affiliation(s)
- Jianping Sun
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Lefeng Xi
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Dechen Zhang
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Feipei Gao
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Liqin Wang
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Guangying Yang
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
14
|
Zheng H, Cheng X, Jin L, Shan S, Yang J, Zhou J. Recent advances in strategies to target the behavior of macrophages in wound healing. Biomed Pharmacother 2023; 165:115199. [PMID: 37517288 DOI: 10.1016/j.biopha.2023.115199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Chronic wounds and scar formation are widespread due to limited suitable remedies. The macrophage is a crucial regulator in wound healing, controlling the onset and termination of inflammation and regulating other processes related to wound healing. The current breakthroughs in developing new medications and drug delivery methods have enabled the accurate targeting of macrophages in oncology and rheumatic disease therapies through clinical trials. These successes have cleared the way to utilize drugs targeting macrophages in various disorders. This review thus summarizes macrophage involvement in normal and pathologic wound healing. It further details the targets available for macrophage intervention and therapeutic strategies for targeting the behavior of macrophages in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Ciano-Petersen NL, Aliaga-Gaspar P, Hurtado-Guerrero I, Reyes V, Rodriguez-Bada JL, Rodriguez-Traver E, Brichette-Mieg I, Leyva Fernández L, Serrano-Castro P, Alonso A, Oliver-Martos B. Natalizumab-immunogenicity evaluation in patients with infusion related events or disease exacerbations. Front Immunol 2023; 14:1242508. [PMID: 37675113 PMCID: PMC10478078 DOI: 10.3389/fimmu.2023.1242508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Natalizumab is a biologic drug for relapsing-remitting multiple sclerosis that may induce the generation of anti-drug antibodies in some patients. Anti-natalizumab antibodies (ANA) increase the risk of adverse events and reduce efficacy, being useful biomarkers for monitoring treatment response. Methods Retrospective observational study including MS patients treated with natalizumab that experienced infusion-related events (IRE) or disease exacerbations (DE). ANA were tested by Elisa including a screening and a confirmation assay. Patients were further classified as transient (one positive result) or persistent (two or more positive results) ANA. Results A total of 1251 MS patients were included and 153 (12.3%) had ANA with at least one single point determination, which were more frequent among patients with IRE compared to those with DE (21,6% vs.10.8%) during the first six infusions. Two or more determinations ANA were performed in 184 patients, being 31.5% permanently positive and 7.1% transiently positive. Interestingly, 26.1% of patients that experienced DE had persistent ANA, while 2.6% were transient. In contrast, 43% of patients with IRE had persistent ANA, and 9.3% had transient antibodies. Patients with persistent antibodies had more frequently high levels at the first sampling compared to patients with transient ANA. Conclusion Real-world evidence shows that the presence of ANA is behind an important percentage of patients treated with natalizumab that experience IRE, as well as DE but in a lower degree. These findings support the need to systematically evaluate ANA towards a personalized management of these patients to avoid undesired complications.
Collapse
Affiliation(s)
- Nicolás Lundahl Ciano-Petersen
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain
| | - Pablo Aliaga-Gaspar
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Isaac Hurtado-Guerrero
- Department of Anatomy and Legal Medicine, Neuropsychopharmacology Group, Biomedical Research Institute of Málaga-IBIMA, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Virginia Reyes
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain
| | - José Luis Rodriguez-Bada
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Eva Rodriguez-Traver
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Isabel Brichette-Mieg
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Laura Leyva Fernández
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain
| | - Pedro Serrano-Castro
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain
- Department of Medicine and Dermatology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Ana Alonso
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain
| | - Begoña Oliver-Martos
- Neuroimmunology and Neuroinflammation Group, Biomedical Research Institute of Málaga-IBIMA Plataforma Bionand, Hospital Regional Universitario de Málaga, Málaga, Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, Physiology Area. Faculty of Science University of Malaga, Málaga, Spain
| |
Collapse
|
16
|
Koh B, Tan DJH, Lim WH, Wong JSL, Ng CH, Chan KE, Wang M, Yong WP, Dan YY, Wang LZ, Tan N, Muthiah M, Kow A, Syn NL, Huang DQ, Yau T. Trial watch: immunotherapeutic strategies on the horizon for hepatocellular carcinoma. Oncoimmunology 2023; 12:2214478. [PMID: 37284696 PMCID: PMC10241000 DOI: 10.1080/2162402x.2023.2214478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting PD-L1/PD-1 and CTLA-4 has transformed the oncology practice of hepatocellular carcinoma. However, only 25-30% of the patients with advanced HCC treated with atezolizumab-bevacizumab or tremelimumab-durvalumab (STRIDE) respond initially, and mechanistic biomarkers and novel treatment strategies are urgently needed for patients who present with or acquire resistance to first-line ICI-based therapies. The recent approval of the STRIDE regimen has also engendered new questions, such as patient selection factors (e.g. portal hypertension and history of variceal bleed) and biomarkers, and the optimal combination and sequencing of ICI-based regimens. Triumphs in the setting of advanced HCC have also galvanized considerable interest in the broader application of ICIs to early- and intermediate-stage diseases, including clinical combination of ICIs with locoregional therapies. Among these clinical contexts, the role of ICIs in liver transplantation - which is a potentially curative strategy unique to HCC management - as a bridge to liver transplant in potential candidates or in the setting of post-transplant recurrence, warrants investigation in view of the notable theoretical risk of allograft rejection. In this review, we summarize and chart the landscape of seminal immuno-oncology trials in HCC and envision future clinical developments.
