1
|
Prabhu S, Murugan G, Imran M, Arockiaraj M, Alam MM, Ghani MU. Several distance and degree-based molecular structural attributes of cove-edged graphene nanoribbons. Heliyon 2024; 10:e34944. [PMID: 39170540 PMCID: PMC11336347 DOI: 10.1016/j.heliyon.2024.e34944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
A carbon-based material with a broad scope of favourable developments is called graphene. Recently, a graphene nanoribbon with cove-edged was integrated by utilizing a bottom-up liquid-phase procedure, and it can be geometrically viewed as a hybrid of the armchair and the zigzag edges. It is indeed a type of nanoribbon containing asymmetric edges made up of sequential hexagons with impressive mechanical and electrical characteristics. Topological indices are numerical values associated with the structure of a chemical graph and are used to predict various physical, chemical, and biological properties of molecules. They are derived from the graph representation of molecules, where atoms are represented as vertices and bonds as edges. In this article, we derived the exact topological expressions of cove-edged graphene nanoribbons based on the graph-theoretical structural measures that help reduce the number of repetitive laboratory tasks necessary for studying the physicochemical characteristics of graphene nanoribbons with curved edges.
Collapse
Affiliation(s)
- S. Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| | - G. Murugan
- Department of Mathematics, Chennai Institute of Technology, Chennai 600069, India
| | - Muhammad Imran
- Department of Mathematical Sciences, United Arab Emirates University, Al Ain, P. O. Box 15551, United Arab Emirates
| | | | - Mohammad Mahtab Alam
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Usman Ghani
- Institute of Mathematics, Khawaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, 64200, Rahim Yar Khan, Pakistan
| |
Collapse
|
2
|
Xue N, Chen K, Liu G, Wang Z, Jiang W. Molecular Engineering of Rylene Diimides via Sila-Annulation Toward High-Mobility Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307875. [PMID: 38072766 DOI: 10.1002/smll.202307875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Indexed: 12/19/2023]
Abstract
The continuous innovation of captivating new organic semiconducting materials remains pivotal in the development of high-performance organic electronic devices. Herein, a molecular engineering by combining sila-annulation with the vertical extension of rylene diimides (RDIs) toward high-mobility organic semiconductors is presented. The unilateral and bilateral sila-annulated quaterrylene diimides (Si-QDI and 2Si-QDI) are designed and synthesized. In particular, the symmetrical bilateral 2Si-QDI exhibits a compact, 1D slipped π-π stacking arrangement through the synergistic combination of a sizable π-conjugated core and intercalating alkyl chains. Combining the appreciable elevated HOMO levels and reduced energy gaps, the single-crystalline organic field-effect transistors (SC-OFETs) based on 2Si-QDI demonstrate exceptional ambipolar transport characteristics with an impressive hole mobility of 3.0 cm2 V-1 s-1 and an electron mobility of 0.03 cm2 V-1 s-1 , representing the best ampibolar SC-OFETs based on RDIs. Detailed theoretical calculations rationalize that the larger transfer integral along the π-π stacking direction is responsible for the achievement of the superior charge transport. This study showcases the remarkable potential of sila-annulation in optimizing carrier transport performances of polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Pan C, Wang L, Han J. Diaryliodonium Salts Enabled Arylation, Arylocyclization, and Aryl-Migration. CHEM REC 2023; 23:e202300138. [PMID: 37249418 DOI: 10.1002/tcr.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Our research interest focusing on synthetic methodology with diaryliodonium salts, is summarized in this account. Besides employing a dual activation strategy of C-I and ortho C-H bonds, we have introduced vicinal functional groups at ortho-positions of diaryliodonium salts, in which their unique reactivities have been explored in various processes, including arylation, diarylation, cascade annulation, benzocyclization, arylocyclization, and intramolecular aryl migration. The variety of mechanisms of these reactions that involves either transition metals, especially palladium in organometallic catalysis, or transition-metal free conditions, were discussed in the context.
Collapse
Affiliation(s)
- Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Department of Fine Chemistry and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
Zhang M, Wu Z, Jia H, Li P, Yang L, Hao J, Wang J, Zhang E, Meng L, Yan Z, Liu Y, Du P, Kong X, Xiao S, Jia C, Guo X. Distinct armchair and zigzag charge transport through single polycyclic aromatics. SCIENCE ADVANCES 2023; 9:eadg4346. [PMID: 37256956 PMCID: PMC10413665 DOI: 10.1126/sciadv.adg4346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
In aromatic systems with large π-conjugated structures, armchair and zigzag configurations can affect each material's electronic properties, determining their performance and generating certain quantum effects. Here, we explore the intrinsic effect of armchair and zigzag pathways on charge transport through single hexabenzocoronene molecules. Theoretical calculations and systematic experimental results from static carbon-based single-molecule junctions and dynamic scanning tunneling microscope break junctions show that charge carriers are preferentially transported along the hexabenzocoronene armchair pathway, and thus, the corresponding current through this pathway is approximately one order of magnitude higher than that through the zigzag pathway. In addition, the molecule with the zigzag pathway has a smaller energy gap. In combination with its lower off-state conductance, it shows a better field-effect performance because of its higher on-off ratio in electrical measurements. This study on charge transport pathways offers a useful perspective for understanding the electronic properties of π-conjugated systems and realizing high-performance molecular nanocircuits toward practical applications.
