1
|
Guo JF, Zhou H, Hu ZR, Yang YL, Wang WB, Zhang YR, Li X, Mulati N, Li YX, Wu L, Long Y, He JM. The Arabidopsis heterotrimeric G protein α subunit binds to and inhibits the inward rectifying potassium channel KAT1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112363. [PMID: 39710151 DOI: 10.1016/j.plantsci.2024.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
In animal cells, Gα subunit of the heterotrimeric G proteins can bind to both the N-terminal and C-terminal domains of G-protein-activated inwardly rectifying K+ channels (GIRKs) to inhibit their activities. In Arabidopsis guard cells, the Gα subunit GPA1 mediates multiple stimuli-regulated stomatal movements via inhibiting guard cell inward-rectifying K+ (K+in) current, but it remains unclear whether GPA1 directly interacts with and inhibits the activities of K+in channels. Here, we found that GPA1 interacted with the transmembrane domain rather than the intracellular domain of the Shaker family K+in channel KAT1. Two-Electrode Voltage-Clamp experiments in Xenopus oocytes demonstrated that GPA1 significantly inhibited KAT1 channel activity. However, GPA1 could not inhibit the assembly of KAT1 as well as KAT2 as homo- and hetero-tetramers and alter the subcellular localization and protein stability of these channels. In conclusion, these findings reveal a novel regulatory mechanism for Gα inhibition of the Shaker family K+in channel KAT1 via binding to its channel transmembrane domains but without affecting its subcellular localization, protein stability and the formation of functional homo- and hetero-tetramers. This suggests that in both animal and plant cells, Gα can regulate K+in channels through physical interaction, albeit with differing mechanisms of interaction and regulation.
Collapse
Affiliation(s)
- Jiang-Fan Guo
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui Zhou
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China
| | - Zhuo-Ran Hu
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China
| | - Ya-Lan Yang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wen-Bin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yan-Ru Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xue Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Nuerkaimaier Mulati
- College of Life and Geographic Sciences, Kashi University, Kashi, Xinjiang 844000, China
| | - Ying-Xin Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Wu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Long
- State key laboratory of crop stress adaptation and improvement, Henan University, Kaifeng 450046, China.
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
3
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane Lipid Nanodomains Modulate HCN Pacemaker Channels in Nociceptor DRG Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.02.556056. [PMID: 37732182 PMCID: PMC10508734 DOI: 10.1101/2023.09.02.556056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels was likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observed reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
|
4
|
Wojciechowski MN, McKenzie CE, Hung A, Kuanyshbek A, Soh MS, Reid CA, Forster IC. Different fluorescent labels report distinct components of spHCN channel voltage sensor movement. J Gen Physiol 2024; 156:e202413559. [PMID: 38968404 PMCID: PMC11223168 DOI: 10.1085/jgp.202413559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
We used voltage clamp fluorometry to probe the movement of the S4 helix in the voltage-sensing domain of the sea urchin HCN channel (spHCN) expressed in Xenopus oocytes. We obtained markedly different fluorescence responses with either ALEXA-488 or MTS-TAMRA covalently linked to N-terminal Cys332 of the S4 helix. With hyperpolarizing steps, ALEXA-488 fluorescence increased rapidly, consistent with it reporting the initial inward movement of S4, as previously described. In contrast, MTS-TAMRA fluorescence increased more slowly and its early phase correlated with that of channel opening. Additionally, a slow fluorescence component that tracked the development of the mode shift, or channel hysteresis, could be resolved with both labels. We quantitated this component as an increased deactivation tail current delay with concomitantly longer activation periods and found it to depend strongly on the presence of K+ ions in the pore. Using collisional quenching experiments and structural predictions, we established that ALEXA-488 was more exposed to solvent than MTS-TAMRA. We propose that components of S4 movement during channel activation can be kinetically resolved using different fluorescent probes to reveal distinct biophysical properties. Our findings underscore the need to apply caution when interpreting voltage clamp fluorometry data and demonstrate the potential utility of different labels to interrogate distinct biophysical properties of voltage-gated membrane proteins.
Collapse
Affiliation(s)
- Magdalena N. Wojciechowski
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Institut für Pharmazeutische und Medizinische Chemie, Pharmacampus, Universität Münster, Münster, Germany
| | | | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Alibek Kuanyshbek
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ming S. Soh
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | | | - Ian C. Forster
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| |
Collapse
|
5
|
Lin JL, Chang Y, Tewari D, Cowgill J, Chanda B. Mapping the contribution of the C-linker domain to gating polarity in CNBD channels. Biophys J 2024; 123:2176-2184. [PMID: 38678368 PMCID: PMC11309966 DOI: 10.1016/j.bpj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Ion channels of the cyclic nucleotide-binding domain (CNBD) family play a crucial role in the regulation of key biological processes, such as photoreception and pacemaking activity in the heart. These channels exhibit high sequence and structural similarity but differ greatly in their functional responses to membrane potential. The CNBD family includes hyperpolarization-activated ion channels and depolarization-activated ether-à-go-go channels. Structural and functional studies show that the differences in the coupling interface between these two subfamilies' voltage-sensing domain and pore domain may underlie their differential response to membrane polarity. However, other structural components may also contribute to defining the polarity differences in activation. Here, we focus on the role of the C-terminal domain, which interacts with elements in both the pore and voltage-sensing domains. By generating a series of chimeras involving the C-terminal domain derived from distant members of the CNBD family, we find that the nature of the C-termini profoundly influences the gating polarity of these ion channels. Scanning mutagenesis of the C-linker region, a helix-turn-helix motif connecting the pore helix to the CNBD, reveals that residues at the intersubunit interface between the C-linkers are crucial for hyperpolarization-dependent activation. These findings highlight the unique and unexpected role of the intersubunit interface of the C-linker region in regulating the gating polarity of voltage-gated ion channels.
Collapse
Affiliation(s)
- Jenna L Lin
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Graduate Program in Biochemistry, Biophysics, & Structural Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Debanjan Tewari
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
6
|
Kunzmann P, Krumbach JH, Saponaro A, Moroni A, Thiel G, Hamacher K. Anisotropic Network Analysis of Open/Closed HCN4 Channel Advocates Asymmetric Subunit Cooperativity in cAMP Modulation of Gating. J Chem Inf Model 2024; 64:4727-4738. [PMID: 38830626 PMCID: PMC11203669 DOI: 10.1021/acs.jcim.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are opened in an allosteric manner by membrane hyperpolarization and cyclic nucleotides such as cAMP. Because of conflicting reports from experimental studies on whether cAMP binding to the four available binding sites in the channel tetramer operates cooperatively in gating, we employ here a computational approach as a promising route to examine ligand-induced conformational changes after binding to individual sites. By combining an elastic network model (ENM) with linear response theory (LRT) for modeling the apo-holo transition of the cyclic nucleotide-binding domain (CNBD) in HCN channels, we observe a distinct pattern of cooperativity matching the "positive-negative-positive" cooperativity reported from functional studies. This cooperativity pattern is highly conserved among HCN subtypes (HCN4, HCN1), but only to a lesser extent visible in structurally related channels, which are only gated by voltage (KAT1) or cyclic nucleotides (TAX4). This suggests an inherent cooperativity between subunits in HCN channels as part of a ligand-triggered gating mechanism in these channels.
