1
|
Xu XQ, Li WJ, Zhang DY, Zhu Y, Xu WT, Wang Y, Wang XQ, Wang W, Yang HB. Chiral Rotaxane-Branched Dendrimers as Relays in Artificial Light-Harvesting Systems with Boosted Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025; 64:e202419434. [PMID: 39578231 DOI: 10.1002/anie.202419434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Starting from AIEgen-functionalized chiral [2]rotaxane building block, we have successfully synthesized a new class of chiral rotaxane-branched dendrimers through controllable divergent strategy for the first time, based on which novel chiral artificial light-harvesting systems (LHSs) were successfully constructed in aqueous phase by sequentially introducing achiral donor and acceptor. More importantly, accompanied by the two-step Förster resonance energy transfer (FRET) process in the resultant artificial LHSs, the sequentially amplified circularly polarized luminescence (CPL) performances were achieved, highlighting that the chiral rotaxane-branched dendrimers could serve as excellent relay for both energy transfer and chirality transmission. Impressively, compared with the sole chiral rotaxane-branched dendrimers, the dissymmetry factors (glum) values of the resultant artificial LHSs were amplified by one order of magnitude up to 0.038, enabling their further applications in information storage and encryption. The proof-of concept study provides not only a feasible approach for the efficient amplification of CPL performances but also a novel platform for the construction of novel chiral luminescent materials.
Collapse
Affiliation(s)
- Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
2
|
Yan YH, Li YQ, Zou MJ, Yu LJ, Zhang JP. Structural integrity and near-infrared absorption of the LH1 complex of Thermochromatium tepidum: Influence from the C-terminal lysine residues of LH1 α-polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149545. [PMID: 39933687 DOI: 10.1016/j.bbabio.2025.149545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
The light-harvesting complex 1-reaction center (LH1-RC) photosystem of the thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum exhibits a near-infrared LH1-Qy absorption band at 915 nm as regulated by binding calcium ions (Ca2+). To further explore the possible involvement of the C-terminal lysine residues of the LH1 α-polypeptide, we have genetically engineered a Rhodospirillum rubrum mutant strain to yield the site-directed modifications of the terminal α-Lys60 and α-Lys61 residues of Tch. tepidum LH1 α-polypeptide. Four of the LH1 mutants exhibit a subtle blue shift of 3 nm upon deletion or substitution of the lysine residues, however, they display over 40 nm blue shifts upon Ca2+ removal by ethylene diamine tetraacetic acid (EDTA) treatment. Spectral properties of native Tch. tepidum LH1-RC, the LH1-only, and the mutant LH1-only complexes are compared on a structural basis, which allows us to conclude that the C-terminal lysine residues and the Ca2+ binding synergistically affect the structural integrity and the LH1-Qy spectral shift. This work demonstrates a methodology for the genetic manipulation of photosynthetic proteins lacking mutagenesis information, and may shed light on understanding the detailed structural factors involved in tuning the LH1-Qy absorption.
Collapse
Affiliation(s)
- Yi-Hao Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu-Qian Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
3
|
Huang G, Dong S, Ma L, Li L, Ju J, Wang MJ, Zhang JP, Sui SF, Qin X. Cryo-EM structure of a minimal reaction center-light-harvesting complex from the phototrophic bacterium Chloroflexus aurantiacus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39912559 DOI: 10.1111/jipb.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Photosynthetic organisms have developed various light-harvesting antenna systems to capture light and transfer energy to reaction centers (RCs). Simultaneous utilization of the integral membrane light-harvesting antenna (LH complex) and the extrinsic antenna (chlorosomes) makes the phototrophic bacterium Chloroflexus (Cfx.) aurantiacus an ideal model for studying filamentous anoxygenic phototrophs (FAPs). Here, we determined the structure of a minimal RC-LH photocomplex from Cfx. aurantiacus J-10-fl (CaRC-LH) at 3.05-Å resolution. The CaRC-LH binds only to seven LH subunits, which form a crescent-shaped antenna surrounding the movable menaquinone-10 (QB) binding site of CaRC. In this complex with minimal LH units, an extra antenna is required to ensure sufficient light-gathering, providing a clear explanation for the presence of chlorosomes in Cfx. aurantiacus. More importantly, the semicircle of the antenna represents a novel RC-LH assembly pattern. Our structure provides a basis for understanding the existence of chlorosomes in Cfx. aurantiacus and the possible assembly pattern of RC-LH.
Collapse
Affiliation(s)
- Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 200433, China
| | - Shishang Dong
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lin Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinxin Ju
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Mei-Jiao Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Jian-Ping Zhang
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
4
|
Tani K, Nagashima KVP, Kojima R, Kondo M, Kanno R, Satoh I, Kawakami M, Hiwatashi N, Nakata K, Nagashima S, Inoue K, Isawa Y, Morishita R, Takaichi S, Purba ER, Hall M, Yu LJ, Madigan MT, Mizoguchi A, Humbel BM, Kimura Y, Nagasawa Y, Dewa T, Wang-Otomo ZY. A distinct double-ring LH1-LH2 photocomplex from an extremophilic phototroph. Nat Commun 2025; 16:1410. [PMID: 39915441 PMCID: PMC11802735 DOI: 10.1038/s41467-024-55811-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025] Open
Abstract
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic phototrophic purple sulfur bacterium isolated from a hypersaline lake in the Libyan Desert whose total salinity exceeded 35% at pH 10.7. Here we present a cryo-EM structure of the native LH1-LH2 co-complex from strain BN9622 at 2.22 Å resolution. Surprisingly, the LH1-LH2 co-complex consists of a double-ring cylindrical structure with the larger LH1 ring encircling a smaller LH2 ring. The Hlr. halophila LH1 contains 18 αβ-subunits and additional bacteriochlorophyll a (BChl a) molecules that absorb maximally at 797 nm. The LH2 ring is composed of 9 αβ-subunits, and the BChl a molecules in the co-complex form extensive intra- and inter-complex networks to allow near 100% efficiency of energy transfer to its surrounding LH1. The additional LH1-B797 BChls a are located in such a manner that they facilitate exciton transfer from monomeric BChls in LH2 to the dimeric BChls in LH1. The structural features of the strain BN9622 LH1-LH2 co-complex may have evolved to allow a minimal LH2 complex to maximize excitation transfer to the core complex and effectively harvest light in the physiologically demanding ecological niche of this purple bacterium.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Graduate School of Medicine, Mie University, Tsu, Japan.
| | - Kenji V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Risa Kojima
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masaharu Kondo
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Ryo Kanno
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Okinawa, Japan
| | - Issei Satoh
- Faculty of Science, Ibaraki University, Mito, Japan
| | - Mai Kawakami
- Faculty of Science, Ibaraki University, Mito, Japan
| | | | - Kazuna Nakata
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Kobe, Japan
| | - Sakiko Nagashima
- Research Institute for Integrated Science, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Kazuhito Inoue
- Research Institute for Integrated Science, Kanagawa University, Yokohama, Kanagawa, Japan
- Department of Biochemistry and Biotechnology, Faculty of Chemistry and Biochemistry, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Yugo Isawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryoga Morishita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Endang R Purba
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Okinawa, Japan
| | - Malgorzata Hall
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Okinawa, Japan
| | - Long-Jiang Yu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | | | - Bruno M Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Okinawa, Japan
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Kobe, Japan.
| | - Yutaka Nagasawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan.
| | | |
Collapse
|
5
|
Zou MJ, Sun S, Wang GL, Yan YH, Ji W, Wang-Otomo ZY, Madigan MT, Yu LJ. Probing the Dual Role of Ca 2+ in the Allochromatium tepidum LH1-RC Complex by Constructing and Analyzing Ca 2+-Bound and Ca 2+-Free LH1 Complexes. Biomolecules 2025; 15:124. [PMID: 39858518 PMCID: PMC11764377 DOI: 10.3390/biom15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
The genome of the mildly thermophilic hot spring purple sulfur bacterium, Allochromatium (Alc.) tepidum, contains a multigene pufBA family that encodes a series of α- and β-polypeptides, collectively forming a heterogeneous light-harvesting 1 (LH1) complex. The Alc. tepidum LH1, therefore, offers a unique model for studying an intermediate phenotype between phototrophic thermophilic and mesophilic bacteria, particularly regarding their LH1 Qy transition and moderately enhanced thermal stability. Of the 16 α-polypeptides in the Alc. tepidum LH1, six α1 bind Ca2+ to connect with β1- or β3-polypeptides in specific Ca2+-binding sites. Here, we use the purple bacterium Rhodospirillum rubrum strain H2 as a host to express Ca2+-bound and Ca2+-free Alc. tepidum LH1-only complexes composed of α- and β-polypeptides that either contain or lack the calcium-binding motif WxxDxI; purified preparations of each complex were then used to test how Ca2+ affects their thermostability and spectral features. The cryo-EM structures of both complexes were closed circular rings consisting of 14 αβ-polypeptides. The Qy absorption maximum of Ca2+-bound LH1 (α1/β1 and α1/β3) was at 894 nm, while that of Ca2+-free (α2/β1) was at 888 nm, indicating that Ca2+ imparts a Qy transition of 6 nm. Crucially for the ecological success of Alc. tepidum, Ca2+-bound LH1 complexes were more thermostable than Ca2+-free complexes, indicating that calcium plays at least two major roles in photosynthesis by Alc. tepidum-improving photocomplex stability and modifying its spectrum.