Collapse
Affiliation(s)
- Miao Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, China
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Zewen Wu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hongxing Jia
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lei Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jinying Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Network for Computational Nanotechnology, College of Engineering, Purdue University, 298 Nimitz Dr., West Lafayette, IN 47906, USA
| | - Enyu Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Linan Meng
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, China
| | - Zhuang Yan
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, China
| | - Yi Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at the Microscale, Anhui Laboratory of Advanced Photon Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province 230026, China
| | - Xianghua Kong
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, China
| |
Collapse
|
5
|
Shang S, Du C, Liu Y, Liu M, Wang X, Gao W, Zou Y, Dong J, Liu Y, Chen J. A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Nat Commun 2022; 13:7599. [PMID: 36494377 PMCID: PMC9734122 DOI: 10.1038/s41467-022-35315-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Conductive metal-organic frameworks (MOFs) have performed well in the fields of energy and catalysis, among which two-dimensional (2D) and three-dimensional (3D) MOFs are well-known. Here, we have synthesized a one-dimensional (1D) conductive metal-organic framework (MOF) in which hexacoordinated 1,5-Diamino-4,8-dihydroxy-9,10-anthraceneedione (DDA) ligands are connected by double Cu ions, resulting in nanoribbon layers with 1D π-d conjugated nanoribbon plane and out-of-plane π-π stacking, which facilitates charge transport along two dimensions. The DDA-Cu as a highly conductive n-type MOF has high crystalline quality with a conductivity of ~ 9.4 S·m-1, which is at least two orders of magnitude higher than that of conventional 1D MOFs. Its electrical band gap (Eg) and exciton binding energy (Eb) are approximately 0.49 eV and 0.3 eV, respectively. When utilized as electrode material in a supercapacitor, the DDA-Cu exhibits good charge storage capacity and cycle stability. Meanwhile, as thse active semiconductor layer, it successfully simulates the artificial visual perception system with excellent bending resistance and air stability as a MOF-based flexible optoelectronic synaptic case. The controllable preparation of high-quality 1D DDA-Cu MOF may enable new architectural designs and various applications in the future.
Collapse
Affiliation(s)
- Shengcong Shang
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Changsheng Du
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Youxing Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Minghui Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Xinyu Wang
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Wenqiang Gao
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Ye Zou
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Jichen Dong
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Yunqi Liu
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Jianyi Chen
- grid.9227.e0000000119573309Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| |
Collapse
|
6
|
Abstract
The creation and development of new forms of nanocarbons have fundamentally transformed the scientific landscape in the past three decades. As new members of the nanocarbon family with accurate size, shape, and edge structure, molecular carbon imides (MCIs) have shown unexpected and unique properties. Particularly, the imide functionalization strategy has endowed these rylene-based molecular carbons with fascinating characteristics involving flexible syntheses, tailor-made structures, diverse properties, excellent processability, and good stability. This Perspective elaborates molecular design evolution to functional landscapes, and illustrative examples are given, including a promising library of multi-size and multi-dimensional MCIs with rigidly conjugated π-architectures, ranging from 1D nanoribbon imides and 2D nanographene imides to cross-dimensional MCIs. Although researchers have achieved substantial progress in using MCIs as functional components for exploration of charge transport, photoelectric conversion, and chiral luminescence performances, they are far from unleashing their full potential. Developing highly efficient and regioselective coupling/ring-closure reactions involving the formation of multiple C-C bonds and the annulation of electron-deficient aromatic units is crucial. Prediction by theory with the help of machine learning and artificial intelligence research along with reliable nanotechnology characterization will give an impetus to the blossom of related fields. Future investigations will also have to advance toward─or even focus on─the emerging potential functions, especially in the fields of chiral electronics and spin electronics, which are expected to open new avenues.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Hou C, Ma Y, Zhang Y, Xu H, Wu Y, Zhao J, Wang Y, Liu Y. Ni‐Catalyzed Regioselective Cyclotrimerization of Internal Esteryl Alkynes towards Polysubstituted Benzene Rings. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Hou
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yan Ma
- Jilin Baojinng Carbon Materials Co. Production Department CHINA
| | - Yongqi Zhang
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Huiling Xu
- Jilin Baojing Carbon Materials Co. Production Department CHINA
| | - Yuanqi Wu
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Jinbo Zhao
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yuchao Wang
- Changchun University of Technology College of Chemistry and Life Science CHINA
| | - Yu Liu
- Changchun University of Technology College of Chemistry and Life Science Yan'an Road 2005 130012 Changchun CHINA
| |
Collapse
|
8
|
Saravanan B, Prabhu S, Arulperumjothi M, Julietraja K, Siddiqui MK. Molecular Structural Characterization of Supercorenene and Triangle-Shaped Discotic Graphene. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- B. Saravanan
- Department of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, India
| | - Savari Prabhu
- Department of Mathematics, Rajalakshmi Engineering College, Chennai, India
| | - M. Arulperumjothi
- Department of Mathematics, Saveetha Engineering College, Chennai, India
| | - K. Julietraja
- Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, India
| | | |
Collapse
|
9
|
Liang K, Lu L, Liu X, Yang D, Wang S, Gao Y, Alhumade H, Yi H, Lei A. Electrochemical Cobalt-catalyzed Cyclotrimerization of Alkynes to 1,2,4-Substituted Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kailun Liang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Xing Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- Department of Chemical and Materials Engineering, Abdulaziz University. Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Kim H, Zhao J, Bae J, Klivansky LM, Dailing EA, Liu Y, Cappiello JR, Sharpless KB, Wu P. Chain-Growth Sulfur(VI) Fluoride Exchange Polycondensation: Molecular Weight Control and Synthesis of Degradable Polysulfates. ACS CENTRAL SCIENCE 2021; 7:1919-1928. [PMID: 34841062 PMCID: PMC8614101 DOI: 10.1021/acscentsci.1c01015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Sulfur(VI) fluoride exchange (SuFEx) click chemistry has offered a facile and reliable approach to produce polysulfates and polysulfonates. However, the current SuFEx polymerization methods lack precise control of target molecular weight and dispersity. Herein, we report the first chain-growth SuFEx polycondensation process by exploiting the unique reactivity and selectivity of S-F bonds under SuFEx catalysis. Given the higher reactivity of iminosulfur oxydifluoride versus fluorosulfate, the chain-growth SuFEx polycondensation is realized by using an iminosulfur oxydifluoride-containing compound as the reactive chain initiator and deactivated AB-type aryl silyl ether-fluorosulfates bearing an electron-withdrawing group as monomers. When 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was utilized as the polymerization catalyst, precise control over the polymer molecular weight and polydispersity was achieved. The resulting polymers possess great thermal stability but are easily degradable under mild acidic and basic conditions.
