1
|
Luan M, Chen K, Zhao W, Tang M, Wang L, Liu S, Zhu L, Xie S. Selective Effect of DNA N6-Methyladenosine Modification on Transcriptional Genetic Variations in East Asian Samples. Int J Mol Sci 2024; 25:10400. [PMID: 39408729 PMCID: PMC11477068 DOI: 10.3390/ijms251910400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Genetic variations and DNA modification are two common dominant factors ubiquitous across the entire human genome and induce human disease, especially through static genetic variations in DNA or RNA that cause human genetic diseases. DNA N6-methyladenosine (6mA) methylation, as a new epigenetic modification mark, has been widely studied for regulatory biological processes in humans. However, the effect of DNA modification on dynamic transcriptional genetic variations from DNA to RNA has rarely been reported. Here, we identified DNA, RNA and transcriptional genetic variations from Illumina short-read sequencing data in East Asian samples (HX1 and AK1) and detected global DNA 6mA modification using single-molecule, real-time sequencing (SMRT) data. We decoded the effects of DNA 6mA modification on transcriptional genetic variations in East Asian samples and the results were extensively verified in the HeLa cell line. DNA 6mA modification had a stabilized distribution in the East Asian samples and the methylated genes were less likely to mutate than the non-methylated genes. For methylated genes, the 6mA density was positively correlated with the number of variations. DNA 6mA modification had a selective effect on transcriptional genetic variations from DNA to RNA, in which the dynamic transcriptional variations of heterozygous (0/1 to 0/1) and homozygous (1/1 to 1/1) were significantly affected by 6mA modification. The effect of DNA methylation on transcriptional genetic variations provides new insights into the influencing factors of DNA to RNA transcriptional regulation in the central doctrine of molecular biology.
Collapse
Affiliation(s)
- Meiwei Luan
- School of Basic Medicine, Harbin Medical University, Harbin 150081, China;
| | - Kaining Chen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China;
| | - Wenwen Zhao
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| | - Minqiang Tang
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| | - Lingxia Wang
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| | - Shoubai Liu
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| | - Linan Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA;
| | - Shangqian Xie
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| |
Collapse
|
2
|
Liang Z, Chen S, Li Y, Lai W, Wang H. Adenosine Deaminase-Like Gene-Carried Lentivirus Toolkit for Identification of DNA N 6-Methyladenine Origins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403376. [PMID: 39023073 PMCID: PMC11425204 DOI: 10.1002/advs.202403376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Post-replicative DNA N6-methyladenine (pr6mdA) can form via bona fide methylase-catalyzed adenine methylation, playing a pivotal role in embryonic development and other biological processes. Surprisingly, pre-methylated adenine can be erroneously incorporated into DNA as misincorporated N6-methyladenine (i6mdA) via DNA polymerase-mediated replication. Despite pr6mdA and i6mdA sharing identical chemical structures, their biological functions diverge significantly, presenting a substantial challenge in distinguishing between the two. Here, for the first-time, it is exploited that the adenosine deaminase-like (Adal) protein and a corresponding activity-null mutant to construct an Adal lentivirus toolkit. With this newly designed toolkit, both pr6mdA and i6mdA can be identified and quantified simultaneously. The presence of 6mdA in the bone marrow cells of mice is shown, with its levels serving as indicators for growth with age, probably reflecting the cellular stress-caused changes in RNA decay, nucleotide pool sanitation, and transcription. Collectively, a powerful toolkit to advance understanding of both pr6mdA and i6mdA is demonstrated.
Collapse
Affiliation(s)
- Ziyu Liang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shaokun Chen
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, P. R. China
| | - Yao Li
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiyi Lai
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, P. R. China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment and Health, Jianghan University, Wuhan, 430056, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
3
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
4
|
Hahn A, Hung GCC, Ahier A, Dai CY, Kirmes I, Forde BM, Campbell D, Lee RSY, Sucic J, Onraet T, Zuryn S. Misregulation of mitochondrial 6mA promotes the propagation of mutant mtDNA and causes aging in C. elegans. Cell Metab 2024:S1550-4131(24)00291-2. [PMID: 39173633 DOI: 10.1016/j.cmet.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
In virtually all eukaryotes, the mitochondrial DNA (mtDNA) encodes proteins necessary for oxidative phosphorylation (OXPHOS) and RNAs required for their synthesis. The mechanisms of regulation of mtDNA copy number and expression are not completely understood but crucially ensure the correct stoichiometric assembly of OXPHOS complexes from nuclear- and mtDNA-encoded subunits. Here, we detect adenosine N6-methylation (6mA) on the mtDNA of diverse animal and plant species. This modification is regulated in C. elegans by the DNA methyltransferase DAMT-1 and demethylase ALKB-1. Misregulation of mtDNA 6mA through targeted modulation of these activities inappropriately alters mtDNA copy number and transcript levels, impairing OXPHOS function, elevating oxidative stress, and shortening lifespan. Compounding these defects, mtDNA 6mA hypomethylation promotes the cross-generational propagation of a deleterious mtDNA. Together, these results reveal that mtDNA 6mA is highly conserved among eukaryotes and regulates lifespan by influencing mtDNA copy number, expression, and heritable mutation levels in vivo.
Collapse
Affiliation(s)
- Anne Hahn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Grace Ching Ching Hung
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuan-Yang Dai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ina Kirmes
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brian M Forde
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel Shin Yie Lee
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josiah Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Zhang L, Mu Y, Li T, Hu J, Lin H, Zhang L. Molecular basis of an atypical dsDNA 5mC/6mA bifunctional dioxygenase CcTet from Coprinopsis cinerea in catalyzing dsDNA 5mC demethylation. Nucleic Acids Res 2024; 52:3886-3895. [PMID: 38324471 PMCID: PMC11040006 DOI: 10.1093/nar/gkae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
The eukaryotic epigenetic modifications 5-methyldeoxycytosine (5mC) and N6-methyldeoxyadenine (6mA) have indispensable regulatory roles in gene expression and embryonic development. We recently identified an atypical bifunctional dioxygenase CcTet from Coprinopsis cinerea that works on both 5mC and 6mA demethylation. The nonconserved residues Gly331 and Asp337 of CcTet facilitate 6mA accommodation, while D337F unexpectedly abolishes 5mC oxidation activity without interfering 6mA demethylation, indicating a prominent distinct but unclear 5mC oxidation mechanism to the conventional Tet enzymes. Here, we assessed the molecular mechanism of CcTet in catalyzing 5mC oxidation by representing the crystal structure of CcTet-5mC-dsDNA complex. We identified the distinct mechanism by which CcTet recognizes 5mC-dsDNA compared to 6mA-dsDNA substrate. Moreover, Asp337 was found to have a central role in compensating for the loss of a critical 5mC-stablizing H-bond observed in conventional Tet enzymes, and stabilizes 5mC and subsequent intermediates through an H-bond with the N4 atom of the substrates. These findings improve our understanding of Tet enzyme functions in the dsDNA 5mC and 6mA demethylation pathways, and provide useful information for future discovery of small molecular probes targeting Tet enzymes in DNA active demethylation processes.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Li
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Meng WY, Wang ZX, Zhang Y, Hou Y, Xue JH. Epigenetic marks or not? The discovery of novel DNA modifications in eukaryotes. J Biol Chem 2024; 300:106791. [PMID: 38403247 PMCID: PMC11065753 DOI: 10.1016/j.jbc.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/27/2024] Open
Abstract
DNA modifications add another layer of complexity to the eukaryotic genome to regulate gene expression, playing critical roles as epigenetic marks. In eukaryotes, the study of DNA epigenetic modifications has been confined to 5mC and its derivatives for decades. However, rapid developing approaches have witnessed the expansion of DNA modification reservoirs during the past several years, including the identification of 6mA, 5gmC, 4mC, and 4acC in diverse organisms. However, whether these DNA modifications function as epigenetic marks requires careful consideration. In this review, we try to present a panorama of all the DNA epigenetic modifications in eukaryotes, emphasizing recent breakthroughs in the identification of novel DNA modifications. The characterization of their roles in transcriptional regulation as potential epigenetic marks is summarized. More importantly, the pathways for generating or eliminating these DNA modifications, as well as the proteins involved are comprehensively dissected. Furthermore, we briefly discuss the potential challenges and perspectives, which should be taken into account while investigating novel DNA modifications.