Collapse
Affiliation(s)
- Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
| | - Shuai Sun
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hao Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Ji
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| | | | - Michael T. Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (S.S.); (G.-L.W.); (Y.-H.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Tani K, Kanno R, Nagashima KVP, Kawakami M, Hiwatashi N, Nakata K, Nagashima S, Inoue K, Takaichi S, Purba ER, Hall M, Yu LJ, Madigan MT, Mizoguchi A, Humbel BM, Kimura Y, Wang-Otomo ZY. A Native LH1-RC-HiPIP Supercomplex from an Extremophilic Phototroph. Commun Biol 2025; 8:42. [PMID: 39799244 PMCID: PMC11724841 DOI: 10.1038/s42003-024-07421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr. halophila triple-complex formed from light-harvesting (LH1), the reaction center (RC), and high-potential iron-sulfur protein (HiPIP) at 2.44 Å resolution, and (2) a HiPIP-free LH1-RC complex at 2.64 Å resolution. Differing from the LH1 in the Hlr. halophila LH1-LH2 co-complex where LH1 encircles LH2, the RC-associated LH1 complex consists of 16 (rather than 18) αβ-subunits circularly surrounding the RC. These distinct forms of LH1 indicate that the number of subunits in a Hlr. halophila LH1 complex is flexible and its size is a function of the photocomplex it encircles. Like LH1 in the LH1-LH2 co-complex, the RC-associated LH1 complex also contained two forms of αβ-polypeptides and both dimeric and monomeric molecules of bacteriochlorophyll a. The majority of the isolated Hlr. halophila LH1-RC complexes contained the electron donor HiPIP bound to the surface of the RC cytochrome subunit near the heme-1 group. The bound HiPIP consisted of an N-terminal functional domain and a long C-terminal extension firmly attached to the cytochrome subunit. Despite overall highly negative surface-charge distributions for both the cytochrome subunit and HiPIP, the interface between the two proteins was relatively uncharged and neutral, forming a pathway for electron tunneling. The structure of the Hlr. halophila LH1-RC-HiPIP complex provides insights into the mechanism of light energy acquisition coupled with a long-distance electron donating process toward the charge separation site in a multi-extremophilic phototroph.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
- Graduate School of Medicine, Mie University, Tsu, Japan.
| | - Ryo Kanno
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Kenji V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
| | - Mai Kawakami
- Faculty of Science, Ibaraki University, Mito, Japan
| | | | - Kazuna Nakata
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan
| | - Sakiko Nagashima
- Research Institute for Integrated Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
| | - Kazuhito Inoue
- Research Institute for Integrated Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
- Department of Biochemistry and Biotechnology, Faculty of Chemistry and Biochemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo, Japan
| | - Endang R Purba
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Malgorzata Hall
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | | | - Bruno M Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
- Department of Cell Biology and Neuroscience, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan.
| | | |
Collapse
|
7
|
Wang XP, Wang GL, Fu Y, Minamino A, Zou MJ, Ma F, Xu B, Wang-Otomo ZY, Kimura Y, Madigan MT, Overmann J, Yu LJ. Insights into the divergence of the photosynthetic LH1 complex obtained from structural analysis of the unusual photocomplexes of Roseospirillum parvum. Commun Biol 2024; 7:1658. [PMID: 39702771 DOI: 10.1038/s42003-024-07354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Purple phototrophic bacteria produce two kinds of light-harvesting complexes that function to capture and transmit solar energy: the core antenna (LH1) and the peripheral antenna (LH2). The apoproteins of these antennas, encoded respectively by the genes pufBA and pucBA within and outside the photosynthetic gene cluster, respectively, exhibit conserved amino acid sequences and structural topologies suggesting they were derived from a shared ancestor. Here we present the structures of two photosynthetic complexes from Roseospirillum (Rss.) parvum 930I: an LH1-RC complex and a variant of the LH1 complex also encoded by pufBA that we designate as LH1'. The LH1-RC complex forms a closed elliptical structure consisting of 16 pairs of αβ-polypeptides that surrounds the RC. By contrast, the LH1' complex is a closed ring structure composed of 14 pairs of αβ-polypeptides, and it shows significant similarities to LH2 complexes both spectrally and structurally. Although LH2-like, the LH1' complex is larger than any known LH2 complexes, and genomic analyses of Rss. parvum revealed the absence of pucBA, genes that encode classical LH2 complexes. Characterization of the unique Rss. parvum photocomplexes not only underscores the diversity of such structures but also sheds new light on the evolution of light-harvesting complexes from phototrophic bacteria.
Collapse
Affiliation(s)
- Xiang-Ping Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Fu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Akane Minamino
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan
| | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, USA
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Kimura Y, Kanno R, Mori K, Matsuda Y, Seto R, Takenaka S, Mino H, Ohkubo T, Honda M, Sasaki YC, Kishikawa JI, Mitsuoka K, Mio K, Hall M, Purba ER, Mochizuki T, Mizoguchi A, Humbel BM, Madigan MT, Wang-Otomo ZY, Tani K. The Thermal-Stable LH1-RC Complex of a Hot Spring Purple Bacterium Powers Photosynthesis with Extremely Low-Energy Near-Infrared Light. Biochemistry 2024. [PMID: 39680849 DOI: 10.1021/acs.biochem.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Blastochloris (Blc.) tepida is a hot spring purple nonsulfur phototrophic bacterium that contains bacteriochlorophyll (BChl) b. Here, we present a 2.21 Å cryo-EM structure of the thermostable light-harvesting 1-reaction center (LH1-RC) complex from Blc. tepida. The LH1 ring comprises 16 circularly arranged αβγ-subunits plus one αβ-subunit that surround the RC complex composed of C-, H-, L-, and M-subunits. In a comparative study, the Blc. tepida LH1-RC showed numerous electrostatic and hydrophobic interactions both within the LH1 complex itself and between the LH1 and the RC complexes that are absent from the LH1-RC complex of its mesophilic counterpart, Blc. viridis. These additional interactions result in a tightly packed LH1-RC architecture with a reduced accessible surface area per volume that enhances the thermal stability of the Blc. tepida complex and allows the light reactions of photosynthesis to proceed at hot spring temperatures. Moreover, based on high-resolution structural information combined with spectroscopic evidence, the unique photosynthetic property of the Blc. tepida LH1-RC─absorption of energy-poor near-infrared light beyond 1000 nm─can be attributed to strong hydrogen-bonding interactions between the C3-acetyl C═O of the LH1 BChl b and two LH1 α-Trp residues, structural rigidity of the LH1, and the enhanced exciton coupling of the LH1 BChls of this thermophile.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Kobe, Nada 657-8501, Japan
| | - Ryo Kanno
- Quatum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Kaisei Mori
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Kobe, Nada 657-8501, Japan
| | - Yoshiki Matsuda
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Kobe, Nada 657-8501, Japan
| | - Ryuta Seto
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Kobe, Nada 657-8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Kobe, Nada 657-8501, Japan
| | - Hiroyuki Mino
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya, Chikusa 464-8602, Japan
| | - Tatsunari Ohkubo
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Chiba, Kashiwa 277-0882, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Tsurumi 230-0045, Japan
| | - Mai Honda
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Chiba, Kashiwa 277-0882, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Tsurumi 230-0045, Japan
| | - Yuji C Sasaki
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Chiba, Kashiwa 277-0882, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Chiba 277-8561, Japan
| | - Jun-Ichi Kishikawa
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto, Sakyo 606-8585, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Ibaraki 567-0047, Japan
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Chiba, Kashiwa 277-0882, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Tsurumi 230-0045, Japan
| | - Malgorzata Hall
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Endang R Purba
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Toshiaki Mochizuki
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Bruno M Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Department of Cell Biology and Neuroscience, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Michael T Madigan
- School of Biological Sciences, Program in Microbiology, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | - Kazutoshi Tani
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
- Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Center for Quantum and Information Life Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
9
|
Saga Y, Sasamoto Y, Inada K, Wang-Otomo ZY, Kimura Y. Spectral modulation of B850 bacteriochlorophyll a in light-harvesting complex 2 from purple photosynthetic bacterium Thermochromatium tepidum by detergents and calcium ions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149503. [PMID: 39153589 DOI: 10.1016/j.bbabio.2024.149503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Spectral variations of light-harvesting (LH) proteins of purple photosynthetic bacteria provide insight into the molecular mechanisms underlying spectral tuning of circular bacteriochlorophyll (BChl) arrays, which play crucial roles in photoenergy conversion in these organisms. Here we investigate spectral changes of the Qy band of B850 BChl a in LH2 protein from purple sulfur bacterium Thermochromatium tepidum (tepidum-LH2) by detergents and Ca2+. The tepidum-LH2 solubilized with lauryl dimethylamine N-oxide and n-octyl-β-D-glucoside (LH2LDAO and LH2OG, respectively) exhibited blue-shift of the B850 Qy band with hypochromism compared with the tepidum-LH2 solubilized with n-dodecyl-β-D-maltoside (LH2DDM), resulting in the LH3-like spectral features. Resonance Raman spectroscopy indicated that this blue-shift was ascribable to the loss of hydrogen-bonding between the C3-acetyl group in B850 BChl a and the LH2 polypeptides. Ca2+ produced red-shift of the B850 Qy band in LH2LDAO by forming hydrogen-bond for the C3-acetyl group in B850 BChl a, probably due to a change in the microenvironmental structure around B850. Ca2+-induced red-shift was also observed in LH2OG although the B850 acetyl group is still free from hydrogen-bonding. Therefore, the Ca2+-induced B850 red-shift in LH2OG would originate from an electrostatic effect of Ca2+. The current results suggest that the B850 Qy band in tepidum-LH2 is primarily tuned by two mechanisms, namely the hydrogen-bonding of the B850 acetyl group and the electrostatic effect.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Yuhi Sasamoto
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kazuki Inada
- Graduate School of Agriculture, Kobe University, Kobe 657-8501, Japan
| | | | - Yukihiro Kimura
- Graduate School of Agriculture, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Matsubara S, Shoji S, Tamiaki H. Biomimetic light-harvesting antennas via the self-assembly of chemically programmed chlorophylls. Chem Commun (Camb) 2024; 60:12513-12524. [PMID: 39376203 DOI: 10.1039/d4cc04363d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The photosynthetic pigment "chlorophyll" possesses attractive photophysical properties, including efficient sunlight absorption, photoexcited energy transfer, and charge separation, which are advantageous for applications for photo- and electro-functional materials such as artificial photosynthesis and solar cells. However, these functions cannot be realized by individual chlorophyll molecules alone; rather, they are achieved by the formation of sophisticated supramolecules through the self-assembly of the pigments. Here, we present strategies for constructing and developing artificial light-harvesting systems by mimicking photosynthetic antenna complexes through the highly ordered supramolecular self-assembly of synthetic dyes, particularly chlorophyll derivatives.