Collapse
Affiliation(s)
- Hyunseok Kim
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jiayu Zhao
- Department
of NanoEngineering, University of California
San Diego, La Jolla, California 92093, United States
| | - Jinhye Bae
- Department
of NanoEngineering, University of California
San Diego, La Jolla, California 92093, United States
| | - Liana M. Klivansky
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Eric A. Dailing
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Yi Liu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - John R. Cappiello
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - K. Barry Sharpless
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
12
|
Qiu X, Sang Y, Wu H, Xue XS, Yan Z, Wang Y, Cheng Z, Wang X, Tan H, Song S, Zhang G, Zhang X, Houk KN, Jiao N. Cleaving arene rings for acyclic alkenylnitrile synthesis. Nature 2021; 597:64-69. [PMID: 34280952 DOI: 10.1038/s41586-021-03801-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
Synthetic chemistry is built around the formation of carbon-carbon bonds. However, the development of methods for selective carbon-carbon bond cleavage is a largely unmet challenge1-6. Such methods will have promising applications in synthesis, coal liquefaction, petroleum cracking, polymer degradation and biomass conversion. For example, aromatic rings are ubiquitous skeletal features in inert chemical feedstocks, but are inert to many reaction conditions owing to their aromaticity and low polarity. Over the past century, only a few methods under harsh conditions have achieved direct arene-ring modifications involving the cleavage of inert aromatic carbon-carbon bonds7,8, and arene-ring-cleavage reactions using stoichiometric transition-metal complexes or enzymes in bacteria are still limited9-11. Here we report a copper-catalysed selective arene-ring-opening reaction strategy. Our aerobic oxidative copper catalyst converts anilines, arylboronic acids, aryl azides, aryl halides, aryl triflates, aryl trimethylsiloxanes, aryl hydroxamic acids and aryl diazonium salts into alkenyl nitriles through selective carbon-carbon bond cleavage of arene rings. This chemistry was applied to the modification of polycyclic aromatics and the preparation of industrially important hexamethylenediamine and adipic acid derivatives. Several examples of the late-stage modification of complex molecules and fused ring compounds further support the potential broad utility of this methodology.
Collapse
Affiliation(s)
- Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yueqian Sang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Hao Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xiao-Song Xue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Zixi Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yachong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hui Tan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China. .,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Tang X, Fan T, Wang C, Zhang H. Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005640. [PMID: 33783132 DOI: 10.1002/smll.202005640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Given the electronegativity and bonding environment of halogen elements, halogenation (i.e., fluorination, chlorination, bromination, and iodination) serves as a versatile strategy for chemical modifications of materials. The combination of halogens and 2D materials has triggered extensive interests since the first report on graphene fluorination in 2008. Subsequently, scholars consistently conduct pre-, in-process, or posthalogenation modifications of emerging 2D materials to achieve desired properties and broad device applications. They also continuously explore the role of halogens in 2D material functionalization. The multiple advantages introduced by halogen decoration make 2D materials outstanding from each subclass. In this review, an overall retrospect is provided on the research advances in the area of 2D material halogenation, including experimental halogenation strategies, halogen-triggered novel physics and properties, and advanced applications across the studied objects. Future research directions in this area are also proposed.
Collapse
Affiliation(s)
- Xian Tang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Touwen Fan
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Cong Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
14
|
Saraswat V, Jacobberger RM, Arnold MS. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS NANO 2021; 15:3674-3708. [PMID: 33656860 DOI: 10.1021/acsnano.0c07835] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene nanoribbons (GNRs) have recently emerged as promising candidates for channel materials in future nanoelectronic devices due to their exceptional electronic, thermal, and mechanical properties and chemical inertness. However, the adoption of GNRs in commercial technologies is currently hampered by materials science and integration challenges pertaining to synthesis and devices. In this Review, we present an overview of the current status of challenges, recent breakthroughs toward overcoming these challenges, and possible future directions for the field of GNR electronics. We motivate the need for exploration of scalable synthetic techniques that yield atomically precise, placed, registered, and oriented GNRs on CMOS-compatible substrates and stimulate ideas for contact and dielectric engineering to realize experimental performance close to theoretically predicted metrics. We also briefly discuss unconventional device architectures that could be experimentally investigated to harness the maximum potential of GNRs in future spintronic and quantum information technologies.