Collapse
Affiliation(s)
- Patrick Kunzmann
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Jan H. Krumbach
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Andrea Saponaro
- Department
of Pharmacology and Biomolecular Sciences, University of Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Anna Moroni
- Department
of Biosciences, Ion Channel Biophysics, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Gerhard Thiel
- Department
of Biology, Membrane Biophysics, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Kay Hamacher
- Department
of Biology, Computational Biology & Simulation, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| |
Collapse
|
7
|
Burtscher V, Mount J, Huang J, Cowgill J, Chang Y, Bickel K, Chen J, Yuan P, Chanda B. Structural basis for hyperpolarization-dependent opening of human HCN1 channel. Nat Commun 2024; 15:5216. [PMID: 38890331 PMCID: PMC11189445 DOI: 10.1038/s41467-024-49599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Mount
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
8
|
Gao X, Xu X, Sun T, Lu Y, Jia Y, Zhou J, Fu P, Zhang Y, Yang G. Structural changes in the conversion of an Arabidopsis outward-rectifying K + channel into an inward-rectifying channel. PLANT COMMUNICATIONS 2024; 5:100844. [PMID: 38341617 PMCID: PMC11211230 DOI: 10.1016/j.xplc.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Xudong Gao
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xia Xu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tengfei Sun
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhan Lu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yutian Jia
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Fu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghui Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Shen R, Roux B, Perozo E. Anionic omega currents from single countercharge mutants in the voltage-sensing domain of Ci-VSP. J Gen Physiol 2024; 156:e202213311. [PMID: 38019193 PMCID: PMC10686229 DOI: 10.1085/jgp.202213311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/08/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
The S4 segment of voltage-sensing domains (VSDs) directly responds to voltage changes by reorienting within the electric field as a permion. A narrow hydrophobic "gasket" or charge transfer center at the core of most VSDs focuses the electric field into a narrow region and catalyzes the sequential and reversible translocation of S4 positive gating charge residues across the electric field while preventing the permeation of physiological ions. Mutating specific S4 gating charges can cause ionic leak currents through the VSDs. These gating pores or omega currents play important pathophysiological roles in many diseases of excitability. Here, we show that mutating D129, a key countercharge residue in the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), leads to the generation of unique anionic omega currents. Neutralizing D129 causes a dramatic positive shift of activation, facilitates the formation of a continuous water path through the VSD, and creates a positive electrostatic potential landscape inside the VSD that contributes to its unique anionic selectivity. Increasing the population or dwell time of the conducting state by a high external pH or an engineered Cd2+ bridge markedly increases the current magnitude. Our findings uncover a new role of countercharge residues in the impermeable VSD of Ci-VSP and offer insights into mechanisms of the conduction of anionic omega currents linked to countercharge residue mutations.
Collapse
Affiliation(s)
- Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
González-García A, Kanli M, Wisowski N, Montoliu-Silvestre E, Locascio A, Sifres A, Gómez M, Ramos J, Porcel R, Andrés-Colás N, Mulet JM, Yenush L. Maternal Embryo Effect Arrest 31 (MEE31) is a moonlighting protein involved in GDP-D-mannose biosynthesis and KAT1 potassium channel regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111897. [PMID: 37852415 DOI: 10.1016/j.plantsci.2023.111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.
Collapse
Affiliation(s)
- Adrián González-García
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Maria Kanli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Natalia Wisowski
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Eva Montoliu-Silvestre
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Alicia Sifres
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Marcos Gómez
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
12
|
Kalienkova V, Peter MF, Rheinberger J, Paulino C. Structures of a sperm-specific solute carrier gated by voltage and cAMP. Nature 2023; 623:202-209. [PMID: 37880361 PMCID: PMC10620091 DOI: 10.1038/s41586-023-06629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023]
Abstract
The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Martin F Peter
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Jan Rheinberger
- Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Cristina Paulino
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, The Netherlands.
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
13
|
Nguyen TBA, Lefoulon C, Nguyen TH, Blatt MR, Carroll W. Engineering stomata for enhanced carbon capture and water-use efficiency. TRENDS IN PLANT SCIENCE 2023; 28:1290-1309. [PMID: 37423785 DOI: 10.1016/j.tplants.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. As gatekeepers that balance CO2 entry for photosynthesis against transpirational water loss, they are a focal point for efforts to improve crop performance, especially in the efficiency of water use, within the changing global environment. Until recently, engineering strategies had focused on stomatal conductance in the steady state. These strategies are limited by the physical constraints of CO2 and water exchange such that gains in water-use efficiency (WUE) commonly come at a cost in carbon assimilation. Attention to stomatal speed and responsiveness circumvents these constraints and offers alternatives to enhancing WUE that also promise increases in carbon assimilation in the field.