Collapse
Affiliation(s)
- Wei-Ying Meng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zi-Xin Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jian-Huang Xue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Zhang L, Duan HC, Paduch M, Hu J, Zhang C, Mu Y, Lin H, He C, Kossiakoff AA, Jia G, Zhang L. The Molecular Basis of Human ALKBH3 Mediated RNA N 1 -methyladenosine (m 1 A) Demethylation. Angew Chem Int Ed Engl 2024; 63:e202313900. [PMID: 38158383 DOI: 10.1002/anie.202313900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
N1 -methyladenosine (m1 A) is a prevalent post-transcriptional RNA modification, and the distribution and dynamics of the modification play key epitranscriptomic roles in cell development. At present, the human AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family member ALKBH3 is the only known mRNA m1 A demethylase, but its catalytic mechanism remains unclear. Here, we present the structures of ALKBH3-oligo crosslinked complexes obtained with the assistance of a synthetic antibody crystallization chaperone. Structural and biochemical results showed that ALKBH3 utilized two β-hairpins (β4-loop-β5 and β'-loop-β'') and the α2 helix to facilitate single-stranded substrate binding. Moreover, a bubble-like region around Asp194 and a key residue inside the active pocket (Thr133) enabled specific recognition and demethylation of m1 A- and 3-methylcytidine (m3 C)-modified substrates. Mutation of Thr133 to the corresponding residue in the AlkB Fe(II)/α-ketoglutarate-dependent dioxygenase family members FTO or ALKBH5 converted ALKBH3 substrate selectivity from m1 A to N6 -methyladenosine (m6 A), as did Asp194 deletion. Our findings provide a molecular basis for understanding the mechanisms of substrate recognition and m1 A demethylation by ALKBH3. This study is expected to aid structure-guided design of chemical probes for further functional studies and therapeutic applications.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hong-Chao Duan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Marcin Paduch
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chi Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
8
|
Feng X, Cui X, Zhang LS, Ye C, Wang P, Zhong Y, Wu T, Zheng Z, He C. Sequencing of N 6-methyl-deoxyadenosine at single-base resolution across the mammalian genome. Mol Cell 2024; 84:596-610.e6. [PMID: 38215754 PMCID: PMC10872247 DOI: 10.1016/j.molcel.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/25/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Although DNA N6-methyl-deoxyadenosine (6mA) is abundant in bacteria and protists, its presence and function in mammalian genomes have been less clear. We present Direct-Read 6mA sequencing (DR-6mA-seq), an antibody-independent method, to measure 6mA at base resolution. DR-6mA-seq employs a unique mutation-based strategy to reveal 6mA sites as misincorporation signatures without any chemical or enzymatic modulation of 6mA. We validated DR-6mA-seq through the successful mapping of the well-characterized G(6mA)TC motif in the E. coli DNA. As expected, when applying DR-6mA-seq to mammalian systems, we found that genomic DNA (gDNA) 6mA abundance is generally low in most mammalian tissues and cells; however, we did observe distinct gDNA 6mA sites in mouse testis and glioblastoma cells. DR-6mA-seq provides an enabling tool to detect 6mA at single-base resolution for a comprehensive understanding of DNA 6mA in eukaryotes.
Collapse
Affiliation(s)
- Xinran Feng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Xiaolong Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA; Department of Chemistry, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chang Ye
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yuhao Zhong
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Zhong Zheng
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Zhou HM, Xu HJ, Sun RH, Zhang M, Li XT, Zhao YX, Yang K, Wei R, Liu Q, Li S, Xue Z, Hao LY, Yang L, Wang QH, Wang HJ, Gao F, Cao JL, Pan Z. DNA N6-methyladenine methylase N6AMT1 controls neuropathic pain through epigenetically modifying Kcnj16 in dorsal horn neurons. Pain 2024; 165:75-91. [PMID: 37624905 DOI: 10.1097/j.pain.0000000000002986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/31/2023] [Indexed: 08/27/2023]
Abstract
ABSTRACT Nerve injury-induced aberrant changes in gene expression in spinal dorsal horn neurons are critical for the genesis of neuropathic pain. N6-methyladenine (m 6 A) modification of DNA represents an additional layer of gene regulation. Here, we report that peripheral nerve injury significantly decreased the level of m 6 A-specific DNA methyltransferase 1 ( N6amt1 ) in dorsal horn neurons. This decrease was attributed, at least partly, to a reduction in transcription factor Nr2f6 . Rescuing the decrease in N6amt1 reversed the loss of m 6 A at the promoter for inwardly rectifying potassium channel subfamily J member 16 ( Kcnj16 ), mitigating the nerve injury-induced upregulation of Kcnj16 expression in the dorsal horn and alleviating neuropathic pain hypersensitivities. Conversely, mimicking the downregulation of N6amt1 in naive mice erased DNA m 6 A at the Kcnj16 promoter, elevated Kcnj16 expression, and led to neuropathic pain-like behaviors. Therefore, decreased N6amt1 caused by NR2F6 is required for neuropathic pain, likely through its regulation of m 6 A-controlled KCNJ16 in dorsal horn neurons, suggesting that DNA m 6 A modification may be a potential new target for analgesic and treatment strategies.
Collapse
Affiliation(s)
- Hui-Min Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Heng-Jun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Run-Hang Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Tong Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ya-Xuan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Siyuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhouya Xue
- Department of Anesthesiology, Yancheng Affiliated Hospital of Xuzhou Medical University, Yancheng, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Fang Gao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Zhang J, Peng Q, Ma C, Wang J, Xiao C, Li T, Liu X, Zhou L, Xu X, Zhou WZ, Ding W, An NA, Zhang L, Liu Y, Li CY. 6mA-Sniper: Quantifying 6mA sites in eukaryotes at single-nucleotide resolution. SCIENCE ADVANCES 2023; 9:eadh7912. [PMID: 37862411 PMCID: PMC10588941 DOI: 10.1126/sciadv.adh7912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023]
Abstract
While N6-methyldeoxyadenine (6mA) modification is a fundamental regulation in prokaryotes, its prevalence and functions in eukaryotes are controversial. Here, we report 6mA-Sniper to quantify 6mA sites in eukaryotes at single-nucleotide resolution, and delineate a 6mA profile in Caenorhabditis elegans with 2034 sites. Twenty-six of 39 events with Mnl I restriction endonuclease sites were verified, demonstrating the feasibility of this method. The levels of 6mA sites pinpointed by 6mA-Sniper are generally increased after Pseudomonas aeruginosa infection, but decreased in strains with the removal of METL-9, the dominant 6mA methyltransferase. The enrichment of these sites on specific motif of [GC]GAG, the selective constrains on them, and their coordinated changes with METL-9 levels thus support an active shaping of the 6mA profile by methyltransferase. Moreover, for regions marked by 6mA sites that emerged after infection, an enrichment of up-regulated genes was detected, possibly mediated through a mutual exclusive cross-talk between 6mA and H3K27me3 modification. We thus highlight 6mA regulation as a previously neglected regulator in eukaryotes.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Qi Peng
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Chengchuan Ma
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Liankui Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Bioinformatics Core, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Ni A. An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
11
|
Zhang T, Yu B, Cai Z, Jiang Q, Fu X, Zhao W, Wang H, Gu Y, Zhang J. Regulatory role of N 6-methyladenosine in intramuscular fat deposition in chicken. Poult Sci 2023; 102:102972. [PMID: 37573849 PMCID: PMC10448335 DOI: 10.1016/j.psj.2023.102972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023] Open
Abstract
Intramuscular fat (IMF) has a pivotal influence on meat quality, with its deposition being a multifaceted physiological interaction of several regulatory factors. N6-methyladenosine (m6A), the preeminent epigenetic alteration among eukaryotic RNA modifications, holds a crucial role in moderating post-transcriptional gene expression. However, there is a dearth of comprehensive understanding regarding the functional machinery of m6A modification in the context of IMF deposition in poultry. Our current study entails an analysis of the disparities in IMF within the breast and leg of 180-day-old Jingyuan chickens. We implemented methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to delve into the distribution of m6A and its putative regulatory frameworks on IMF deposition in chickens. The findings demonstrated a markedly higher IMF content in leg relative to breast (P < 0.01). Furthermore, the expression of METTL14, WTAP, FTO, and ALKBH5 was significantly diminished in comparison to that of breast (P < 0.01). The m6A peaks in the breast and leg primarily populated 3'untranslated regions (3'UTR) and coding sequence (CDS) regions. The leg, when juxtaposed with the breast, manifested 176 differentially methylated genes (DMGs), including 151 hyper-methylated DMGs and 25 hypo-methylated DMGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed a pronounced enrichment of DMGs in the biosynthesis of amino acids, peroxisome, Fatty acid biosynthesis, fatty acid elongation, and cell adhesion molecules (CAMs) pathways. Key DMGs, namely ECH1, BCAT1, and CYP1B1 were implicated in the regulation of muscle lipid anabolism. Our study offers substantial insight and forms a robust foundation for further exploration of the functional mechanisms of m6A modification in modulating IMF deposition. This holds profound theoretical importance for improving and leveraging meat quality in indigenous chicken breeds.
