1
|
Maejima I, Sato K. New aspects of a small GTPase RAB35 in brain development and function. Neural Regen Res 2025; 20:1971-1980. [PMID: 39254551 PMCID: PMC11691468 DOI: 10.4103/nrr.nrr-d-23-01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 09/11/2024] Open
Abstract
In eukaryotic cells, organelles in the secretory, lysosomal, and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking, which is the process of transporting the cargo of proteins, lipids, and other molecules to appropriate compartments via transport vesicles or intermediates. These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain (RAB) protein family, which is the largest subfamily of the RAS superfamily. Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases, including neurological disorders and neurodegenerative diseases. Therefore, it is important to understand the physiological and pathological roles of RAB proteins in brain function. RAB35, a member of the RAB family, is an evolutionarily conserved protein in metazoans. A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis, endocytic recycling, actin bundling, and cell migration. RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles. We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function. These mice exhibited defects in anxiety-related behaviors and spatial memory. Strikingly, RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development, and thereby for normal hippocampal lamination. In contrast, layer formation in the cerebral cortex occurred superficially, even in the absence of RAB35, suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development. Recent studies have suggested an association between RAB35 and neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In this review, we provide an overview of the current understanding of subcellular functions of RAB35. We also provide insights into the physiological role of RAB35 in mammalian brain development and function, and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
2
|
Pan H, Zhao Q, Xia Y, Zhao B, Jiang B, Liang Z, Zhang L, Zhang Y. Ligand guided in vivo crosslinking and affinity purification mass spectrometry for identifying membrane receptors of Tau. Talanta 2025; 287:127655. [PMID: 39879803 DOI: 10.1016/j.talanta.2025.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Misfolded neurotoxic proteins, such as Tau protein, spread within the brain in many neurodegenerative diseases. Receptors play an important role in the recognition of spreading proteins for endocytosis. Blocking the receptors is essential to inhibit neurotoxic proteins spreading in the brain. However, it's a great challenge to identify the membrane receptors of ligand, such as Tau, caused by high dynamic interaction and subsequent endocytosis. Herein, a ligand guided in vivo crosslinking combined with affinity purification mass spectrometry (LGCX-APMS) strategy was developed and enabled the discovery of Tau receptors. With this method, 32 plasma membrane proteins that bind to Tau were identified including the reported neuron receptor LRP1. More importantly, TMPRSS13 was further validated as a potential receptor for Tau fibrils. These results illustrate that LGCX-APMS might capture the interactions of ligand in living cells suitable for the identification of the receptors, and further provide methods for the study of intercellular communication.
Collapse
Affiliation(s)
- Hui Pan
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yu Xia
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Baofeng Zhao
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110001, China.
| | - Bo Jiang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yukui Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
3
|
Kuo G, Kumbhar R, Blair W, Dawson VL, Dawson TM, Mao X. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions. Mol Neurodegener 2025; 20:10. [PMID: 39849529 PMCID: PMC11756073 DOI: 10.1186/s13024-025-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn. Recognizing the intricate complexity and multifactorial etiology of α-synucleinopathy, the review illuminates the potential of various membrane receptors, proteins, intercellular spreading pathways, and pathological agents for therapeutic interventions. While significant progress has been made in understanding α-synucleinopathy, the pursuit of efficacious treatments remains challenging. Several strategies involving decreasing α-syn production and aggregation, increasing α-syn degradation, lowering extracellular α-syn, and inhibiting cellular uptake of α-syn are presented. The paper underscores the necessity of meticulous and comprehensive investigations to advance our knowledge of α-synucleinopathy pathology and ultimately develop innovative therapeutic strategies for α-synucleinopathies.
Collapse
Affiliation(s)
- Grace Kuo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William Blair
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Tran KM, Kwang NE, Butler CA, Gomez-Arboledas A, Kawauchi S, Mar C, Chao D, Barahona RA, Da Cunha C, Tsourmas KI, Shi Z, Wang S, Collins S, Walker A, Shi KX, Alcantara JA, Neumann J, Duong DM, Seyfried NT, Tenner AJ, LaFerla FM, Hohsfield LA, Swarup V, MacGregor GR, Green KN. APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology. Mol Neurodegener 2025; 20:9. [PMID: 39844286 PMCID: PMC11752804 DOI: 10.1186/s13024-024-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects. METHODS We introduced the R136S variant into mouse Apoe (ApoeCh) and investigated its effect on the development of AD-related pathology using the 5xFAD model of amyloidosis and the PS19 model of tauopathy. We used immunohistochemical and biochemical analysis along with single-cell spatial omics and bulk proteomics to explore the impact of the ApoeCh variant on AD pathological development and the brain's response to plaques and tau. RESULTS In 5xFAD mice, ApoeCh enhances a Disease-Associated Microglia (DAM) phenotype in microglia surrounding plaques, and reduces plaque load, dystrophic neurites, and plasma neurofilament light chain. By contrast, in PS19 mice, ApoeCh suppresses the microglial and astrocytic responses to tau-laden neurons and does not reduce tau accumulation or phosphorylation, but partially rescues tau-induced synaptic and myelin loss. We compared how microglia responses differ between the two mouse models to elucidate the distinct DAM signatures induced by ApoeCh. We identified upregulation of antigen presentation-related genes in the DAM response in a PS19 compared to a 5xFAD background, suggesting a differential response to amyloid versus tau pathology that is modulated by the presence of ApoeCh. Bulk proteomics show upregulated mitochondrial protein abundance with ApoeCh in 5xFAD mice, but reductions in mitochondrial and translation associated proteins in PS19 mice. CONCLUSIONS These findings highlight the ability of the ApoeCh variant to modulate microglial responses based on the type of pathology, enhancing DAM reactivity in amyloid models and dampening neuroinflammation to promote protection in tau models. This suggests that the Christchurch variant's protective effects likely involve multiple mechanisms, including changes in receptor binding and microglial programming.
Collapse
Affiliation(s)
- Kristine M Tran
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Nellie E Kwang
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Claire A Butler
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Angela Gomez-Arboledas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Cassandra Mar
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Donna Chao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Rocio A Barahona
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Kate I Tsourmas
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Kai-Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Joshua A Alcantara
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | | | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrea J Tenner
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology & Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Grant R MacGregor
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA.
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| | - Kim N Green
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Zhu S, Song Z, Tapayan AS, Singh K, Wang KW, Chien Hagar HT, Zhang J, Kim H, Thepsuwan P, Kuo MH, Zhang K, Nguyen HM. Effects of Heparan Sulfate Trisaccharide Containing Oleanolic Acid in Attenuating Hyperphosphorylated Tau-Induced Cell Dysfunction Associated with Alzheimer's Disease. J Med Chem 2025. [PMID: 39842821 DOI: 10.1021/acs.jmedchem.4c02563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, marked by progressive brain degeneration and cognitive decline. A major pathological feature of AD is the accumulation of hyperphosphorylated tau (p-tau) in the form of neurofibrillary tangles (NFTs), which leads to neuronal death and neurodegeneration. P-tau also induces endoplasmic reticulum (ER) stress and activates the unfolded protein response, causing inflammation and apoptosis. Additionally, p-tau spreads in the brain through interactions with heparan sulfate (HS) proteoglycans, promoting aggregation and internalization. Targeting the tau-HS interaction offers a potential therapeutic strategy for AD. We present a novel HS mimetic with a lipophilic oleanolic acid linker and a sulfated trisaccharide, which shows strong cytoprotective effects against p-tau. Moreover, this compound alleviates p-tau-induced ER stress and inflammation. Molecular docking studies indicate that the conjugation of oleanolic acid enhances binding between the ligand and tau protofilament cores, facilitating protective interactions. These findings provide a foundation for the development of novel HS mimetics, enabling further investigation of tau-HS interactions in AD and other tauopathies.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - April Sweet Tapayan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kartikey Singh
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jicheng Zhang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Patty Thepsuwan
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Rozeboom A, Broekaart DWM, Anink JJ, Boonkamp L, Idema S, Teunissen CE, Aronica E, Gorter JA, van Vliet EA. Cellular expression of low-density lipoprotein receptor-related protein 1 and amyloid beta deposition in human and rat epileptogenic brain. Exp Neurol 2025; 386:115149. [PMID: 39842492 DOI: 10.1016/j.expneurol.2025.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Decreased capillary expression of low-density lipoprotein receptor-related protein 1 (LRP1) has been linked to increased brain amyloid beta (Aβ) accumulation in Alzheimer's disease (AD). Aβ accumulation has also been observed in (a subset of) temporal lobe epilepsy (TLE) patients, suggesting a potential link between epilepsy and AD. This study examines cellular LRP1 expression in human and rat epileptogenic brain tissue to explore LRP1's role in epilepsy. LRP1 expression and localization were analyzed in hippocampal sections from patients with status epilepticus (SE, n = 12), TLE (n = 12), autopsy controls (n = 20), and AD (n = 10) using immunohistochemistry. Soluble Aβ levels and deposits were compared across TLE, AD, and control tissues. LRP1 expression was also studied in an electrical post-SE rat model of TLE. Decreased capillary LRP1 expression was found in both human and rat brain tissue (SE and TLE). Higher LRP1 expression was detected in CA1 neurons (only in human TLE) and glial cells (SE and TLE). Aβ deposits were observed in only one out of 12 TLE patients, and soluble Aβ levels were not significantly elevated. In contrast, AD patients showed decreased capillary LRP1 expression accompanied by Aβ plaques and increased soluble Aβ40/42 levels. The significant reduction in LRP1 expression in brain capillaries in both adult human and rat TLE was not clearly associated with notable Aβ accumulation implying that alternative amyloid clearance mechanisms beyond LRP1 in blood vessels might be at play. It also supports previous findings indicating that Aβ pathology may be less prominent in adult TLE than some studies suggest.