Collapse
Affiliation(s)
- Thu Binh-Anh Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thanh-Hao Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - William Carroll
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
14
|
Burtscher V, Mount J, Cowgill J, Chang Y, Bickel K, Yuan P, Chanda B. Structural Basis for Hyperpolarization-dependent Opening of the Human HCN1 Channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553623. [PMID: 37645882 PMCID: PMC10462129 DOI: 10.1101/2023.08.17.553623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hyperpolarization and cyclic-nucleotide (HCN) activated ion channels play a critical role in generating self-propagating action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN channels activate upon membrane hyperpolarization, but the structural mechanisms underlying this gating behavior remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 in Closed, Intermediate, and Open states. Our structures reveal that the inward motion of two gating charges past the charge transfer center (CTC) and concomitant tilting of the S5 helix drives the opening of the central pore. In the intermediate state structure, a single gating charge is positioned below the CTC and the pore appears closed, whereas in the open state structure, both charges move past CTC and the pore is fully open. Remarkably, the downward motion of the voltage sensor is accompanied by progressive unwinding of the inner end of S4 and S5 helices disrupting the tight gating interface that stabilizes the Closed state structure. This "melting" transition at the intracellular gating interface leads to a concerted iris-like displacement of S5 and S6 helices, resulting in pore opening. These findings reveal key structural features that are likely to underlie reversed voltage-dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Mount
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
15
|
Catacuzzeno L, Conti F, Franciolini F. Fifty years of gating currents and channel gating. J Gen Physiol 2023; 155:e202313380. [PMID: 37410612 PMCID: PMC10324510 DOI: 10.1085/jgp.202313380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
We celebrate this year the 50th anniversary of the first electrophysiological recordings of the gating currents from voltage-dependent ion channels done in 1973. This retrospective tries to illustrate the context knowledge on channel gating and the impact gating-current recording had then, and how it continued to clarify concepts, elaborate new ideas, and steer the scientific debate in these 50 years. The notion of gating particles and gating currents was first put forward by Hodgkin and Huxley in 1952 as a necessary assumption for interpreting the voltage dependence of the Na and K conductances of the action potential. 20 years later, gating currents were actually recorded, and over the following decades have represented the most direct means of tracing the movement of the gating charges and gaining insights into the mechanisms of channel gating. Most work in the early years was focused on the gating currents from the Na and K channels as found in the squid giant axon. With channel cloning and expression on heterologous systems, other channels as well as voltage-dependent enzymes were investigated. Other approaches were also introduced (cysteine mutagenesis and labeling, site-directed fluorometry, cryo-EM crystallography, and molecular dynamics [MD] modeling) to provide an integrated and coherent view of voltage-dependent gating in biological macromolecules. The layout of this retrospective reflects the past 50 years of investigations on gating currents, first addressing studies done on Na and K channels and then on other voltage-gated channels and non-channel structures. The review closes with a brief overview of how the gating-charge/voltage-sensor movements are translated into pore opening and the pathologies associated with mutations targeting the structures involved with the gating currents.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Franco Conti
- Department of Physics, University of Genova, Genova, Italy
| | - Fabio Franciolini
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Li S, Wang Y, Wang C, Zhang Y, Sun D, Zhou P, Tian C, Liu S. Cryo-EM structure reveals a symmetry reduction of the plant outward-rectifier potassium channel SKOR. Cell Discov 2023; 9:67. [PMID: 37391403 PMCID: PMC10313817 DOI: 10.1038/s41421-023-00572-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023] Open
Affiliation(s)
- Siyu Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanxia Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenyang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Demeng Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Zhou
- School of Life Science, Hefei Normal University, Hefei, Anhui, China.
| | - Changlin Tian
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
- The Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.
| | - Sanling Liu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
17
|
Maymand VM, Bavi O, Karami A. Probing the mechanical properties of ORF3a protein, a transmembrane channel of SARS-CoV-2 virus: Molecular dynamics study. Chem Phys 2023; 569:111859. [PMID: 36852417 PMCID: PMC9946729 DOI: 10.1016/j.chemphys.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
SARS-CoV-2-encoded accessory protein ORF3a was found to be a conserved coronavirus protein that shows crucial roles in apoptosis in cells as well as in virus release and replications. To complete the knowledge and identify the unknown of this protein, further comprehensive research is needed to clarify the leading role of ORF3a in the functioning of the coronavirus. One of the efficient approaches to determining the functionality of this protein is to investigate the mechanical properties and study its structural dynamics in the presence of physical stimuli. Herein, performing all-atom steered molecular dynamics (SMD) simulations, the mechanical properties of the force-bearing components of the ORF3a channel are calculated in different physiological conditions. As variations occurring in ORF3a may lead to alteration in protein structure and function, the G49V mutation was also simulated to clarify the relationship between the mechanical properties and chemical stability of the protein by comparing the behavior of the wild-type and mutant Orf3a. From a physiological conditions point of view, it was observed that in the solvated system, the presence of water molecules reduces Young's modulus of TM1 by ∼30 %. Our results also show that by substitution of Gly49 with valine, Young's modulus of the whole helix increases from 1.61 ± 0.20 to 2.08 ± 0.15 GPa, which is consistent with the calculated difference in free energy of wild-type and mutant helices. In addition to finding a way to fight against Covid-19 disease, understanding the mechanical behavior of these biological nanochannels can lead to the development of the potential applications of the ORF3a protein channel, such as tunable nanovalves in smart drug delivery systems, nanofilters in the new generation of desalination systems, and promising applications in DNA sequencing.
Collapse
Affiliation(s)
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Abbas Karami
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
18
|
Dutta D. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress. Cell Biochem Funct 2023. [PMID: 37158622 DOI: 10.1002/cbf.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
19
|
Benali T, Lemhadri A, Harboul K, Chtibi H, Khabbach A, Jadouali SM, Quesada-Romero L, Louahlia S, Hammani K, Ghaleb A, Lee LH, Bouyahya A, Rusu ME, Akhazzane M. Chemical Profiling and Biological Properties of Essential Oils of Lavandula stoechas L. Collected from Three Moroccan Sites: In Vitro and In Silico Investigations. PLANTS (BASEL, SWITZERLAND) 2023; 12:1413. [PMID: 36987101 PMCID: PMC10057000 DOI: 10.3390/plants12061413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The aim of this study was the determination of the chemical compounds of Lavandula stoechas essential oil from Aknol (LSEOA), Khenifra (LSEOK), and Beni Mellal (LSEOB), and the in vitro investigation of their antibacterial, anticandidal, and antioxidant effects, and in silico anti-SARS-CoV-2 activity. The chemical profile of LSEO was determined using GC-MS-MS analysis, the results of which showed a qualitative and quantitative variation in the chemical composition of volatile compounds including L-fenchone, cubebol, camphor, bornyl acetate, and τ-muurolol; indicating that the biosynthesis of essential oils of Lavandula stoechas (LSEO) varied depending on the site of growth. The antioxidant activity was evaluated using the ABTS and FRAP methods, our results showed that this tested oil is endowed with an ABTS inhibitory effect and an important reducing power which varies between 4.82 ± 1.52 and 15.73 ± 3.26 mg EAA/g extract. The results of antibacterial activity of LSEOA, LSEOK and LSEOB, tested against Gram-positive and Gram-negative bacteria, revealed that B. subtilis (20.66 ± 1.15-25 ± 4.35 mm), P. mirabilis (18.66 ± 1.15-18.66 ± 1.15 mm), and P. aeruginosa (13.33 ± 1.15-19 ± 1.00 mm) are the most susceptible strains to LSEOA, LSEOK and LSEOB of which LSEOB exhibits bactericidal effect against P. mirabilis. furthermore The LSEO exhibited varying degrees of anticandidal activity with an inhibition zones of 25.33 ± 0.5, 22.66 ± 2.51, and 19 ± 1 mm for LSEOK, LSEOB, and LSEOA, respectively. Additionally, the in silico molecular docking process, performed using Chimera Vina and Surflex-Dock programs, indicated that LSEO could inhibit SARS-CoV-2. These important biological properties of LSEO qualify this plant as an interesting source of natural bioactive compounds with medicinal actions.