Collapse
Affiliation(s)
- Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qiufei Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xi Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
12
|
Jia Q, Zhang X, Liu Q, Li J, Wang W, Ma X, Zhu B, Li S, Gong S, Tian J, Yuan M, Zhao Y, Zhou DX. A DNA adenine demethylase impairs PRC2-mediated repression of genes marked by a specific chromatin signature. Genome Biol 2023; 24:198. [PMID: 37649077 PMCID: PMC10469495 DOI: 10.1186/s13059-023-03042-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The Fe (II)- and α-ketoglutarate-dependent AlkB family dioxygenases are implicated in nucleotide demethylation. AlkB homolog1 (ALKBH1) is shown to demethylate DNA adenine methylation (6mA) preferentially from single-stranded or unpaired DNA, while its demethylase activity and function in the chromatin context are unclear. RESULTS Here, we find that loss-of-function of the rice ALKBH1 gene leads to increased 6mA in the R-loop regions of the genome but has a limited effect on the overall 6mA level. However, in the context of mixed tissues, rather than on individual loci, the ALKBH1 mutation or overexpression mainly affects the expression of genes with a specific combination of chromatin modifications in the body region marked with H3K4me3 and H3K27me3 but depleted of DNA CG methylation. In the similar context of mixed tissues, further analysis reveals that the ALKBH1 protein preferentially binds to genes marked by the chromatin signature and has a function to maintain a high H3K4me3/H3K27me3 ratio by impairing the binding of Polycomb repressive complex 2 (PRC2) to the targets, which is required for both the basal and stress-induced expression of the genes. CONCLUSION Our findings unravel a function of ALKBH1 to control the balance between the antagonistic histone methylations for gene activity and provide insight into the regulatory mechanism of PRC2-mediated H3K27me3 deposition within the gene body region.
Collapse
Affiliation(s)
- Qingxiao Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shicheng Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
13
|
Hamashima K, Wong KW, Sam TW, Teo JHJ, Taneja R, Le MTN, Li QJ, Hanna JH, Li H, Loh YH. Single-nucleus multiomic mapping of m 6A methylomes and transcriptomes in native populations of cells with sn-m6A-CT. Mol Cell 2023; 83:S1097-2765(23)00649-4. [PMID: 37657444 PMCID: PMC10895704 DOI: 10.1016/j.molcel.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
N6-methyladenosine (m6A) RNA modification plays important roles in the governance of gene expression and is temporally regulated in different cell states. In contrast to global m6A profiling in bulk sequencing, single-cell technologies for analyzing m6A heterogeneity are not extensively established. Here, we developed single-nucleus m6A-CUT&Tag (sn-m6A-CT) for simultaneous profiling of m6A methylomes and transcriptomes within a single nucleus using mouse embryonic stem cells (mESCs). m6A-CT is capable of enriching m6A-marked RNA molecules in situ, without isolating RNAs from cells. We adapted m6A-CT to the droplet-based single-cell omics platform and demonstrated high-throughput performance in analyzing nuclei isolated from thousands of cells from various cell types. We show that sn-m6A-CT profiling is sufficient to determine cell identity and allows the generation of cell-type-specific m6A methylome landscapes from heterogeneous populations. These indicate that sn-m6A-CT provides additional dimensions to multimodal datasets and insights into epitranscriptomic landscape in defining cell fate identity and states.
Collapse
Affiliation(s)
- Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Ka Wai Wong
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Tsz Wing Sam
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
| | - Jia Hao Jackie Teo
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Reshma Taneja
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Immunology Program, Cancer Program, and Nanomedicine Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore, Singapore.
| |
Collapse
|
14
|
Ma C, Xue T, Peng Q, Zhang J, Guan J, Ding W, Li Y, Xia P, Zhou L, Zhao T, Wang S, Quan L, Li CY, Liu Y. A novel N 6-Deoxyadenine methyltransferase METL-9 modulates C. elegans immunity via dichotomous mechanisms. Cell Res 2023; 33:628-639. [PMID: 37271765 PMCID: PMC10397248 DOI: 10.1038/s41422-023-00826-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
N6-Methyldeoxyadenine (6mA) has been rediscovered as a DNA modification with potential biological function in metazoans. However, the physiological function and regulatory mechanisms regarding the establishment, maintenance and removal of 6mA in eukaryotes are still poorly understood. Here we show that genomic 6mA levels change in response to pathogenic infection in Caenorhabditis elegans (C. elegans). We further identify METL-9 as the methyltransferase that catalyzes DNA 6mA modifications upon pathogen infection. Deficiency of METL-9 impairs the induction of innate immune response genes and renders the animals more susceptible to pathogen infection. Interestingly, METL-9 functions through both 6mA-dependent and -independent mechanisms to transcriptionally regulate innate immunity. Our findings reveal that 6mA is a functional DNA modification in immunomodulation in C. elegans.
Collapse
Affiliation(s)
- Chengchuan Ma
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
- Research Center for Stem Cell and Regenerative Medicine, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China.
| | - Tingling Xue
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qi Peng
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jialiang Guan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- PKU-Tsinghua-NIBS Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yi Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peixue Xia
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Liankui Zhou
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tianyu Zhao
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, China
| | - Li Quan
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Ying Liu
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, China.
| |
Collapse
|
15
|
Zhou J, Horton JR, Kaur G, Chen Q, Li X, Mendoza F, Wu T, Blumenthal RM, Zhang X, Cheng X. Biochemical and structural characterization of the first-discovered metazoan DNA cytosine-N4 methyltransferase from the bdelloid rotifer Adineta vaga. J Biol Chem 2023; 299:105017. [PMID: 37414145 PMCID: PMC10406627 DOI: 10.1016/j.jbc.2023.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Much is known about the generation, removal, and roles of 5-methylcytosine (5mC) in eukaryote DNA, and there is a growing body of evidence regarding N6-methyladenine, but very little is known about N4-methylcytosine (4mC) in the DNA of eukaryotes. The gene for the first metazoan DNA methyltransferase generating 4mC (N4CMT) was reported and characterized recently by others, in tiny freshwater invertebrates called bdelloid rotifers. Bdelloid rotifers are ancient, apparently asexual animals, and lack canonical 5mC DNA methyltransferases. Here, we characterize the kinetic properties and structural features of the catalytic domain of the N4CMT protein from the bdelloid rotifer Adineta vaga. We find that N4CMT generates high-level methylation at preferred sites, (a/c)CG(t/c/a), and low-level methylation at disfavored sites, exemplified by ACGG. Like the mammalian de novo 5mC DNA methyltransferase 3A/3B (DNMT3A/3B), N4CMT methylates CpG dinucleotides on both DNA strands, generating hemimethylated intermediates and eventually fully methylated CpG sites, particularly in the context of favored symmetric sites. In addition, like DNMT3A/3B, N4CMT methylates non-CpG sites, mainly CpA/TpG, though at a lower rate. Both N4CMT and DNMT3A/3B even prefer similar CpG-flanking sequences. Structurally, the catalytic domain of N4CMT closely resembles the Caulobacter crescentus cell cycle-regulated DNA methyltransferase. The symmetric methylation of CpG, and similarity to a cell cycle-regulated DNA methyltransferase, together suggest that N4CMT might also carry out DNA synthesis-dependent methylation following DNA replication.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuwen Li
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fabian Mendoza
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tao Wu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
16
|
Wang B, Ji L, Bian Q. SATB1 regulates 3D genome architecture in T cells by constraining chromatin interactions surrounding CTCF-binding sites. Cell Rep 2023; 42:112323. [PMID: 37000624 DOI: 10.1016/j.celrep.2023.112323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
Special AT-rich sequence binding protein 1 (SATB1) has long been proposed to act as a global chromatin loop organizer in T cells. However, the exact functions of SATB1 in spatial genome organization remain elusive. Here we show that the depletion of SATB1 in human and murine T cells leads to transcriptional dysregulation for genes involved in T cell activation, as well as alterations of 3D genome architecture at multiple levels, including compartments, topologically associating domains, and loops. Importantly, SATB1 extensively colocalizes with CTCF throughout the genome. Depletion of SATB1 leads to increased chromatin contacts among and across the SATB1/CTCF co-occupied sites, thereby affecting the transcription of critical regulators of T cell activation. The loss of SATB1 does not affect CTCF occupancy but significantly reduces the retention of CTCF in the nuclear matrix. Collectively, our data show that SATB1 contributes to 3D genome organization by constraining chromatin topology surrounding CTCF-binding sites.