Collapse
Affiliation(s)
- Annemieke Rozeboom
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Diede W M Broekaart
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jasper J Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lynn Boonkamp
- Neurochemistry Laboratory, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Li Y, Liu R, Zhao Z. Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis. Pharmaceutics 2025; 17:109. [PMID: 39861756 PMCID: PMC11769103 DOI: 10.3390/pharmaceutics17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood-brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases. This exploration details the transport mechanisms across the BBB, focusing on RMT and its use of natural ligands for drug delivery. Furthermore, the review examines macromolecular ligands such as antibodies, peptides, and aptamers that leverage RMT for effective BBB traversal. Advancements in macromolecules-based delivery systems for brain diseases are summarized, emphasizing their therapeutic potential and limitations. Finally, emerging RMT strategies, including viral vectors, exosomes, and boron neutron capture therapy, are discussed for their precision in brain-targeted treatments. This comprehensive overview underscores the potential of RMT-based approaches to revolutionize brain disease therapy.
Collapse
Affiliation(s)
- Yuanke Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Zhen Zhao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
8
|
Chen GJW, Chang MY, Lin XP, Kundu D, Chang YJ, Chen YR. Tau destabilization in a familial deletion mutant K280 accelerates its fibrillization and enhances the seeding effect. J Biol Chem 2025:108184. [PMID: 39814228 DOI: 10.1016/j.jbc.2025.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
Tauopathies cover a range of neurodegenerative diseases in which natively unfolded tau protein aggregates and spreads in the brain during disease progression. To gain insights into the mechanism of tau structure and spreading, here, we examined the biochemical and cellular properties of human full-length wild-type and familial mutant tau, ΔK280, with a deletion at lysine 280. Our results showed that both wild-type and mutant tau are predominantly monomeric by analytical ultracentrifugation. The mutant tau may lose intramolecular contacts and is significantly destabilized assessed by cross-linking mass spectrometry and urea denaturation. Moreover, the mutant tau displayed accelerated fibril formation compared to the wild-type tau. Upon cross-seeding, the wild-type tau was seeded more easily by wild-type seeds than mutant seeds showing that homotypic seeding is more efficient. The wild-type tau was successfully converted to fibrils with mutant signatures by mutant seeds. Live cell cross-correlation fluorescence spectroscopy studies indicated that wild-type tau forms trimeric species and the mutant tau forms a larger assembly and processes higher cell-to-cell transmission. Overall, these findings shed light on the fundamental mechanisms of tau structure/stability, aggregation, and seeding to facilitate future therapeutic development for tauopathies.
Collapse
Affiliation(s)
| | - Ming-Yun Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Xin-Peng Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Debapriya Kundu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica; Institute of Biochemical Sciences, National Taiwan University
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica; Institute of Biochemical Sciences, National Taiwan University; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Datta D, Arnsten AFT. The etiology and prevention of early-stage tau pathology in higher cortical circuits: Insights from aging rhesus macaques. Alzheimers Dement 2025. [PMID: 39776253 DOI: 10.1002/alz.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Aging rhesus macaques provide a unique model for learning how age and inflammation drive early-stage pathology in sporadic Alzheimer's disease, and for testing potential therapeutics. Unlike mice, aging macaques have extensive association cortices and inflammatory signaling similar to humans, are apolipoprotein E ε4 homozygotes, and naturally develop tau and amyloid pathology with marked cognitive deficits. Importantly, monkeys provide the unique opportunity to study early-stage, soluble hyperphosphorylated tau (p-tau), including p-tau217. As soluble p-tau is rapidly dephosphorylated post mortem, it is not captured in human brains except with biopsy material. However, new macaque data show that soluble p-tau is toxic to neurons and capable of seeding across cortical circuits. Extensive evidence indicates that age-related inflammatory signaling contributes to calcium dysregulation, which drives tau hyperphosphorylation and amyloid beta generation. Pharmacological studies in aged macaques suggest that inhibiting inflammation and restoring calcium regulation can reduce tau hyperphosphorylation with minimal side effects, appropriate for potential preventive therapeutics. HIGHLIGHTS: Aging monkeys provide a unique window into early stage, soluble phosphorylated tau (p-tau). Inflammation with advancing age leads to calcium dysregulation, p-tau, and amyloid beta (Aβ). Macaque research shows p-tau undergoes transsynaptic seeding early in the cortex. p-tau traps amyloid precursor protein-containing endosomes, which may increase Aβ and drive vicious cycles. Restoring calcium regulation in cortex reduced p-tau217 levels in aged macaques.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale Medical School, New Haven, Connecticut, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Batra S, Vaquer-Alicea J, Valdez C, Taylor SP, Manon VA, Vega AR, Kashmer OM, Kolay S, Lemoff A, Cairns NJ, White CL, Diamond MI. VCP regulates early tau seed amplification via specific cofactors. Mol Neurodegener 2025; 20:2. [PMID: 39773263 PMCID: PMC11707990 DOI: 10.1186/s13024-024-00783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. Seeding into the complex cytoplasmic milieu happens within hours, implying the existence of unknown factors that regulate this process. METHODS We used proximity labeling to identify proteins that control seed amplification within 5 h of seed exposure. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity 5 h after seeded intracellular tau aggregation. Valosin containing protein (VCP/p97) was the top hit. VCP harbors dominant mutations that underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We used immortalized cells and human neurons to study the effects of VCP on tau seeding. We exposed cells to fibrils or brain homogenates in cell culture media and measured effects on uptake and induction of intracellular tau aggregation following various genetic and pharmacological manipulations of VCP. RESULTS VCP knockdown reduced tau seeding. Chemical inhibitors had opposing effects on seeding in HEK293T tau biosensor cells and human neurons: ML-240 increased seeding efficiency, whereas NMS-873 decreased it. The inhibitors only functioned when administered within 8 h of seed exposure, indicating a role for VCP early in seed processing. We screened 30 VCP co-factors in HEK293T biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. By contrast, reduction of FAF2 increased tau seeding. CONCLUSIONS Divergent effects on tau seeding of chemical inhibitors and cofactor reduction indicate that VCP regulates this process. This is consistent with a cytoplasmic processing complex centered on VCP that directs seeds acutely towards degradation vs. amplification.
Collapse
Affiliation(s)
- Sushobhna Batra
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Clarissa Valdez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Skyler P Taylor
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Victor A Manon
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Anthony R Vega
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Sourav Kolay
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nigel J Cairns
- Department of Clinical and Biological Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Charles L White
- Department of Pathology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, 6124 Harry Hines Blvd, Dallas, TX, NS8.334, United States.
- Department of Neurology, Dallas, United States.
| |
Collapse
|
11
|
Chen G, Wang M, Zhang Z, Hong DK, Ahn EH, Liu X, Kang SS, Ye K. ApoE3 R136S binds to Tau and blocks its propagation, suppressing neurodegeneration in mice with Alzheimer's disease. Neuron 2025:S0896-6273(24)00914-0. [PMID: 39814008 DOI: 10.1016/j.neuron.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
PSEN1 E280A carrier for the APOE3 Christchurch variant (R136S) is protected against Alzheimer's disease (AD) symptoms with a distinct anatomical pattern of Tau pathology. However, the molecular mechanism accounting for this protective effect remains incompletely understood. Here, we show that the ApoE3 R136S mutant strongly binds to Tau and reduces its uptake into neurons and microglia compared with ApoE3 wild type (WT), diminishing Tau fragmentation by asparagine endopeptidase (AEP), proinflammatory cytokines by Tau pre-formed fibrils (PFFs) or β-amyloid (Aβ), and neurotoxicity. Further, ApoE3 R136S demonstrates more robust effects in attenuating AEP activation and Tau PFF spreading in the brains of both 5xFAD and Tau P301S mice than in ApoE3 WT, leading to improved cognitive functions. Thus, our findings support the idea that ApoE3 R136S strongly binds Tau and decreases its cellular uptake, abrogating Tau pathology propagation in AD brains.