Collapse
Affiliation(s)
- Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert M Jacobberger
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Yamamoto M, Takahashi K, Ohwada M, Wu Y, Iwase K, Hayasaka Y, Konaka H, Cove H, Di Tommaso D, Kamiya K, Maruyama J, Tani F, Nishihara H. Iron porphyrin-derived ordered carbonaceous frameworks. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Hong C, Jiang X, Yu S, Liu Z, Zhang Y. Recent Progress on the Application of Sulfoxonium Ylides in C—H Activation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202007037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhao Q, Choy PY, Li L, Kwong FY. Recent explorations of palladium-catalyzed regioselective aromatic extension processes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Keerthi A, Sánchez‐Sánchez C, Deniz O, Ruffieux P, Schollmeyer D, Feng X, Narita A, Fasel R, Müllen K. On-surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure. Chem Asian J 2020; 15:3807-3811. [PMID: 32955160 PMCID: PMC7756733 DOI: 10.1002/asia.202001008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Chiral graphene nanoribbons represent an important class of graphene nanomaterials with varying combinations of armchair and zigzag edges conferring them unique structure-dependent electronic properties. Here, we describe the on-surface synthesis of an unprecedented cove-edge chiral GNR with a benzo-fused backbone on a Au(111) surface using 2,6-dibromo-1,5-diphenylnaphthalene as precursor. The initial precursor self-assembly and the formation of the chiral GNRs upon annealing are revealed, along with a relatively small electronic bandgap of approximately 1.6 eV, by scanning tunnelling microscopy and spectroscopy.
Collapse
Affiliation(s)
- Ashok Keerthi
- Department of ChemistryThe University of ManchesterOxford roadManchesterM13 9PLUK
| | - Carlos Sánchez‐Sánchez
- EmpaSwiss Federal Laboratories for Materials Science and Technology8600DübendorfSwitzerland
- ESISNA Group, Materials Science FactoryInstitute of Materials Science of Madrid (ICMM–CSIC)Sor Juana Inés de la Cruz 328049MadridSpain
| | - Okan Deniz
- EmpaSwiss Federal Laboratories for Materials Science and Technology8600DübendorfSwitzerland
| | - Pascal Ruffieux
- EmpaSwiss Federal Laboratories for Materials Science and Technology8600DübendorfSwitzerland
| | | | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Roman Fasel
- EmpaSwiss Federal Laboratories for Materials Science and Technology8600DübendorfSwitzerland
- Department of Chemistry and BiochemistryUniversity of Bern3012BernSwitzerland
| | - Klaus Müllen
- Department of ChemistryJohannes Gutenberg-University55099MainzGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
19
|
Chen Z, Narita A, Müllen K. Graphene Nanoribbons: On-Surface Synthesis and Integration into Electronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001893. [PMID: 32945038 DOI: 10.1002/adma.202001893] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Graphene nanoribbons (GNRs) are quasi-1D graphene strips, which have attracted attention as a novel class of semiconducting materials for various applications in electronics and optoelectronics. GNRs exhibit unique electronic and optical properties, which sensitively depend on their chemical structures, especially the width and edge configuration. Therefore, precision synthesis of GNRs with chemically defined structures is crucial for their fundamental studies as well as device applications. In contrast to top-down methods, bottom-up chemical synthesis using tailor-made molecular precursors can achieve atomically precise GNRs. Here, the synthesis of GNRs on metal surfaces under ultrahigh vacuum (UHV) and chemical vapor deposition (CVD) conditions is the main focus, and the recent progress in the field is summarized. The UHV method leads to successful unambiguous visualization of atomically precise structures of various GNRs with different edge configurations. The CVD protocol, in contrast, achieves simpler and industry-viable fabrication of GNRs, allowing for the scale up and efficient integration of the as-grown GNRs into devices. The recent updates in device studies are also addressed using GNRs synthesized by both the UHV method and CVD, mainly for transistor applications. Furthermore, views on the next steps and challenges in the field of on-surface synthesized GNRs are provided.
Collapse
Affiliation(s)
- Zongping Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Department of Chemistry, University of Cologne, Greinstr. 4-6, D-50939, Cologne, Germany
| |
Collapse
|
20
|
Luan X, Martín C, Zhang P, Li Q, Vacchi IA, Delogu LG, Mai Y, Bianco A. Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo‐Fenton Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiangfeng Luan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Cristina Martín
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Isabella Anna Vacchi
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences University of Padua 35121 Padova Italy
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Alberto Bianco
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| |
Collapse
|
21
|
Li YL, Zee CT, Lin JB, Basile VM, Muni M, Flores MD, Munárriz J, Kaner RB, Alexandrova AN, Houk KN, Tolbert SH, Rubin Y. Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. J Am Chem Soc 2020; 142:18093-18102. [PMID: 32894950 DOI: 10.1021/jacs.0c07657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis of graphene nanoribbons (GNRs) that contain site-specifically substituted backbone heteroatoms is one of the essential goals that must be achieved in order to control the electronic properties of these next generation organic materials. We have exploited our recently reported solid-state topochemical polymerization/cyclization-aromatization strategy to convert the simple 1,4-bis(3-pyridyl)butadiynes 3a,b into the fjord-edge nitrogen-doped graphene nanoribbon structures 1a,b (fjord-edge N2[8]GNRs). Structural assignments are confirmed by CP/MAS 13C NMR, Raman, and XPS spectroscopy. The fjord-edge N2[8]GNRs 1a,b are promising precursors for the novel backbone nitrogen-substituted N2[8]AGNRs 2a,b. Geometry and band calculations on N2[8]AGNR 2c indicate that this class of nanoribbons should have unusual bonding topology and metallicity.