Collapse
Affiliation(s)
- Shogo Matsubara
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan
| | - Sunao Shoji
- Faculty of Engineering, Nara Women's University, Nara 630-8506, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
11
|
Wang P, Christianson BM, Ugurlar D, Mao R, Zhang Y, Liu ZK, Zhang YY, Gardner AM, Gao J, Zhang YZ, Liu LN. Architectures of photosynthetic RC-LH1 supercomplexes from Rhodobacter blasticus. SCIENCE ADVANCES 2024; 10:eadp6678. [PMID: 39383221 PMCID: PMC11463270 DOI: 10.1126/sciadv.adp6678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
The reaction center-light-harvesting complex 1 (RC-LH1) plays an essential role in the primary reactions of bacterial photosynthesis. Here, we present high-resolution structures of native monomeric and dimeric RC-LH1 supercomplexes from Rhodobacter (Rba.) blasticus using cryo-electron microscopy. The RC-LH1 monomer is composed of an RC encircled by an open LH1 ring comprising 15 αβ heterodimers and a PufX transmembrane polypeptide. In the RC-LH1 dimer, two crossing PufX polypeptides mediate dimerization. Unlike Rhodabacter sphaeroides counterpart, Rba. blasticus RC-LH1 dimer has a less bent conformation, lacks the PufY subunit near the LH1 opening, and includes two extra LH1 αβ subunits, forming a more enclosed S-shaped LH1 ring. Spectroscopic assays reveal that these unique structural features are accompanied by changes in the kinetics of quinone/quinol trafficking between RC-LH1 and cytochrome bc1. Our findings reveal the assembly principles and structural variability of photosynthetic RC-LH1 supercomplexes, highlighting diverse strategies used by phototrophic bacteria to optimize light-harvesting and electron transfer in competitive environments.
Collapse
Affiliation(s)
- Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bern M. Christianson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Deniz Ugurlar
- Thermo Fisher Scientific, Life Sciences EMEA, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Ruichao Mao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yi Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze-Kun Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ying-Yue Zhang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - Adrian M. Gardner
- Department of Chemistry, Stephenson Institute of Renewable Energy, and Early Career Laser Laboratory, University of Liverpool, L69 7ZF Liverpool, UK
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
12
|
Qi CH, Wang GL, Wang FF, Wang J, Wang XP, Zou MJ, Ma F, Madigan MT, Kimura Y, Wang-Otomo ZY, Yu LJ. Structural insights into the unusual core photocomplex from a triply extremophilic purple bacterium, Halorhodospira halochloris. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2262-2272. [PMID: 38411333 DOI: 10.1111/jipb.13628] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/28/2024]
Abstract
Halorhodospira (Hlr.) halochloris is a triply extremophilic phototrophic purple sulfur bacterium, as it is thermophilic, alkaliphilic, and extremely halophilic. The light-harvesting-reaction center (LH1-RC) core complex of this bacterium displays an LH1-Qy transition at 1,016 nm, which is the lowest-energy wavelength absorption among all known phototrophs. Here we report the cryo-EM structure of the LH1-RC at 2.42 Å resolution. The LH1 complex forms a tricyclic ring structure composed of 16 αβγ-polypeptides and one αβ-heterodimer around the RC. From the cryo-EM density map, two previously unrecognized integral membrane proteins, referred to as protein G and protein Q, were identified. Both of these proteins are single transmembrane-spanning helices located between the LH1 ring and the RC L-subunit and are absent from the LH1-RC complexes of all other purple bacteria of which the structures have been determined so far. Besides bacteriochlorophyll b molecules (B1020) located on the periplasmic side of the Hlr. halochloris membrane, there are also two arrays of bacteriochlorophyll b molecules (B800 and B820) located on the cytoplasmic side. Only a single copy of a carotenoid (lycopene) was resolved in the Hlr. halochloris LH1-α3β3 and this was positioned within the complex. The potential quinone channel should be the space between the LH1-α3β3 that accommodates the single lycopene but does not contain a γ-polypeptide, B800 and B820. Our results provide a structural explanation for the unusual Qy red shift and carotenoid absorption in the Hlr. halochloris spectrum and reveal new insights into photosynthetic mechanisms employed by a species that thrives under the harshest conditions of any phototrophic microorganism known.
Collapse
Affiliation(s)
- Chen-Hui Qi
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Lei Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Fang Wang
- Zhangjiang Lab, National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jie Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Ping Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Juan Zou
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fei Ma
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, 657-8501, Japan
| | | | - Long-Jiang Yu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
13
|
Novoderezhkin VI, Razjivin AP. Multiexciton spectra of molecular aggregates: application to photosynthetic antenna complexes. Phys Chem Chem Phys 2024; 26:23800-23810. [PMID: 39229788 DOI: 10.1039/d4cp02246g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We perform theoretical studies of nonlinear spectral responses of molecular aggregates upon multiple electronic excitations. It is shown that the transient absorption (TA) spectra exhibit gradual shifting to short wavelengths upon an increase in excitation energy accompanied by population of higher-order exciton manifolds. This transformation of the TA profile reflects a character of the exciton splitting and, therefore, is strongly dependent on the aggregate shape and size as well as on the exciton couplings and disorder of the site energies. The theory is applied for modeling of the intensity-dependent TA spectra of a light-harvesting LH1 antenna from a photosynthetic purple bacterium. Fitting of the data allowed verification of the exciton model of the complex (enabling us to differentiate between the correlated (elliptical) and uncorrelated energetic disorder). We found that the difference between the TA spectra corresponding to the absorption of one and two quanta suggests the presence of strong uncorrelated disorder (in agreement with earlier models of bacterial LH1/LH2 antennas). Nonlinear spectroscopy with multiple excitations may also be useful for exploring the exciton structure of other photosynthetic antennas and similar molecular systems.
Collapse
Affiliation(s)
- Vladimir I Novoderezhkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119992, Moscow, Russia.
| | - Andrei P Razjivin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119992, Moscow, Russia.
| |
Collapse
|
14
|
Saito K, Tamura H, Ishikita H. Superexchange Electron Transfer and Protein Matrix in the Charge-Separation Process of Photosynthetic Reaction Centers. J Phys Chem Lett 2024; 15:9183-9192. [PMID: 39213497 PMCID: PMC11404480 DOI: 10.1021/acs.jpclett.4c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In type-II reaction centers, such as photosystem II (PSII) and reaction centers from purple bacteria (PbRC), light-induced charge separation involves electron transfer from pheophytin (PheoD1) to quinone (QA), occurring near a conserved tryptophan residue (D2-Trp253 in PSII and Trp-M252 in PbRC). This study investigates the route of the PheoD1-to-QA electron transfer, focusing on the superexchange coupling (|HPheoD1···QA|) in the PSII protein environment. |HPheoD1···QA| is significantly larger for the PheoD1-to-QA electron transfer via the unoccupied molecular orbitals of D2-Trp253 ([Trp]•--like intermediate state, 0.73 meV) compared to direct electron transfer (0.13 meV), suggesting that superexchange is the dominant mechanism in the PSII protein environment. While the overall impact of the protein environment is limited, local interactions, particularly H-bonds, enhance superexchange electron transfer by directly affecting the delocalization of molecular orbitals. The D2-W253F mutation significantly decreases the electron transfer rate. The conservation of D2-Trp253/D1-Phe255 (Trp-M252/Phe-L216 in PbRC) in the two branches appears to differentiate superexchange coupling, contributing to the branches being either active or inactive in electron transfer.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Tamura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
15
|
Gotfredsen H, Hergenhahn J, Duarte F, Claridge TDW, Anderson HL. Bimolecular Sandwich Aggregates of Porphyrin Nanorings. J Am Chem Soc 2024; 146:25232-25244. [PMID: 39186461 PMCID: PMC11403599 DOI: 10.1021/jacs.4c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Extended π-systems often form supramolecular aggregates, drastically changing their optical and electronic properties. However, aggregation processes can be difficult to characterize or predict. Here, we show that butadiyne-linked 8- and 12-porphyrin nanorings form stable and well-defined bimolecular aggregates with remarkably sharp NMR spectra, despite their dynamic structures and high molecular weights (12.7 to 26.0 kDa). Pyridine breaks up the aggregates into their constituent rings, which are in slow exchange with the aggregates on the NMR time scale. All the aggregates have the same general two-layer sandwich structure, as deduced from NMR spectroscopy experiments, including 1H DOSY, 1H-1H COSY, TOCSY, NOESY, and 1H-13C HSQC. This structure was confirmed by analysis of residual dipolar couplings from 13C-coupled 1H-13C HSQC experiments on one of the 12-ring aggregates. Variable-temperature NMR spectroscopy revealed an internal ring-on-ring rotation process by which two π-π stacked conformers interconvert via a staggered conformation. A slower dynamic process, involving rotation of individual porphyrin units, was also detected by exchange spectroscopy in the 8-ring aggregates, implying partial disaggregation and reassociation. Molecular dynamics simulations indicate that the 8-ring aggregates are bowl-shaped and highly fluxional, compared to the 12-ring aggregates, which are cylindrical. This work demonstrates that large π-systems can form surprisingly well-defined aggregates and may inspire the design of other noncovalent assemblies.
Collapse
Affiliation(s)
- Henrik Gotfredsen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Janko Hergenhahn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Fernanda Duarte
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, U.K
| |
Collapse
|
16
|
Yan YH, Wang GL, Yue XY, Ma F, Madigan MT, Wang-Otomo ZY, Zou MJ, Yu LJ. Molecular structure and characterization of the Thermochromatium tepidum light-harvesting 1 photocomplex produced in a foreign host. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149050. [PMID: 38806091 DOI: 10.1016/j.bbabio.2024.149050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Purple phototrophic bacteria possess light-harvesting 1 and reaction center (LH1-RC) core complexes that play a key role in converting solar energy to chemical energy. High-resolution structures of LH1-RC and RC complexes have been intensively studied and have yielded critical insight into the architecture and interactions of their proteins, pigments, and cofactors. Nevertheless, a detailed picture of the structure and assembly of LH1-only complexes is lacking due to the intimate association between LH1 and the RC. To study the intrinsic properties and structure of an LH1-only complex, a genetic system was constructed to express the Thermochromatium (Tch.) tepidum LH1 complex heterologously in a modified Rhodospirillum rubrum mutant strain. The heterologously expressed Tch. tepidum LH1 complex was isolated in a pure form free of the RC and exhibited the characteristic absorption properties of Tch. tepidum. Cryo-EM structures of the LH1-only complexes revealed a closed circular ring consisting of either 14 or 15 αβ-subunits, making it the smallest completely closed LH1 complex discovered thus far. Surprisingly, the Tch. tepidum LH1-only complex displayed even higher thermostability than that of the native LH1-RC complex. These results reveal previously unsuspected plasticity of the LH1 complex, provide new insights into the structure and assembly of the LH1-RC complex, and show how molecular genetics can be exploited to study membrane proteins from phototrophic organisms whose genetic manipulation is not yet possible.