Collapse
Affiliation(s)
- Guiqin Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengmeng Wang
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dae Ki Hong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Physiology, College of Medicine, Hallym University, Chuncheon-si 24252, Gangwon-Do, South Korea
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen 518055, Guangdong, China.
| |
Collapse
|
12
|
Nguyen NL, Hoang TX, Kim JY. All-Trans Retinoic Acid-Induced Cell Surface Heat Shock Protein 90 Mediates Tau Protein Internalization and Degradation in Human Microglia. Mol Neurobiol 2025; 62:742-755. [PMID: 38900367 PMCID: PMC11711573 DOI: 10.1007/s12035-024-04295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
This study investigates the role of all-trans retinoic acid (ATRA) in modulating the expression of heat shock protein 90 (Hsp90) and its influence on the uptake and degradation of tau proteins in immortalized human microglia cells. We demonstrate that ATRA significantly upregulates Hsp90 expression in a concentration-dependent manner, enhancing both extracellular and intracellular Hsp90 levels. Our results show that ATRA-treated cells exhibit increased tau protein uptake via caveolae/raft-dependent endocytosis pathways. This uptake is mediated by surface Hsp90, as evidenced by the inhibition of tau internalization using an extracellular Hsp90-selective inhibitor. Further, we establish that the exogenously added full-sized monomeric tau proteins bind to Hsp90. The study also reveals that ATRA-enhanced tau uptake is followed by effective degradation through both lysosomal and proteasomal pathways. We observed a significant reduction in intracellular tau levels in ATRA-treated cells, which was reversed by lysosome or proteasome inhibitors, suggesting the involvement of both degradation pathways. Our findings highlight the potential therapeutic role of ATRA in Alzheimer's disease and related tauopathies. By enhancing Hsp90 expression and facilitating tau degradation, ATRA could contribute to the clearance of pathological tau proteins, offering a promising strategy for mitigating neurodegeneration. This research underscores the need for further exploration into the molecular mechanisms of tau protein internalization and degradation, which could provide valuable insights into the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ngoc Lan Nguyen
- Department of Life Science, Gachon University, Kyeonggi-Do 13120, Seongnam, Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Kyeonggi-Do 13120, Seongnam, Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Kyeonggi-Do 13120, Seongnam, Korea.
| |
Collapse
|
13
|
Olesen MA, Villavicencio-Tejo F, Cuevas-Espinoza V, Quintanilla RA. Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives. Ageing Res Rev 2025; 103:102594. [PMID: 39577774 DOI: 10.1016/j.arr.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Víctor Cuevas-Espinoza
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
14
|
Guo Y, Zhao X. CRISPR-based genetic screens in human pluripotent stem cells derived neurons and brain organoids. Cell Tissue Res 2025; 399:1-8. [PMID: 39585363 DOI: 10.1007/s00441-024-03934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Recent large-scale genome-wide association and single-cell RNA sequencing (scRNA-seq) studies have uncovered disease-associated genetic risk factors and cell type-specific genetic alterations. However, our understanding of how these genetic variants cause diseases and the underlying mechanisms remains largely unknown. Functional genomics screens using CRISPR-based technologies offer an effective tool for studying genes relevant to disease phenotypes. Here, we summarize recent CRISPR-based functional genomics screen approaches applied to human pluripotent stem cell (hPSC)-derived neurons and brain organoids. These screens have identified genes crucial for neurogenesis, neuronal survival, morphological development, and migration. Combining CRISPR-based genetic screens with scRNA-seq, researchers have revealed downstream genes and cellular pathways impacted by these genetic variants in human neural cells, providing new insights into the pathogenesis of neurodevelopmental disorders, such as microcephaly and autism spectrum disorders. Finally, we discuss current challenges and future directions for using CRISPR-based screens in furthering our understanding of neurological diseases and developing potential therapeutic strategies. Despite challenges, CRISPR-based screens have enormous potential for advancing the therapeutic development of many diseases.
Collapse
Affiliation(s)
- Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
15
|
Marvian AT, Strauss T, Tang Q, Tuck BJ, Keeling S, Rüdiger D, Mirzazadeh Dizaji N, Mohammad-Beigi H, Nuscher B, Chakraborty P, Sutherland DS, McEwan WA, Köglsperger T, Zahler S, Zweckstetter M, Lichtenthaler SF, Wurst W, Schwarz S, Höglinger G. Distinct regulation of Tau Monomer and aggregate uptake and intracellular accumulation in human neurons. Mol Neurodegener 2024; 19:100. [PMID: 39736627 DOI: 10.1186/s13024-024-00786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates. However, similarities or differences in neuronal transport mechanisms between Tau species remain elusive. METHOD Monomers, oligomers, and fibrils of recombinant 2N4R Tau were produced and characterized by biochemical and biophysical methods. A neuronal eTau uptake and accumulation assay was developed for human induced pluripotent stem cell-derived neurons (iPSCNs) and Lund human mesencephalic cells (LUHMES)-derived neurons. Mechanisms of uptake and cellular accumulation of eTau species were studied by using small molecule inhibitors of endocytic mechanisms and siRNAs targeting Tau uptake mediators. RESULTS Extracellular Tau aggregates accumulated more than monomers in human neurons, mainly due to the higher efficiency of small fibrillar and soluble oligomeric aggregates in intraneuronal accumulation. A competition assay revealed a distinction in the neuronal accumulation between physiological eTau Monomers and pathology-relevant aggregates, suggesting differential transport mechanisms. Blocking heparan sulfate proteoglycans (HSPGs) with heparin only inhibited the accumulation of eTau aggregates, whereas monomers' uptake remained unaltered. At the molecular level, the downregulation of genes involved in HSPG synthesis exclusively blocked neuronal accumulation of eTau aggregates but not monomers, suggesting its role in the transport of pathologic Tau. Moreover, the knockdown of LRP1, as a receptor of Tau, mainly reduced the accumulation of monomeric form, confirming its involvement in Tau's physiological transport. CONCLUSION These data propose that despite the similarity in the cellular mechanism, the uptake and accumulation of eTau Monomers and aggregates in human neurons are regulated by different molecular mediators. Thus, they address the possibility of targeting the pathological spreading of Tau aggregates without disturbing the probable physiological or non-pathogenic transport of Tau Monomers.
Collapse
Affiliation(s)
- Amir T Marvian
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Tabea Strauss
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Qilin Tang
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
| | - Benjamin J Tuck
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel Rüdiger
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Negar Mirzazadeh Dizaji
- Faculty for Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - Brigitte Nuscher
- Division of Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000, Aarhus C, Denmark
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Köglsperger
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Department of Translational Brain Research, DZNE-German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Gӧttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Gӧttingen, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Sciences, Technical University Munich, Freising, Germany
| | - Sigrid Schwarz
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany
- Haag, Geriatric Clinic Haag, Oberbayern, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Department of Neurology, Hanover Medical School, Hanover, Germany.
- Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
16
|
Wang X, Chen S, Xia X, Du Y, Wei Y, Yang W, Zhang Y, Song Y, Lei T, Huang Q, Gao H. Lysosome-Targeting Protein Degradation Through Endocytosis Pathway Triggered by Polyvalent Nano-Chimera for AD Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411061. [PMID: 39686821 DOI: 10.1002/adma.202411061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/02/2024] [Indexed: 12/18/2024]
Abstract
The excessive up-regulation of receptor for advanced glycation end products (RAGE), a well-known pathological marker, drives the onset and progression of Alzheimer's disease. Although lysosome-targeting protein degradation has emerged as an effective therapeutic modality, the limited lysosome-sorting efficacy greatly hindered the degradation efficiency of target proteins. Herein, a lysosome-shuttle-like nano-chimera (endoTAC) is proposed based on polyvalent receptor binding mode for enhanced RAGE degradation as well as precise drug delivery. The endoTAC shows a high affinity to RAGE and enhances RAGE degradation due to its polyvalent-interaction with RAGE. Additionally, endoTAC features increased accumulation in diseased brain and shows promise as a precise brain delivery system. After loading with simvastatin, the SV@endoTAC proves to successfully reverse pathological features both in vitro and in vivo. The work proposes that the combination of a lysosome-targeting chimera and an effective drug delivery system can be promising in Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shiqin Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yiwei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yujun Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Kadamangudi S, Marcatti M, Zhang WR, Fracassi A, Kayed R, Limon A, Taglialatela G. Amyloid-β oligomers increase the binding and internalization of tau oligomers in human synapses. Acta Neuropathol 2024; 149:2. [PMID: 39688618 DOI: 10.1007/s00401-024-02839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
In Alzheimer's disease (AD), the propagation and spreading of CNS tau pathology closely correlates with cognitive decline, positioning tau as an attractive therapeutic target. Amyloid beta (Aβ) has been strongly implicated in driving tau spread, whereas primary tauopathies such as primary age-related tauopathy (PART)-which lack Aβ pathology-exhibit limited tau spread and minimal-to-no cognitive decline. Emerging evidence converges on a trans-synaptic mechanism of tau spread, facilitated by the transfer of misfolded tau aggregates (e.g. soluble oligomers). However, it is unclear whether Aβ oligomers modulate the binding and internalization of tau oligomers in human synapses. Our translationally focused paradigms utilize post-mortem brain specimens from Control, PART, and AD patients. Synaptosomes isolated from the temporal cortex of all three groups were incubated with preformed recombinant tauO (rtauO), ± preformed recombinant AβO (rAβO), and oligomer binding/internalization was quantified via flow cytometry following proteinase K (PK) digestion of surface-bound oligomers. TauO-synapse interactions were visualized using EM immunogold. Brain-derived tau oligomers (BDTO) from AD and PART PBS-soluble hippocampal fractions were co-immunoprecipitated and analyzed via mass spectrometry to compare synaptic tauO interactomes in primary and secondary tauopathies, thereby inferring the role of Aβ. AD synaptosomes, enriched in endogenous Aβ pathology, exhibited increased rtauO internalization compared to PART synaptosomes. This observation was mirrored in Control synaptosomes, where recombinant rAβO significantly increased rtauO binding and internalization. PK pre-treatment abolished this effect, implicating synaptic membrane proteins in AβO-mediated tauO internalization. While both PART and AD BDTO were broadly enriched in synaptic proteins, AD BDTO exhibited differential enrichment of endocytic proteins across pre- and post-synaptic compartments, whereas PART BDTO showed no significant synaptic enrichment. This study demonstrates that Aβ oligomers enhance tau oligomer binding and drive its internalization through synaptic membrane proteins. These findings offer novel mechanistic insights underlying pathological tau spreading directly within human synapses and emphasize the therapeutic potential of targeting Aβ-tau interactions.