Collapse
Affiliation(s)
- Yolanda L Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Chih-Te Zee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Janice B Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Victoria M Basile
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Mit Muni
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Maria D Flores
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Julen Munárriz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Sarah H Tolbert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| | - Yves Rubin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, California 90095-1567, United States
| |
Collapse
|
22
|
Liu Z, Chen Z, Wang C, Wang HI, Wuttke M, Wang XY, Bonn M, Chi L, Narita A, Müllen K. Bottom-Up, On-Surface-Synthesized Armchair Graphene Nanoribbons for Ultra-High-Power Micro-Supercapacitors. J Am Chem Soc 2020; 142:17881-17886. [PMID: 33021787 PMCID: PMC7582623 DOI: 10.1021/jacs.0c06109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bottom-up-synthesized graphene nanoribbons (GNRs) with excellent electronic properties are promising materials for energy storage systems. Herein, we report bottom-up-synthesized GNR films employed as electrode materials for micro-supercapacitors (MSCs). The micro-device delivers an excellent volumetric capacitance and an ultra-high power density. The electrochemical performance of MSCs could be correlated with the charge carrier mobility within the differently employed GNRs, as determined by pump-probe terahertz spectroscopy studies.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zongping Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Can Wang
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Wuttke
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiao-Ye Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
23
|
Luan X, Martín C, Zhang P, Li Q, Vacchi IA, Delogu LG, Mai Y, Bianco A. Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo‐Fenton Reaction. Angew Chem Int Ed Engl 2020; 59:18515-18521. [DOI: 10.1002/anie.202008925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/03/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Xiangfeng Luan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Cristina Martín
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Isabella Anna Vacchi
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences University of Padua 35121 Padova Italy
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Alberto Bianco
- CNRS Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| |
Collapse
|
24
|
Yokoo K, Sakai D, Mori K. Highly Stereoselective Synthesis of Fused Tetrahydropyrans via Lewis-Acid-Promoted Double C(sp3)–H Bond Functionalization. Org Lett 2020; 22:5801-5805. [DOI: 10.1021/acs.orglett.0c01867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuma Yokoo
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Dan Sakai
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
25
|
Di Giovannantonio M, Chen Q, Urgel JI, Ruffieux P, Pignedoli CA, Müllen K, Narita A, Fasel R. On-Surface Synthesis of Oligo(indenoindene). J Am Chem Soc 2020; 142:12925-12929. [DOI: 10.1021/jacs.0c05701] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - Qiang Chen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - José I. Urgel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, 8600 Dübendorf, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
26
|
Itami K, Maekawa T. Molecular Nanocarbon Science: Present and Future. NANO LETTERS 2020; 20:4718-4720. [PMID: 32510230 DOI: 10.1021/acs.nanolett.0c02143] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, R.O.C
| | - Takehisa Maekawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan, R.O.C
| |
Collapse
|
27
|
Du Q, Pu W, Sun Z, Yu P. On-Surface Synthesis of All-cis Standing Phenanthrene Polymers upon Selective C-H Bond Activation. J Phys Chem Lett 2020; 11:5022-5028. [PMID: 32510950 DOI: 10.1021/acs.jpclett.0c01349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
On-surface synthesis has emerged as a powerful approach to the atomically precise fabrication of molecular architectures with potential applications in nanotechnology. However, it is challenging to synthesize molecular structures that can protrude from the surface such as polymer chains forming by the molecules with upright conformations, since most of the on-surface reaction products, particularly the conjugated structures, prefer to adsorb parallel on the surface to maximize the molecule-substrate interaction. Here, we show an up-standing phenanthrene polymer chain with an all-cis configuration obtained by on-surface synthesis upon highly selective C-H activation. Using bond-resolved nc-AFM imaging, the reaction route of polymers from an in-plane to an all-cis upright conformation is fully characterized, and the reaction mechanism is further revealed in combination with first principles calculations. Our results on this selective dehydrogenation induced upright-oriented polymer chains that will enrich the toolbox for the on-surface synthesis of novel molecular structures and may provide new insights on designing optimized precursors for preparing three-dimensional molecular frameworks through on-surface synthesis.
Collapse
Affiliation(s)
- Qingyang Du
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Weiwen Pu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhaoru Sun
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
28
|
Ito H, Matsuoka W, Yano Y, Shibata M, Itami K. Annulative π-Extension (APEX) Reactions for Precise Synthesis of Polycyclic Aromatic Compounds. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hideto Ito
- Graduate School of Science, Nagoya University
- JST-ERATO Itami Molecular Nanocarbon Project
- Institute of Transformative Bio-Molecules, Nagoya University
| | | | | | | | - Kenichiro Itami
- Graduate School of Science, Nagoya University
- JST-ERATO Itami Molecular Nanocarbon Project
- Institute of Transformative Bio-Molecules, Nagoya University
| |
Collapse
|
29
|
Ten YA, Troshkova NM, Tretyakov EV. From spin-labelled fused polyaromatic compounds to magnetically active graphene nanostructures. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular design of magnetically active graphene nanoscale structures is an emerging field of research. The key goal of this research is to produce graphene nanoribbons and graphene quantum dots with specified electronic, optical and magnetic properties. The review considers methods for the synthesis of spin-labelled polycyclic aromatic hydrocarbons, which are homologous precursors of graphene nanostructures, and discusses the advances and prospects of the design of magnetically active graphene materials.
The bibliography includes 134 references.