Collapse
Affiliation(s)
- Benjamin Koh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Jeffrey S L Wong
- Department of Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Region, China
- State Key Laboratory for Liver Disease, University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Meng Wang
- Division of Advanced Internal Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Louis Z Wang
- SingHealth Internal Medicine Residency Programme, Singapore General Hospital, Singapore, Singapore
| | - Nigel Tan
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, Singapore, Singapore
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- Division of Advanced Internal Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Alfred Kow
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical Cluster, Singapore, Singapore
| | - Nicholas L. Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Daniel Q. Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
- Division of Advanced Internal Medicine, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Thomas Yau
- Department of Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Special Administrative Region, China
- State Key Laboratory for Liver Disease, University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
17
|
Qin Y, Wu G, Jin J, Wang H, Zhang J, Liu L, Zhao H, Wang J, Yang X. A fully human connective tissue growth factor blocking monoclonal antibody ameliorates experimental rheumatoid arthritis through inhibiting angiogenesis. BMC Biotechnol 2023; 23:6. [PMID: 36869335 PMCID: PMC9985226 DOI: 10.1186/s12896-023-00776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Connective tissue growth factor (CTGF) plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA) by facilitating angiogenesis and is a promising therapeutic target for RA treatment. Herein, we generated a fully human CTGF blocking monoclonal antibody (mAb) through phage display technology. RESULTS A single-chain fragment variable (scFv) with a high affinity to human CTGF was isolated through screening a fully human phage display library. We carried out affinity maturation to elevate its affinity for CTGF and reconstructed it into a full-length IgG1 format for further optimization. Surface plasmon resonance (SPR) data showed that full-length antibody IgG mut-B2 bound to CTGF with a dissociation constant (KD) as low as 0.782 nM. In the collagen-induced arthritis (CIA) mice, IgG mut-B2 alleviated arthritis and decreased the level of pro-inflammatory cytokines in a dose-dependent manner. Furthermore, we confirmed that the TSP-1 domain of CTGF is essential for the interaction. Additionally, the results of Transwell assays, tube formation experiments, and chorioallantoic membrane (CAM) assays showed that IgG mut-B2 could effectively inhibit angiogenesis. CONCLUSION The fully human mAb that antagonizes CTGF could effectively alleviate arthritis in CIA mice, and its mechanism is tightly associated with the TSP-1 domain of CTGF.
Collapse
Affiliation(s)
- Yang Qin
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Gan Wu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.,Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying, Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Jin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Hao Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Heping Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China. .,Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying, Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
18
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
19
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
20
|
Feng G, Li D, Liu J, Sun S, Zhang P, Liu W, Zhang Y, Meng B, Li J, Chai L. The Herbal Combination of Radix astragali, Radix angelicae sinensis, and Caulis lonicerae Regulates the Functions of Type 2 Innate Lymphocytes and Macrophages Contributing to the Resolution of Collagen-Induced Arthritis. Front Pharmacol 2022; 13:964559. [PMID: 35928276 PMCID: PMC9343953 DOI: 10.3389/fphar.2022.964559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphocytes (ILC2s), promoting inflammation resolution, was a potential target for rheumatoid arthritis (RA) treatment. Our previous studies confirmed that R. astragali and R. angelicae sinensis could intervene in immunologic balance of T lymphocytes. C. lonicerae also have anti-inflammatory therapeutic effects. In this study, the possible molecular mechanisms of the combination of these three herbs for the functions of ILC2s and macrophages contributing to the resolution of collagen-induced arthritis (CIA) were studied. Therefore, we used R. astragali, R. angelicae sinensis, and C. lonicerae as treatment. The synovial inflammation and articular cartilage destruction were alleviated after herbal treatment. The percentages of ILC2s and Tregs increased significantly. The differentiation of Th17 cells and the secretion of IL-17 and IFN-γ significantly decreased. In addition, treatment by the combination of these three herbs could increase the level of anti-inflammatory cytokine IL-4 secreted, active the STAT6 signaling pathway, and then contribute to the transformation of M1 macrophages to M2 phenotype. The combination of the three herbs could promote inflammation resolution of synovial tissue by regulating ILC2s immune response network. The synergistic effects of three drugs were superior to the combination of R. astragali and R. angelicae sinensis or C. lonicerae alone.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Meng
- Department of Pharmacy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Boyang Meng, ; Jinyu Li, ; Limin Chai,
| |
Collapse
|
21
|
Yélamos J. Current innovative engineered antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:1-43. [PMID: 35777861 DOI: 10.1016/bs.ircmb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibody engineering has developed very intensively since the invention of the hybridoma technology in 1975, and it now can generate therapeutic agents with high specificity and reduced adverse effects. Indeed, antibodies have become one of the most innovative therapeutic agents in recent years, with some landing in the top 10 bestselling pharmaceutical drugs. New antibodies are being approved every year, in different formats and for treating various illnesses, including cancer, autoimmune inflammatory diseases, metabolic diseases and infectious diseases. In this review, I summarize current progress in innovative engineered antibodies. Overall, this progress has led to the approval by regulatory authorities of more than 100 antibody-based molecules, with many others at various stages of clinical development, indicating the high growth potential of the field.
Collapse
Affiliation(s)
- José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Immunology Unit, Department of Pathology, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
22
|
Sun VZ, Melim TL, Mitra S, Erickson JE, Bryant SH, Farnham A, Westmoreland S, Knight H, Zhang L, Ritacco W, Homan K, Benatuil L, Sterman AJS, Goodearl AD. Fibronectin extra domain A as a drug delivery targeting epitope for rheumatoid arthritis. Adv Rheumatol 2022; 62:17. [PMID: 35624488 DOI: 10.1186/s42358-022-00247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To assess the ability of monoclonal antibodies (mAbs) specific for fibronectin extra-domain A (FnEDA) to target diseased tissues of mouse collagen induced arthritis (mCIA) models. To explore the parameters of the targeting exhibited by anti-FnEDA mAbs including timing and location. METHODS Targeting capabilities of anti-FnEDA mAbs were demonstrated by biodistribution study where i.v. injected antibodies were detected by conjugated near-infrared (NIR) fluorophore, 125I label and immunohistochemistry (IHC) of the injected antibody. Location of FnEDA expression in both mCIA and human RA tissue were mapped by IHC. Quantification of anti-FnEDA mAbs targeted to disease tissue was measured by whole-body autoradiography (WBA). Timing of the targeting was interrogated with fluorescent and confocal microscopy using anti-FnEDA mAbs labeled with different fluorophores and injected at different times. RESULTS Anti-FnEDA mAbs show specific targeting to diseased paws of mCIA animal. The targeting was focused on inflamed synovium which is consistent with FnEDA expression profile in both mCIA and human RA tissues. Anti-FnEDA mAbs accumulated in diseased tissue at pharmacologically relevant concentrations, the targeting was sustained for up to 14 days and FnEDA was able to support targeting of multiple doses of anti-FnEDA mAbs given 5 days apart. CONCLUSION FnEDA is specifically upregulated in the inflamed tissues of mCIA. Antibodies specific for FnEDA can be useful as molecular delivery vehicles for disease specific targeting of payloads to inflamed joint tissue.