Collapse
Affiliation(s)
- Shrinath Kadamangudi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Michela Marcatti
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Wen-Ru Zhang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
18
|
An P, Tong Y, Mu R, Han L. Wnt-Regulated Therapeutics for Blood-Brain Barrier Modulation and Cancer Therapy. Bioconjug Chem 2024. [PMID: 39680846 DOI: 10.1021/acs.bioconjchem.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The Wnt signaling pathway has a significant regulatory part in tissue development and homeostasis. Dysregulation of the Wnt signaling pathway has been associated with many diseases including cancers and various brain diseases, making this signaling pathway a promising therapeutic target for these diseases. In this review, we describe the roles of the Wnt signaling pathway in the blood-brain barrier (BBB) in intracranial tumors and peripheral tumors, from preclinical and clinical perspectives, introduce Wnt-regulated therapeutics including various types of drugs and nanomedicines as BBB modulators for brain-oriented drug delivery and as therapeutic drugs for cancer treatments, and finally discuss limitations and future perspectives for Wnt-regulated therapeutics.
Collapse
Affiliation(s)
- Pei An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Ning Y, Zhang Y, Jiang T, Feng J, Zhan J, Ou C, Wang L. LRP1-mediated p-tau propagation contributes to cognitive impairment after chronic neuropathic pain in rats. Neurosci Res 2024:S0168-0102(24)00155-X. [PMID: 39674403 DOI: 10.1016/j.neures.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Trigeminal neuralgia (TN) is a prevalent chronic neuropathic pain syndrome characterized by severe pain, often accompanied by cognitive dysfunction and cerebral degeneration. However, its mechanisms remain poorly understood. Hyperphosphorylation of tau protein (p-tau) is often seen in neurodegenerative disorders such as Alzheimer's disease (AD). LRP1 expression on brain neurons and microglial cells is believed to facilitate the propagation of p-tau. We established a TN rat model via infraorbital nerve chronic constrictive injury (ION-CCI). Once the model was established, we investigated the association between p-tau and cognitive impairment in TN rats by evaluating behavioral and degenerative markers. During the initial phase, we noted an increase in p-tau level in the prefrontal cortex and hippocampal tissues of TN rats. The accompanied impaired learning and memory abilities suggested cognitive dysfunction. Blocking p-tau synthesis by orally administering a protein phosphatase and by injecting adenoviral vectors targeting LRP1 into the lateral ventricle of rats ameliorated cognitive impairment. This suggests that cognitive decline in TN rats is linked to elevated p-tau levels. Our findings show that LRP1-mediated p-tau propagation may drive cognitive impairment associated with neuropathic pain in TN rats.
Collapse
Affiliation(s)
- Youzhi Ning
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Jiang
- Department of Anesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Lu Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
20
|
Pashaei S, Shabani S, Mohammadi S, Morozova-Roche LA, Salari N, Rahimi Z, Khodarahmi R. Differential Expression of Neurodegeneration-Related Genes in SH-SY5Y Neuroblastoma Cells Under the Influence of Cyclophilin A: Could the Enzyme be a Likely Trigger and Therapeutic Target for Alzheimer's Disease? Neurochem Res 2024; 50:47. [PMID: 39636462 DOI: 10.1007/s11064-024-04253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The function and mechanism of Cyclophilin A (CypA) in modulating gene expression associated with Alzheimer's disease (AD) remain unclear. This multifunctional protein is found to be elevated in the cerebrospinal fluid (CSF) of individuals at risk for AD. The cytotoxic effects of CypA, including both wild-type and the mutant R55A, were assessed using the MTT assay. Prior to this evaluation, the purified recombinant protein was validated through enzymatic activity assays and western blot analysis. Following treatment with CypA and transient transfection using the CypA construct, real-time PCR (qRT-PCR) and western blotting were conducted to analyze the expression of factors involved in various signaling pathways, with an emphasis on inflammation, cell death, and intercellular communication. The findings indicate that CypA has a significant impact on the gene expression of factors associated with inflammation and the progression of AD in SH-SY5Y cells. It can be concluded that CypA is capable of regulating gene expression in SH-SY5Y cells, either in a manner dependent on or independent of its enzymatic activity. Additionally, the influence of this multifunctional protein on gene expression is contingent upon the specific site of action, as well as the dosage and duration of exposure to the cells.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Shabani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Nader Salari
- Department of Biostatics, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
21
|
Sandhof CA, Murray HFB, Silva MC, Haggarty SJ. Targeted protein degradation with bifunctional molecules as a novel therapeutic modality for Alzheimer's disease & beyond. Neurotherapeutics 2024:e00499. [PMID: 39638711 DOI: 10.1016/j.neurot.2024.e00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is associated with memory and cognitive impairment caused by progressive degeneration of neurons. The events leading to neuronal death are associated with the accumulation of aggregating proteins in neurons and glia of the affected brain regions, in particular extracellular deposition of amyloid plaques and intracellular formation of tau neurofibrillary tangles. Moreover, the accumulation of pathological tau proteoforms in the brain concurring with disease progression is a key feature of multiple neurodegenerative diseases, called tauopathies, like frontotemporal dementia (FTD) where autosomal dominant mutations in the tau encoding MAPT gene provide clear evidence of a causal role for tau dysfunction. Observations from disease models, post-mortem histology, and clinical evidence have demonstrated that pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization, changes in solubility, mislocalization, and intercellular spreading. Despite extensive research, there are few disease-modifying or preventative therapeutics for AD and none for other tauopathies. Challenges faced in tauopathy drug development include an insufficient understanding of pathogenic mechanisms of tau proteoforms, limited specificity of agents tested, and inadequate levels of brain exposure, altogether underscoring the need for innovative therapeutic modalities. In recent years, the development of experimental therapeutic modalities, such as targeted protein degradation (TPD) strategies, has shown significant and promising potential to promote the degradation of disease-causing proteins, thereby reducing accumulation and aggregation. Here, we review all modalities of TPD that have been developed to target tau in the context of AD and FTD, as well as other approaches that with innovation could be adapted for tau-specific TPD.
Collapse
Affiliation(s)
- C Alexander Sandhof
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Heide F B Murray
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - M Catarina Silva
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Stephen J Haggarty
- Department of Neurology, Precision Therapeutics Unit, Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Wiersema AF, Rennenberg A, Smith G, Varderidou-Minasian S, Pasterkamp RJ. Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases. Cell Mol Life Sci 2024; 81:479. [PMID: 39627617 PMCID: PMC11615177 DOI: 10.1007/s00018-024-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
Collapse
Affiliation(s)
- Anna F Wiersema
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alyssa Rennenberg
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Grace Smith
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Barbour AJ, Hoag K, Cornblath EJ, Chavez A, Lucas A, Li X, Zebrowitz S, Hassman C, Lee EB, Davis KA, Lee VM, Talos DM, Jensen FE. Hyperactive neuronal networks facilitate tau spread in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.625514. [PMID: 39677701 PMCID: PMC11642807 DOI: 10.1101/2024.12.01.625514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Pathological tau spreads throughout the brain along neuronal connections in Alzheimer's disease (AD), but the mechanisms that underlie this process are poorly understood. Given the high incidence and deleterious consequences of epileptiform activity in AD, we hypothesized neuronal hyperactivity and seizures are key factors in tau spread. To examine these interactions, we created a novel mouse model involving the cross of targeted recombination in active populations (TRAP) mice and the 5 times familial AD (5XFAD; 5X-TRAP) model allowing for the permanent fluorescent labelling of neuronal activity. To establish a causal role of seizures in tau spread, we seeded mice with human AD brain-derived tau lysate and induced seizures with pentylenetetrazol (PTZ) kindling. Comprehensive brain mapping of tau pathology and neuronal activity revealed that basal hyperactivity in 5X-TRAP mice was associated with increased tau spread, which was exacerbated by seizure induction through activated networks and correlated with memory deficits. Computational modeling revealed that anterograde tau spread was elevated in 5X-TRAP mice and that regional neuronal activity was predictive of tau spread to that brain region. On a cellular level, we found that in both saline and PTZ-treated 5X-TRAP mice, hyperactive neurons disproportionately contributed to the spread of tau. Further, we found that Synaptogyrin-3, a synaptic vesicle protein that interacts with tau, was increased following PTZ kindling in 5X-TRAP mice, possibly indicative of a synaptic mechanism underlying seizure-exacerbated tau spread. Importantly, postmortem AD brain tissue from patients with a history of seizures showed increased tau pathology in patterns indicative of increased spread and increased Synaptogyrin-3 levels compared to those without seizures. Overall, our study identifies neuronal hyperactivity and seizures as key factors underlying the pathobiological and cognitive progression of AD. Therapies targeting these factors should be tested clinically to slow tau spread and AD progression.