Collapse
|
30
|
Horii Y, Damjanović M, Ajayakumar MR, Katoh K, Kitagawa Y, Chibotaru L, Ungur L, Mas-Torrent M, Wernsdorfer W, Breedlove BK, Enders M, Veciana J, Yamashita M. Highly Oxidized States of Phthalocyaninato Terbium(III) Multiple-Decker Complexes Showing Structural Deformations, Biradical Properties and Decreases in Magnetic Anisotropy. Chemistry 2020; 26:8621-8630. [PMID: 32428358 PMCID: PMC7384013 DOI: 10.1002/chem.202001365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Indexed: 01/12/2023]
Abstract
Presented here is a comprehensive study of highly oxidized multiple‐decker complexes composed of TbIII and CdII ions and two to five phthalocyaninato ligands, which are stabilized by electron‐donating n‐butoxy groups. From X‐ray structural analyses, all the complexes become axially compressed upon ligand oxidation, resulting in bowl‐shaped distortions of the ligands. In addition, unusual coexistence of square antiprism and square prism geometries around metal ions was observed in +4e charged species. From paramagnetic 1H NMR studies on the resulting series of triple, quadruple and quintuple‐decker complexes, ligand oxidation leads to a decrease in the magnetic anisotropy, as predicted from theoretical calculations. Unusual paramagnetic shifts were observed in the spectra of the +2e charged quadruple and quintuple‐decker complexes, indicating that those two species are actually unexpected triplet biradicals. Magnetic measurements revealed that the series of complexes show single‐molecule magnet properties, which are controlled by the multi‐step redox induced structural changes.
Collapse
Affiliation(s)
- Yoji Horii
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Marko Damjanović
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - M R Ajayakumar
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, 08193, Bellaterra, Spain
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Liviu Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, 3001, Leuven, Belgium
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Marta Mas-Torrent
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, 08193, Bellaterra, Spain
| | - Wolfgang Wernsdorfer
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Markus Enders
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, 08193, Bellaterra, Spain
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba Aoba-ku, Sendai, Miyagi, 980-8578, Japan.,School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.,WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| |
Collapse
|
31
|
Pan C, Wang L, Han J. Palladium-Catalyzed Site-Selective Benzocylization of Aromatic Acids with o-Fluoro-Substituted Diaryliodonium Salts toward 3,4-Benzocoumarins. Org Lett 2020; 22:4776-4780. [DOI: 10.1021/acs.orglett.0c01577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cheng Pan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
32
|
Xu X, Müllen K, Narita A. Syntheses and Characterizations of Functional Polycyclic Aromatic Hydrocarbons and Graphene Nanoribbons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190368] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiushang Xu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Physical Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
33
|
Gonzalez-Rodriguez E, Abdo MA, Dos Passos Gomes G, Ayad S, White FD, Tsvetkov NP, Hanson K, Alabugin IV. Twofold π-Extension of Polyarenes via Double and Triple Radical Alkyne peri-Annulations: Radical Cascades Converging on the Same Aromatic Core. J Am Chem Soc 2020; 142:8352-8366. [PMID: 32249571 DOI: 10.1021/jacs.0c01856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A versatile synthetic route to distannyl-substituted polyarenes was developed via double radical peri-annulations. The cyclization precursors were equipped with propargylic OMe traceless directing groups (TDGs) for regioselective Sn-radical attack at the triple bonds. The two peri-annulations converge at a variety of polycyclic cores to yield expanded difunctionalized polycyclic aromatic hydrocarbons (PAHs). This approach can be extended to triple peri-annulations, where annulations are coupled with a radical cascade that connects two preexisting aromatic cores via a formal C-H activation step. The installed Bu3Sn groups serve as chemical handles for further functionalization via direct cross-coupling, iodination, or protodestannylation and increase solubility of the products in organic solvents. Photophysical studies reveal that the Bu3Sn-substituted PAHs are moderately fluorescent, and their protodestannylation results in an up to 10-fold fluorescence quantum yield enhancement. DFT calculations identified the most likely possible mechanism of this complex chemical transformation involving two independent peri-cyclizations at the central core.
Collapse
Affiliation(s)
- Edgar Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Miguel A Abdo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Suliman Ayad
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frankie D White
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Nikolay P Tsvetkov
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
34
|
Kitao T, MacLean MWA, Nakata K, Takayanagi M, Nagaoka M, Uemura T. Scalable and Precise Synthesis of Armchair-Edge Graphene Nanoribbon in Metal-Organic Framework. J Am Chem Soc 2020; 142:5509-5514. [PMID: 32148033 DOI: 10.1021/jacs.0c00467] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Graphene nanoribbons (GNRs), narrow and straight-edged stripes of graphene, attract a great deal of attention because of their excellent electronic and magnetic properties. As of yet, there is no fabrication method for GNRs to satisfy both precision at the atomic scale and scalability, which is critical for fundamental research and future technological development. Here, we report a methodology for bulk-scale synthesis of GNRs with atomic precision utilizing a metal-organic framework (MOF). The GNR was synthesized by the polymerization of perylene (PER) or its derivative within the nanochannels of the MOF. Molecular dynamics simulations showed that PER was uniaxially aligned along the nanochannels of the MOF through host-guest interactions, which allowed for regulated growth of the nanoribbons. A series of characterizations of the GNR, including NMR, UV/vis/NIR, and Raman spectroscopy measurements, confirmed the formation of the GNR with well-controlled edge structure and width.
Collapse
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Michael W A MacLean
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuki Nakata
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masayoshi Takayanagi
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,The Center for Data Science Education and Research, Shiga University, 1-1-1 Banba, Hikone, Shiga 522-8522, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masataka Nagaoka
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.,CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
35
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen-Containing Polyaromatics by Aza-Annulative π-Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020; 59:6383-6388. [PMID: 32011794 DOI: 10.1002/anie.201913394] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/13/2020] [Indexed: 11/11/2022]
Abstract
Nitrogen-containing polycyclic aromatic compounds (N-PACs) are an important class of compounds in materials science. Reported here is a new aza-annulative π-extension (aza-APEX) reaction that allows rapid access to a range of N-PACs in 11-84 % yields from readily available unfunctionalized aromatics and imidoyl chlorides. In the presence of silver hexafluorophosphate, arenes and imidoyl chlorides couple in a regioselective fashion. The follow-up oxidative treatment with p-chloranil affords structurally diverse N-PACs, which are very difficult to synthesize. DFT calculations reveal that the aza-APEX reaction proceeds through the formal [4+2] cycloaddition of an arene and an in situ generated diarylnitrilium salt, with sequential aromatizations having relatively low activation energies. Transformation of N-PACs into nitrogen-doped nanographenes and their photophysical properties are also described.