Collapse
Affiliation(s)
- Bao Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Luzhang Ji
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China; Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
17
|
Debo BM, Mallory BJ, Stergachis AB. Evaluation of N 6-methyldeoxyadenosine antibody-based genomic profiling in eukaryotes. Genome Res 2023; 33:427-434. [PMID: 36788024 PMCID: PMC10078290 DOI: 10.1101/gr.276696.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Low-level DNA N 6-methyldeoxyadenosine (DNA-m6A) has recently been reported across various eukaryotes. Although anti-m6A antibody-based approaches are commonly used to measure DNA-m6A levels, this approach is known to be confounded by DNA secondary structures, RNA contamination, and bacterial contamination. To evaluate for these confounding features, we introduce an approach for systematically validating the selectivity of antibody-based DNA-m6A methods and use a highly selective anti-DNA-m6A antibody to reexamine patterns of DNA-m6A in C. reinhardtii, A. thaliana, and D. melanogaster Our findings raise caution about the use of antibody-based methods for endogenous m6A quantification and mapping in eukaryotes.
Collapse
Affiliation(s)
- Brian M Debo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin J Mallory
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Andrew B Stergachis
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA;
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington 98195-7720, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Feng X, He C. Mammalian DNA N 6-methyladenosine: Challenges and new insights. Mol Cell 2023; 83:343-351. [PMID: 36736309 PMCID: PMC10182828 DOI: 10.1016/j.molcel.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
DNA N6-methyldeoxyadenosine (6mA) modification was first discovered in Bacterium coli in the 1950s. Over the next several decades, 6mA was recognized as a critical DNA modification in the genomes of prokaryotes and protists. While important in prokaryotes, less is known about the presence and functional roles of DNA 6mA in eukaryotes, particularly in mammals. Taking advantage of recent technology advances that made 6mA detection and sequencing possible, studies over the past several years have brought new insights into 6mA biology in mammals. In this perspective, we present recent progress, discuss challenges, and pose four questions for future research regarding mammalian DNA 6mA.
Collapse
Affiliation(s)
- Xinran Feng
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Broche J, Köhler AR, Kühnel F, Osteresch B, Chandrasekaran TT, Adam S, Brockmeyer J, Jeltsch A. Genome-wide deposition of 6-methyladenine in human DNA reduces the viability of HEK293 cells and directly influences gene expression. Commun Biol 2023; 6:138. [PMID: 36732350 PMCID: PMC9895073 DOI: 10.1038/s42003-023-04466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
While cytosine-C5 methylation of DNA is an essential regulatory system in higher eukaryotes, the presence and relevance of 6-methyladenine (m6dA) in human cells is controversial. To study the role of m6dA in human DNA, we introduced it in human cells at a genome-wide scale at GANTC and GATC sites by expression of bacterial DNA methyltransferases and observed concomitant reductions in cell viability, in particular after global GANTC methylation. We identified several genes that are directly regulated by m6dA in a GANTC context. Upregulated genes showed m6dA-dependent reduction of H3K27me3 suggesting that the PRC2 complex is inhibited by m6dA. Genes downregulated by m6dA showed enrichment of JUN family transcription factor binding sites. JUN binds m6dA containing DNA with reduced affinity suggesting that m6dA can reduce the recruitment of JUN transcription factors to target genes. Our study documents that global introduction of m6dA in human DNA has physiological effects. Furthermore, we identified a set of target genes which are directly regulated by m6dA in human cells, and we defined two molecular pathways with opposing effects by which artificially introduced m6dA in GANTC motifs can directly control gene expression and phenotypes of human cells.
Collapse
Affiliation(s)
- Julian Broche
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstr. 7, 72076, Tübingen, Germany
| | - Anja R Köhler
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Fiona Kühnel
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bernd Osteresch
- Institute of Biochemistry and Technical Biochemistry, Department of Food Chemistry, University of Stuttgart, Allmandring 5b, 70569, Stuttgart, Germany
| | - Thyagarajan T Chandrasekaran
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sabrina Adam
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jens Brockmeyer
- Institute of Biochemistry and Technical Biochemistry, Department of Food Chemistry, University of Stuttgart, Allmandring 5b, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
20
|
Structural insights into DNA N 6-adenine methylation by the MTA1 complex. Cell Discov 2023; 9:8. [PMID: 36658132 PMCID: PMC9852454 DOI: 10.1038/s41421-022-00516-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
N6-methyldeoxyadenine (6mA) has recently been reported as a prevalent DNA modification in eukaryotes. The Tetrahymena thermophila MTA1 complex consisting of four subunits, namely MTA1, MTA9, p1, and p2, is the first identified eukaryotic 6mA methyltransferase (MTase) complex. Unlike the prokaryotic 6mA MTases which have been biochemically and structurally characterized, the operation mode of the MTA1 complex remains largely elusive. Here, we report the cryogenic electron microscopy structures of the quaternary MTA1 complex in S-adenosyl methionine (SAM)-bound (2.6 Å) and S-adenosyl homocysteine (SAH)-bound (2.8 Å) states. Using an AI-empowered integrative approach based on AlphaFold prediction and chemical cross-linking mass spectrometry, we further modeled a near-complete structure of the quaternary complex. Coupled with biochemical characterization, we revealed that MTA1 serves as the catalytic core, MTA1, MTA9, and p1 likely accommodate the substrate DNA, and p2 may facilitate the stabilization of MTA1. These results together offer insights into the molecular mechanism underpinning methylation by the MTA1 complex and the potential diversification of MTases for N6-adenine methylation.
Collapse
|
21
|
Tsukiyama S, Hasan MM, Kurata H. CNN6mA: Interpretable neural network model based on position-specific CNN and cross-interactive network for 6mA site prediction. Comput Struct Biotechnol J 2022; 21:644-654. [PMID: 36659917 PMCID: PMC9826936 DOI: 10.1016/j.csbj.2022.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
N6-methyladenine (6mA) plays a critical role in various epigenetic processing including DNA replication, DNA repair, silencing, transcription, and diseases such as cancer. To understand such epigenetic mechanisms, 6 mA has been detected by high-throughput technologies on a genome-wide scale at single-base resolution, together with conventional methods such as immunoprecipitation, mass spectrometry and capillary electrophoresis, but these experimental approaches are time-consuming and laborious. To complement these problems, we have developed a CNN-based 6 mA site predictor, named CNN6mA, which proposed two new architectures: a position-specific 1-D convolutional layer and a cross-interactive network. In the position-specific 1-D convolutional layer, position-specific filters with different window sizes were applied to an inquiry sequence instead of sharing the same filters over all positions in order to extract the position-specific features at different levels. The cross-interactive network explored the relationships between all the nucleotide patterns within the inquiry sequence. Consequently, CNN6mA outperformed the existing state-of-the-art models in many species and created the contribution score vector that intelligibly interpret the prediction mechanism. The source codes and web application in CNN6mA are freely accessible at https://github.com/kuratahiroyuki/CNN6mA.git and http://kurata35.bio.kyutech.ac.jp/CNN6mA/, respectively.