Collapse
Affiliation(s)
- Aaron J. Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Keegan Hoag
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Eli J. Cornblath
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Abigail Chavez
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alfredo Lucas
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sydney Zebrowitz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chloe Hassman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn A. Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Virginia M.Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Delia M. Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Frances E. Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
24
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
25
|
Frey ZD, Price DA, Connors KA, Rush RE, Brown G, Sterling CE, Fatma F, Schwarz MM, Ganaie S, Cui X, Wills ZP, Leung DW, Amarasinghe GK, Hartman AL. Lrp1 facilitates infection of neurons by Jamestown Canyon virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622176. [PMID: 39574651 PMCID: PMC11580904 DOI: 10.1101/2024.11.06.622176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Jamestown Canyon virus (JCV) is a bunyavirus and arbovirus responsible for neuroinvasive disease in the United States. Little is known about JCV pathogenesis, and no host factors required for cellular infection have been identified. Recently, we identified low-density lipoprotein receptor related protein 1 (Lrp1) as a host entry factor for two other bunyaviruses Rift Valley fever virus (RVFV) and Oropouche virus (OROV). Here, we assessed the role of Lrp1 in mediating JCV cellular infection of neurons. Both neuronal and non-neuronal immortalized cell lines deficient for Lrp1 displayed reduction in infection with JCV, and early stages of infection such as binding and internalization were impacted by lack of Lrp1. In primary rat neurons, Lrp1 was highly expressed, and the neurons were highly permissive for JCV infection. Treatment of primary neurons with recombinant receptor-associated protein (RAP), a high affinity ligand for Lrp1, resulted in reduced infectivity with JCV. In addition, pretreatment of cells with RVFV Gn inhibited JCV infection, suggesting that the two viruses may share overlapping binding sites. These results provide compelling evidence that Lrp1 is an important cellular factor for efficient infection by JCV, and thus multiple bunyaviruses with varying clinical manifestations and tissue tropism are facilitated by the host cell Lrp1. Reliance of multiple bunyaviruses on Lrp1 makes it a promising target for pan-bunyaviral antivirals and therapeutics.
Collapse
Affiliation(s)
- Zachary D Frey
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David A Price
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaleigh A Connors
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachael E Rush
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Griffin Brown
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cade E Sterling
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Farheen Fatma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Madeline M Schwarz
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Safder Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiaoxia Cui
- Genome Engineering and Stem Cell Center (GEiC), Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachary P Wills
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Cohen-Adiv S, Amer-Sarsour F, Berdichevsky Y, Boxer E, Goldstein O, Gana-Weisz M, Tripathi U, Rike WA, Prag G, Gurevich T, Giladi N, Stern S, Orr-Urtreger A, Friedmann-Morvinski D, Ashkenazi A. TMEM16F regulates pathologic α-synuclein secretion and spread in cellular and mouse models of Parkinson's disease. Aging Cell 2024:e14387. [PMID: 39487963 DOI: 10.1111/acel.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/14/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
One of the main hallmarks of Parkinson's disease (PD) pathology is the spread of the aggregate-prone protein α-synuclein (α-syn), which can be detected in the plasma and cerebrospinal fluid of patients as well as in the extracellular environment of neuronal cells. The secreted α-syn can exhibit "prion-like" behavior and transmission to naïve cells can promote conformational changes and pathology. The precise role of plasma membrane proteins in the pathologic process of α-syn is yet to be fully resolved. The TMEM16 family of lipid scramblases and ion channels has been recently associated with cancer and infectious diseases but is less known for its role in aging-related diseases. To elucidate the role of TMEM16F in α-syn spread, we transduced neurons derived from TMEM16F knockout mice with a reporter system that enables the distinction between donor and recipient neurons of pathologic α-synA53T. We found that the spread of α-synA53T was reduced in neurons derived from TMEM16F-knockout mice. These findings were recapitulated in vivo in a mouse model of PD, where attenuated α-synA53T spread was observed when TMEM16F was ablated. Moreover, we identified a single nucleotide polymorphism in TMEM16F of Ashkenazi Jewish PD patients resulting in a missense Ala703Ser mutation with enhanced lipid scramblase activity. This mutation is associated with altered regulation of α-synA53T extracellular secretion in cellular models of PD. Our study highlights TMEM16F as a novel regulator of α-syn spread and as a potential therapeutic target in synucleinopathies.
Collapse
Affiliation(s)
- Stav Cohen-Adiv
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Fatima Amer-Sarsour
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yevgeny Berdichevsky
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Emily Boxer
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gali Prag
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Brain Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Avi Orr-Urtreger
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dinorah Friedmann-Morvinski
- The School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Pardo E, Kim T, Wallrabe H, Zengeler KE, Sagar VK, Mingledorff G, Sun X, Periasamy A, Lukens JR, Bloom GS, Norambuena A. Mitochondrial NADK2-dependent NADPH controls Tau oligomer uptake in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621392. [PMID: 39554169 PMCID: PMC11565961 DOI: 10.1101/2024.10.31.621392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alterations in NADH and NADPH metabolism are associated with aging, cancer, and Alzheimer's Disease. Using 2P-FLIM imaging of the mitochondrial NAD(P)H in live human neurons and PS19 mouse brains, we show that tau oligomers (TauO) upregulate the mitochondrial de novo NADPH synthesis through NADK2. This process controls LRP1-mediated internalization of TauO, setting a vicious cycle for further TauO internalization. Thus, mitochondrial NADK2-dependent NADPH controls a key step in TauO toxicity.
Collapse
|
28
|
Zhou M, Lin Y, Chen H, Zhao M, Zeng Y, Hu X, Tang P, Fu Y, Wei L, Han L. Brain-tumor-seeking and serpin-inhibiting outer membrane vesicles restore plasmin-mediated attacks against brain metastases. J Control Release 2024; 375:116-126. [PMID: 39236899 DOI: 10.1016/j.jconrel.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Many chemotherapeutic and molecular targeted drugs have been used to treat brain metastases, e.g., anti-angiogenic vandetanib. However, the blood-brain barrier and brain-specific resistance mechanisms make these systemic therapeutic approaches inefficacious. Brain metastatic cancer cells could mimic neurons to upregulate multiple serpins and secrete them into the extracellular environment to reduce local plasmin production to promote L1CAM-mediated vessel co-option and resist anti-angiogenesis therapy. Here, we developed brain-tumor-seeking and serpin-inhibiting outer membrane vesicles (DE@OMVs) to traverse across the blood-brain barrier, bypass neurons, and specially enter metastatic cancer cells via targeting GRP94 and vimentin. Through specific delivery of dexamethasone and embelin, reduced serpin secretion, restored plasmin production, significant L1CAM inactivation and tumor cell apoptosis were specially found in intracranial metastatic regions, leading to delayed tumor growth and prolonged survival in mice with brain metastases. By combining the brain-tumor-seeking properties with the regulation of the serpin/plasminogen activator/plasmin/L1CAM axis, this study provides a potent and highly-selective systemic therapeutic option for brain metastases.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yuanyuan Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mei Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuteng Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaoxiao Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Puxian Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lin Wei
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China; School of Life Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| |
Collapse
|
29
|
Chang S, Liu JJ, Zhao Y, Pang T, Zheng X, Song Z, Zhang A, Gao X, Luo L, Guo Y, Liu J, Yang L, Lu L. Whole-genome sequencing identifies novel genes for autism in Chinese trios. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2368-2381. [PMID: 39126614 DOI: 10.1007/s11427-023-2564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/16/2024] [Indexed: 08/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heritability but heterogeneity. Fully understanding its genetics requires whole-genome sequencing (WGS), but the ASD studies utilizing WGS data in Chinese population are limited. In this study, we present a WGS study for 334 individuals, including 112 ASD patients and their non-ASD parents. We identified 146 de novo variants in coding regions in 85 cases and 60 inherited variants in coding regions. By integrating these variants with an association model, we identified 33 potential risk genes (P<0.001) enriched in neuron and regulation related biological process. Besides the well-known ASD genes (SCN2A, NF1, SHANK3, CHD8 etc.), several high confidence genes were highlighted by a series of functional analyses, including CTNND1, DGKZ, LRP1, DDN, ZNF483, NR4A2, SMAD6, INTS1, and MRPL12, with more supported evidence from GO enrichment, expression and network analysis. We also integrated RNA-seq data to analyze the effect of the variants on the gene expression and found 12 genes in the individuals with the related variants had relatively biased expression. We further presented the clinical phenotypes of the proband carrying the risk genes in both our samples and Caucasian samples to show the effect of the risk genes on phenotype. Regarding variants in non-coding regions, a total of 74 de novo variants and 30 inherited variants were predicted as pathogenic with high confidence, which were mapped to specific genes or regulatory features. The number of de novo variants found in patient was significantly associated with the parents' ages at the birth of the child, and gender with trend. We also identified small de novo structural variants in ASD trios. The results in this study provided important evidence for understanding the genetic mechanism of ASD.
Collapse
Affiliation(s)
- Suhua Chang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
- Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China
| | - Jia Jia Liu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
- School of Nursing, Peking University, Beijing, 100191, China
| | - Yilu Zhao
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Tao Pang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Xiangyu Zheng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | | | - Anyi Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Xuping Gao
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Lingxue Luo
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Yanqing Guo
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Jing Liu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Li Yang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Lin Lu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
- Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China.