Collapse
Affiliation(s)
- Kou P Kawahara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Wataru Matsuoka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
36
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen‐Containing Polyaromatics by Aza‐Annulative π‐Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kou P. Kawahara
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Wataru Matsuoka
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Hideto Ito
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
37
|
Takano H, Shiozawa N, Imai Y, Kanyiva KS, Shibata T. Catalytic Enantioselective Synthesis of Axially Chiral Polycyclic Aromatic Hydrocarbons (PAHs) via Regioselective C–C Bond Activation of Biphenylenes. J Am Chem Soc 2020; 142:4714-4722. [DOI: 10.1021/jacs.9b12205] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hideaki Takano
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Natsumi Shiozawa
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577−8502, Japan
| | - Kyalo Stephen Kanyiva
- Global Center of Science and Engineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
38
|
Kommagalla Y, Ando S, Chatani N. Rh(III)-Catalyzed Reaction of α-Carbonyl Sulfoxonium Ylides and Alkenes: Synthesis of Indanones via [4 + 1] Cycloaddition. Org Lett 2020; 22:1375-1379. [DOI: 10.1021/acs.orglett.9b04664] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yadagiri Kommagalla
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunsuke Ando
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Yano Y, Wang F, Mitoma N, Miyauchi Y, Ito H, Itami K. Step-Growth Annulative π-Extension Polymerization for Synthesis of Cove-Type Graphene Nanoribbons. J Am Chem Soc 2020; 142:1686-1691. [DOI: 10.1021/jacs.9b11328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuuta Yano
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Feijiu Wang
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Nobuhiko Mitoma
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yuhei Miyauchi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
40
|
Peurifoy SR, Xu Q, May R, Gadjieva NA, Sisto TJ, Jin Z, Marbella LE, Nuckolls C. Air-stable, long-length, solution-based graphene nanoribbons. Chem Sci 2020; 11:9978-9982. [PMID: 34094260 PMCID: PMC8162120 DOI: 10.1039/d0sc02105a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Within the context of nanoelectronics, general strategies for the development of electronically tunable and air stable graphene nanoribbons are crucial. Previous studies towards the goal of processable nanoribbons have been complicated by ambient condition instability, insolubility arising from aggregation, or poor cyclization yield due to electron deficiency. Herein, we present a general strategy for the elongation of smaller graphene nanoribbon fragments into air-stable, easily processed, and electronically tunable nanoribbons. This strategy is facilitated by the incorporation of electron-rich donor units between electron-poor acceptor perylene diimide oligomeric units. The ribbons are processed in solution via a visible-light flow photocyclization using LEDs. The resulting long nanoribbons can be solution-cast and imaged, which are necessary characteristics for device fabrication. The ribbons become conductive after thermolysis of the pendent side-chains. The electron-accepting character of these nanoribbons in solution is reversible, and the conductivity of the thermolyzed species as a solid remains stable. This work highlights our general strategy for the mild and reliable fabrication of tunable and ambient-stable graphene nanoribbons, and charts a straightforward route for facile device incorporation. A strategy is shown for the elongation of graphene nanoribbon (GNR) fragments into air-stable, solution processable and electronically tunable GNRs, aided by incorporating electron-rich donor units between electron-poor oligomeric acceptor units.![]()
Collapse
Affiliation(s)
| | - Qizhi Xu
- Department of Chemistry
- Columbia University
- New York
- USA
| | - Richard May
- Department of Chemical Engineering
- Columbia University
- New York
- USA
| | | | | | - Zexin Jin
- Department of Chemistry
- Columbia University
- New York
- USA
| | | | | |
Collapse
|
41
|
Ishiwari F, Ofuchi M, Inoue K, Sei Y, Fukushima T. Switching of the conformational flexibility of a diazacyclooctane-containing ladder polymer by coordination and elimination of a Lewis acid. Polym Chem 2020. [DOI: 10.1039/c9py01104h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the first system of ladder polymers capable of interconversion between rigid and flexible conformations by coordination and elimination of a Lewis acid (BPh2Cl) on diazacyclooctane units in the main chain.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Momoko Ofuchi
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Keiki Inoue
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Yoshihisa Sei
- Suzukakedai Materials Analysis Division
- Technical Department
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
42
|
Inoue K, Ishiwari F, Fukushima T. Selective synthesis of diazacyclooctane -containing flexible ladder polymers with symmetrically or unsymmetrically substituted side chains. Polym Chem 2020. [DOI: 10.1039/d0py00603c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a versatile synthetic method for selectively obtaining symmetrical or unsymmetrical N,N′-dialkylated DACO-containing flexible ladder polymers with various functionalities.