Collapse
Affiliation(s)
- Yi-Hao Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Yu Yue
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | | | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Martin EC, Bowie AG, Wellfare Reid T, Neil Hunter C, Hitchcock A, Swainsbury DJ. Sulfoquinovosyl diacylglycerol is required for dimerisation of the Rhodobacter sphaeroides reaction centre-light harvesting 1 core complex. Biochem J 2024; 481:823-838. [PMID: 38780411 PMCID: PMC11346425 DOI: 10.1042/bcj20240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.
Collapse
Affiliation(s)
- Elizabeth C. Martin
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Adam G.M. Bowie
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Taylor Wellfare Reid
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | | |
Collapse
|
18
|
Ennist NM, Wang S, Kennedy MA, Curti M, Sutherland GA, Vasilev C, Redler RL, Maffeis V, Shareef S, Sica AV, Hua AS, Deshmukh AP, Moyer AP, Hicks DR, Swartz AZ, Cacho RA, Novy N, Bera AK, Kang A, Sankaran B, Johnson MP, Phadkule A, Reppert M, Ekiert D, Bhabha G, Stewart L, Caram JR, Stoddard BL, Romero E, Hunter CN, Baker D. De novo design of proteins housing excitonically coupled chlorophyll special pairs. Nat Chem Biol 2024; 20:906-915. [PMID: 38831036 PMCID: PMC11213709 DOI: 10.1038/s41589-024-01626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.
Collapse
Affiliation(s)
- Nathan M Ennist
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Shunzhi Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Madison A Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | | | | | - Rachel L Redler
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anthony V Sica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arundhati P Deshmukh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam P Moyer
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Derrick R Hicks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Avi Z Swartz
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ralph A Cacho
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nathan Novy
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Amala Phadkule
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Damian Ekiert
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Lyratzakis A, Daskalakis V, Xie H, Tsiotis G. The synergy between the PscC subunits for electron transfer to the P 840 special pair in Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2024; 160:87-96. [PMID: 38625595 PMCID: PMC11108878 DOI: 10.1007/s11120-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
The primary photochemical reaction of photosynthesis in green sulfur bacteria occurs in the homodimer PscA core proteins by a special chlorophyll pair. The light induced excited state of the special pair producing P840+ is rapidly reduced by electron transfer from one of the two PscC subunits. Molecular dynamics (MD) simulations are combined with bioinformatic tools herein to provide structural and dynamic insight into the complex between the two PscA core proteins and the two PscC subunits. The microscopic dynamic model involves extensive sampling at atomic resolution and at a cumulative time-scale of 22µs and reveals well defined protein-protein interactions. The membrane complex is composed of the two PscA and the two PscC subunits and macroscopic connections are revealed within a putative electron transfer pathway from the PscC subunit to the special pair P840 located within the PscA subunits. Our results provide a structural basis for understanding the electron transport to the homodimer RC of the green sulfur bacteria. The MD based approach can provide the basis to further probe the PscA-PscC complex dynamics and observe electron transfer therein at the quantum level. Furthermore, the transmembrane helices of the different PscC subunits exert distinct dynamics in the complex.
Collapse
Affiliation(s)
- Alexandros Lyratzakis
- Department of Chemistry, School of Science and Engineering, University of Crete, Heraklion, 70013, Greece
| | - Vangelis Daskalakis
- Department of Chemical Engineering, School of Engineering, University of Patras, Rion, Patras, 26504, Greece
| | - Hao Xie
- Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany
| | - Georgios Tsiotis
- Department of Chemistry, School of Science and Engineering, University of Crete, Heraklion, 70013, Greece.
| |
Collapse
|
20
|
Mondal S, Habib M, Sarkar R, Pal S. Prolonged Exciton Lifetime Is Achieved in Porphyrin Nanoring by Template Engineering: A Nonadiabatic Tight Binding Approach. J Phys Chem Lett 2024; 15:4737-4744. [PMID: 38661142 DOI: 10.1021/acs.jpclett.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Porphyrin nanoring has been attracting immense attention due to its light harvesting capacity and potential applications in optical, catalysis, sensor, and electronic devices. We demonstrate by nonadiabatic quantum dynamics simulations that the photovoltaic efficiency can be enhanced by template engineering. Altering the hexadentate template (T6) with two tridentate templates (2T3) within the porphyrin ring (P6) cavity accelerated the electron transfer twice and suppressed the electron-hole recombination by nearly three times. The atomistic tight-binding simulation rationalized the dynamics by different localizations of charge of the band edge states, changes in nonadiabatic coupling, alteration in quantum coherence, and involvement of diverse electron-phonon vibrational modes. Further 2T3 templates more strongly hold the P6 ring than T6, reducing the structural fluctuation. As a result, the nonadiabatic coupling becomes weaker and suppresses the carrier recombination. Current atomistic simulation presents a template engineering strategy to enhance the exciton lifetime along with ultrafast charge separation, crucial factors for photovoltaic applications.
Collapse
Affiliation(s)
- Shrabanti Mondal
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Md Habib
- Department of Chemistry, University of Gour Banga, Malda 732103, India
- Department of Chemistry, Sripat Singh College, Jiaganj 742122, India
| | - Ritabrata Sarkar
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| |
Collapse
|
21
|
Tani K, Kanno R, Harada A, Kobayashi Y, Minamino A, Takenaka S, Nakamura N, Ji XC, Purba ER, Hall M, Yu LJ, Madigan MT, Mizoguchi A, Iwasaki K, Humbel BM, Kimura Y, Wang-Otomo ZY. High-resolution structure and biochemical properties of the LH1-RC photocomplex from the model purple sulfur bacterium, Allochromatium vinosum. Commun Biol 2024; 7:176. [PMID: 38347078 PMCID: PMC10861460 DOI: 10.1038/s42003-024-05863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The mesophilic purple sulfur phototrophic bacterium Allochromatium (Alc.) vinosum (bacterial family Chromatiaceae) has been a favored model for studies of bacterial photosynthesis and sulfur metabolism, and its core light-harvesting (LH1) complex has been a focus of numerous studies of photosynthetic light reactions. However, despite intense efforts, no high-resolution structure and thorough biochemical analysis of the Alc. vinosum LH1 complex have been reported. Here we present cryo-EM structures of the Alc. vinosum LH1 complex associated with reaction center (RC) at 2.24 Å resolution. The overall structure of the Alc. vinosum LH1 resembles that of its moderately thermophilic relative Alc. tepidum in that it contains multiple pigment-binding α- and β-polypeptides. Unexpectedly, however, six Ca ions were identified in the Alc. vinosum LH1 bound to certain α1/β1- or α1/β3-polypeptides through a different Ca2+-binding motif from that seen in Alc. tepidum and other Chromatiaceae that contain Ca2+-bound LH1 complexes. Two water molecules were identified as additional Ca2+-coordinating ligands. Based on these results, we reexamined biochemical and spectroscopic properties of the Alc. vinosum LH1-RC. While modest but distinct effects of Ca2+ were detected in the absorption spectrum of the Alc. vinosum LH1 complex, a marked decrease in thermostability of its LH1-RC complex was observed upon removal of Ca2+. The presence of Ca2+ in the photocomplex of Alc. vinosum suggests that Ca2+-binding to LH1 complexes may be a common adaptation in species of Chromatiaceae for conferring spectral and thermal flexibility on this key component of their photosynthetic machinery.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Graduate School of Medicine, Mie University, 1577 Kurimamachiyacho, Tsu, 514-8507, Japan.
| | - Ryo Kanno
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ayaka Harada
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuki Kobayashi
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Akane Minamino
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | | | - Xuan-Cheng Ji
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Endang R Purba
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Malgorzata Hall
- Scientific Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Michael T Madigan
- School of Biological Sciences, Program in Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, 1577 Kurimamachiyacho, Tsu, 514-8507, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Bruno M Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
- Department of Cell Biology and Neuroscience, Juntendo University, Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan.
| | | |
Collapse
|
22
|
Mu B, Hao X, Luo X, Yang Z, Lu H, Tian W. Bioinspired polymeric supramolecular columns as efficient yet controllable artificial light-harvesting platform. Nat Commun 2024; 15:903. [PMID: 38291054 PMCID: PMC10827788 DOI: 10.1038/s41467-024-45252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Light-harvesting is an indispensable process in photosynthesis, and researchers have been exploring various structural scaffolds to create artificial light-harvesting systems. However, achieving high donor/acceptor ratios for efficient energy transfer remains a challenge as excitons need to travel longer diffusion lengths within the donor matrix to reach the acceptor. Here, we report a polymeric supramolecular column-based light-harvesting platform inspired by the natural light-harvesting of purple photosynthetic bacteria to address this issue. The supramolecular column is designed as a discotic columnar liquid crystalline polymer and acts as the donor, with the acceptor intercalated within it. The modular columnar design enables an ultrahigh donor/acceptor ratio of 20000:1 and an antenna effect exceeding 100. Moreover, the spatial confinement within the supramolecular columns facilitates control over the energy transfer process, enabling dynamic full-color tunable emission for information encryption applications with spatiotemporal regulation security.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiao Luo
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhongke Yang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
23
|
Liu LN, Bracun L, Li M. Structural diversity and modularity of photosynthetic RC-LH1 complexes. Trends Microbiol 2024; 32:38-52. [PMID: 37380557 DOI: 10.1016/j.tim.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Bacterial photosynthesis is essential for sustaining life on Earth as it aids in carbon assimilation, atmospheric composition, and ecosystem maintenance. Many bacteria utilize anoxygenic photosynthesis to convert sunlight into chemical energy while producing organic matter. The core machinery of anoxygenic photosynthesis performed by purple photosynthetic bacteria and Chloroflexales is the reaction center-light-harvesting 1 (RC-LH1) pigment-protein supercomplex. In this review, we discuss recent structural studies of RC-LH1 core complexes based on the advancement in structural biology techniques. These studies have provided fundamental insights into the assembly mechanisms, structural variations, and modularity of RC-LH1 complexes across different bacterial species, highlighting their functional adaptability. Understanding the natural architectures of RC-LH1 complexes will facilitate the design and engineering of artificial photosynthetic systems, which can enhance photosynthetic efficiency and potentially find applications in sustainable energy production and carbon capture.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| | - Laura Bracun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
24
|
Hao JF, Yamano N, Qi CH, Zhang Y, Ma F, Wang P, Yu LJ, Zhang JP. Carotenoid-Mediated Long-Range Energy Transfer in the Light Harvesting-Reaction Center Complex from Photosynthetic Bacterium Roseiflexus castenholzii. J Phys Chem B 2023; 127:10360-10369. [PMID: 37983555 DOI: 10.1021/acs.jpcb.3c07087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The light harvesting-reaction center complex (LH-RC) of Roseiflexus castenholzii binds bacteriochlorophylls a (BChls a), B800 and B880, absorbing around 800 and 880 nm, respectively. We comparatively investigated the interband excitation energy transfer (EET) dynamics of the wild-type LH-RC (wt-LH-RC) of Rfl. castenholzii and its carotenoid (Car)-less mutant (m-LH-RC) and found that Car can boost the B800 → B880 EET rate from (2.43 ps)-1 to (1.75 ps)-1, accounting for 38% acceleration of the EET process. Interestingly, photoexcitation of wt-LH-RC at 800 nm induced pronounced excitation dynamics of Car despite the insufficient photon energy for direct Car excitation, a phenomenon which is attributed to the BChl-Car exciplex 1[B800(↑↑)···Car(↓↓)]*. Such an exciplex is suggested to play an essential role in promoting the B800 → B880 EET process, as corroborated by the recently reported cryo-EM structures of wt-LH-RC and m-LH-RC. The mechanism of Car-mediated EET will be helpful to deepen the understanding of the role of Car in bacterial photosynthesis.