Collapse
Affiliation(s)
- Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech 46030, Morocco
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza 30050, Morocco
| | - Ahmed Lemhadri
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech 46030, Morocco
| | - Kaoutar Harboul
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza 30050, Morocco
| | - Houda Chtibi
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza 30050, Morocco
| | - Abdelmajid Khabbach
- Laboratory of Biotechnology, Conservation and Valorisation of Natural Resources (BCVRN), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796, Fez 30003, Morocco
| | - Si Mohamed Jadouali
- Department of Biotechnology and Analysis EST Khenifra, Sultan Moulay Sliman University, Khenifra 23000, Morocco
| | - Luisa Quesada-Romero
- Escuela de Nutrición y Dietética, Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile
| | - Said Louahlia
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza 30050, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University of Fez, B.P. 1223 Taza-Gare, Taza 30050, Morocco
| | - Adib Ghaleb
- Laboratory of Analytical and Molecular Chemistry, Multidisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10100, Morocco
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mohamed Akhazzane
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
20
|
Zhang M, Shan Y, Pei D. Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel. Nat Commun 2023; 14:1470. [PMID: 36928654 PMCID: PMC10020445 DOI: 10.1038/s41467-023-37204-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The transmembrane voltage gradient is a general physico-chemical cue that regulates diverse biological function through voltage-gated ion channels. How voltage sensing mediates ion flows remains unknown at the molecular level. Here, we report six conformations of the human Eag2 (hEag2) ranging from closed, pre-open, open, and pore dilation but non-conducting states captured by cryo-electron microscopy (cryo-EM). These multiple states illuminate dynamics of the selectivity filter and ion permeation pathway with delayed rectifier properties and Cole-Moore effect at the atomic level. Mechanistically, a short S4-S5 linker is coupled with the constrict sites to mediate voltage transducing in a non-domain-swapped configuration, resulting transitions for constrict sites of F464 and Q472 from gating to open state stabilizing for voltage energy transduction. Meanwhile, an additional potassium ion occupied at positions S6 confers the delayed rectifier property and Cole-Moore effects. These results provide insight into voltage transducing and potassium current across membrane, and shed light on the long-sought Cole-Moore effects.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Fudan University, 200433, Shanghai, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, 310000, Hangzhou, China
| | - Yuanyue Shan
- Fudan University, 200433, Shanghai, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, 310000, Hangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, 310000, Hangzhou, China.
| |
Collapse
|
21
|
Bassetto CAZ, Costa F, Guardiani C, Bezanilla F, Giacomello A. Noncanonical electromechanical coupling paths in cardiac hERG potassium channel. Nat Commun 2023; 14:1110. [PMID: 36849440 PMCID: PMC9971164 DOI: 10.1038/s41467-023-36730-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Voltage-gated potassium channels are involved in many physiological processes such as nerve impulse transmission, the heartbeat, and muscle contraction. However, for many of them the molecular determinants of the gating mechanism remain elusive. Here, using a combination of theoretical and experimental approaches, we address this problem focusing on the cardiac hERG potassium channel. Network analysis of molecular dynamics trajectories reveals the presence of a kinematic chain of residues that couples the voltage sensor domain to the pore domain and involves the S4/S1 and S1/S5 subunit interfaces. Mutagenesis experiments confirm the role of these residues and interfaces in the activation and inactivation mechanisms. Our findings demonstrate the presence of an electromechanical transduction path crucial for the non-domain-swapped hERG channel gating that resembles the noncanonical path identified in domain-swapped K+ channels.
Collapse
Affiliation(s)
- Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Flavio Costa
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - Carlo Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Centro Interdisciplinario de Neurociencias, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
22
|
Sun L, Horrigan FT. A gating lever and molecular logic gate that couple voltage and calcium sensor activation to opening in BK potassium channels. SCIENCE ADVANCES 2022; 8:eabq5772. [PMID: 36516264 PMCID: PMC9750137 DOI: 10.1126/sciadv.abq5772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
BK channels uniquely integrate voltage and calcium signaling in diverse cell types through allosteric activation of their K+-conducting pore by structurally distinct V and Ca2+ sensor domains. Here, we define mechanisms and interaction pathways that link V sensors to the pore by analyzing effects on allosteric coupling of point mutations in the context of Slo1 BK channel structure. A gating lever, mediated by S4/S5 segment interaction within the transmembrane domain, rotates to engage and stabilize the open conformation of the S6 inner pore helix upon V sensor activation. In addition, an indirect pathway, mediated by the carboxyl-terminal cytosolic domain (CTD) and C-linker that connects the CTD to S6, stabilizes the closed conformation when V sensors are at rest. Unexpectedly, this mechanism, which bypasses the covalent connections of C-linker to CTD and pore, also transduces Ca2+-dependent coupling in a manner that is completely nonadditive with voltage, analogous to the function of a digital logic (OR) gate.
Collapse
Affiliation(s)
- Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank T. Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Abstract
Voltage-dependent ion channels regulate the opening of their pores by sensing the membrane voltage. This process underlies the propagation of action potentials and other forms of electrical activity in cells. The voltage dependence of these channels is governed by the transmembrane displacement of the positive charged S4 helix within their voltage-sensor domains. We use cryo-electron microscopy to visualize this movement in the mammalian Eag voltage-dependent potassium channel in lipid membrane vesicles with a voltage difference across the membrane. Multiple structural configurations show that the applied electric field displaces S4 toward the cytoplasm by two helical turns, resulting in an extended interfacial helix near the inner membrane leaflet. The position of S4 in this down conformation is sterically incompatible with an open pore, thus explaining how movement of the voltage sensor at hyperpolarizing membrane voltages locks the pore shut in this kind of voltage-dependent K+ (Kv) channel. The structures solved in lipid bilayer vesicles detail the intricate interplay between Kv channels and membranes, from showing how arginines are stabilized deep within the membrane and near phospholipid headgroups, to demonstrating how the channel reshapes the inner leaflet of the membrane itself.
Collapse
|
24
|
Schmidpeter PAM, Wu D, Rheinberger J, Riegelhaupt PM, Tang H, Robinson CV, Nimigean CM. Anionic lipids unlock the gates of select ion channels in the pacemaker family. Nat Struct Mol Biol 2022; 29:1092-1100. [PMID: 36352139 PMCID: PMC10022520 DOI: 10.1038/s41594-022-00851-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
Lipids play important roles in regulating membrane protein function, but the molecular mechanisms used are elusive. Here we investigated how anionic lipids modulate SthK, a bacterial pacemaker channel homolog, and HCN2, whose activity contributes to pacemaking in the heart and brain. Using SthK allowed the reconstitution of purified channels in controlled lipid compositions for functional and structural assays that are not available for the eukaryotic channels. We identified anionic lipids bound tightly to SthK and their exact binding locations and determined that they potentiate channel activity. Cryo-EM structures in the most potentiating lipids revealed an open state and identified a nonannular lipid bound with its headgroup near an intersubunit salt bridge that clamps the intracellular channel gate shut. Breaking this conserved salt bridge abolished lipid modulation in SthK and eukaryotic HCN2 channels, indicating that anionic membrane lipids facilitate channel opening by destabilizing these interactions. Our findings underline the importance of state-dependent protein-lipid interactions.