- National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
| |
Collapse
|
30
|
Ahn K, Park HS, Choi S, Lee H, Choi H, Hong SB, Han J, Han JW, Ahn J, Song J, Park K, Cha B, Kim M, Liu HW, Song H, Kim SJ, Chung S, Kim JI, Mook-Jung I. Differentiating visceral sensory ganglion organoids from induced pluripotent stem cells. Nat Methods 2024; 21:2135-2146. [PMID: 39438735 DOI: 10.1038/s41592-024-02455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
The ability to generate visceral sensory neurons (VSN) from induced pluripotent stem (iPS) cells may help to gain insights into how the gut-nerve-brain axis is involved in neurological disorders. We established a protocol to differentiate human iPS-cell-derived visceral sensory ganglion organoids (VSGOs). VSGOs exhibit canonical VSN markers, and single-cell RNA sequencing revealed heterogenous molecular signatures and developmental trajectories of VSGOs aligned with native VSN. We integrated VSGOs with human colon organoids on a microfluidic device and applied this axis-on-a-chip model to Alzheimer's disease. Our results suggest that VSN could be a potential mediator for propagating gut-derived amyloid and tau to the brain in an APOE4- and LRP1-dependent manner. Furthermore, our approach was extended to include patient-derived iPS cells, which demonstrated a strong correlation with clinical data.
Collapse
Affiliation(s)
- Kyusik Ahn
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hwee-Seon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Sieun Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Hojeong Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunjung Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Seok Beom Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihui Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Won Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinchul Ahn
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Jaehoon Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Bukyung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Minseop Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Hui-Wen Liu
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Hyeonggyu Song
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seok Chung
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea.
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
32
|
Zhou F, Zhao Y, Sun Y, Chen W. Molecular Insights into Tau Pathology and its Therapeutic Strategies in Alzheimer's Disease. J Integr Neurosci 2024; 23:197. [PMID: 39613463 DOI: 10.31083/j.jin2311197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 12/01/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. The two major hallmarks of this disease are extracellular amyloid plaques and intracellular neurofibrillary tangles in the brain, accompanied by loss of neurons and synapses. The plaques and tangles mainly consist of amyloid-β (Aβ) and tau protein, respectively. Most of the therapeutic strategies for AD to date have focused on Aβ. However, there is still no effective therapy available. In recent years, the clinical therapeutic failure of targeting Aβ pathology has resulted in increased interest towards tau-based therapeutics. In the current review, we focus on the research progress regarding the pathological mechanisms of tau protein in this disease and discuss tau-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| | - Wanjiao Chen
- School of Basic Medicine, Gannan Medical University, 341000 Ganzhou, Jiangxi, China
| |
Collapse
|
33
|
Huerta V, Martin AM, Sarría M, Guirola O, Yero A, Ramos Y, Pupo D, Martin D, Carletti T, González-Lodeiro LG, Marcello A, Chinea G. The Low-Density Lipoprotein Receptor-Related Protein-1 Is Essential for Dengue Virus Infection. Viruses 2024; 16:1692. [PMID: 39599807 PMCID: PMC11599027 DOI: 10.3390/v16111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Dengue virus (DENV) causes the most prevalent and rapidly spreading arboviral disease of humans. It enters human cells by receptor-mediated endocytosis. Numerous cell-surface proteins were proposed as DENV entry factors. Among these, the phosphatidylserine receptor TIM-1 is the only one known to mediate virus internalization. However, several cellular models lacking TIM-1 are permissive to DENV infection, suggesting that other receptors exist. Here, we show that the low-density lipoprotein receptor-related protein-1 (LRP1) binds DENV virions by interacting with the DIII of the viral envelope glycoprotein. DENV infection is effectively inhibited by the purified receptor at 5 × 10-8 mol/L, and the interaction of the envelope protein with LRP1 is also blocked by a natural ligand of LRP1. The depletion of LRP1 causes 100-fold lower production of infectious virus than controls. Our results indicate that LRP1 is another DENV receptor, thus becoming an attractive target to evaluate for the development of effective antiviral drugs against DENV.
Collapse
Affiliation(s)
- Vivian Huerta
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Alejandro M. Martin
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Mónica Sarría
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Osmany Guirola
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Alexis Yero
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Yassel Ramos
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Dianne Pupo
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Dayron Martin
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Tea Carletti
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (T.C.); (A.M.)
| | - Luis G. González-Lodeiro
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (T.C.); (A.M.)
| | - Glay Chinea
- Department of System Biology, Direction of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.M.M.); (M.S.); (O.G.); (A.Y.); (Y.R.); (D.P.); (D.M.); (L.G.G.-L.); (G.C.)
| |
Collapse
|
34
|
Grimaldi L, Bovi E, Formisano R, Sancesario G. ApoE: The Non-Protagonist Actor in Neurological Diseases. Genes (Basel) 2024; 15:1397. [PMID: 39596597 PMCID: PMC11593850 DOI: 10.3390/genes15111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Apolipoprotein E (APOE = gene, ApoE = protein) is a glycoprotein involved in the biological process of lipid transportation and metabolism, contributing to lipid homeostasis. APOE has been extensively studied for its correlation with neurodegenerative diseases, in particular Alzheimer's disease (AD), where the possession of the epsilon 4 (E4) allele is established as a risk factor for developing AD in non-familiar sporadic forms. Recently, evidence suggests a broad involvement of E4 also in other neurological conditions, where it has been shown to be a predictive marker for worse clinical outcomes in Parkinson's disease (PD), brain trauma, and disturbances of consciousness. The mechanisms underlying these associations are complex and involve amyloid-β (Aβ) peptide accumulation and neuroinflammation, although many others have yet to be identified. OBJECTIVES The aim of this review is to overview the current knowledge on ApoE as a non-protagonist actor in processes underlying neurodegenerative diseases and its clinical significance in AD, PD, acquired brain trauma, and Disorders of Consciousness (DoC). Ethical implications of genetic testing for APOE variants and information disclosure will also be briefly discussed.
Collapse
Affiliation(s)
- Lorenzo Grimaldi
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
- European Center for Brain Research, Via del Fosso del Fiorano, 00143 Rome, Italy
| | - Eleonora Bovi
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
- Parkinson’s Disease Unit, University Hospital of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy
| | - Rita Formisano
- Post-Coma Unit and Neurorehabilitation, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - Giulia Sancesario
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
- European Center for Brain Research, Via del Fosso del Fiorano, 00143 Rome, Italy
| |
Collapse
|
35
|
Tyagi M, Chadha R, de Hoog E, Sullivan KR, Walker AC, Northrop A, Fabian B, Fuxreiter M, Hyman BT, Shepherd JD. Arc mediates intercellular tau transmission via extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619703. [PMID: 39484489 PMCID: PMC11526995 DOI: 10.1101/2024.10.22.619703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular neurofibrillary tangles that consist of misfolded tau protein1 cause neurodegeneration in Alzheimer's disease (AD) and frontotemporal dementia (FTD). Tau pathology spreads cell-to-cell2 but the exact mechanisms of tau release and intercellular transmission remain poorly defined. Tau is released from neurons as free protein or in extracellular vesicles (EVs)3-5 but the role of these different release mechanisms in intercellular tau transmission is unclear. Here, we show that the neuronal gene Arc is critical for packaging tau into EVs. Brain EVs purified from human tau (hTau) transgenic rTg4510 mice (rTgWT) contain high levels of hTau that are capable of seeding tau pathology. In contrast, EVs purified from rTgWT crossed with Arc knock-out mice (rTgArc KO) have significantly less hTau and cannot seed tau aggregation. Arc facilitates the release of hTau in EVs produced via the I-BAR protein IRSp53, but not free tau. Arc protein directly binds hTau to form a fuzzy complex that we identified in both mouse and human brain tissue. We find that pathological intracellular hTau accumulates in neurons in rTgArc KO mice, which correlates with accelerated neuron loss in the hippocampus. Finally, we find that intercellular tau transmission is significantly abrogated in Arc KO mice. We conclude that Arc-dependent release of tau in EVs plays a significant role in intracellular tau elimination and intercellular tau transmission.
Collapse
Affiliation(s)
- Mitali Tyagi
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Eric de Hoog
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | | | - Alicia C. Walker
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Ava Northrop
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Balazs Fabian
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Germany
| | - Monika Fuxreiter
- Department of Biomedical Sciences University of Padova, Padova, Italy
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
36
|
Zhang S, Xiang H, Tao Y, Li J, Zeng S, Xu Q, Xiao H, Lv S, Song C, Cheng Y, Li M, Zhu Z, Zhang S, Sun B, Li D, Xiang S, Tan L, Liu C. Inhibitor Development for α-Synuclein Fibril's Disordered Region to Alleviate Parkinson's Disease Pathology. J Am Chem Soc 2024; 146:28282-28295. [PMID: 39327912 DOI: 10.1021/jacs.4c08869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The amyloid fibrils of α-synuclein (α-syn) are crucial in the pathology of Parkinson's disease (PD), with the intrinsically disordered region (IDR) of its C-terminal playing a key role in interacting with receptors like LAG3 and RAGE, facilitating pathological neuronal spread and inflammation. In this study, we identified Givinostat (GS) as an effective inhibitor that disrupts the interaction of α-syn fibrils with receptors such as LAG3 and RAGE through high-throughput screening. By exploring the structure-activity relationship and optimizing GS, we developed several lead compounds, including GSD-16-24. Utilizing solution-state and solid-state NMR, along with cryo-EM techniques, we demonstrated that GSD-16-24 binds directly to the C-terminal IDR of α-syn monomer and fibril, preventing the fibril from binding to the receptors. Furthermore, GSD-16-24 significantly inhibits the association of α-syn fibrils with membrane receptors, thereby reducing neuronal propagation and pro-inflammatory effects of α-syn fibrils. Our findings introduce a novel approach to mitigate the pathological effects of α-syn fibrils by targeting their IDR with small molecules, offering potential leads for the development of clinical drugs to treat PD.