Collapse
Affiliation(s)
- Jin-Fang Hao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
25
|
Mass OA, Watt DR, Patten LK, Pensack RD, Lee J, Turner DB, Yurke B, Knowlton WB. Exciton delocalization in a fully synthetic DNA-templated bacteriochlorin dimer. Phys Chem Chem Phys 2023; 25:28437-28451. [PMID: 37843877 PMCID: PMC10599410 DOI: 10.1039/d3cp01634j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023]
Abstract
A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment-protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments-secured by noncovalent bonding to a protein template-enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment-protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic "free" BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm-1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm-1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.
Collapse
Affiliation(s)
- Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Devan R Watt
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA
| | - Daniel B Turner
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
26
|
Fufina TY, Vasilieva LG. Role of hydrogen-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. Biophys Rev 2023; 15:921-937. [PMID: 37974998 PMCID: PMC10643783 DOI: 10.1007/s12551-023-01109-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 11/19/2023] Open
Abstract
For the last decades, significant progress has been made in studying the biological functions of H-bond networks in membrane proteins, proton transporters, receptors, and photosynthetic reaction centers. Increasing availability of the X-ray crystal and cryo-electron microscopy structures of photosynthetic complexes resolved with high atomic resolution provides a platform for their comparative analysis. It allows identifying structural factors that are ensuring the high quantum yield of the photochemical reactions and are responsible for the stability of the membrane complexes. The H-bond networks are known to be responsible for proton transport associated with electron transfer from the primary to the secondary quinone as well as in the processes of water oxidation in photosystem II. Participation of such networks in reactions proceeding on the periplasmic side of bacterial photosynthetic reaction centers is less studied. This review summarizes the current understanding of the role of H-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. It is discussed that the networks may be involved in providing close association with mobile electron carriers, in light-induced proton transport, in regulation of the redox properties of bacteriochlorophyll cofactors, and in stabilization of the membrane protein structure at the interface of membrane and soluble phases.
Collapse
Affiliation(s)
- T. Yu. Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| | - L. G. Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| |
Collapse
|
27
|
Xin J, Shi Y, Zhang X, Yuan X, Xin Y, He H, Shen J, Blankenship RE, Xu X. Carotenoid assembly regulates quinone diffusion and the Roseiflexus castenholzii reaction center-light harvesting complex architecture. eLife 2023; 12:e88951. [PMID: 37737710 PMCID: PMC10516601 DOI: 10.7554/elife.88951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Carotenoid (Car) pigments perform central roles in photosynthesis-related light harvesting (LH), photoprotection, and assembly of functional pigment-protein complexes. However, the relationships between Car depletion in the LH, assembly of the prokaryotic reaction center (RC)-LH complex, and quinone exchange are not fully understood. Here, we analyzed native RC-LH (nRC-LH) and Car-depleted RC-LH (dRC-LH) complexes in Roseiflexus castenholzii, a chlorosome-less filamentous anoxygenic phototroph that forms the deepest branch of photosynthetic bacteria. Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαβ subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. dRC-LH lacked subunit X, leading to an exposed LH ring with a larger opening, which together accelerated the quinone exchange rate. We also assigned amino acid sequences of subunit X and two hypothetical proteins Y and Z that functioned in forming the quinone channel and stabilizing the RC-LH interactions. This study reveals the structural basis by which Cars assembly regulates the architecture and quinone exchange of bacterial RC-LH complexes. These findings mark an important step forward in understanding the evolution and diversity of prokaryotic photosynthetic apparatus.
Collapse
Affiliation(s)
- Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Yang Shi
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence & Department of Neurobiology and Department of Pathology of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Jiejie Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. LouisSt. LouisUnited States
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and The Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
28
|
Qi CH, Wang GL, Wang FF, Xin Y, Zou MJ, Madigan MT, Wang-Otomo ZY, Ma F, Yu LJ. New insights on the photocomplex of Roseiflexus castenholzii revealed from comparisons of native and carotenoid-depleted complexes. J Biol Chem 2023; 299:105057. [PMID: 37468106 PMCID: PMC10432797 DOI: 10.1016/j.jbc.2023.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
In wild-type phototrophic organisms, carotenoids (Crts) are primarily packed into specific pigment-protein complexes along with (Bacterio)chlorophylls and play important roles in the photosynthesis. Diphenylamine (DPA) inhibits carotenogenesis but not phototrophic growth of anoxygenic phototrophs and eliminates virtually all Crts from photocomplexes. To investigate the effect of Crts on assembly of the reaction center-light-harvesting (RC-LH) complex from the filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii, we generated carotenoidless (Crt-less) RC-LH complexes by growing cells in the presence of DPA. Here, we present cryo-EM structures of the Rfl. castenholzii native and Crt-less RC-LH complexes with resolutions of 2.86 Å and 2.85 Å, respectively. From the high-quality map obtained, several important but previously unresolved details in the Rfl. castenholzii RC-LH structure were determined unambiguously including the assignment and likely function of three small polypeptides, and the content and spatial arrangement of Crts with bacteriochlorophyll molecules. The overall structures of Crt-containing and Crt-less complexes are similar. However, structural comparisons showed that only five Crts remain in complexes from DPA-treated cells and that the subunit X (TMx) flanked on the N-terminal helix of the Cyt-subunit is missing. Based on these results, the function of Crts in the assembly of the Rfl. castenholzii RC-LH complex and the molecular mechanism of quinone exchange is discussed. These structural details provide a fresh look at the photosynthetic apparatus of an evolutionary ancient phototroph as well as new insights into the importance of Crts for proper assembly and functioning of the RC-LH complex.
Collapse
Affiliation(s)
- Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Lei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yueyong Xin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mei-Juan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | | | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Rätsep M, Lehtmets A, Kangur L, Timpmann K, Leiger K, Wang-Otomo ZY, Freiberg A. Evaluation of the relationship between color-tuning of photosynthetic excitons and thermodynamic stability of light-harvesting chromoproteins. PHOTOSYNTHETICA 2023; 61:308-317. [PMID: 39651357 PMCID: PMC11558578 DOI: 10.32615/ps.2023.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 12/11/2024]
Abstract
Color-tuning is a critical survival mechanism for photosynthetic organisms. Calcium ions are believed to enhance both spectral tuning and thermostability in obligatory calcium-containing sulfur purple bacteria. This study examined the thermo- and piezo stability of the LH1-RC complexes from two calcium-containing sulfur purple bacteria notable for their extreme red-shifted spectra. The results generally show limited reversibility of both temperature and pressure effects related to the malleability of calcium-binding sites. While the pressure-induced decomposition product closely resembles the calcium-depleted form of the chromoproteins, the thermally induced products reveal monomeric B777 and dimeric B820 forms of bacteriochlorophyll a, similar to those seen in non-sulfur purple bacteria treated with detergent. The study further found nearly unison melting of the protein tertiary and secondary structures. Overall, our findings do not support a direct link between color adjustment and thermodynamic stability in light-harvesting chromoproteins.
Collapse
Affiliation(s)
- M. Rätsep
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - A. Lehtmets
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - L. Kangur
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - K. Timpmann
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - K. Leiger
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | | | - A. Freiberg
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
30
|
Sugo Y, Ishikita H. Mechanism of Asparagine-Mediated Proton Transfer in Photosynthetic Reaction Centers. Biochemistry 2023; 62:1544-1552. [PMID: 37083399 PMCID: PMC10194076 DOI: 10.1021/acs.biochem.3c00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs), light-induced charge separation leads to the reduction of the terminal electron acceptor quinone, QB. The reduction of QB to QB•- is followed by protonation via Asp-L213 and Ser-L223 in PbRC from Rhodobacter sphaeroides. However, Asp-L213 is replaced with nontitratable Asn-L222 and Asn-L213 in PbRCs from Thermochromatium tepidum and Blastochloris viridis, respectively. Here, we investigated the energetics of proton transfer along the asparagine-involved H-bond network using a quantum mechanical/molecular mechanical approach. The potential energy profile for the H-bond between H3O+ and the carbonyl O site of Asn-L222 shows that the proton is predominantly localized at the Asn-L222 moiety in the T. tepidum PbRC protein environment, easily forming the enol species. The release of the proton from the amide -NH2 site toward Ser-L232 via tautomerization suffers from the energy barrier. Upon reorientation of Asn-L222, the enol -OH site forms a short low-barrier H-bond with Ser-L232, facilitating protonation of QB•- in a Grotthuss-like mechanism. This is a basis of how asparagine or glutamine side chains function as acceptors/donors in proton transfer pathways.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
31
|
Gardiner AT, Mujakić I, Bína D, Gardian Z, Kopejtka K, Nupur, Qian P, Koblížek M. Characterisation of the photosynthetic complexes from the marine gammaproteobacterium Congregibacter litoralis KT71. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148946. [PMID: 36455648 DOI: 10.1016/j.bbabio.2022.148946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Possibly the most abundant group of anoxygenic phototrophs are marine photoheterotrophic Gammaproteobacteria belonging to the NOR5/OM60 clade. As little is known about their photosynthetic apparatus, the photosynthetic complexes from the marine phototrophic bacterium Congregibacter litoralis KT71 were purified and spectroscopically characterised. The intra-cytoplasmic membranes contain a smaller amount of photosynthetic complexes when compared with anaerobic purple bacteria. Moreover, the intra-cytoplasmic membranes contain only a minimum amount of peripheral LH2 complexes. The complexes are populated by bacteriochlorophyll a, spirilloxanthin and two novel ketocarotenoids, with biophysical and biochemical properties similar to previously characterised complexes from purple bacteria. The organization of the RC-LH1 complex has been further characterised using cryo-electron microscopy. The overall organisation is similar to the complex from the gammaproteobacterium Thermochromatium tepidum, with the type-II reaction centre surrounded by a slightly elliptical LH1 antenna ring composed of 16 αβ-subunits with no discernible gap or pore. The RC-LH1 and LH2 apoproteins are phylogenetically related to other halophilic species but LH2 also to some alphaproteobacterial species. It seems that the reduction of light-harvesting apparatus and acquisition of novel ketocarotenoids in Congregibacter litoralis KT71 represent specific adaptations for operating the anoxygenic photosynthesis under aerobic conditions at sea.