Collapse
Affiliation(s)
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jan Rheinberger
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
- Department of Structural Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Shen R, Meng Y, Roux B, Perozo E. Mechanism of voltage gating in the voltage-sensing phosphatase Ci-VSP. Proc Natl Acad Sci U S A 2022; 119:e2206649119. [PMID: 36279472 PMCID: PMC9636939 DOI: 10.1073/pnas.2206649119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Conformational changes in voltage-sensing domains (VSDs) are driven by the transmembrane electric field acting on the protein charges. Yet, the overall energetics and detailed mechanism of this process are not fully understood. Here, we determined free energy and displacement charge landscapes as well as the major conformations visited during a complete functional gating cycle in the isolated VSD of the phosphatase Ci-VSP (Ci-VSD) comprising four transmembrane helices (segments S1 to S4). Molecular dynamics simulations highlight the extent of S4 movements. In addition to the crystallographically determined activated "Up" and resting "Down" states, the simulations predict two Ci-VSD conformations: a deeper resting state ("down-minus") and an extended activated ("up-plus") state. These additional conformations were experimentally probed via systematic cysteine mutagenesis with metal-ion bridges and the engineering of proton conducting mutants at hyperpolarizing voltages. The present results show that these four states are visited sequentially in a stepwise manner during voltage activation, each step translocating one arginine or the equivalent of ∼1 e0 across the membrane electric field, yielding a transfer of ∼3 e0 charges in total for the complete process.
Collapse
Affiliation(s)
- Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yilin Meng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
26
|
Dickinson MS, Pourmal S, Gupta M, Bi M, Stroud RM. Symmetry Reduction in a Hyperpolarization-Activated Homotetrameric Ion Channel. Biochemistry 2022; 61:2177-2181. [PMID: 34964607 PMCID: PMC9931035 DOI: 10.1021/acs.biochem.1c00654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants obtain nutrients from the soil via transmembrane transporters and channels in their root hairs, from which ions radially transport in toward the xylem for distribution across the plant body. We determined structures of the hyperpolarization-activated channel AKT1 from Arabidopsis thaliana, which mediates K+ uptake from the soil into plant roots. These structures of AtAKT1 embedded in lipid nanodiscs show that the channel undergoes a reduction of C4 to C2 symmetry, possibly to regulate its electrical activation.
Collapse
Affiliation(s)
- Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
| | - Sergei Pourmal
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
| | - Maxine Bi
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
- Graduate Group in Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94158, United States
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
- Graduate Group in Biophysics, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
27
|
Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nat Commun 2022; 13:5682. [PMID: 36167696 PMCID: PMC9515098 DOI: 10.1038/s41467-022-33420-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The voltage-gated potassium channel AKT1 is responsible for primary K+ uptake in Arabidopsis roots. AKT1 is functionally activated through phosphorylation and negatively regulated by a potassium channel α-subunit AtKC1. However, the molecular basis for the modulation mechanism remains unclear. Here we report the structures of AKT1, phosphorylated-AKT1, a constitutively-active variant, and AKT1-AtKC1 complex. AKT1 is assembled in 2-fold symmetry at the cytoplasmic domain. Such organization appears to sterically hinder the reorientation of C-linkers during ion permeation. Phosphorylated-AKT1 adopts an alternate 4-fold symmetric conformation at cytoplasmic domain, which indicates conformational changes associated with symmetry switch during channel activation. To corroborate this finding, we perform structure-guided mutagenesis to disrupt the dimeric interface and identify a constitutively-active variant Asp379Ala mediates K+ permeation independently of phosphorylation. This variant predominantly adopts a 4-fold symmetric conformation. Furthermore, the AKT1-AtKC1 complex assembles in 2-fold symmetry. Together, our work reveals structural insight into the regulatory mechanism for AKT1. Arabidopsis thaliana potassium channel AKT1 is responsible for primary K + uptake from soil, which is functionally activated through phosphorylation and negatively regulated by an α-subunit AtKC1. Here, the authors report the structures of AKT1 at different states, revealing a 2- fold to 4-fold symmetry switch at cytoplasmic domain associated with AKT1 activity regulation.
Collapse
|
28
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
29
|
Ye W, Zhao H, Dai Y, Wang Y, Lo YH, Jan LY, Lee CH. Activation and closed-state inactivation mechanisms of the human voltage-gated K V4 channel complexes. Mol Cell 2022; 82:2427-2442.e4. [PMID: 35597238 DOI: 10.1016/j.molcel.2022.04.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022]
Abstract
The voltage-gated ion channel activity depends on both activation (transition from the resting state to the open state) and inactivation. Inactivation is a self-restraint mechanism to limit ion conduction and is as crucial to membrane excitability as activation. Inactivation can occur when the channel is open or closed. Although open-state inactivation is well understood, the molecular basis of closed-state inactivation has remained elusive. We report cryo-EM structures of human KV4.2 channel complexes in inactivated, open, and closed states. Closed-state inactivation of KV4 involves an unprecedented symmetry breakdown for pore closure by only two of the four S4-S5 linkers, distinct from known mechanisms of open-state inactivation. We further capture KV4 in a putative resting state, revealing how voltage sensor movements control the pore. Moreover, our structures provide insights regarding channel modulation by KChIP2 and DPP6 auxiliary subunits. Our findings elucidate mechanisms of closed-state inactivation and voltage-dependent activation of the KV4 channel.
Collapse
Affiliation(s)
- Wenlei Ye
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | - Hongtu Zhao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yingdi Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu-Hua Lo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lily Yeh Jan
- Department of Physiology, University of California, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
30
|
Costa F, Guardiani C, Giacomello A. Molecular dynamics simulations suggest possible activation and deactivation pathways in the hERG channel. Commun Biol 2022; 5:165. [PMID: 35210539 PMCID: PMC8873449 DOI: 10.1038/s42003-022-03074-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
The elusive activation/deactivation mechanism of hERG is investigated, a voltage-gated potassium channel involved in severe inherited and drug-induced cardiac channelopathies, including the Long QT Syndrome. Firstly, the available structural data are integrated by providing a homology model for the closed state of the channel. Secondly, molecular dynamics combined with a network analysis revealed two distinct pathways coupling the voltage sensor domain with the pore domain. Interestingly, some LQTS-related mutations known to impair the activation/deactivation mechanism are distributed along the identified pathways, which thus suggests a microscopic interpretation of their role. Split channels simulations clarify a surprising feature of this channel, which is still able to gate when a cut is introduced between the voltage sensor domain and the neighboring helix S5. In summary, the presented results suggest possible activation/deactivation mechanisms of non-domain-swapped potassium channels that may aid in biomedical applications. Costa et al. present the electro-mechanical coupling between the voltage sensor and pore domain of the hERG channel using a combination of molecular dynamics simulations and theoretical network analyses.