Collapse
Affiliation(s)
- Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Juan Li
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Haonan Xiao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Shiran Lv
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Caiwei Song
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Yan Cheng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Martin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Zeyun Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - ShengQi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
37
|
Zheng MZ, Yang ZQ, Cai SL, Zheng LT, Xue Y, Chen L, Lin J. Blood-brain barrier and blood-brain tumor barrier penetrating peptide-drug conjugate as targeted therapy for the treatment of lung cancer brain metastasis. Lung Cancer 2024; 196:107957. [PMID: 39303402 DOI: 10.1016/j.lungcan.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Brain metastasis of lung cancer, which counts for nearly 50% of late-stage lung cancer patients, is a sign of a really poor prognosis. However, the presence of blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) limits the penetration of drugs from the blood into the brain and thus restricts their accumulation in brain tumors. Systematic delivery of drugs into brain and brain tumor lesion using BBB and BBTB penetrating vehicles represents a promising strategy to overcome the BBB and BBTB limitations. Hence, we validated one of our previously identified BBB/BBTB penetrating peptide and its drug conjugate form for the treatment of lung cancer brain metastasis. With in vitro experiment, we first validated that the receptor LRP1, which mediated the peptide penetration of the BBB, was expressed on lung cancer cells and thus can be targeted by the peptide to overcome BBTB. With this delivery peptide, we constructed peptide-paclitaxel conjugate (the PDC) and in vitro validation showed that the PDC can across the BBB and efficiently kill lung cancer cells. We therefore constructed mouse lung cancer brain metastasis xenograft. In vivo anti-tumor validations showed that the PDC efficiently inhibited the proliferation of the brain resident lung cancer cells and significantly expanded the survival of the mouse xenograft, with no visible damages to the organs. Overall, our study provided potential therapeutic drugs for the treatment of lung cancer brain metastasis that may be clinically effective in the near future.
Collapse
Affiliation(s)
- Meng-Zhu Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Song Li's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Zhan-Qun Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Sun-Li Cai
- Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, Zhejiang, China
| | - Li-Ting Zheng
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Xue
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China.
| | - Jian Lin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; Song Li's Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Peking University Third Hospital Cancer Center, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
38
|
Lin M, Liu W, Ma C, Gao J, Huang L, Zhu J, Liang S, He Y, Liu J, Tao J, Liu Z, Huang J, Wang Z, Chen L. Tai Chi-Induced Exosomal LRP1 is Associated With Memory Function and Hippocampus Plasticity in aMCI Patients. Am J Geriatr Psychiatry 2024; 32:1215-1230. [PMID: 38824049 DOI: 10.1016/j.jagp.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES The study was designed to identify the potential peripheral processes of circulating exosome in response to Tai Chi (TC) exercise and the possibility of its loaded cargos in mediating the effects of TC training on cognitive function among older adults with amnestic mild cognitive impairment (aMCI). DESIGN, SETTING, AND PARTICIPANTS This was a multicenter randomized controlled trial. One hundred community-dwelling old adults with aMCI were randomly assigned (1:1) to experimental (n = 50) and control groups (n = 50). INTERVENTION The experimental group participated in TC exercise 5 times/week, with each session lasting 60 minutes for 12 weeks. Both experimental and control groups received health education every 4 weeks. MEASUREMENTS The primary outcome was global cognitive function. Neurocognitive assessments, MRI examination, and large-scale proteomics analysis of peripheric exosome were conducted at baseline and after 12-week training. Outcome assessors and statisticians were blinded to group allocation. RESULTS A total of 96 participants (96%) completed all outcome measurements. TC training improved global cognitive function (adjusted mean difference [MD] = 1.9, 95%CI 0.93-2.87, p <0.001) and memory (adjusted MD = 6.42, 95%CI 2.09-10.74, p = 0.004), increased right hippocampus volume (adjusted MD = 88.52, 95%CI 13.63-163.4, p = 0.021), and enhanced rest state functional connectivity (rsFC) between hippocampus and cuneus, which mediated the group effect on global cognitive function (bootstrapping CIs: [0.0208, 1.2826], [0.0689, 1.2211]) and verbal delay recall (bootstrapping CI: [0.0002, 0.6277]). Simultaneously, 24 differentially expressed exosomal proteins were detected in tandem mass tag-labelling proteomic analysis. Of which, the candidate protein low-density lipoprotein receptor-related protein 1 (LRP1) was further confirmed by parallel reaction monitoring and ELISA. Moreover, the up-regulated LRP1 was both positively associated with verbal delay recall and rsFC (left hippocampus-right cuneus). CONCLUSION TC promotes LRP1 release via exosome, which was associated with enhanced memory function and hippocampus plasticity in aMCI patients. Our findings provided an insight into potential therapeutic neurobiological targets focusing on peripheric exosome in respond to TC exercise.
Collapse
Affiliation(s)
- Miaoran Lin
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chuyi Ma
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiahui Gao
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Li Huang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Jingfang Zhu
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Shengxiang Liang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Youze He
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Jiao Liu
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jing Tao
- TCM Rehabilitation Research Center of SATCM (JT, JH), Fuzhou 350122, China
| | - Zhizhen Liu
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Jia Huang
- TCM Rehabilitation Research Center of SATCM (JT, JH), Fuzhou 350122, China
| | - Zhifu Wang
- The Affiliated Rehabilitation Hospital (ZW), Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Lidian Chen
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Fujian University of Traditional Chinese Medicine (LC), Shangjie University Town, Fuzhou, China.
| |
Collapse
|
39
|
Goodman LD, Moulton MJ, Lin G, Bellen HJ. Does glial lipid dysregulation alter sleep in Alzheimer's and Parkinson's disease? Trends Mol Med 2024; 30:913-923. [PMID: 38755043 PMCID: PMC11466711 DOI: 10.1016/j.molmed.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
In this opinion article, we discuss potential connections between sleep disturbances observed in Alzheimer's disease (AD) and Parkinson's disease (PD) and the dysregulation of lipids in the brain. Research using Drosophila has highlighted the role of glial-mediated lipid metabolism in sleep and diurnal rhythms. Relevant to AD, the formation of lipid droplets in glia, which occurs in response to elevated neuronal reactive oxygen species (ROS), is required for sleep. In disease models, this process is disrupted, arguing a connection to sleep dysregulation. Relevant to PD, the degradation of neuronally synthesized glucosylceramides by glia requires glucocerebrosidase (GBA, a PD-associated risk factor) and this regulates sleep. Loss of GBA in glia causes an accumulation of glucosylceramides and neurodegeneration. Overall, research primarily using Drosophila has highlighted how dysregulation of glial lipid metabolism may underlie sleep disturbances in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
41
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
42
|
Dai W, Zhou J, Chen T. Unraveling the extracellular vesicle network: insights into ovarian cancer metastasis and chemoresistance. Mol Cancer 2024; 23:201. [PMID: 39285475 PMCID: PMC11404010 DOI: 10.1186/s12943-024-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Ovarian cancer (OC) is one of the most prevalent and lethal gynecological malignancies, with high mortality primarily due to its aggressive nature, frequent metastasis, and resistance to standard therapies. Recent research has highlighted the critical role of extracellular vesicles (EVs) in these processes. EVs, secreted by living organisms and carrying versatile and bioactive cargoes, play a vital role in intercellular communication. Functionally, the transfer of cargoes orchestrates multiple processes that actively affect not only the primary tumor but also local and distant pre-metastatic niche. Furthermore, their unique biological properties position EVs as novel therapeutic targets and promising drug delivery systems, with potential profound implications for cancer patients.This review summarizes recent progress in EV biology, delving into the intricate mechanisms by which EVs contribute to OC metastasis and drug resistance. It also explores the latest advances and therapeutic potential of EVs in the clinical context of OC. Despite the progress made, EV research in OC remains in its nascent stages. Consequently, this review presents existing research limitations and suggests avenues for future investigation. Altogether, the review aims to elucidate the critical roles of EVs in OC and spotlight their promising potential in this field.
Collapse
Affiliation(s)
- Wei Dai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, 310009, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, 310009, China.