Collapse
Key Words
- 6mA, N6-methyladenine
- AUCs, Area under the curves
- BERT, Bidirectional Encoder Representations from Transformers
- CNN
- CNN, Convolutional neural network
- DNA modification
- Deep learning
- Interpretable prediction
- LSTM, Long short-term memory
- MCC, Matthews correlation coefficient
- Machine learning
- N6-methyladenine
- RF, Random forest
- SMRT, Single-molecule real-time
- SN, Sensitivity
- SP, Specificity
- UMAP, Uniform manifold approximation and projection
- t-SNE, t-distributed stochastic neighbor embedding
Collapse
Affiliation(s)
- Sho Tsukiyama
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680–4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Md Mehedi Hasan
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680–4 Kawazu, Iizuka, Fukuoka 820-8502, Japan,Corresponding author.
| |
Collapse
|
22
|
Chromatin organizer SATB1 controls the cell identity of CD4 + CD8 + double-positive thymocytes by regulating the activity of super-enhancers. Nat Commun 2022; 13:5554. [PMID: 36138028 PMCID: PMC9500044 DOI: 10.1038/s41467-022-33333-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
CD4+ and CD8+ double-positive (DP) thymocytes play a crucial role in T cell development in the thymus. DP cells rearrange the T cell receptor gene Tcra to generate T cell receptors with TCRβ. DP cells differentiate into CD4 or CD8 single-positive (SP) thymocytes, regulatory T cells, or invariant nature kill T cells (iNKT) in response to TCR signaling. Chromatin organizer SATB1 is highly expressed in DP cells and is essential in regulating Tcra rearrangement and differentiation of DP cells. Here we explored the mechanism of SATB1 orchestrating gene expression in DP cells. Single-cell RNA sequencing shows that Satb1 deletion changes the cell identity of DP thymocytes and down-regulates genes specifically and highly expressed in DP cells. Super-enhancers regulate the expressions of DP-specific genes, and our Hi-C data show that SATB1 deficiency in thymocytes reduces super-enhancer activity by specifically decreasing interactions among super-enhancers and between super-enhancers and promoters. Our results reveal that SATB1 plays a critical role in thymocyte development to promote the establishment of DP cell identity by globally regulating super-enhancers of DP cells at the chromatin architectural level.
Collapse
|
23
|
Luo L, Liu Y, Nizigiyimana P, Ye M, Xiao Y, Guo Q, Su T, Luo X, Huang Y, Zhou H. DNA 6mA Demethylase ALKBH1 Orchestrates Fatty Acid Metabolism and Suppresses Diet-Induced Hepatic Steatosis. Cell Mol Gastroenterol Hepatol 2022; 14:1213-1233. [PMID: 36058506 PMCID: PMC9579408 DOI: 10.1016/j.jcmgh.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver-related morbidity and mortality whereas the pathogenic mechanism remains largely elusive. DNA N6-methyladenosine (6mA) modification is a recently identified epigenetic mark indicative of transcription in eukaryotic genomes. Here, we aimed to investigate the role and mechanism of DNA 6mA modification in NAFLD progression. METHODS Dot blot and immunohistochemistry were used to detect DNA 6mA levels. Liver-specific AlkB homolog 1 (ALKBH1)-knockout mice and mice with ALKBH1 overexpression in liver were subjected to a high-fat diet or methionine choline-deficient diet to evaluate the critical role of ALKBH1-demethylated DNA 6mA modification in the pathogenesis of hepatic steatosis during NAFLD. RNA sequencing and chromatin immunoprecipitation sequencing were performed to investigate molecular mechanisms underlying this process. RESULTS The DNA 6mA level was increased significantly with hepatic steatosis, while ALKBH1 expression was down-regulated markedly in both mouse and human fatty liver. Deletion of ALKBH1 in hepatocytes increased genomic 6mA levels and accelerated diet-induced hepatic steatosis and metabolic dysfunction. Comprehensive analyses of transcriptome and chromatin immunoprecipitation sequencing data indicated that ALKBH1 directly bound to and exclusively demethylated 6mA levels of genes involved in fatty acid uptake and lipogenesis, leading to reduced hepatic lipid accumulation. Importantly, ALKBH1 overexpression was sufficient to suppress lipid uptake and synthesis, and alleviated diet-induced hepatic steatosis and insulin resistance. CONCLUSIONS Our findings show an indispensable role of ALKBH1 as an epigenetic suppressor of DNA 6mA in hepatic fatty acid metabolism and offer a potential therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
- Liping Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Paul Nizigiyimana
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingsheng Ye
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China,Correspondence Address correspondence to: Haiyan Zhou, PhD, Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, No 87, Xiangya Road, Changsha, Hunan Province 410008, China.
| |
Collapse
|
24
|
Durmus S, Gelisgen R, Uzun H. DNA Methylation Biomarkers in Cancer: Current Clinical Utility and Future Perspectives. Biomark Med 2022. [DOI: 10.2174/9789815040463122010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigenetic alterations are related to inherited but reversible changes in
modifications that regulate gene activity beyond the DNA sequence. DNA methylation
is the best characterized epigenetic modification, controlling DNA stability, DNA
structure, transcription, and regulation, contributing to normal development and
differentiation. In this section, we first discuss the cellular functions of DNA
methylation and focus on how this fundamental biological process is impaired in
cancer. Changes in DNA methylation status in cancer have been heralded as promising
targets for the development of diagnostic, prognostic, and predictive biomarkers due to
their noninvasive accessibility in bodily fluids (such as blood, urine, stool),
reversibility, stability, and frequency. The absence of markers for definitive diagnosis
of most types of cancer and, in some cases, DNA methylation biomarkers being more
specific and sensitive than commonly used protein biomarkers indicate a strong need
for continued research to expand DNA methylation markers. Although the information
on changes in DNA methylation status in cancer and research on its clinical relevance
is rapidly increasing, the number of DNA methylation biomarkers currently available
as commercial tests is very small. Here, we focus on the importance of DNA
methylation location and target genes likely to be developed in the future for the
development of biomarkers in addition to existing commercial tests. Following a
detailed study of possible target genes, we summarize the current clinical application
status of the most studied and validated DNA methylation biomarkers, including
SEPT9, SDC2, BMP3, NDRG4, SFRP2, TFPI2, VIM and MGMT.
Collapse
Affiliation(s)
- Sinem Durmus
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Remise Gelisgen
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul,Turkey
| |
Collapse
|
25
|
Li H, Zhang N, Wang Y, Xia S, Zhu Y, Xing C, Tian X, Du Y. DNA N6-Methyladenine Modification in Eukaryotic Genome. Front Genet 2022; 13:914404. [PMID: 35812743 PMCID: PMC9263368 DOI: 10.3389/fgene.2022.914404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is treated as an important epigenetic mark in various biological activities. In the past, a large number of articles focused on 5 mC while lacking attention to N6-methyladenine (6 mA). The presence of 6 mA modification was previously discovered only in prokaryotes. Recently, with the development of detection technologies, 6 mA has been found in several eukaryotes, including protozoans, metazoans, plants, and fungi. The importance of 6 mA in prokaryotes and single-celled eukaryotes has been widely accepted. However, due to the incredibly low density of 6 mA and restrictions on detection technologies, the prevalence of 6 mA and its role in biological processes in eukaryotic organisms are highly debated. In this review, we first summarize the advantages and disadvantages of 6 mA detection methods. Then, we conclude existing reports on the prevalence of 6 mA in eukaryotic organisms. Next, we highlight possible methyltransferases, demethylases, and the recognition proteins of 6 mA. In addition, we summarize the functions of 6 mA in eukaryotes. Last but not least, we summarize our point of view and put forward the problems that need further research.