Collapse
Affiliation(s)
- Keiki Inoue
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
43
|
Low-temperature synthesis of sp 2 carbon nanomaterials. Sci Bull (Beijing) 2019; 64:1817-1829. [PMID: 36659578 DOI: 10.1016/j.scib.2019.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/21/2023]
Abstract
sp2 carbon nanomaterials are mainly composed of sp2-hybridized carbon atoms in the form of a hexagonal network. Due to the π bonds formed by unpaired electrons, sp2 carbon nanomaterials possess excellent electronic, mechanical, and optical properties, which have attracted great attention in recent years. As the advanced sp2 carbon nanomaterials, graphene and carbon nanotubes (CNTs) have great potential in electronics, sensors, energy storage and conversion devices, etc. The low-temperature synthesis of graphene and CNTs are indispensable to promote the practical industrial application. Furthermore, graphene and CNTs can even be expected to directly grow on the flexible plastic that cannot bear high temperature, expanding bright prospects for applications in emerging flexible nanotechnology. An in-depth understanding of the formation mechanism of sp2 carbon nanomaterials is beneficial for reducing the growth temperature and satisfying the demands of industrial production in an economical and low-cost way. In this review, we discuss the main strategies and the related mechanisms in low-temperature synthesis of graphene and CNTs, including the selection of precursors with high reactivity, the design of catalyst, and the introduction of additional energy for the pre-decomposition of precursors. Furthermore, challenges and outlooks are highlighted for further progress in the practical industrial application.
Collapse
|
44
|
Yano Y, Mitoma N, Ito H, Itami K. A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications. J Org Chem 2019; 85:4-33. [DOI: 10.1021/acs.joc.9b02814] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuuta Yano
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Nobuhiko Mitoma
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
45
|
Abstract
As new forms of carbon are unearthed, they invariably transform the scientific landscape. Numerous researchers have been inspired to discover the unique characteristics of these fascinating materials, consistently leading to the development of important technological innovations in materials science. Recently, studies on the preparation of molecular nanocarbons (small molecule analogues of larger carbon nanostructures) by precision organic synthesis have attracted much attention. Cycloparaphenylene (CPP), the substructure of carbon nanotubes (CNTs), is the oldest of such organic molecules, and since 2008 the successful synthesis of CPP dramatically advanced the synthetic chemistry of molecular nanocarbons. In fact, as pioneering research, we succeeded in producing carbon nanotubes using seed CPP molecules in 2013. This method represented an important landmark in the quest for controlling the diameter of CNTs via utilization of a well-defined small molecule as a template. Other avenues of research on graphene nanoribbons and partial structures of fullerenes such as corannulene and sumanene are also highly active at the current time. On the other hand, carbon forms with nontrivial topologies, i.e., topological nanocarbons, are virtually unexplored. In addition to the 3D network structures represented by the Mackay crystal, many topologically complex structures have been envisioned. To date, there is no rational approach toward the bottom-up synthesis of these carbon structures. As with the case of fullerenes and CNTs, access to these unique carbon structures should undoubtedly revolutionize a wide range of sciences. This Account highlights our efforts toward the synthesis of topologically unique molecular nanocarbons. Starting from CPP as the topologically simple subunit, we have successfully created novel molecular nanocarbons that have more complexed topologies. The first topic is carbon nanobelts, fully fused cylinder-shaped molecular nanocarbons representing the segment structure of armchair-type CNTs. The second topic is carbon nanocages, molecular nanocarbons having a "three-holed" topology representing the joint unit of branched CNTs. The third and fourth topics are all-benzene catenanes consisting of two CPP rings and an all-benzene trefoil knot topologically related to a carbon nanotorus. The world of nanocarbon molecules is only limited by our imagination and creativity. As history has proved, the synthesis of new forms of carbon and topologically complex molecules has always subsequently led to new fields and applications associated with their unforeseen properties and functions.
Collapse
Affiliation(s)
- Yasutomo Segawa
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya 464-8602, Japan
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - David R. Levine
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya 464-8602, Japan
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- JST, ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Nagoya 464-8602, Japan
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
46
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019; 58:15675-15679. [DOI: 10.1002/anie.201908319] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
47
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
48
|
Hu T, Xu K, Ye Z, Zhu K, Wu Y, Zhang F. Two-in-One Strategy for the Pd(II)-Catalyzed Tandem C-H Arylation/Decarboxylative Annulation Involved with Cyclic Diaryliodonium Salts. Org Lett 2019; 21:7233-7237. [PMID: 31479281 DOI: 10.1021/acs.orglett.9b02429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report here a two-in-one strategy for the Pd(II)-catalyzed tandem C-H arylation/decarboxylative annulation between readily available cyclic diaryliodonium salts and benzoic acids. The carboxylic acid functionality can be used as both a directing group for the ortho-C-H arylation and the reactive group for the tandem decarboxylative annulation. By a step-economical double cross-coupling annulation procedure, the privileged triphenylene frameworks were efficiently constructed, which have potential applications in material chemistry.
Collapse
Affiliation(s)
- Tao Hu
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Kai Xu
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Zenghui Ye
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Kai Zhu
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Yanqi Wu
- Institute of Information Resource , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| |
Collapse
|
49
|
Abstract
The bottom-up synthesis of structurally well-defined motifs of graphitic materials is crucial to understanding their physicochemical properties and to elicit new functions. Herein, we report the design and synthesis of TriQuinoline (TQ) as a molecular model for pyridinic-nitrogen defects in graphene sheets. TQ is a trimer of quinoline units concatenated at the 2- and 8-positions in a head-to-tail fashion, whose structure leads to unusual aromatisation behaviour at the final stage of the synthesis. The central atomic-sized void endows TQ with high proton affinity, which was confirmed empirically and computationally. TQ•H+ is a two-dimensional cationic molecule that displays both π-π and CH-π contact modes, culminating in the formation of the ternary complex ([12]cycloparaphenylene(CPP) ⊃ (TQ•H+/coronene)) that consists of TQ•H+, coronene (flat), and [12]cycloparaphenylene ([12]CPP) (ring). The water-miscibility of TQ•H+ allows it to serve as an efficient DNA intercalator for e.g. the inhibition of topoisomerase I activity.
Collapse
Affiliation(s)
- Shinya Adachi
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan.
| |
Collapse
|