Collapse
Affiliation(s)
- Victor Z Sun
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA.
| | - Terry L Melim
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Soumya Mitra
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Jamie E Erickson
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Shaughn H Bryant
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| | | | - Susan Westmoreland
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Heather Knight
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Liang Zhang
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| | - Wendy Ritacco
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| | | | | | | | - Andrew D Goodearl
- Drug Discovery Science and Technology, Abbvie Bioresearch Center, Worcester, MA, USA
| |
Collapse
|
23
|
Suh K, Kyei I, Hage DS. Approaches for the detection and analysis of anti-drug antibodies to biopharmaceuticals: A review. J Sep Sci 2022; 45:2077-2092. [PMID: 35230731 DOI: 10.1002/jssc.202200112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 11/10/2022]
Abstract
Antibody-based therapeutic agents and other biopharmaceuticals are now used in the treatment of many diseases. However, when these biopharmaceuticals are administrated to patients, an immune reaction may occur that can reduce the drug's efficacy and lead to adverse side effects. The immunogenicity of biopharmaceuticals can be evaluated by detecting and measuring antibodies that have been produced against these drugs, or anti-drug antibodies (ADAs). Methods for ADA detection and analysis can be important during the selection of a therapeutic approach based on such drugs and is crucial when developing and testing new biopharmaceuticals. This review examines approaches that have been used for ADA detection, measurement, and characterization. Many of these approaches are based on immunoassays and antigen binding tests, including homogeneous mobility shift assays. Other techniques that have been used for the analysis of ADAs are capillary electrophoresis, reporter gene assays, surface plasmon resonance spectroscopy, and liquid chromatography-mass spectrometry. The general principles of each approach will be discussed, along with their recent applications with regards to ADA analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kyungah Suh
- Department of Chemistry, University of Nebraska-Lincoln
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln
| |
Collapse
|
24
|
Ramelyte E, Restivo G, Mannino M, Levesque MP, Dummer R. Advances in the drug management of basal cell carcinoma. Expert Opin Pharmacother 2022; 23:573-582. [PMID: 35081851 DOI: 10.1080/14656566.2022.2032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Basal cell carcinoma (BCC) is the most common skin cancer in humans. Recently, BCCs were suggested to be classified into 'easy to treat' and 'difficult to treat,' and different therapeutic options are suggested for their management. AREAS COVERED In this review, the authors discuss treatment options that are approved, recommended for, or are still in development for treatment of BCC. The review covers approved local therapies, such as imiquimod and 5-fluorouracil, and systemic therapies, such as hedgehog inhibitors. New medical agents, investigated in clinical trials, are reviewed. These include: targeted therapies, such as GLI antagonists or anti-VEGFR agents, immunotherapies, such as checkpoint inhibitors, recombinant cytokines or silencing RNA, as well as intralesional virotherapies with modified adeno- or herpes viruses. EXPERT OPINION The progress made in recent years has improved the management of patients with advanced BCC; however, neither tumor targeting nor immune system engaging agents provide a cure. New treatment approaches directed not only to known targets but also the tumor microenvironment are in development and are anticipated to improve the management of difficult to treat BCC.
Collapse
Affiliation(s)
- Egle Ramelyte
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Maria Mannino
- Department of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022; 60:12. [PMID: 34981814 PMCID: PMC8759346 DOI: 10.3892/ijo.2022.5302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianing Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
26
|
Falck D, Lechmann M, Momčilović A, Thomann M, Koeleman CAM, Jany C, Malik S, Wuhrer M, Reusch D. Clearance of therapeutic antibody glycoforms after subcutaneous and intravenous injection in a porcine model. MAbs 2022; 14:2145929. [PMID: 36383465 PMCID: PMC9673920 DOI: 10.1080/19420862.2022.2145929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A relatively low clearance is one of the prominent favorable features of immunoglobulin G1-based therapeutic monoclonal antibodies (mAbs). Various studies have observed differential clearance of mAb glycoforms, including oligomannose glycoforms, which are considered a critical quality attribute because they show higher clearance than complex type glycoforms. Glycoform clearance, however, has not previously been studied after subcutaneous injection or in a porcine model system. Here, we performed glycoform-resolved pharmacokinetic (PK) analysis of two mAbs in Göttingen minipigs. We found glycoform effects on clearance to be largely the same for subcutaneous and intravenous injection and in line with observations in other species. Oligomannose glycoforms were cleared up to 25% faster and monoantennary glycoforms up to 8% faster than agalactosylated complex glycoforms. Sialylated glycoforms were cleared at approximately the same rate as fully galactosylated glycoforms. Importantly, we report here an impact of galactosylation on the PK of a mAb for the first time. Whether increased galactosylation led to slower or faster clearance seemed to depend on the overall glycosylation profile. When clearance of galactosylated glycoforms was slower, the mAb showed higher galactosylation in serum at maximum concentration after subcutaneous injection compared to both intravenous injection and the injected material. Whether this higher galactosylation after subcutaneous injection has consequences for therapeutic efficacy remains to be investigated. In conclusion, preferential clearance of antibody glycoforms can be simulated in the minipig model with intravenous as well as subcutaneous injections. Furthermore, we observed a glycoform bias in the absorption from skin into circulation after subcutaneous injection based on galactosylation.Abbreviations: AUC - area under the curve; CL/F - apparent clearance as a function of bioavailability following SC administration; Cmax - maximum serum concentration; CQA critical quality attribute; FcγR - Fc gamma receptor; IgG - immunoglobulin G; IV - intravenous; LC-MS - liquid chromatography - mass spectrometry; mAb - therapeutic monoclonal antibody; PK - pharmacokinetics; SC - subcutaneous; TMDD - target-mediated drug disposition.