Collapse
Affiliation(s)
- Hao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yating Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Xing
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xuefeng Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du,
| |
Collapse
|
26
|
A fungal dioxygenase CcTet serves as a eukaryotic 6mA demethylase on duplex DNA. Nat Chem Biol 2022; 18:733-741. [PMID: 35654845 DOI: 10.1038/s41589-022-01041-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
N6-methyladenosine (6mA) is a DNA modification that has recently been found to play regulatory roles during mammalian early embryo development and mitochondrial transcription. We found that a dioxygenase CcTet from the fungus Coprinopsis cinerea is also a dsDNA 6mA demethylase. It oxidizes 6mA to the intermediate N6-hydroxymethyladenosine (6hmA) with robust activity of 6mA-containing duplex DNA (dsDNA) as well as isolated genomics DNA. Structural characterization revealed that CcTet utilizes three flexible loop regions and two key residues-D337 and G331-in the active pocket to preferentially recognize substrates on dsDNA. A CcTet D337F mutant protein retained the catalytic activity on 6mA but lost activity on 5-methylcytosine. Our findings uncovered a 6mA demethylase that works on dsDNA, suggesting potential 6mA demethylation in fungi and elucidating 6mA recognition and the catalytic mechanism of CcTet. The CcTet D337F mutant protein also provides a chemical biology tool for future functional manipulation of DNA 6mA in vivo.
Collapse
|
27
|
Yu D, Zhou J, Chen Q, Wu T, Blumenthal RM, Zhang X, Cheng X. Enzymatic Characterization of In Vitro Activity of RNA Methyltransferase PCIF1 on DNA. Biochemistry 2022; 61:1005-1013. [PMID: 35605980 PMCID: PMC9178792 DOI: 10.1021/acs.biochem.2c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Indexed: 11/30/2022]
Abstract
PCIF1 and FTO are a pair of human mRNA cap-specific modification enzymes that have opposing activities. PCIF1 adds a methyl group to the N6-position of 2'O-methyladenosine (Am), generating N6, 2'O-dimethyladenosine (m6Am), when Am is the cap-proximal nucleotide. FTO removes the N6-methyl group from m6Am. In addition, FTO has a demethylase activity on a broad spectrum of various RNA substrates, as well as on DNA N6-methyldeoxyadenosine (m6dA). While the existence of m6dA in mammalian DNA remains controversial, we show here that PCIF1 has significant methylation activity on single stranded DNA deoxyadenosine, double stranded RNA/DNA hybrids, and double stranded DNA, though with lower catalytic efficiency than that on its preferred RNA substrate. PCIF1 has activities in the order ssRNA > RNA/DNA hybrid > ssDNA > dsDNA. We discuss the implications of PCIF1 generation, and FTO removal, of DNA adenine methylation.
Collapse
Affiliation(s)
- Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Qin Chen
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Tao Wu
- Department
of Molecular & Human Genetics, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
28
|
Shen C, Wang K, Deng X, Chen J. DNA N 6-methyldeoxyadenosine in mammals and human disease. Trends Genet 2022; 38:454-467. [PMID: 34991904 PMCID: PMC9007851 DOI: 10.1016/j.tig.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/07/2023]
Abstract
N6-methyladenine (6mA) is the most prevalent DNA modification in prokaryotes. However, its presence and significance in eukaryotes remain elusive. Recently, with methodology advances in detection and sequencing of 6mA in eukaryotes, 6mA is back in the spotlight. Although multiple studies have reported that 6mA is an important epigenetic mark in eukaryotes and plays a regulatory role in DNA transcription, transposon activation, stress response, and other bioprocesses, there are some discrepancies in the current literature. We review the recent advances in 6mA research in eukaryotes, especially in mammals. In particular, we describe the abundance/distribution of 6mA, its potential role in regulating gene expression, identified regulators, and pathological roles in human diseases, especially in cancer. The limitations faced by the field and future perspectives in 6mA research are also discussed.
Collapse
Affiliation(s)
- Chao Shen
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Kitty Wang
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Xiaolan Deng
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| | - Jianjun Chen
- Department of Systems Biology, City of Hope, Monrovia 91007, USA
| |
Collapse
|
29
|
Sheng Y, Zhou M, You C, Dai X. Dynamics and biological relevance of epigenetic N6-methyladenine DNA modification in eukaryotic cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet 2022; 23:411-428. [PMID: 35256817 PMCID: PMC9354840 DOI: 10.1038/s41576-022-00456-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
N6-methyl-2'-deoxyadenosine (6mA or m6dA) has been reported in the DNA of prokaryotes and eukaryotes ranging from unicellular protozoa and algae to multicellular plants and mammals. It has been proposed to modulate DNA structure and transcription, transmit information across generations and have a role in disease, among other functions. However, its existence in more recently evolved eukaryotes remains a topic of debate. Recent technological advancements have facilitated the identification and quantification of 6mA even when the modification is exceptionally rare, but each approach has limitations. Critical assessment of existing data, rigorous design of future studies and further development of methods will be required to confirm the presence and biological functions of 6mA in multicellular eukaryotes.
Collapse
|
31
|
Chen J, Zhuang Y, Wang P, Ning J, Liu W, Huang Y, Lin X, Peng L, Zhang D. Reducing N6AMT1-mediated 6mA DNA modification promotes breast tumor progression via transcriptional repressing cell cycle inhibitors. Cell Death Dis 2022; 13:216. [PMID: 35256595 PMCID: PMC8901905 DOI: 10.1038/s41419-022-04661-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
DNA N6-methyladenosine (6mA) is a novel epigenetic signaling modification in humans and has been implicated in the progression and tumorigenesis of several cancers. However, the function and mechanism of 6mA in breast cancer (BC), the most common cancer among women, are unclear. Here, we found that decreases in N6AMT1 correlated with the extent of 6mA in clinical BC tissues and predicted a worse survival of BC patients. Functionally, knockdown of N6AMT1 markedly reduced 6mA in DNA and promoted colony formation and migration of BC cells, whereas overexpression of N6AMT1 had the opposite effect. Moreover, silencing of N6AMT1 reduced 6mA modification and enhanced the growth of BC cells in vitro and tumors in vivo. 6mA immunoprecipitation sequencing (6mA-IP-seq), RNA-seq, 6mA-IP-PCR, and bioinformatics analysis indicated that N6AMT1 was a functional methyltransferase for genomic 6mA DNA modifications and related to gene transcriptional activity. Critical negative regulators of the cell cycle, such as RB1, P21, REST, and TP53 were identified as targets of N6AMT1 in BC. These results suggest N6AMT1 enhances DNA 6mA levels to repress tumor progression via transcriptional regulation of cell cycle inhibitors.
Collapse
Affiliation(s)
- Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yixuan Zhuang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ping Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinfeng Ning
- Thoracic Department of Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Wei Liu
- Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yiteng Huang
- Health Care Center, First Affiliated Hospital of Shantou University Medical College, 52 Southern Dongxia Road, Shantou, Guangdong, 515041, China
| | - Xueqiong Lin
- Department of Clinical Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Lin Peng
- Central Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, Guangdong, 515041, China
| | - Donghong Zhang
- Center for Molecular and Translational Medicine, Georgia State University, Research Science Center, 157 Decatur St SE, Atlanta, GA, 30303, USA
| |
Collapse
|
32
|
Zhang L, Rong W, Ma J, Li H, Tang X, Xu S, Wang L, Wan L, Zhu Q, Jiang B, Su F, Cui H. Comprehensive Analysis of DNA 5-Methylcytosine and N6-Adenine Methylation by Nanopore Sequencing in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:827391. [PMID: 35321246 PMCID: PMC8937020 DOI: 10.3389/fcell.2022.827391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a widespread epigenetic signal in human genome. With Nanopore technology, differential methylation modifications including 5-methylcytosine (5mC) and 6-methyladenine (6mA) can be identified. 5mC is the most important modification in mammals, although 6mA may also function in growth and development as well as in pathogenesis. While the role of 5mC at CpG islands in promoter regions associated with transcriptional regulation has been well studied, but the relationship between 6mA and transcription is still unclear. Thus, we collected two pairs of tumor tissues and adjacent normal tissues from hepatocellular carcinoma (HCC) surgical samples for Nanopore sequencing and transcriptome sequencing. It was found that 2,373 genes had both 5mC and 6mA, along with up- and down-regulated methylation sites. These genes were regarded as unstable methylation genes. Compared with 6mA, 5mC had more inclined distribution of unstable methylation sites. Chi-square test showed that the levels of 5mC were consistent with both up- and down-regulated genes, but 6mA was not significant. Moreover, the top three unstable methylation genes, TBC1D3H, CSMD1, and ROBO2, were all related to cancer. Transcriptome and survival analyses revealed four potential tumor suppressor genes including KCNIP4, CACNA1C, PACRG, and ST6GALNAC3. In this study, we firstly proposed to combine 5mC and 6mA methylation sites to explore functional genes, and further research found top of these unstable methylation genes might be functional and some of them could serve as potential tumor suppressor genes. Our study provided a new solution for epigenetic regulation research and therapy of HCC.