Collapse
Affiliation(s)
- Alastair T Gardiner
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Izabela Mujakić
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic; Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic; Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Karel Kopejtka
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Nupur
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Pu Qian
- Materials and Structure Analysis, Thermofisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Michal Koblížek
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
32
|
Morimoto M, Hirao H, Kondo M, Dewa T, Kimura Y, Wang-Otomo ZY, Asakawa H, Saga Y. Atomic force microscopic analysis of the light-harvesting complex 2 from purple photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01010-4. [PMID: 36930432 DOI: 10.1007/s11120-023-01010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Structural information on the circular arrangements of repeating pigment-polypeptide subunits in antenna proteins of purple photosynthetic bacteria is a clue to a better understanding of molecular mechanisms for the ring-structure formation and efficient light harvesting of such antennas. Here, we have analyzed the ring structure of light-harvesting complex 2 (LH2) from the thermophilic purple bacterium Thermochromatium tepidum (tepidum-LH2) by atomic force microscopy. The circular arrangement of the tepidum-LH2 subunits was successfully visualized in a lipid bilayer. The average top-to-top distance of the ring structure, which is correlated with the ring size, was 4.8 ± 0.3 nm. This value was close to the top-to-top distance of the octameric LH2 from Phaeospirillum molischianum (molischianum-LH2) by the previous analysis. Gaussian distribution of the angles of the segments consisting of neighboring subunits in the ring structures of tepidum-LH2 yielded a median of 44°, which corresponds to the angle for the octameric circular arrangement (45°). These results indicate that tepidum-LH2 has a ring structure consisting of eight repeating subunits. The coincidence of an octameric ring structure of tepidum-LH2 with that of molischianum-LH2 is consistent with the homology of amino acid sequences of the polypeptides between tepidum-LH2 and molischianum-LH2.
Collapse
Affiliation(s)
- Masayuki Morimoto
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruna Hirao
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Masaharu Kondo
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takehisa Dewa
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Yukihiro Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | | | - Hitoshi Asakawa
- Nanomaterials Research Institute (NanoMaRi), Kanazawa University, Kanazawa, 920-1192, Japan.
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Yoshitaka Saga
- Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
33
|
Bracun L, Yamagata A, Christianson BM, Shirouzu M, Liu LN. Cryo-EM structure of a monomeric RC-LH1-PufX supercomplex with high-carotenoid content from Rhodobacter capsulatus. Structure 2023; 31:318-328.e3. [PMID: 36738736 DOI: 10.1016/j.str.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
In purple photosynthetic bacteria, the photochemical reaction center (RC) and light-harvesting complex 1 (LH1) assemble to form monomeric or dimeric RC-LH1 membrane complexes, essential for bacterial photosynthesis. Here, we report a 2.59-Å resolution cryoelectron microscopy (cryo-EM) structure of the RC-LH1 supercomplex from Rhodobacter capsulatus. We show that Rba. capsulatus RC-LH1 complexes are exclusively monomers in which the RC is surrounded by a 15-subunit LH1 ring. Incorporation of a transmembrane polypeptide PufX leads to a large opening within the LH1 ring. Each LH1 subunit associates two carotenoids and two bacteriochlorophylls, which is similar to Rba. sphaeroides RC-LH1 but more than one carotenoid per LH1 in Rba. veldkampii RC-LH1 monomer. Collectively, the unique Rba. capsulatus RC-LH1-PufX represents an intermediate structure between Rba. sphaeroides and Rba. veldkampii RC-LH1-PufX. Comparison of PufX from the three Rhodobacter species indicates the important residues involved in dimerization of RC-LH1.
Collapse
Affiliation(s)
- Laura Bracun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Bern M Christianson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
34
|
Ishii T, Matsubara S, Tamiaki H. Ring-shaped self-assembly of a naphthalene-linked chlorophyll dimer. Chem Commun (Camb) 2023; 59:1967-1970. [PMID: 36723005 DOI: 10.1039/d2cc06368a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Light-harvesting antennas, for example the LH2 complex in purple bacteria, sophisticatedly align chlorophyll molecules in a cyclic fashion by using protein scaffolds. However, artificial preparation of the circular LH antenna model without any templates has not been reported. We demonstrated the construction of ring-shaped supramolecules by self-assembly of a semisynthetic chlorophyll dimer through a transformation from wavy fiber-like aggregates.
Collapse
Affiliation(s)
- Tatsuma Ishii
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | - Shogo Matsubara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan. .,Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan.
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
35
|
Timpmann K, Kangur L, Freiberg A. Hysteretic Pressure Dependence of Ca 2+ Binding in LH1 Bacterial Membrane Chromoproteins. J Phys Chem B 2023; 127:456-464. [PMID: 36608327 DOI: 10.1021/acs.jpcb.2c05938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Much of the thermodynamic parameter values that support life are set by the properties of proteins. While the denaturing effects of pressure and temperature on proteins are well documented, their precise structural nature is rarely revealed. This work investigates the destabilization of multiple Ca2+ binding sites in the cyclic LH1 light-harvesting membrane chromoprotein complexes from two Ca-containing sulfur purple bacteria by hydrostatic high-pressure perturbation spectroscopy. The native (Ca-saturated) and denatured (Ca-depleted) phases of these complexes are well distinguishable by much-shifted bacteriochlorophyll a exciton absorption bands serving as innate optical probes in this study. The pressure-induced denaturation of the complexes related to the failure of the protein Ca-binding pockets and the concomitant breakage of hydrogen bonds between the pigment chromophores and protein environment were found cooperative, involving all or most of the Ca2+ binding sites, but irreversible. The strong hysteresis observed in the spectral and kinetic characteristics of phase transitions along the compression and decompression pathways implies asymmetry in the relevant free energy landscapes and activation free energy distributions. A phase transition pressure equal to about 1.9 kbar was evaluated for the complexes from Thiorhodovibrio strain 970 from the pressure dependence of biphasic kinetics observed in the minutes to 100 h time range.
Collapse
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia.,Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
36
|
Kimura Y, Tani K, Madigan MT, Wang-Otomo ZY. Advances in the Spectroscopic and Structural Characterization of Core Light-Harvesting Complexes from Purple Phototrophic Bacteria. J Phys Chem B 2023; 127:6-17. [PMID: 36594654 DOI: 10.1021/acs.jpcb.2c06638] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purple phototrophic bacteria are ancient anoxygenic phototrophs and attractive research tools because they capture light energy in the near-infrared (NIR) region of the spectrum and transform it into chemical energy by way of uphill energy transfers. The heart of this reaction occurs in light-harvesting 1-reaction center (LH1-RC) complexes, which are the simplest model systems for understanding basic photosynthetic reactions within type-II (quinone-utilizing) reaction centers. In this Perspective, we highlight structure-function relationships concerning unresolved fundamental processes in purple bacterial photosynthesis, including the diversified light-harvesting capacity of LH1-associated BChl molecules, energies necessary for photoelectric conversion in the RC special pairs, and quinone transport mechanisms. Based on recent progress in the spectroscopic and structural analysis of LH1-RC complexes from a variety of purple phototrophs, we discuss several key factors for understanding how purple bacteria resource light energy in the inherently energy-poor NIR region of the electromagnetic spectrum.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Kazutoshi Tani
- Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | |
Collapse
|
37
|
Liu XL, Hu YY, Li K, Chen MQ, Wang P. Reconstituted LH2 in multilayer membranes induced by poly-L-lysine: structure of supramolecular and electronic states. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
38
|
Elvers I, Nguyen-Phan TC, Gardiner AT, Hunter CN, Cogdell RJ, Köhler J. Phasor Analysis Reveals Multicomponent Fluorescence Kinetics in the LH2 Complex from Marichromatium purpuratum. J Phys Chem B 2022; 126:10335-10346. [PMID: 36449272 DOI: 10.1021/acs.jpcb.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We investigated the fluorescence kinetics of LH2 complexes from Marichromatium purpuratum, the cryo-EM structure of which has been recently elucidated with 2.4 Å resolution. The experiments have been carried out as a function of the excitation density by varying both the excitation fluence and the repetition rate of the laser excitation. Instead of the usual multiexponential fitting procedure, we applied the less common phasor formalism for evaluating the transients because this allows for a model-free analysis of the data without a priori knowledge about the number of processes that contribute to a particular decay. For the various excitation conditions, this analysis reproduces consistently three lifetime components with decay times below 100 ps, 500 ps, and 730 ps, which were associated with the quenched state, singlet-triplet annihilation, and fluorescence decay, respectively. Moreover, it reveals that the number of decay components that contribute to the transients depends on whether the excitation wavelength is in resonance with the B800 BChl a molecules or with the carotenoids. Based on the mutual arrangement of the chromophores in their binding pockets, this leads us to conclude that the energy transfer pathways within the LH2 complex of this species differ significantly from each other for exciting either the B800 BChl molecules or the carotenoids. Finally, we speculate whether the illumination with strong laser light converts the LH2 complexes studied here into a quenched conformation that might be related to the development of the non-photochemical quenching mechanism that occurs in higher plants.