Collapse
Affiliation(s)
- David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands,CONTACT David Falck Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Lechmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Ana Momčilović
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco Thomann
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cordula Jany
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Sebastian Malik
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dietmar Reusch
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
27
|
Abstract
Polyclonal immunoglobulin (Ig) preparations have been used for several decades for treatment of primary and secondary immunodeficiencies and for treatment of some infections and intoxications. This has demonstrated the importance of Igs, also called antibodies (Abs) for prevention and elimination of infections. Moreover, elucidation of the structure and functions of Abs has suggested that they might be useful for targeted treatment of several diseases, including cancers and autoimmune diseases. The development of technologies for production of specific monoclonal Abs (MAbs) in large amounts has led to the production of highly effective therapeutic antibodies (TAbs), a collective term for MAbs (MAbs) with demonstrated clinical efficacy in one or more diseases. The number of approved TAbs is currently around hundred, and an even larger number is under development, including several engineered and modified Ab formats. The use of TAbs has provided new treatment options for many severe diseases, but prediction of clinical effect is difficult, and many patients eventually lose effect, possibly due to development of Abs to the TAbs or to other reasons. The therapeutic efficacy of TAbs can be ascribed to one or more effects, including binding and neutralization of targets, direct cytotoxicity, Ab-dependent complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity or others. The therapeutic options for TAbs have been expanded by development of several new formats of TAbs, including bispecific Abs, single domain Abs, TAb-drug conjugates, and the use of TAbs for targeted activation of immune cells. Most promisingly, current research and development can be expected to increase the number of clinical conditions, which may benefit from TAbs.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Neurology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
28
|
Manso T, Folch G, Giudicelli V, Jabado-Michaloud J, Kushwaha A, Nguefack Ngoune V, Georga M, Papadaki A, Debbagh C, Pégorier P, Bertignac M, Hadi-Saljoqi S, Chentli I, Cherouali K, Aouinti S, El Hamwi A, Albani A, Elazami Elhassani M, Viart B, Goret A, Tran A, Sanou G, Rollin M, Duroux P, Kossida S. IMGT® databases, related tools and web resources through three main axes of research and development. Nucleic Acids Res 2021; 50:D1262-D1272. [PMID: 34875068 PMCID: PMC8728119 DOI: 10.1093/nar/gkab1136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/28/2021] [Indexed: 11/15/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org/, is at the forefront of the immunogenetics and immunoinformatics fields with more than 30 years of experience. IMGT® makes available databases and tools to the scientific community pertaining to the adaptive immune response, based on the IMGT-ONTOLOGY. We focus on the recent features of the IMGT® databases, tools, reference directories and web resources, within the three main axes of IMGT® research and development. Axis I consists in understanding the adaptive immune response, by deciphering the identification and characterization of the immunoglobulin (IG) and T cell receptor (TR) genes in jawed vertebrates. It is the starting point of the two other axes, namely the analysis and exploration of the expressed IG and TR repertoires based on comparison with IMGT reference directories in normal and pathological situations (Axis II) and the analysis of amino acid changes and functions of 2D and 3D structures of antibody and TR engineering (Axis III).
Collapse
Affiliation(s)
- Taciana Manso
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Géraldine Folch
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Véronique Giudicelli
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Joumana Jabado-Michaloud
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Anjana Kushwaha
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Viviane Nguefack Ngoune
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Maria Georga
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Ariadni Papadaki
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Chahrazed Debbagh
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Perrine Pégorier
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Morgane Bertignac
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Saida Hadi-Saljoqi
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Imène Chentli
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Karima Cherouali
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Safa Aouinti
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Amar El Hamwi
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Alexandre Albani
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Merouane Elazami Elhassani
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Benjamin Viart
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Agathe Goret
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Anna Tran
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Gaoussou Sanou
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Maël Rollin
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Patrice Duroux
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| | - Sofia Kossida
- IMGT®, the international ImMunoGeneTics Information System®, Scientific Research National Center (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), Montpellier, France
| |
Collapse
|
29
|
Gao X, Zheng Y, Zhang X, Hu G, Jia J, Wang A.
ent
‐Pimarane
Diterpenoid Dimers from
Sigesbeckia glabrescens
with Potent Anti‐inflammatory Activities. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao‐Xu Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Ying‐Ying Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Xiao‐Yu Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Gao‐Sheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Jing‐Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - An‐Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| |
Collapse
|
30
|
Stromal cell regulation of inflammatory responses. Curr Opin Immunol 2021; 74:92-99. [PMID: 34847474 DOI: 10.1016/j.coi.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022]
Abstract
In the last fifteen years it has become apparent that tissue-resident mesenchymal cells such as fibroblasts, which are the structural elements of all organs, play a cardinal role in the pathology of immune-mediated inflammatory diseases. We now know that all fibroblasts originate from universal pan-organ cellular ancestors and that they are diversified into more specific subsets according to the functional needs of their home tissue-and its activation state. In arthritis, a plethora of activated joint-resident and migrating fibroblast types have been recently described that are central for pathogenesis and persistence of inflammatory joint-disease. Here we provide a current overview on the multiple inflammatory and immune-related functions of fibroblasts and how they could be curbed to induce long-lasting abatement of disease.
Collapse
|
31
|
Gao X, Shen X, Zheng Y, Yang L, Zhang X, Hu G, Jia J, Wang A. Sesquiterpene Lactones from Sigesbeckia glabrescens Possessing Potent Anti-inflammatory Activity by Directly Binding to IKKα/β. JOURNAL OF NATURAL PRODUCTS 2021; 84:2808-2821. [PMID: 34726063 DOI: 10.1021/acs.jnatprod.1c00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chromatographic fractionation of Sigesbeckia glabrescens led to the identification of 10 new sesquiterpene lactones, named siegesbeckialides I-O (1-7) and glabrescones A-C (8-10), along with 14 known analogues. An anti-inflammatory activity assay showed that siegesbeckialide I (1) most potently inhibited LPS-induced NO production in RAW264.7 murine macrophages. Furthermore, siegesbeckialide I suppressed the protein expression of iNOS and COX2, as well as the release of PGE2, IL-1β, IL-6, and TNF-α in LPS-stimulated RAW264.7 cells. Mechanistically, siegesbeckialide I directly binds to inhibitors of IKKα/β and suppresses their phosphorylation. This leads to the inhibition of IKKα/β-mediated phosphorylation and degradation of inhibitor α of NF-κB (IκBα), as well as the activation of NF-κB signaling.