Collapse
Affiliation(s)
- Flavio Costa
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184, Rome, Italy
| | - Carlo Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184, Rome, Italy
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184, Rome, Italy.
| |
Collapse
|
31
|
Wang LM, Zhao LN, Shah IH, Ramirez DC, Boeglin M, Véry AA, Sentenac H, Zhang YD. Na+ Sensitivity of the KAT2-Like Channel Is a Common Feature of Cucurbits and Depends on the S5-P-S6 Segment. PLANT & CELL PHYSIOLOGY 2022; 63:279-289. [PMID: 34865157 DOI: 10.1093/pcp/pcab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Inhibition of Shaker K+ channel activity by external Na+ was previously reported in the melon (Cucumis melo L.) inwardly rectifying K+ channel MIRK and was hypothesized to contribute to salt tolerance. In this study, two inward Shaker K+ channels, CsKAT2 from cucumber (Cucumis sativus) and ClKAT2 from watermelon (Citrullus lanatus), were identified and characterized in Xenopus oocytes. Both channels were inwardly rectifying K+ channels with higher permeability to potassium than other monovalent cations and more active when external pH was acidic. Similarly to MIRK, their activity displayed an inhibition by external Na+, thus suggesting a common feature in Cucurbitaceae (Cucumis spp., Citrullus spp.). CsKAT2 and ClKAT2 are highly expressed in guard cells. After 24 h of plant treatment with 100 mM NaCl, the three KAT2-like genes were significantly downregulated in leaves and guard cells. Reciprocal chimeras were obtained between MIRK and Na+-insensitive AtKAT2 cDNAs. The chimera where the MIRK S5-P-S6 segment was replaced by that from AtKAT2 no longer showed Na+ sensitivity, while the inverse chimera gained Na+ sensitivity. These results provide evidence that the molecular basis of the channel blockage by Na+ is located in the S5-P-S6 region. Comparison of the electrostatic property in the S5-P-S6 region in AtKAT2 and MIRK revealed four key amino acid residues potentially governing Na+ sensitivity.
Collapse
Affiliation(s)
| | - Li-Na Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Dora Cano Ramirez
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Martin Boeglin
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| | - Yi-Dong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Biochimie et Physiologie Moléculaires des Plantes, University Montpellier, CNRS, INRAE, Institut Agro, Place Viala, Montpellier 34060 Cedex 2, France
| |
Collapse
|
32
|
Kashtoh H, Baek KH. Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122774. [PMID: 34961246 PMCID: PMC8707303 DOI: 10.3390/plants10122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.
Collapse
|
33
|
Lefoulon C. The bare necessities of plant K+ channel regulation. PLANT PHYSIOLOGY 2021; 187:2092-2109. [PMID: 34618033 PMCID: PMC8644596 DOI: 10.1093/plphys/kiab266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 05/29/2023]
Abstract
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
34
|
Huang YN, Yang SY, Li JL, Wang SF, Wang JJ, Hao DL, Su YH. The rectification control and physiological relevance of potassium channel OsAKT2. PLANT PHYSIOLOGY 2021; 187:2296-2310. [PMID: 34601582 PMCID: PMC8644434 DOI: 10.1093/plphys/kiab462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 05/14/2023]
Abstract
AKT2 potassium (K+) channels are members of the plant Shaker family which mediate dual-directional K+ transport with weak voltage-dependency. Here we show that OsAKT2 of rice (Oryza sativa) functions mainly as an inward rectifier with strong voltage-dependency and acutely suppressed outward activity. This is attributed to the presence of a unique K191 residue in the S4 domain. The typical bi-directional leak-like property was restored by a single K191R mutation, indicating that this functional distinction is an intrinsic characteristic of OsAKT2. Furthermore, the opposite R195K mutation of AtAKT2 changed the channel to an inward-rectifier similar to OsAKT2. OsAKT2 was modulated by OsCBL1/OsCIPK23, evoking the outward activity and diminishing the inward current. The physiological relevance in relation to the rectification diversity of OsAKT2 was addressed by functional assembly in the Arabidopsis (Arabidopsis thaliana) akt2 mutant. Overexpression (OE) of OsAKT2 complemented the K+ deficiency in the phloem sap and leaves of the mutant plants but did not significantly contribute to the transport of sugars. However, the expression of OsAKT2-K191R overcame both the shortage of phloem K+ and sucrose of the akt2 mutant, which was comparable to the effects of the OE of AtAKT2, while the expression of the inward mutation AtAKT2-R195K resembled the effects of OsAKT2. Additionally, OE of OsAKT2 ameliorated the salt tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Ya-Nan Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun-Ying Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun-Lin Li
- Shandong Institute of Sericulture, Yantai 264002, China
| | - Shao-Fei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jia-Jin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Li Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Author for communication:
| |
Collapse
|
35
|
Bavi N, Clark MD, Contreras GF, Shen R, Reddy BG, Milewski W, Perozo E. The conformational cycle of prestin underlies outer-hair cell electromotility. Nature 2021; 600:553-558. [PMID: 34695838 DOI: 10.1038/s41586-021-04152-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
The voltage-dependent motor protein prestin (also known as SLC26A5) is responsible for the electromotive behaviour of outer-hair cells and underlies the cochlear amplifier1. Knockout or impairment of prestin causes severe hearing loss2-5. Despite the key role of prestin in hearing, the mechanism by which mammalian prestin senses voltage and transduces it into cellular-scale movements (electromotility) is poorly understood. Here we determined the structure of dolphin prestin in six distinct states using single-particle cryo-electron microscopy. Our structural and functional data suggest that prestin adopts a unique and complex set of states, tunable by the identity of bound anions (Cl- or SO42-). Salicylate, a drug that can cause reversible hearing loss, competes for the anion-binding site of prestin, and inhibits its function by immobilizing prestin in a new conformation. Our data suggest that the bound anion together with its coordinating charged residues and helical dipole act as a dynamic voltage sensor. An analysis of all of the anion-dependent conformations reveals how structural rearrangements in the voltage sensor are coupled to conformational transitions at the protein-membrane interface, suggesting a previously undescribed mechanism of area expansion. Visualization of the electromotility cycle of prestin distinguishes the protein from the closely related SLC26 anion transporters, highlighting the basis for evolutionary specialization of the mammalian cochlear amplifier at a high resolution.
Collapse
Affiliation(s)
- Navid Bavi
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Michael David Clark
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Gustavo F Contreras
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Rong Shen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Bharat G Reddy
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Rectify Pharmaceuticals, Cambridge, MA, USA
| | - Wieslawa Milewski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Saponaro A, Bauer D, Giese MH, Swuec P, Porro A, Gasparri F, Sharifzadeh AS, Chaves-Sanjuan A, Alberio L, Parisi G, Cerutti G, Clarke OB, Hamacher K, Colecraft HM, Mancia F, Hendrickson WA, Siegelbaum SA, DiFrancesco D, Bolognesi M, Thiel G, Santoro B, Moroni A. Gating movements and ion permeation in HCN4 pacemaker channels. Mol Cell 2021; 81:2929-2943.e6. [PMID: 34166608 PMCID: PMC8294335 DOI: 10.1016/j.molcel.2021.05.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 10/31/2022]
Abstract
The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniel Bauer
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - M Hunter Giese
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Paolo Swuec
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | | | | | | | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | - Laura Alberio
- Department of Biosciences, University of Milan, Milan, Italy; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giacomo Parisi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gabriele Cerutti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Kay Hamacher
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Wayne A Hendrickson
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Dario DiFrancesco
- Department of Biosciences, University of Milan, Milan, Italy; Institute of Biophysics-Milano, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA.