Collapse
Affiliation(s)
- Inga Elvers
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
| | - Tu C Nguyen-Phan
- School of Infection and Immunity, Glasgow University, Glasgow G12 8TA, U.K
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Richard J Cogdell
- School of Molecular Biosciences, Glasgow University, Glasgow G12 8QQ, U.K
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.,Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
| |
Collapse
|
39
|
Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c. Nat Commun 2022; 13:7745. [PMID: 36517472 PMCID: PMC9751088 DOI: 10.1038/s41467-022-35460-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Photosynthesis converts light energy to chemical energy to fuel life on earth. Light energy is harvested by antenna pigments and transferred to reaction centers (RCs) to drive the electron transfer (ET) reactions. Here, we present cryo-electron microscopy (cryo-EM) structures of two forms of the RC from the microaerophilic Chloracidobacterium thermophilum (CabRC): one containing 10 subunits, including two different cytochromes; and the other possessing two additional subunits, PscB and PscZ. The larger form contained 2 Zn-bacteriochlorophylls, 16 bacteriochlorophylls, 10 chlorophylls, 2 lycopenes, 2 hemes, 3 Fe4S4 clusters, 12 lipids, 2 Ca2+ ions and 6 water molecules, revealing a type I RC with an ET chain involving two hemes and a hybrid antenna containing bacteriochlorophylls and chlorophylls. Our results provide a structural basis for understanding the excitation energy and ET within the CabRC and offer evolutionary insights into the origin and adaptation of photosynthetic RCs.
Collapse
|
40
|
Sipka G, Nagy L, Magyar M, Akhtar P, Shen JR, Holzwarth AR, Lambrev PH, Garab G. Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. Open Biol 2022; 12:220297. [PMID: 36514981 PMCID: PMC9748786 DOI: 10.1098/rsob.220297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.
Collapse
Affiliation(s)
- G. Sipka
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - L. Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1, 6720 Szeged, Hungary
| | - M. Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - P. Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - J.-R. Shen
- Institute of Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, 700-8530 Okayama, Japan
- Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - A. R. Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim a.d. Ruhr, Germany
| | - P. H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
| | - G. Garab
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári körút 62, 6726 Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
41
|
Tani K, Kanno R, Kurosawa K, Takaichi S, Nagashima KVP, Hall M, Yu LJ, Kimura Y, Madigan MT, Mizoguchi A, Humbel BM, Wang-Otomo ZY. An LH1–RC photocomplex from an extremophilic phototroph provides insight into origins of two photosynthesis proteins. Commun Biol 2022; 5:1197. [DOI: 10.1038/s42003-022-04174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRhodopila globiformis is the most acidophilic of anaerobic purple phototrophs, growing optimally in culture at pH 5. Here we present a cryo-EM structure of the light-harvesting 1–reaction center (LH1–RC) complex from Rhodopila globiformis at 2.24 Å resolution. All purple bacterial cytochrome (Cyt, encoded by the gene pufC) subunit-associated RCs with known structures have their N-termini truncated. By contrast, the Rhodopila globiformis RC contains a full-length tetra-heme Cyt with its N-terminus embedded in the membrane forming an α-helix as the membrane anchor. Comparison of the N-terminal regions of the Cyt with PufX polypeptides widely distributed in Rhodobacter species reveals significant structural similarities, supporting a longstanding hypothesis that PufX is phylogenetically related to the N-terminus of the RC-bound Cyt subunit and that a common ancestor of phototrophic Proteobacteria contained a full-length tetra-heme Cyt subunit that evolved independently through partial deletions of its pufC gene. Eleven copies of a novel γ-like polypeptide were also identified in the bacteriochlorophyll a-containing Rhodopila globiformis LH1 complex; γ-polypeptides have previously been found only in the LH1 of bacteriochlorophyll b-containing species. These features are discussed in relation to their predicted functions of stabilizing the LH1 structure and regulating quinone transport under the warm acidic conditions.
Collapse
|
42
|
Salt- and pH-Dependent Thermal Stability of Photocomplexes from Extremophilic Bacteriochlorophyll b-Containing Halo-rhodospira Species. Microorganisms 2022; 10:microorganisms10050959. [PMID: 35630403 PMCID: PMC9146400 DOI: 10.3390/microorganisms10050959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022] Open
Abstract
Halorhodospira (Hlr.) species are the most halophilic and alkaliphilic of all purple bacteria. Hlr. halochloris exhibits the lowest LH1 Qy transition energy among phototrophic organisms and is the only known triply extremophilic anoxygenic phototroph, displaying a thermophilic, halophilic, and alkaliphilic phenotype. Recently, we reported that electrostatic charges are responsible for the unusual spectroscopic properties of the Hlr. halochloris LH1 complex. In the present work, we examined the effects of salt and pH on the spectroscopic properties and thermal stability of LH1-RCs from Hlr. halochloris compared with its mesophilic counterpart, Hlr. abdelmalekii. Experiments in which the photocomplexes were subjected to different levels of salt or variable pH revealed that the thermal stability of LH1-RCs from both species was largely retained in the presence of high salt concentrations and/or at alkaline pH but was markedly reduced by lowering the salt concentration and/or pH. Based on the amino acid sequences of LH1 polypeptides and their composition of acidic/basic residues and the Hofmeister series for cation/anion species, we discuss the importance of electrostatic charge in stabilizing the Hlr. halochloris LH1-RC complex to allow it to perform photosynthesis in its warm, hypersaline, and alkaline habitat.
Collapse
|
43
|
Zhang Y, Qi CH, Yamano N, Wang P, Yu LJ, Wang-Otomo ZY, Zhang JP. Carotenoid Single-Molecular Singlet Fission and the Photoprotection of a Bacteriochlorophyll b-Type Core Light-Harvesting Antenna. J Phys Chem Lett 2022; 13:3534-3541. [PMID: 35420425 DOI: 10.1021/acs.jpclett.2c00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carotenoid (Car) in photosynthesis plays the major roles of accessary light harvesting and photoprotection, and the underlying structure-function relationship attracts continuing research interests. We have attempted to explore the dynamics of Car triplet excitation (3Car*) in the bacteriochlorophyll b (BChl b)-type light harvesting reaction center complex (LH1-RC) of photosynthetic bacterium Halorhodospira halochloris. We show that the LH1 antenna binds a single Car that was identified as a lycopene derivative. Although the Car is hardly visible in the LH1-RC stationary absorption, it shows up conspicuously in the triplet excitation profile with distinct vibronic features. This and the ultrafast formation of 3Car* on direct photoexcitation of Car unequivocally manifest the unimolecular singlet fission reaction of the Car. Moreover, the Car with even one molecule per complex is found to be rather effective in quenching 3BChl b*. The implications of different 3Car* formation mechanisms are discussed, and the self-photoprotection role of BChl b are proposed for this extremophilic species.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | | | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| |
Collapse
|
44
|
Tani K, Kobayashi K, Hosogi N, Ji XC, Nagashima S, Nagashima KVP, Izumida A, Inoue K, Tsukatani Y, Kanno R, Hall M, Yu LJ, Ishikawa I, Okura Y, Madigan MT, Mizoguchi A, Humbel BM, Kimura Y, Wang-Otomo ZY. A Ca 2+-binding motif underlies the unusual properties of certain photosynthetic bacterial core light-harvesting complexes. J Biol Chem 2022; 298:101967. [PMID: 35460693 PMCID: PMC9133646 DOI: 10.1016/j.jbc.2022.101967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/24/2023] Open
Abstract
The mildly thermophilic purple phototrophic bacterium Allochromatium tepidum provides a unique model for investigating various intermediate phenotypes observed between those of thermophilic and mesophilic counterparts. The core light-harvesting (LH1) complex from A. tepidum exhibits an absorption maximum at 890 nm and mildly enhanced thermostability, both of which are Ca2+-dependent. However, it is unknown what structural determinants might contribute to these properties. Here, we present a cryo-EM structure of the reaction center–associated LH1 complex at 2.81 Å resolution, in which we identify multiple pigment-binding α- and β-polypeptides within an LH1 ring. Of the 16 α-polypeptides, we show that six (α1) bind Ca2+ along with β1- or β3-polypeptides to form the Ca2+-binding sites. This structure differs from that of fully Ca2+-bound LH1 from Thermochromatium tepidum, enabling determination of the minimum structural requirements for Ca2+-binding. We also identified three amino acids (Trp44, Asp47, and Ile49) in the C-terminal region of the A. tepidum α1-polypeptide that ligate each Ca ion, forming a Ca2+-binding WxxDxI motif that is conserved in all Ca2+-bound LH1 α-polypeptides from other species with reported structures. The partial Ca2+-bound structure further explains the unusual phenotypic properties observed for this bacterium in terms of its Ca2+-requirements for thermostability, spectroscopy, and phototrophic growth, and supports the hypothesis that A. tepidum may represent a “transitional” species between mesophilic and thermophilic purple sulfur bacteria. The characteristic arrangement of multiple αβ-polypeptides also suggests a mechanism of molecular recognition in the expression and/or assembly of the LH1 complex that could be regulated through interactions with reaction center subunits.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Graduate School of Medicine, Mie University, Tsu, Japan.
| | - Kazumi Kobayashi
- EM Business Unit, JEOL Ltd 3-1-2 Musashino, Akishima, Tokyo, Japan
| | - Naoki Hosogi
- EM Business Unit, JEOL Ltd 3-1-2 Musashino, Akishima, Tokyo, Japan
| | | | - Sakiko Nagashima
- Research Institute for Integrated Science, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Kenji V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Airi Izumida
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Kazuhito Inoue
- Research Institute for Integrated Science, Kanagawa University, Hiratsuka, Kanagawa, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - Yusuke Tsukatani
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Ryo Kanno
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Okinawa, Japan
| | - Malgorzata Hall
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Okinawa, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Isamu Ishikawa
- EM Business Unit, JEOL Ltd 3-1-2 Musashino, Akishima, Tokyo, Japan
| | - Yoshihiro Okura
- EM Business Unit, JEOL Ltd 3-1-2 Musashino, Akishima, Tokyo, Japan
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA
| | | | - Bruno M Humbel
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Okinawa, Japan
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, Japan.
| | | |
Collapse
|
45
|
Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC-LH1 supercomplex. Nat Commun 2022; 13:1977. [PMID: 35418573 PMCID: PMC9007983 DOI: 10.1038/s41467-022-29563-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
The reaction center (RC) and light-harvesting complex 1 (LH1) form a RC-LH1 core supercomplex that is vital for the primary reactions of photosynthesis in purple phototrophic bacteria. Some species possess the dimeric RC-LH1 complex with a transmembrane polypeptide PufX, representing the largest photosynthetic complex in anoxygenic phototrophs. However, the details of the architecture and assembly mechanism of the RC-LH1 dimer are unclear. Here we report seven cryo-electron microscopy (cryo-EM) structures of RC-LH1 supercomplexes from Rhodobacter sphaeroides. Our structures reveal that two PufX polypeptides are positioned in the center of the S-shaped RC-LH1 dimer, interlocking association between the components and mediating RC-LH1 dimerization. Moreover, we identify another transmembrane peptide, designated PufY, which is located between the RC and LH1 subunits near the LH1 opening. PufY binds a quinone molecule and prevents LH1 subunits from completely encircling the RC, creating a channel for quinone/quinol exchange. Genetic mutagenesis, cryo-EM structures, and computational simulations provide a mechanistic understanding of the assembly and electron transport pathways of the RC-LH1 dimer and elucidate the roles of individual components in ensuring the structural and functional integrity of the photosynthetic supercomplex.