Collapse
Affiliation(s)
- Xiaoxu Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Yingying Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Luyao Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Xiaoyu Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Gaosheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
32
|
A bispecific antibody targeting HER2 and PD-L1 inhibits tumor growth with superior efficacy. J Biol Chem 2021; 297:101420. [PMID: 34798072 PMCID: PMC8671946 DOI: 10.1016/j.jbc.2021.101420] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
Activation of the programmed cell death protein 1 and programmed cell death ligand 1 (PD-1/PD-L1) signaling axis plays important roles in intrinsic or acquired resistance to human epidermal growth factor receptor 2 (HER2)-directed therapies in the clinic. Therefore, therapies simultaneously targeting both HER2 and PD-1/PD-L1 signaling pathways are of great significance. Here, aiming to direct the anti-PD-L1 responses toward HER2-expressing tumor cells, we constructed a humanized bispecific IgG1 subclass antibody targeting both HER2 and PD-L1 (HER2/PD-L1; BsAb), which displayed satisfactory purity, thermostability, and serum stability. We found that BsAb showed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. In the late phase of peripheral blood mononuclear cell (PBMC)-humanized HER2+ tumor xenograft models, BsAb showed superior therapeutic efficacies as compared with monoclonal antibodies (mAbs) or combination treatment strategies. In cynomolgus monkeys, BsAb showed favorable pharmacokinetics and toxicity profiles when administered at a 10 mg/kg dosage. Thus, HER2/PD-L1 BsAb was demonstrated as a potentially effective option for managing HER2+ and trastuzumab-resistant tumors in the clinic. We propose that the enhanced antitumor activities of BsAb in vivo may be due to direct inhibition of HER2 signaling or activation of T cells.
Collapse
|
33
|
Caron B, Netter P, Danese S, Peyrin-Biroulet L. Bispecific antibodies for the treatment in inflammatory bowel disease: an avenue worth exploring? Expert Opin Biol Ther 2021; 22:951-953. [PMID: 34612123 DOI: 10.1080/14712598.2022.1985999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bénédicte Caron
- Department of Gastroenterology and Inserm NGERE U1256, Nancy University Hospital, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Patrick Netter
- Ingénierie Moléculaire et Ingénierie Articulaire (IMoPA), UMR-7365 CNRS, Faculté de Médecine, University of Lorraine and University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele Milano, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele Milano, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology and Inserm NGERE U1256, Nancy University Hospital, University of Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
34
|
Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, Huang Y, Xu Y, Qian C. Bispecific Antibodies: From Research to Clinical Application. Front Immunol 2021; 12:626616. [PMID: 34025638 PMCID: PMC8131538 DOI: 10.3389/fimmu.2021.626616] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (BsAbs) are antibodies with two binding sites directed at two different antigens or two different epitopes on the same antigen. The clinical therapeutic effects of BsAbs are superior to those of monoclonal antibodies (MoAbs), with broad applications for tumor immunotherapy as well as for the treatment of other diseases. Recently, with progress in antibody or protein engineering and recombinant DNA technology, various platforms for generating different types of BsAbs based on novel strategies, for various uses, have been established. More than 30 mature commercial technology platforms have been used to create and develop BsAbs based on the heterologous recombination of heavy chains and matching of light chains. The detailed mechanisms of clinical/therapeutic action have been demonstrated with these different types of BsAbs. Three kinds of BsAbs have received market approval, and more than 110 types of BsAbs are at various stages of clinical trials. In this paper, we elaborate on the classic platforms, mechanisms, and applications of BsAbs. We hope that this review can stimulate new ideas for the development of BsAbs and improve current clinical strategies.
Collapse
Affiliation(s)
- Jiabing Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yicheng Mo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Menglin Tang
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Junjie Shen
- IND Center, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Yanan Qi
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Wenxu Zhao
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Yi Huang
- IND Center, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Yanmin Xu
- IND Center, Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd., Chongqing, China
| | - Cheng Qian
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
35
|
Xu M, Zhang K, Song J. Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Front Pharmacol 2021; 12:623674. [PMID: 33935716 PMCID: PMC8085499 DOI: 10.3389/fphar.2021.623674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy refers to exploiting the specific therapeutic drugs against the pathogenic molecules (a protein or a gene) or cells. The drug specifically binds to disease-causing molecules or cells without affecting normal tissue, thus enabling personalized and precision treatment. Initially, therapeutic drugs included antibodies and small molecules, (e.g. nucleic acid drugs). With the advancement of the biology technology and immunotherapy, the gene editing and cell editing techniques are utilized for the disease treatment. Currently, targeted therapies applied to treat cardiovascular diseases (CVDs) mainly include protein drugs, gene editing technologies, nucleic acid drugs and cell therapy. Although targeted therapy has demonstrated excellent efficacy in pre-clinical and clinical trials, several limitations need to be recognized and overcome in clinical application, (e.g. off-target events, gene mutations, etc.). This review introduces the mechanisms of different targeted therapies, and mainly describes the targeted therapy applied in the CVDs. Furthermore, we made comparative analysis to clarify the advantages and disadvantages of different targeted therapies. This overview is expected to provide a new concept to the treatment of the CVDs.
Collapse
Affiliation(s)
- Mengda Xu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailun Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Kailun Zhang, ; Jiangping Song,
| |
Collapse
|
36
|
Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat Rev Rheumatol 2021; 17:195-212. [PMID: 33526927 DOI: 10.1038/s41584-020-00570-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current treatments for rheumatoid arthritis (RA) do not work well for a large proportion of patients, or at all in some individuals, and cannot cure or prevent this disease. One major obstacle to developing better drugs is a lack of complete understanding of how inflammatory joint disease arises and progresses. Emerging evidence indicates an important role for the tissue microenvironment in the pathogenesis of RA. Each tissue is made up of cells surrounded and supported by a unique extracellular matrix (ECM). These complex molecular networks define tissue architecture and provide environmental signals that programme site-specific cell behaviour. In the synovium, a main site of disease activity in RA, positional and disease stage-specific cellular diversity exist. Improved understanding of the architecture of the synovium from gross anatomy to the single-cell level, in parallel with evidence demonstrating how the synovial ECM is vital for synovial homeostasis and how dysregulated signals from the ECM promote chronic inflammation and tissue destruction in the RA joint, has opened up new ways of thinking about the pathogenesis of RA. These new ideas provide novel therapeutic approaches for patients with difficult-to-treat disease and could also be used in disease prevention.