Collapse
Affiliation(s)
- Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ma
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, China
| | - Hexin Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaokun Tang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Siyuan Xu
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Luyao Wang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Wan
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Zhu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, China
| | - Boyue Jiang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongyuan Cui
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Qinghai, China
- *Correspondence: Hongyuan Cui,
| |
Collapse
|
33
|
O’Brown ZK, Greer EL. N6-methyladenine: A Rare and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:177-210. [DOI: 10.1007/978-3-031-11454-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Zhang R, Lai W, Wang H. Quantification of Epigenetic DNA Modifications in the Subchromatin Structure Matrix Attachment Regions by Stable Isotope Dilution UHPLC-MS/MS Analysis. Anal Chem 2021; 93:15567-15572. [PMID: 34783527 DOI: 10.1021/acs.analchem.1c04151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, subchromatin structure-based quantification of epigenetic DNA modifications is limited. Matrix attachment regions (MARs), an important subchromatin structure, contain DNA elements that specifically bind chromatin to the nuclear matrix in eukaryotes and are involved in a number of diseases. Here, we exploited a high-salt extraction-based subchromatin fractionation approach for the isolation of MAR DNA and other fractions and further developed heavy stable isotope-diluted ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) for the specific quantification of epigenetic DNA modifications in the subchromatin structures. By this approach, we showed for the first time that the content of a DNA demethylation intermediate, 5-hydroxymethylcytosine (5hmdC), in MARs decreased significantly in four tested cell lines compared to the contents in genomic DNA. In particular, the content of DNA 5hmdC in the MARs of 293T cell lines decreased the most at approximately 41.09%. Together, our findings implicate that MAR DNA is less sensitive than genomic DNA to DNA demethylation.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
35
|
Liu B, Shi H, Rangadurai A, Nussbaumer F, Chu CC, Erharter KA, Case DA, Kreutz C, Al-Hashimi HM. A quantitative model predicts how m 6A reshapes the kinetic landscape of nucleic acid hybridization and conformational transitions. Nat Commun 2021; 12:5201. [PMID: 34465779 PMCID: PMC8408185 DOI: 10.1038/s41467-021-25253-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
N6-methyladenosine (m6A) is a post-transcriptional modification that controls gene expression by recruiting proteins to RNA sites. The modification also slows biochemical processes through mechanisms that are not understood. Using temperature-dependent (20°C-65°C) NMR relaxation dispersion, we show that m6A pairs with uridine with the methylamino group in the anti conformation to form a Watson-Crick base pair that transiently exchanges on the millisecond timescale with a singly hydrogen-bonded low-populated (1%) mismatch-like conformation in which the methylamino group is syn. This ability to rapidly interchange between Watson-Crick or mismatch-like forms, combined with different syn:anti isomer preferences when paired (~1:100) versus unpaired (~10:1), explains how m6A robustly slows duplex annealing without affecting melting at elevated temperatures via two pathways in which isomerization occurs before or after duplex annealing. Our model quantitatively predicts how m6A reshapes the kinetic landscape of nucleic acid hybridization and conformational transitions, and provides an explanation for why the modification robustly slows diverse cellular processes.
Collapse
Affiliation(s)
- Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Felix Nussbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Chia-Chieh Chu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Kevin Andreas Erharter
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
36
|
Li X, Zhang Z, Luo X, Schrier J, Yang AD, Wu TP. The exploration of N6-deoxyadenosine methylation in mammalian genomes. Protein Cell 2021; 12:756-768. [PMID: 34405377 PMCID: PMC8464638 DOI: 10.1007/s13238-021-00866-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022] Open
Abstract
N6-methyladenine (N6-mA, m6dA, or 6mA), a prevalent DNA modification in prokaryotes, has recently been identified in higher eukaryotes, including mammals. Although 6mA has been well-studied in prokaryotes, the function and regulatory mechanism of 6mA in eukaryotes are still poorly understood. Recent studies indicate that 6mA can serve as an epigenetic mark and play critical roles in various biological processes, from transposable-element suppression to environmental stress response. Here, we review the significant advances in methodology for 6mA detection and major progress in understanding the regulation and function of this non-canonical DNA methylation in eukaryotes, predominantly mammals.
Collapse
Affiliation(s)
- Xuwen Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinlong Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob Schrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew D Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Abstract
The genetic information of human cells is stored in the context of chromatin, which is subjected to DNA methylation and various histone modifications. Such a 'language' of chromatin modification constitutes a fundamental means of gene and (epi)genome regulation, underlying a myriad of cellular and developmental processes. In recent years, mounting evidence has demonstrated that miswriting, misreading or mis-erasing of the modification language embedded in chromatin represents a common, sometimes early and pivotal, event across a wide range of human cancers, contributing to oncogenesis through the induction of epigenetic, transcriptomic and phenotypic alterations. It is increasingly clear that cancer-related metabolic perturbations and oncohistone mutations also directly impact chromatin modification, thereby promoting cancerous transformation. Phase separation-based deregulation of chromatin modulators and chromatin structure is also emerging to be an important underpinning of tumorigenesis. Understanding the various molecular pathways that underscore a misregulated chromatin language in cancer, together with discovery and development of more effective drugs to target these chromatin-related vulnerabilities, will enhance treatment of human malignancies.
Collapse
Affiliation(s)
- Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics and Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics and Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Yu D, Horton JR, Yang J, Hajian T, Vedadi M, Sagum CA, Bedford MT, Blumenthal RM, Zhang X, Cheng X. Human MettL3-MettL14 RNA adenine methyltransferase complex is active on double-stranded DNA containing lesions. Nucleic Acids Res 2021; 49:11629-11642. [PMID: 34086966 PMCID: PMC8599731 DOI: 10.1093/nar/gkab460] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer – a major lesion of UV radiation-induced products – or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 – two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.