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy; Institute of Biophysics-Milano, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
37
|
Hedrich R, Fukushima K. On the Origin of Carnivory: Molecular Physiology and Evolution of Plants on an Animal Diet. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:133-153. [PMID: 33434053 DOI: 10.1146/annurev-arplant-080620-010429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Charles Darwin recognized that carnivorous plants thrive in nutrient-poor soil by capturing animals. Although the concept of botanical carnivory has been known for nearly 150 years, its molecular mechanisms and evolutionary origins have not been well understood until recently. In the last decade, technical advances have fueled the genome and transcriptome sequencings of active and passive hunters, leading to a better understanding of the traits associated with the carnivorous syndrome, from trap leaf development and prey digestion to nutrient absorption, exemplified, for example, by the Venus flytrap (Dionaea muscipula), pitcher plant (Cephalotus follicularis), and bladderwort (Utricularia gibba). The repurposing of defense-related genes is an important trend in the evolution of plant carnivory. In this review, using the Venus flytrap as a representative of the carnivorous plants, we summarize the molecular mechanisms underlying their ability to attract, trap, and digest prey and discuss the origins of plant carnivory in relation to their genomic evolution.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany; ,
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany; ,
| |
Collapse
|
38
|
Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nat Commun 2021; 12:2802. [PMID: 33990563 PMCID: PMC8121817 DOI: 10.1038/s41467-021-23062-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022] Open
Abstract
Pacemaker hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels exhibit a reversed voltage-dependent gating, activating by membrane hyperpolarization instead of depolarization. Sea urchin HCN (spHCN) channels also undergo inactivation with hyperpolarization which occurs only in the absence of cyclic nucleotide. Here we applied transition metal ion FRET, patch-clamp fluorometry and Rosetta modeling to measure differences in the structural rearrangements between activation and inactivation of spHCN channels. We found that removing cAMP produced a largely rigid-body rotation of the C-linker relative to the transmembrane domain, bringing the A’ helix of the C-linker in close proximity to the voltage-sensing S4 helix. In addition, rotation of the C-linker was elicited by hyperpolarization in the absence but not the presence of cAMP. These results suggest that — in contrast to electromechanical coupling for channel activation — the A’ helix serves to couple the S4-helix movement for channel inactivation, which is likely a conserved mechanism for CNBD-family channels. Sea urchin hyperpolarization-activated cyclic nucleotide-gated (spHCN) ion channels channels are activated by membrane hyperpolarization instead of depolarization and undergo inactivation with hyperpolarization. Here authors apply transition metal ion FRET, patch-clamp fluorometry and Rosetta modeling to measure differences in the structural rearrangements between activation and inactivation of spHCN channels.
Collapse
|
39
|
Mironenko A, Zachariae U, de Groot BL, Kopec W. The Persistent Question of Potassium Channel Permeation Mechanisms. J Mol Biol 2021; 433:167002. [PMID: 33891905 DOI: 10.1016/j.jmb.2021.167002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/09/2023]
Abstract
Potassium channels play critical roles in many physiological processes, providing a selective permeation route for K+ ions in and out of a cell, by employing a carefully designed selectivity filter, evolutionarily conserved from viruses to mammals. The structure of the selectivity filter was determined at atomic resolution by x-ray crystallography, showing a tight coordination of desolvated K+ ions by the channel. However, the molecular mechanism of K+ ions permeation through potassium channels remains unclear, with structural, functional and computational studies often providing conflicting data and interpretations. In this review, we will present the proposed mechanisms, discuss their origins, and will critically assess them against all available data. General properties shared by all potassium channels are introduced first, followed by the introduction of two main mechanisms of ion permeation: soft and direct knock-on. Then, we will discuss critical computational and experimental studies that shaped the field. We will especially focus on molecular dynamics (MD) simulations, that provided mechanistic and energetic aspects of K+ permeation, but at the same time created long-standing controversies. Further challenges and possible solutions are presented as well.
Collapse
Affiliation(s)
- Andrei Mironenko
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
40
|
Abstract
Although antimicrobial resistance is an increasingly significant public health concern, there have only been two new classes of antibiotics approved for human use since the 1960s. Understanding the mechanisms of action of antibiotics is critical for novel antibiotic discovery, but novel approaches are needed that do not exclusively rely on experiments. Molecular dynamics simulation is a computational tool that uses simple models of the atoms in a system to discover nanoscale insights into the dynamic relationship between mechanism and biological function. Such insights can lay the framework for elucidating the mechanism of action and optimizing antibiotic templates. Antimicrobial peptides represent a promising solution to escalating antimicrobial resistance, given their lesser tendency to induce resistance than that of small-molecule antibiotics. Simulations of these agents have already revealed how they interact with bacterial membranes and the underlying physiochemical features directing their structure and function. In this minireview, we discuss how traditional molecular dynamics simulation works and its role and potential for the development of new antibiotic candidates with an emphasis on antimicrobial peptides.
Collapse
|
41
|
Bassetto CA, Carvalho-de-Souza JL, Bezanilla F. Molecular basis for functional connectivity between the voltage sensor and the selectivity filter gate in Shaker K + channels. eLife 2021; 10:63077. [PMID: 33620313 PMCID: PMC7943188 DOI: 10.7554/elife.63077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
In Shaker K+ channels, the S4-S5 linker couples the voltage sensor (VSD) and pore domain (PD). Another coupling mechanism is revealed using two W434F-containing channels: L361R:W434F and L366H:W434F. In L361R:W434F, W434F affects the L361R VSD seen as a shallower charge-voltage (Q-V) curve that crosses the conductance-voltage (G-V) curve. In L366H:W434F, L366H relieves the W434F effect converting a non-conductive channel in a conductive one. We report a chain of residues connecting the VSD (S4) to the selectivity filter (SF) in the PD of an adjacent subunit as the molecular basis for voltage sensor selectivity filter gate (VS-SF) coupling. Single alanine substitutions in this region (L409A, S411A, S412A, or F433A) are enough to disrupt the VS-SF coupling, shown by the absence of Q-V and G-V crossing in L361R:W434F mutant and by the lack of ionic conduction in the L366H:W434F mutant. This residue chain defines a new coupling between the VSD and the PD in voltage-gated channels.