Collapse
|
37
|
Koo BS, Lim YC, Lee MY, Jeon JY, Yoo HJ, Oh IS, Shin JY, Kim TH. Dose Reduction of Tumor Necrosis Factor Inhibitor and its Effect on Medical Costs for Patients with Ankylosing Spondylitis. Rheumatol Ther 2021; 8:347-359. [PMID: 33420967 PMCID: PMC7991020 DOI: 10.1007/s40744-020-00274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/19/2020] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Tumor necrosis factor inhibitors (TNFis) may be administered at a reduced dose to patients with ankylosing spondylitis (AS) for various reasons. However, in practice, there is insufficient evidence of how the dose reduction of TNFi is implemented and the amount of medical costs it reduces. In this study, we investigated treatment patterns among patients with AS who were administered various TNFis. The effect on medical costs related to AS was also investigated using Korea's insurance claims database. METHODS From the insurance claims database of the Health Insurance Review & Assessment Service in South Korea, patients with AS newly treated with TNFis (etanercept, adalimumab, golimumab, and infliximab) between July 1, 2013, and June 30, 2016, were enrolled. Patients treated with the TNFis were followed up for 2 years. Treatment patterns (continuation and discontinuation of TNFi) and dose reduction (< 50% of recommended dose) in patients who continued treatment were analyzed and compared among the TNFi groups using the Chi-square test. Healthcare costs between the dose reduction and maintenance groups were compared using general linear modeling. RESULTS Of 1352 patients, 764 (56.51%) continued using TNFis for 2 years, and 17.8% of these were administered reduced doses. TNFi dose reduction was the most frequent in 36 (24.83%) patients using etanercept, followed by those using adalimumab (21.97%), golimumab (11.70%), and infliximab (11.98%) (p = 0.0028). For each TNFi group, the total healthcare cost significantly decreased, that is, by 24.85% for adalimumab, 31.80% for etanercept, 26.34% for golimumab, and 35.52% for infliximab (p < 0.0001). CONCLUSIONS TNFi dose reduction was identified in 17.8% of the patients with AS, and the patterns were different for each TNFi. Additionally, the dose reductions significantly reduced the medical costs associated with AS, that is, from 24.85 to 35.52% of the total medical expenditure.
Collapse
Affiliation(s)
- Bon San Koo
- Department of Internal Medicine, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Yu-Cheol Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | | | | | | | - In-Sun Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Beltagy A, Aghamajidi A, Trespidi L, Ossola W, Meroni PL. Biologics During Pregnancy and Breastfeeding Among Women With Rheumatic Diseases: Safety Clinical Evidence on the Road. Front Pharmacol 2021; 12:621247. [PMID: 34122062 PMCID: PMC8189556 DOI: 10.3389/fphar.2021.621247] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Females are generally more affected by autoimmune diseases, a fact that underlines the relationship with pregnancy and the safety of anti-rheumatic drugs in pregnancy and lactation. Biologic therapies are increasingly prescribed to treat and maintain remission in a significant number of systemic autoimmune rheumatic diseases. The experience with the use of biologics during gestation is extremely lacking because of the observational nature of the available studies and the difficulty in designing proper clinical trials in pregnancy. Among the studied biologics, more information was published on TNFα inhibitors and, in particular, on their potential passage through the placenta and impact on the fetus. Currently, a fragment of anti-TNFα monoclonal IgG, certolizumab pegol, is considered safe with almost no placental transfer. Subsequent observations are suggesting a comparable safety for the soluble TNFα receptor etanercept. Another biologic, eculizumab, the anti-C5a antibody used to treat complement-mediated microangiopathies, is also considered safe due to the unique engineered IgG2/4κ formulation that limits its passage through the placental barrier. Still, long-term data about children born to women treated with biologics in pregnancy are not attainable. Data on breastfeeding are currently available for several biologics. This article reviews the literature available about which drugs are considered safe during pregnancy and lactation, which are not, and on future prospects.
Collapse
Affiliation(s)
- Asmaa Beltagy
- Istituto Auxologico Italiano, IRCCS, Immunorheumatology Research Laboratory, Milan, Italy.,Rheumatology and Clinical Immunology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Laura Trespidi
- Department of Obstetrics and Gynaecology, Fondazione Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Wally Ossola
- Department of Obstetrics and Gynaecology, Fondazione Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Pier Luigi Meroni
- Istituto Auxologico Italiano, IRCCS, Immunorheumatology Research Laboratory, Milan, Italy
| |
Collapse
|
39
|
Kang SH, Lee CH. Development of Therapeutic Antibodies and Modulating the Characteristics of Therapeutic Antibodies to Maximize the Therapeutic Efficacy. BIOTECHNOL BIOPROC E 2021; 26:295-311. [PMID: 34220207 PMCID: PMC8236339 DOI: 10.1007/s12257-020-0181-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAb) have been used as therapeutic agents for various diseases, and immunoglobulin G (IgG) is mainly used among antibody isotypes due to its structural and functional properties. So far, regardless of the purpose of the therapeutic antibody, wildtype IgG has been mainly used, but recently, the engineered antibodies with various strategies according to the role of the therapeutic antibody have been used to maximize the therapeutic efficacy. In this review paper, first, the overall structural features and functional characteristics of antibody IgG, second, the old and new techniques for antibody discovery, and finally, several antibody engineering strategies for maximizing therapeutic efficacy according to the role of a therapeutic antibody will be introduced.