Collapse
|
46
|
Kimura Y, Imanishi M, Li Y, Yura Y, Ohno T, Saga Y, Madigan MT, Wang-Otomo ZY. Identification of metal-sensitive structural changes in the Ca 2+-binding photocomplex from Thermochromatium tepidum by isotope-edited vibrational spectroscopy. J Chem Phys 2022; 156:105101. [DOI: 10.1063/5.0075600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Calcium ions play a dual role in expanding the spectral diversity and structural stability of photocomplexes from several Ca2+-requiring purple sulfur phototrophic bacteria. Here, metal-sensitive structural changes in the isotopically labeled light-harvesting 1 reaction center (LH1-RC) complexes from the thermophilic purple sulfur bacterium Thermochromatium ( Tch.) tepidum were investigated by perfusion-induced attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy. The ATR-FTIR difference spectra induced by exchanges between native Ca2+ and exogenous Ba2+ exhibited interconvertible structural and/or conformational changes in the metal binding sites at the LH1 C-terminal region. Most of the characteristic Ba2+/Ca2+ difference bands were detected even when only Ca ions were removed from the LH1-RC complexes, strongly indicating the pivotal roles of Ca2+ in maintaining the LH1-RC structure of Tch. tepidum. Upon 15N-, 13C- or 2H-labeling, the LH1-RC complexes exhibited characteristic 15N/14N-, 13C/12C-, or 2H/1H-isotopic shifts for the Ba2+/Ca2+ difference bands. Some of the 15N/14N or 13C/12C bands were also sensitive to further 2H-labelings. Given the band frequencies and their isotopic shifts along with the structural information of the Tch. tepidum LH1-RC complexes, metal-sensitive FTIR bands were tentatively identified to the vibrational modes of the polypeptide main chains and side chains comprising the metal binding sites. Furthermore, important new IR marker bands highly sensitive to the LH1 BChl a conformation in the Ca2+-bound states were revealed based on both ATR-FTIR and near-infrared Raman analyses. The present approach provides valuable insights concerning the dynamic equilibrium between the Ca2+- and Ba2+-bound states statically resolved by x-ray crystallography.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Michie Imanishi
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yong Li
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuki Yura
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Ohno
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Michael T. Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | | |
Collapse
|
47
|
Selikhanov G, Fufina T, Guenther S, Meents A, Gabdulkhakov A, Vasilieva L. X-ray structure of the Rhodobacter sphaeroides reaction center with an M197 Phe→His substitution clarifies the properties of the mutant complex. IUCRJ 2022; 9:261-271. [PMID: 35371503 PMCID: PMC8895020 DOI: 10.1107/s2052252521013178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
The first steps of the global process of photosynthesis take place in specialized membrane pigment-protein complexes called photosynthetic reaction centers (RCs). The RC of the photosynthetic purple bacterium Rhodobacter sphaeroides, a relatively simple analog of the more complexly organized photosystem II in plants, algae and cyanobacteria, serves as a convenient model for studying pigment-protein interactions that affect photochemical processes. In bacterial RCs the bacteriochlorophyll (BChl) dimer P serves as the primary electron donor, and its redox potential is a critical factor in the efficient functioning of the RC. It has previously been shown that the replacement of Phe M197 by His strongly affects the oxidation potential of P (E m P/P+), increasing its value by 125 mV, as well as increasing the thermal stability of RC and its stability in response to external pressure. The crystal structures of F(M197)H RC at high resolution obtained using various techniques presented in this report clarify the optical and electrochemical properties of the primary electron donor and the increased resistance of the mutant complex to denaturation. The electron-density maps are consistent with the donation of a hydrogen bond from the imidazole group of His M197 to the C2-acetyl carbonyl group of BChl PB. The formation of this hydrogen bond leads to a considerable out-of-plane rotation of the acetyl carbonyl group and results in a 1.2 Å shift of the O atom of this group relative to the wild-type structure. Besides, the distance between BChl PA and PB in the area of pyrrole ring I was found to be increased by up to 0.17 Å. These structural changes are discussed in association with the spectral properties of BChl dimer P. The electron-density maps strongly suggest that the imidazole group of His M197 accepts another hydrogen bond from the nearest water molecule, which in turn appears to form two more hydrogen bonds to Asn M195 and Asp L155. As a result of the F(M197)H mutation, BChl PB finds itself connected to the extensive hydrogen-bonding network that pre-existed in wild-type RC. Dissimilarities in the two hydrogen-bonding networks near the M197 and L168 sites may account for the different changes of the E m P/P+ in F(M197)H and H(L168)F RCs. The involvement of His M197 in the hydrogen-bonding network also appears to be related to stabilization of the F(M197)H RC structure. Analysis of the experimental data presented here and of the data available in the literature points to the fact that the hydrogen-bonding networks in the vicinity of BChl dimer P may play an important role in fine-tuning the redox properties of the primary electron donor.
Collapse
Affiliation(s)
- Georgii Selikhanov
- Group of Structural Studies of Macromolecular Complexes, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Moscow Region, Russian Federation
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Pushchino 142290, Moscow Region, Russian Federation
| | - Tatiana Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Pushchino 142290, Moscow Region, Russian Federation
| | - Sebastian Guenther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Azat Gabdulkhakov
- Group of Structural Studies of Macromolecular Complexes, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino 142290, Moscow Region, Russian Federation
| | - Lyudmila Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, Pushchino 142290, Moscow Region, Russian Federation
| |
Collapse
|
48
|
Qian P, Gardiner AT, Šímová I, Naydenova K, Croll TI, Jackson PJ, Nupur, Kloz M, Čubáková P, Kuzma M, Zeng Y, Castro-Hartmann P, van Knippenberg B, Goldie KN, Kaftan D, Hrouzek P, Hájek J, Agirre J, Siebert CA, Bína D, Sader K, Stahlberg H, Sobotka R, Russo CJ, Polívka T, Hunter CN, Koblížek M. 2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem. SCIENCE ADVANCES 2022; 8:eabk3139. [PMID: 35171663 PMCID: PMC8849296 DOI: 10.1126/sciadv.abk3139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 07/21/2023]
Abstract
Phototrophic Gemmatimonadetes evolved the ability to use solar energy following horizontal transfer of photosynthesis-related genes from an ancient phototrophic proteobacterium. The electron cryo-microscopy structure of the Gemmatimonas phototrophica photosystem at 2.4 Å reveals a unique, double-ring complex. Two unique membrane-extrinsic polypeptides, RC-S and RC-U, hold the central type 2 reaction center (RC) within an inner 16-subunit light-harvesting 1 (LH1) ring, which is encircled by an outer 24-subunit antenna ring (LHh) that adds light-gathering capacity. Femtosecond kinetics reveal the flow of energy within the RC-dLH complex, from the outer LHh ring to LH1 and then to the RC. This structural and functional study shows that G. phototrophica has independently evolved its own compact, robust, and highly effective architecture for harvesting and trapping solar energy.
Collapse
Affiliation(s)
- Pu Qian
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alastair T. Gardiner
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Ivana Šímová
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tristan I. Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Philip J. Jackson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Nupur
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Miroslav Kloz
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czechia
| | - Petra Čubáková
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czechia
| | - Marek Kuzma
- Lab of Molecular Structure, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Yonghui Zeng
- Department of Plant and Environmental Sciences, University of Copenhagen, Nørregade 10, DK-1165 Copenhagen, Denmark
| | - Pablo Castro-Hartmann
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Bart van Knippenberg
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Kenneth N. Goldie
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - David Kaftan
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Pavel Hrouzek
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Jan Hájek
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Jon Agirre
- Department of Chemistry, University of York, York YO10 5DD, UK
| | | | - David Bína
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia
| | - Kasim Sader
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, SB, EPFL, and Faculty of Biology and Medicine, Uni Lausanne, CH-1015 Lausanne, Switzerland
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia
| | - Christopher J. Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| |
Collapse
|
49
|
Allochromatium tepidum, sp. nov., a hot spring species of purple sulfur bacteria. Arch Microbiol 2022; 204:115. [PMID: 34984587 DOI: 10.1007/s00203-021-02715-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022]
Abstract
We describe a new species of purple sulfur bacteria (Chromatiaceae, anoxygenic phototrophic bacteria) isolated from a microbial mat in the sulfidic geothermal outflow of a hot spring in Rotorua, New Zealand. This phototroph, designated as strain NZ, grew optimally near 45 °C but did not show an absorption maximum at 915 nm for the light-harvesting-reaction center core complex (LH1-RC) characteristic of other thermophilic purple sulfur bacteria. Strain NZ had a similar carotenoid composition as Thermochromatium tepidum, but unlike Tch. tepidum, grew photoheterotrophically on acetate in the absence of sulfide and metabolized thiosulfate. The genome of strain NZ was significantly larger than that of Tch. tepidum but slightly smaller than that of Allochromatium vinosum. Strain NZ was phylogenetically more closely related to mesophilic purple sulfur bacteria of the genus Allochromatium than to Tch. tepidum. This conclusion was reached from phylogenetic analyses of strain NZ genes encoding 16S rRNA and the photosynthetic functional gene pufM, from phylogenetic analyses of entire genomes, and from a phylogenetic tree constructed from the concatenated sequence of 1090 orthologous proteins. Moreover, average nucleotide identities and digital DNA:DNA hybridizations of the strain NZ genome against those of related species of Chromatiaceae supported the phylogenetic analyses. From this collection of properties, we describe strain NZ here as the first thermophilic species of the genus Allochromatium, Allochromatium tepidum NZT, sp. nov.
Collapse
|
50
|
Bold K, Stolte M, Shoyama K, Holzapfel M, Schmiedel A, Lambert C, Würthner F. Macrocyclic Donor–Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Bold
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Holzapfel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|