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
43
|
Sala-Jarque J, Gil V, Andrés-Benito P, Martínez-Soria I, Picón-Pagès P, Hernández F, Ávila J, Lanciego JL, Nuvolone M, Aguzzi A, Gavín R, Ferrer I, Del Río JA. The cellular prion protein does not affect tau seeding and spreading of sarkosyl-insoluble fractions from Alzheimer's disease. Sci Rep 2024; 14:21622. [PMID: 39284839 PMCID: PMC11405773 DOI: 10.1038/s41598-024-72232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
The cellular prion protein (PrPC) plays many roles in the developing and adult brain. In addition, PrPC binds to several amyloids in oligomeric and prefibrillar forms and may act as a putative receptor of abnormal misfolded protein species. The role of PrPC in tau seeding and spreading is not known. In the present study, we have inoculated well-characterized sarkosyl-insoluble fractions of sporadic Alzheimer's disease (sAD) into the brain of adult wild-type mice (Prnp+/+), Prnp0/0 (ZH3 strain) mice, and mice over-expressing the secreted form of PrPC lacking their GPI anchor (Tg44 strain). Phospho-tau (ptau) seeding and spreading involving neurons and oligodendrocytes were observed three and six months after inoculation. 3Rtau and 4Rtau deposits from the host tau, as revealed by inoculating Mapt0/0 mice and by using specific anti-mouse and anti-human tau antibodies suggest modulation of exon 10 splicing of the host mouse Mapt gene elicited by exogenous sAD-tau. However, no tau seeding and spreading differences were observed among Prnp genotypes. Our results show that PrPC does not affect tau seeding and spreading in vivo.
Collapse
Affiliation(s)
- Julia Sala-Jarque
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Neuroscience Research Institute and Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Pol Andrés-Benito
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Inés Martínez-Soria
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Pol Picón-Pagès
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Félix Hernández
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
| | - Jesús Ávila
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CBMSO) CSIC/UAM, Madrid, Spain
| | - José Luis Lanciego
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Department of Neurosciences, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Amyloidosis Research and Treatment Center, Foundation Scientific Institute Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidro Ferrer
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri and Reixac 15-21, 08028, Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Ciberned (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Madrid, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
44
|
Wu S, Schekman RW. Intercellular transmission of alpha-synuclein. Front Mol Neurosci 2024; 17:1470171. [PMID: 39324117 PMCID: PMC11422390 DOI: 10.3389/fnmol.2024.1470171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
An emerging theme in Parkinson's disease (PD) is the propagation of α-synuclein pathology as the disease progresses. Research involving the injection of preformed α-synuclein fibrils (PFFs) in animal models has recapitulated the pathological spread observed in PD patients. At the cellular and molecular levels, this intercellular spread requires the translocation of α-synuclein across various membrane barriers. Recent studies have identified subcellular organelles and protein machineries that facilitate these processes. In this review, we discuss the proposed pathways for α-synuclein intercellular transmission, including unconventional secretion, receptor-mediated uptake, endosome escape and nanotube-mediated transfer. In addition, we advocate for a rigorous examination of the evidence for the localization of α-synuclein in extracellular vesicles.
Collapse
Affiliation(s)
| | - Randy W. Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
45
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
46
|
Zhou J, Zhang L, Peng J, Zhang X, Zhang F, Wu Y, Huang A, Du F, Liao Y, He Y, Xie Y, Gu L, Kuang C, Ou W, Xie M, Tu T, Pang J, Zhang D, Guo K, Feng Y, Yin S, Cao Y, Li T, Jiang Y. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab 2024; 36:2054-2068.e14. [PMID: 38906140 DOI: 10.1016/j.cmet.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/11/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanyuan Wu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - An Huang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fengling Du
- Department of Neonatology, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuyan Liao
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yijing He
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuke Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long Gu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chenghao Kuang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wei Ou
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianqi Tu
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kecheng Guo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shigang Yin
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Cao
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
47
|
Nishida I, Yamada K, Sakamoto A, Wakabayashi T, Iwatsubo T. Chronic Neuronal Hyperexcitation Exacerbates Tau Propagation in a Mouse Model of Tauopathy. Int J Mol Sci 2024; 25:9004. [PMID: 39201689 PMCID: PMC11354494 DOI: 10.3390/ijms25169004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The intracerebral spread of tau is a critical mechanism associated with functional decline in Alzheimer's disease (AD) and other tauopathies. Recently, a hypothesis has emerged suggesting that tau propagation is linked to functional neuronal connections, specifically driven by neuronal hyperactivity. However, experimental validation of this hypothesis remains limited. In this study, we investigated how tau propagation from the entorhinal cortex to the hippocampus, the neuronal circuit most susceptible to tau pathology in AD, is affected by the selective stimulation of neuronal activity along this circuit. Using a mouse model of seed-induced propagation combined with optogenetics, we found that the chronic stimulation of this neuronal connection over a 4-week period resulted in a significant increase in insoluble tau accumulation in both the entorhinal cortex and hippocampus. Importantly, the ratio of tau accumulation in the hippocampus relative to that in the entorhinal cortex, serving as an indicator of transcellular spreading, was significantly higher in mice subjected to chronic stimulation. These results support the notion that abnormal neuronal activity promotes tau propagation, thereby implicating it in the progression of tauopathy.
Collapse
Affiliation(s)
- Itaru Nishida
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Asami Sakamoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
- Department of Pathophysiology, Meiji Pharmaceutical University, Tokyo 2040004, Japan
| | - Takeshi Iwatsubo
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan;
| |
Collapse
|
48
|
Ou Z, You Y, Yi H, Liu X, Tong Y, Liu D, Wang J. Key Lipoprotein Receptor Targeted Echinacoside-Liposomes Effective Against Parkinson's Disease in Mice Model. Int J Nanomedicine 2024; 19:8463-8483. [PMID: 39185346 PMCID: PMC11342948 DOI: 10.2147/ijn.s468942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra. The precise molecular mechanisms underlying neuronal loss in PD remain unknown, and there are currently no effective treatments for PD-associated neurodegeneration. Echinacoside (ECH) is known for its neuroprotective effects, which include scavenging cellular reactive oxygen species and promoting mitochondrial fusion. However, the blood-brain barrier (BBB) limits the bioavailability of ECH in the brain, posing a significant challenge to its use in PD treatment. Methods We synthesized and characterized PEGylated ECH liposomes (ECH@Lip) and peptide angiopep-2 (ANG) modified liposomes (ECH@ANG-Lip). The density of ANG in ANG-Lip was optimized using bEnd.3 cells. The brain-targeting ability of the liposomes was assessed in vitro using a transwell BBB model and in vivo using an imaging system and LC-MS. We evaluated the enhanced neuroprotective properties of this formulation in a the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. Results The ECH@ANG-Lip demonstrated significantly higher whole-brain uptake compared to ECH@Lip and free ECH. Furthermore, ECH@ANG-Lip was more effective in mitigating MPTP-induced behavioral impairment, oxidative stress, dopamine depletion, and dopaminergic neuron death than both ECH@Lip and free ECH. Conclusion The formulation used in our study significantly enhanced the neuroprotective efficacy of ECH in the MPTP-induced PD model. Thus, ECH@ANG-Lip shows considerable potential for improving the bioavailability of ECH and providing neuroprotective effects in the brain.
Collapse
Affiliation(s)
- Zemin Ou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yan Tong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Dewen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinyu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
49
|
Catterson JH, Mouofo EN, López De Toledo Soler I, Lean G, Dlamini S, Liddell P, Voong G, Katsinelos T, Wang YC, Schoovaerts N, Verstreken P, Spires-Jones TL, Durrant CS. Drosophila appear resistant to trans-synaptic tau propagation. Brain Commun 2024; 6:fcae256. [PMID: 39130515 PMCID: PMC11316205 DOI: 10.1093/braincomms/fcae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the elderly, prompting extensive efforts to pinpoint novel therapeutic targets for effective intervention. Among the hallmark features of Alzheimer's disease is the development of neurofibrillary tangles comprised of hyperphosphorylated tau protein, whose progressive spread throughout the brain is associated with neuronal death. Trans-synaptic propagation of tau has been observed in mouse models, and indirect evidence for tau spread via synapses has been observed in human Alzheimer's disease. Halting tau propagation is a promising therapeutic target for Alzheimer's disease; thus, a scalable model system to screen for modifiers of tau spread would be very useful for the field. To this end, we sought to emulate the trans-synaptic spread of human tau in Drosophila melanogaster. Employing the trans-Tango circuit mapping technique, we investigated whether tau spreads between synaptically connected neurons. Immunohistochemistry and confocal imaging were used to look for tau propagation. Examination of hundreds of flies expressing four different human tau constructs in two distinct neuronal populations reveals a robust resistance in Drosophila to the trans-synaptic spread of human tau. This resistance persisted in lines with concurrent expression of amyloid-β, in lines with global human tau knock-in to provide a template for human tau in downstream neurons, and with manipulations of temperature. These negative data are important for the field as we establish that Drosophila expressing human tau in subsets of neurons are unlikely to be useful to perform screens to find mechanisms to reduce the trans-synaptic spread of tau. The inherent resistance observed in Drosophila may serve as a valuable clue, offering insights into strategies for impeding tau spread in future studies.
Collapse
Affiliation(s)
- James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Edmond N Mouofo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Gillian Lean
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stella Dlamini
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Phoebe Liddell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Graham Voong
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Taxiarchis Katsinelos
- Schaller Research Group at the University of Heidelberg and the DKFZ, German Cancer Research Center, Proteostasis in Neurodegenerative Disease (B180), INF 581, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, INF 234, 69120 Heidelberg, Germany
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
50
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|