Collapse
Affiliation(s)
- Seung Hyun Kang
- grid.31501.360000 0004 0470 5905Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080 Korea
| | - Chang-Han Lee
- grid.31501.360000 0004 0470 5905Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Korea ,Hongcheon, 25159 Korea ,grid.31501.360000 0004 0470 5905SNU Dementia Research Center, Seoul National University College of Medicine, Seoul, 03080 Korea
| |
Collapse
|
40
|
Baloun J, Kropáčková T, Hulejová H, Tomčík M, Růžičková O, Šléglová O, Gatterová J, Vencovský J, Pavelka K, Šenolt L. Chemokine and Cytokine Profiles in Patients with Hand Osteoarthritis. Biomolecules 2020; 11:biom11010004. [PMID: 33375165 PMCID: PMC7822191 DOI: 10.3390/biom11010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The development of hand osteoarthritis (HOA) and its progression into the erosive subset are unclear, but inflammation is suspected to be the main source. To verify the involvement of inflammation in HOA pathogenesis, we evaluate serum inflammatory mediators and their association with HOA-related clinical features in patients. Methods: 153 participants (50 non-erosive HOA patients, 54 erosive HOA patients, and 49 healthy control subjects) were included in this study. All patients underwent clinical examination, which included assessment of tender and swollen small hand joints, ultrasound (US) examination, and self-reported measures (e.g., AUSCAN or algofunctional indexes). Serum inflammatory mediators were quantified using human cytokine 27-plex immunoassay. We employed linear modelling, correlation analysis, and resampling statistics to evaluate the association of these mediators to HOA. Results: We identified increased levels of nine inflammatory mediators (e.g., eotaxin, monocyte chemoattractant protein 1, interleukin-8, and tumour necrosis factor) in HOA patients compared to healthy controls. Increased mediators correlated with ultrasound findings as well as with clinically tender and swollen joint counts in patients with erosive HOA. However, none of the mediators distinguished between erosive and non-erosive HOA subtypes. Conclusion: Our findings support the hypothesis on the involvement of inflammation in HOA.
Collapse
Affiliation(s)
- Jiří Baloun
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
| | - Tereza Kropáčková
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Hana Hulejová
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
| | - Michal Tomčík
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Olga Růžičková
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Olga Šléglová
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Jindřiška Gatterová
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Ladislav Šenolt
- Institute of Rheumatology, 128 00 Prague, Czech Republic; (J.B.); (T.K.); (H.H.); (M.T.); (O.R.); (O.Š.); (J.G.); (J.V.); (K.P.)
- Department of Rheumatology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-234-075-232
| |
Collapse
|
41
|
Gstöttner C, Nicolardi S, Haberger M, Reusch D, Wuhrer M, Domínguez-Vega E. Intact and subunit-specific analysis of bispecific antibodies by sheathless CE-MS. Anal Chim Acta 2020; 1134:18-27. [DOI: 10.1016/j.aca.2020.07.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 01/15/2023]
|
42
|
Abstract
Bispecific therapeutics target two distinct antigens simultaneously and provide novel functionalities that are not attainable with single monospecific molecules or combinations of them. The unique potential of bispecific therapeutics is driving extensive efforts to discover synergistic dual targets, design molecular formats to integrate bispecific elements, and accelerate successful clinical translation. In particular, the past decade has witnessed a boom in the design and development of bispecific antibody formats with more than 100 collections to date. Despite the remarkable progress that has been made to expand the number of formats, qualitative fine-tuning of bispecific formats is needed to achieve optimal dual-target engagement based on understanding of the spatiotemporal interdependence of the two physically linked binding specificities and the complex target biology associated with bispecific approaches. This review provides insights into the design parameters - including affinity, valency, and geometry - that need to be considered at an early stage of development in order to take the best advantage of bispecific therapeutics.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, South Korea.
| |
Collapse
|
43
|
Novel bioanalytical method for the characterization of the immune response directed against a bispecific F(ab) fragment. Bioanalysis 2020; 12:509-517. [PMID: 32351119 DOI: 10.4155/bio-2020-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The work was aimed at developing a bioanalytical approach to identify immunogenic parts of a bispecific F(ab) fragment and to characterize the immune response seen in a preclinical study. Experimental: The bioanalytical method consists of a set of domain detection assays that use germlined variants of the drug. Results: The method demonstrated that anti-drug antibodies (ADAs) were predominantly directed against both antigen-binding sites of the drug. Conclusion: The method was capable to discriminate between ADAs directed against one of the antigen-binding sites, both sites or the constant domain, allowing for an estimation of the relative binding prevalence for these subunits. The developed approach provides a practical and robust solution for exploratory characterization of ADAs against multidomain biotherapeutics.
Collapse
|
44
|
Peptide-Based Vaccination Therapy for Rheumatic Diseases. J Immunol Res 2020; 2020:8060375. [PMID: 32258176 PMCID: PMC7104265 DOI: 10.1155/2020/8060375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatic diseases are extremely heterogeneous diseases with substantial risks of morbidity and mortality, and there is a pressing need in developing more safe and cost-effective treatment strategies. Peptide-based vaccination is a highly desirable strategy in treating noninfection diseases, such as cancer and autoimmune diseases, and has gained increasing attentions. This review is aimed at providing a brief overview of the recent advances in peptide-based vaccination therapy for rheumatic diseases. Tremendous efforts have been made to develop effective peptide-based vaccinations against rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), while studies in other rheumatic diseases are still limited. Peptide-based active vaccination against pathogenic cytokines such as TNF-α and interferon-α (IFN-α) is shown to be promising in treating RA or SLE. Moreover, peptide-based tolerogenic vaccinations also have encouraging results in treating RA or SLE. However, most studies available now have been mainly based on animal models, while evidence from clinical studies is still lacking. The translation of these advances from experimental studies into clinical therapy remains impeded by some obstacles such as species difference in immunity, disease heterogeneity, and lack of safe delivery carriers or adjuvants. Nevertheless, advances in high-throughput technology, bioinformatics, and nanotechnology may help overcome these impediments and facilitate the successful development of peptide-based vaccination therapy for rheumatic diseases.