Collapse
Affiliation(s)
- Carlos Az Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - João Luis Carvalho-de-Souza
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Department of Anesthesiology, University of Arizona, Tucson, United States
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States.,Centro Interdisciplinario de Neurociencias, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile
| |
Collapse
|
42
|
Tsai HH, Schmidt W. The enigma of environmental pH sensing in plants. NATURE PLANTS 2021; 7:106-115. [PMID: 33558755 DOI: 10.1038/s41477-020-00831-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Environmental pH is a critical parameter for innumerable chemical reactions, myriad biological processes and all forms of life. The mechanisms that underlie the perception of external pH (pHe) have been elucidated in detail for bacteria, fungi and mammalian cells; however, little information is available on whether and, if so, how pHe is perceived by plants. This is particularly surprising since hydrogen ion activity of the substrate is of paramount significance for plants, governing the availability of mineral nutrients, the structure of the soil microbiome and the composition of natural plant communities. Rapid changes in soil pH require constant readjustment of nutrient acquisition strategies, which is associated with dynamic alterations in gene expression. Referring to observations made in diverse experimental set-ups that unambiguously show that pHe per se affects gene expression, we hypothesize that sensing of pHe in plants is mandatory to prioritize responses to various simultaneously received environmental cues.
Collapse
Affiliation(s)
- Huei-Hsuan Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
43
|
Zhou Y, Assmann SM, Jegla T. External Cd2+ and protons activate the hyperpolarization-gated K+ channel KAT1 at the voltage sensor. J Gen Physiol 2021; 153:211573. [PMID: 33275659 PMCID: PMC7721907 DOI: 10.1085/jgp.202012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
The functionally diverse cyclic nucleotide binding domain (CNBD) superfamily of cation channels contains both depolarization-gated (e.g., metazoan EAG family K+ channels) and hyperpolarization-gated channels (e.g., metazoan HCN pacemaker cation channels and the plant K+ channel KAT1). In both types of CNBD channels, the S4 transmembrane helix of the voltage sensor domain (VSD) moves outward in response to depolarization. This movement opens depolarization-gated channels and closes hyperpolarization-gated channels. External divalent cations and protons prevent or slow movement of S4 by binding to a cluster of acidic charges on the S2 and S3 transmembrane domains of the VSD and therefore inhibit activation of EAG family channels. However, a similar divalent ion/proton binding pocket has not been described for hyperpolarization-gated CNBD family channels. We examined the effects of external Cd2+ and protons on Arabidopsisthaliana KAT1 expressed in Xenopus oocytes and found that these ions strongly potentiate voltage activation. Cd2+ at 300 µM depolarizes the V50 of KAT1 by 150 mV, while acidification from pH 7.0 to 4.0 depolarizes the V50 by 49 mV. Regulation of KAT1 by Cd2+ is state dependent and consistent with Cd2+ binding to an S4-down state of the VSD. Neutralization of a conserved acidic charge in the S2 helix in KAT1 (D95N) eliminates Cd2+ and pH sensitivity. Conversely, introduction of acidic residues into KAT1 at additional S2 and S3 cluster positions that are charged in EAG family channels (N99D and Q149E in KAT1) decreases Cd2+ sensitivity and increases proton potentiation. These results suggest that KAT1, and presumably other hyperpolarization-gated plant CNBD channels, can open from an S4-down VSD conformation homologous to the divalent/proton-inhibited conformation of EAG family K+ channels.
Collapse
Affiliation(s)
- Yunqing Zhou
- Department of Biology, Penn State University, University Park, PA.,Huck Institutes of the Life Sciences, Penn State University, University Park, PA
| | - Sarah M Assmann
- Department of Biology, Penn State University, University Park, PA
| | - Timothy Jegla
- Department of Biology, Penn State University, University Park, PA.,Huck Institutes of the Life Sciences, Penn State University, University Park, PA
| |
Collapse
|
44
|
Iosip AL, Böhm J, Scherzer S, Al-Rasheid KAS, Dreyer I, Schultz J, Becker D, Kreuzer I, Hedrich R. The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLoS Biol 2020; 18:e3000964. [PMID: 33296375 PMCID: PMC7725304 DOI: 10.1371/journal.pbio.3000964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
The carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D. muscipula’s trigger hair. Among the genes that were found to be highly specific to the trigger hair, the Shaker-type channel KDM1 was electrophysiologically characterized as a hyperpolarization- and acid-activated K+-selective channel, thus allowing the reuptake of K+ ions into the trigger hair’s sensory cells during the hyperpolarization phase of the AP. During trap development, the increased electrical excitability of the trigger hair is associated with the transcriptional induction of KDM1. Conversely, when KDM1 is blocked by Cs+ in adult traps, the initiation of APs in response to trigger hair deflection is reduced, and trap closure is suppressed. KDM1 thus plays a dominant role in K+ homeostasis in the context of AP and turgor formation underlying the mechanosensation of trigger hair cells and thus D. muscipula’s hapto-electric signaling. Transcriptomic and electrophysiological studies of the carnivorous Venus flytrap reveal that potassium uptake via a trigger hair-specific potassium channel builds the basis for mechanosensation of likely prey and generation of an action potential that triggers closure of the trap.
Collapse
Affiliation(s)
- Anda L. Iosip
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | | | - Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- * E-mail: (IK); (RH)
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- * E-mail: (IK); (RH)
| |
Collapse
|
45
|
Thompson MJ, Baenziger JE. Ion channels as lipid sensors: from structures to mechanisms. Nat Chem Biol 2020; 16:1331-1342. [PMID: 33199909 DOI: 10.1038/s41589-020-00693-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
Abstract
Ion channels play critical roles in cellular function by facilitating the flow of ions across the membrane in response to chemical or mechanical stimuli. Ion channels operate in a lipid bilayer, which can modulate or define their function. Recent technical advancements have led to the solution of numerous ion channel structures solubilized in detergent and/or reconstituted into lipid bilayers, thus providing unprecedented insight into the mechanisms underlying ion channel-lipid interactions. Here, we describe how ion channel structures have evolved to respond to both lipid modulators and lipid activators to control the electrical activities of cells, highlighting diverse mechanisms and common themes.
Collapse
Affiliation(s)
- Mackenzie J Thompson
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
46
|
Li S, Yang F, Sun D, Zhang Y, Zhang M, Liu S, Zhou P, Shi C, Zhang L, Tian C. Cryo-EM structure of the hyperpolarization-activated inwardly rectifying potassium channel KAT1 from Arabidopsis. Cell Res 2020; 30:1049-1052. [PMID: 32901112 PMCID: PMC7784887 DOI: 10.1038/s41422-020-00407-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Siyu Li
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan Yang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Demeng Sun
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yong Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengge Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sanling Liu
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Zhou
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230030, China
| | - Chaowei Shi
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Longhua Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Changlin Tian
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230030, China.
| |
Collapse
|