Collapse
|
45
|
Mock J, Pellegrino C, Neri D. A universal reporter cell line for bioactivity evaluation of engineered cytokine products. Sci Rep 2020; 10:3234. [PMID: 32094407 PMCID: PMC7040017 DOI: 10.1038/s41598-020-60182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/24/2022] Open
Abstract
Engineered cytokine products represent a growing class of therapeutic proteins which need to be tested for biological activity at various stages of pharmaceutical development. In most cases, dedicated biological assays are established for different products, in a process that can be time-consuming and cumbersome. Here we describe the development and implementation of a universal cell-based reporter system for various classes of immunomodulatory proteins. The novel system capitalizes on the fact that the signaling of various types of pro-inflammatory agents (e.g., cytokines, chemokines, Toll-like receptor agonists) may involve transcriptional activation by NF-κB. Using viral transduction, we generated stably-transformed cell lines of B or T lymphocyte origin and compared the new reporter cell lines with conventional bioassays. The experimental findings with various interleukins and with members of the TNF superfamily revealed that the newly-developed “universal” bioassay method yielded bioactivity data which were comparable to the ones obtained with dedicated conventional methods. The engineered cell lines with reporters for NF-κB were tested with several antibody-cytokine fusions and may be generally useful for the characterization of novel immunomodulatory products. The newly developed methodology also revealed a mechanism for cytokine potentiation, based on the antibody-mediated clustering of TNF superfamily members on tumor-associated extracellular matrix components.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
46
|
Järvinen TA, Pemmari T. Systemically Administered, Target-Specific, Multi-Functional Therapeutic Recombinant Proteins in Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E226. [PMID: 32013041 PMCID: PMC7075297 DOI: 10.3390/nano10020226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Growth factors, chemokines and cytokines guide tissue regeneration after injuries. However, their applications as recombinant proteins are almost non-existent due to the difficulty of maintaining their bioactivity in the protease-rich milieu of injured tissues in humans. Safety concerns have ruled out their systemic administration. The vascular system provides a natural platform for circumvent the limitations of the local delivery of protein-based therapeutics. Tissue selectivity in drug accumulation can be obtained as organ-specific molecular signatures exist in the blood vessels in each tissue, essentially forming a postal code system ("vascular zip codes") within the vasculature. These target-specific "vascular zip codes" can be exploited in regenerative medicine as the angiogenic blood vessels in the regenerating tissues have a unique molecular signature. The identification of vascular homing peptides capable of finding these unique "vascular zip codes" after their systemic administration provides an appealing opportunity for the target-specific delivery of therapeutics to tissue injuries. Therapeutic proteins can be "packaged" together with homing peptides by expressing them as multi-functional recombinant proteins. These multi-functional recombinant proteins provide an example how molecular engineering gives to a compound an ability to home to regenerating tissue and enhance its therapeutic potential. Regenerative medicine has been dominated by the locally applied therapeutic approaches despite these therapies are not moving to clinical medicine with success. There might be a time to change the paradigm towards systemically administered, target organ-specific therapeutic molecules in future drug discovery and development for regenerative medicine.
Collapse
Affiliation(s)
- Tero A.H. Järvinen
- Faculty of Medicine & Health Technology, Tampere University, FI-33014 Tampere, Finland & Tampere University Hospital, 33520 Tampere, Finland
| | | |
Collapse
|
47
|
Gaston J, Maestrali N, Lalle G, Gagnaire M, Masiero A, Dumas B, Dabdoubi T, Radošević K, Berne PF. Intracellular delivery of therapeutic antibodies into specific cells using antibody-peptide fusions. Sci Rep 2019; 9:18688. [PMID: 31822703 PMCID: PMC6904672 DOI: 10.1038/s41598-019-55091-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Because of their favorable properties as macromolecular drugs, antibodies are a very successful therapeutic modality for interfering with disease-relevant targets in the extracellular space or at the cell membrane. However, a large number of diseases involve cytosolic targets and designing antibodies able to efficiently reach intracellular compartments would expand the antibody-tractable conditions. Here, we genetically fused cell penetrating peptides (CPPs) at various positions to an antibody targeting cancer cells, evaluated the developability features of the resulting antibody-peptide fusions and the ability of selected constructs to reach the cytosol. We first determined positions in the IgG structure that were permissive to CPP incorporation without destabilizing the antibody. Fusing CPPs to the C-terminus of the light chain and either before or after the hinge had the least effect on antibody developability features. These constructs were further evaluated for cell penetration efficiency. Two out of five tested CPPs significantly enhanced antibody penetration into the cytosol, in particular when fused before or after the hinge. Finally, we demonstrate that specific antibody binding to the cell surface target is necessary for efficient cell penetration of the CPP-antibody fusions. This study provides a solid basis for further exploration of therapeutic antibodies for intracellular targets.
Collapse
Affiliation(s)
- Julie Gaston
- Yubsis, 4 rue Pierre Fontaine, 91000, Evry, France
| | - Nicolas Maestrali
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Guilhem Lalle
- Department of Immunology, Virology and Inflammation, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Labex DEVweCAN, 693743, Lyon, France
| | - Marie Gagnaire
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Alessandro Masiero
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Bruno Dumas
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Tarik Dabdoubi
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France
| | - Katarina Radošević
- Sanofi R&D, Biologics Research, 13 Quai Jules Guesde, 94400, Vitry-sur-Seine, France.
| | | |
Collapse
|
48
|
Abstract
Advances in the treatment of rheumatoid arthritis (RA) are attributed to several aspects such as new classification criteria enabling early diagnosis and intensive treatment with the application of treat-to-target principles as well as better understanding of the pathogenesis of RA contributing to the development of targeted therapies. However, reaching remission is still not achieved in most patients with RA, which is one of the driving forces behind the continuous development of novel therapies and the optimization of therapeutic strategies. This review will outline several new therapeutic antibodies modulating anti-inflammatory cytokines interleukin (IL)-2 and IL-10 and pro-inflammatory mediators granulocyte-macrophage colony-stimulating factor, fractalkine, and IL-6 that are in various stages of clinical development as well as the progress in manufacturing biotechnologies contributing to the next generation of antibodies and their potential to expand the therapeutic armamentarium for RA. In addition, the fate of unsuccessful therapies including agents targeting IL-15, the IL-20 family, IL-21, chemokine CXCL10, B-cell activating factor (BAFF), and regulatory T (Treg) cells or a novel concept targeting synovial fibroblasts via cadherin-11 will be discussed.
Collapse
Affiliation(s)
- Ladislav Senolt
- Department of Rheumatology, First Faculty of Medicine, Charles University, Institute of Rheumatology, Prague, Czech Republic, 128 50, Czech Republic
| |
Collapse
|