Collapse
Affiliation(s)
- Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Lee BK, Kim J. Integrating High-Throughput Approaches and in vitro Human Trophoblast Models to Decipher Mechanisms Underlying Early Human Placenta Development. Front Cell Dev Biol 2021; 9:673065. [PMID: 34150768 PMCID: PMC8206641 DOI: 10.3389/fcell.2021.673065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
The placenta is a temporary but pivotal organ for human pregnancy. It consists of multiple specialized trophoblast cell types originating from the trophectoderm of the blastocyst stage of the embryo. While impaired trophoblast differentiation results in pregnancy disorders affecting both mother and fetus, the molecular mechanisms underlying early human placenta development have been poorly understood, partially due to the limited access to developing human placentas and the lack of suitable human in vitro trophoblast models. Recent success in establishing human trophoblast stem cells and other human in vitro trophoblast models with their differentiation protocols into more specialized cell types, such as syncytiotrophoblast and extravillous trophoblast, has provided a tremendous opportunity to understand early human placenta development. Unfortunately, while high-throughput research methods and omics tools have addressed numerous molecular-level questions in various research fields, these tools have not been widely applied to the above-mentioned human trophoblast models. This review aims to provide an overview of various omics approaches that can be utilized in the study of human in vitro placenta models by exemplifying some important lessons obtained from omics studies of mouse model systems and introducing recently available human in vitro trophoblast model systems. We also highlight some key unknown questions that might be addressed by such techniques. Integrating high-throughput omics approaches and human in vitro model systems will facilitate our understanding of molecular-level regulatory mechanisms underlying early human placenta development as well as placenta-associated complications.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany-State University of New York, Rensselaer, NY, United States
| | - Jonghwan Kim
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
40
|
Fernandes SB, Grova N, Roth S, Duca RC, Godderis L, Guebels P, Mériaux SB, Lumley AI, Bouillaud-Kremarik P, Ernens I, Devaux Y, Schroeder H, Turner JD. N 6-Methyladenine in Eukaryotic DNA: Tissue Distribution, Early Embryo Development, and Neuronal Toxicity. Front Genet 2021; 12:657171. [PMID: 34108991 PMCID: PMC8181416 DOI: 10.3389/fgene.2021.657171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
DNA methylation is one of the most important epigenetic modifications and is closely related with several biological processes such as regulation of gene transcription and the development of non-malignant diseases. The prevailing dogma states that DNA methylation in eukaryotes occurs essentially through 5-methylcytosine (5mC) but recently adenine methylation was also found to be present in eukaryotes. In mouse embryonic stem cells, 6-methyladenine (6mA) was associated with the repression and silencing of genes, particularly in the X-chromosome, known to play an important role in cell fate determination. Here, we have demonstrated that 6mA is a ubiquitous eukaryotic epigenetic modification that is put in place during epigenetically sensitive periods such as embryogenesis and fetal development. In somatic cells there are clear tissue specificity in 6mA levels, with the highest 6mA levels being observed in the brain. In zebrafish, during the first 120 h of embryo development, from a single pluripotent cell to an almost fully formed individual, 6mA levels steadily increase. An identical pattern was observed over embryonic days 7–21 in the mouse. Furthermore, exposure to a neurotoxic environmental pollutant during the same early life period may led to a decrease in the levels of this modification in female rats. The identification of the periods during which 6mA epigenetic marks are put in place increases our understanding of this mammalian epigenetic modification, and raises the possibility that it may be associated with developmental processes.
Collapse
Affiliation(s)
- Sara B Fernandes
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Calbinotox, EA7488, Faculty of Science and Technology, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sarah Roth
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Radu Corneliu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), Dudelange, Luxembourg.,Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Pauline Guebels
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Sophie B Mériaux
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andrew I Lumley
- Cardiovascular Research Unit, Department of Public Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Isabelle Ernens
- Cardiovascular Research Unit, Department of Public Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Public Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Henri Schroeder
- Calbinotox, EA7488, Faculty of Science and Technology, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
41
|
Li Q, Qian C, Feng H, Lin T, Zhu Q, Huang Y, Zhou FQ. N6-methyladenine DNA Demethylase ALKBH1 Regulates Mammalian Axon Regeneration. Neurosci Bull 2021; 37:809-814. [PMID: 33844159 PMCID: PMC8192600 DOI: 10.1007/s12264-021-00671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023] Open
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, 130021, China
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Cheng Qian
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Harry Feng
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Tyger Lin
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Ying Huang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Feng-Quan Zhou
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
| |
Collapse
|
42
|
Liang Z, Zhang Q, Ji C, Hu G, Zhang P, Wang Y, Yang L, Gu X. Reorganization of the 3D chromatin architecture of rice genomes during heat stress. BMC Biol 2021; 19:53. [PMID: 33740972 PMCID: PMC7977607 DOI: 10.1186/s12915-021-00996-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/26/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The three-dimensional spatial organization of the genome plays important roles in chromatin accessibility and gene expression in multiple biological processes and has been reported to be altered in response to environmental stress. However, the functional changes in spatial genome organization during environmental changes in crop plants are poorly understood. RESULTS Here we perform Hi-C, ATAC-seq, and RNA-seq in two agronomically important rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica), to report a comprehensive profile of nuclear dynamics during heat stress (HS). We show that heat stress affects different levels of chromosome organization, including A/B compartment transition, increase in the size of topologically associated domains, and loss of short-range interactions. The chromatin architectural changes were associated with chromatin accessibility and gene expression changes. Comparative analysis revealed that 93-11 exhibited more dynamic gene expression and chromatin accessibility changes, including HS-related genes, consistent with observed higher HS tolerance in this cultivar. CONCLUSIONS Our data uncovered higher-order chromatin architecture as a new layer in understanding transcriptional regulation in response to heat stress in rice.
Collapse
Affiliation(s)
- Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changmian Ji
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Guihua Hu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
43
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Zhu L, Marjani SL, Jiang Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species-Filling in the Picture With Epigenomic Analyses. Front Genet 2021; 12:557934. [PMID: 33747031 PMCID: PMC7966815 DOI: 10.3389/fgene.2021.557934] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA species. Increasing lines of evidence support the concept that certain acquired traits are derived from environmental exposure during early embryonic and fetal development, i.e., fetal programming, and can even be "memorized" in the germline as epigenetic information and transmitted to future generations. Advances in technology are now driving the global profiling and precise editing of germline and embryonic epigenomes, thereby improving our understanding of epigenetic regulation and inheritance. These achievements open new avenues for the development of technologies or potential management interventions to counteract adverse conditions or improve performance in livestock species. In this article, we review the epigenetic analyses (DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of gamete and embryo viability. We also discuss the effects of parental environmental exposures on the epigenetics of gametes and the early embryo, and evidence for transgenerational inheritance in livestock.
Collapse
Affiliation(s)
- Linkai Zhu
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Zongliang Jiang
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
45
|
Kubota K, Iqbal K, Soares MJ. SATB1 promotion of trophoblast stem cell renewal through regulation of threonine dehydrogenase. Biochim Biophys Acta Gen Subj 2021; 1865:129757. [PMID: 33011339 PMCID: PMC7708522 DOI: 10.1016/j.bbagen.2020.129757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Trophoblast stem (TS) cell renewal and differentiation are essential processes in placentation. Special AT-rich binding protein 1 (SATB1) is a key regulator of the TS cell stem state. In this study, we identified SATB1 downstream targets and investigated their actions. METHODS RNA-sequencing analysis was performed in Rcho-1 TS cells expressing control or Satb1 short hairpin RNAs (shRNAs) to identify candidate SATB1 targets. Differentially regulated transcripts were validated by reverse transcription-quantitative polymerase chain reaction. The role of a target of SATB1, L-threonine 3-dehydrogenase (TDH), in the regulation of trophoblast cell development was investigated using a loss-of-function approach. RESULTS Among the differentially regulated transcripts in SATB1 knockdown TS cells, were downregulated transcripts known to affect the TS cell stem state and upregulated transcripts characteristic of trophoblast cell differentiation. Tdh expression was exquisitely responsive to SATB1 dysregulation. Tdh expression was high in the TS cell stem state and decreased as TS cells differentiated. Treatment of Rcho-1 TS cells with a TDH inhibitor or a TDH specific shRNA inhibited cell proliferation and attenuated the expression of TS cell stem state-associated transcripts and elevated the expression of trophoblast cell differentiation-associated transcripts. TDH disruption decreased TS cell colony size, Cdx2 expression, and blastocyst outgrowth. CONCLUSIONS Our findings indicate that the actions of SATB1 on TS cell maintenance are mediated, at least in part, through the regulation and actions of TDH. GENERAL SIGNIFICANCE Regulatory pathways controlling TS cell dynamics dictate the functionality of the placenta, pregnancy outcomes, and postnatal health.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States of America; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO 64108, United States of America.
| |
Collapse
|
46
|
Bochtler M, Fernandes H. DNA adenine methylation in eukaryotes: Enzymatic mark or a form of DNA damage? Bioessays 2020; 43:e2000243. [PMID: 33244833 DOI: 10.1002/bies.202000243] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
6-methyladenine (6mA) is fairly abundant in nuclear DNA of basal fungi, ciliates and green algae. In these organisms, 6mA is maintained near transcription start sites in ApT context by a parental-strand instruction dependent maintenance methyltransferase and is positively associated with transcription. In animals and plants, 6mA levels are high only in organellar DNA. The 6mA levels in nuclear DNA are very low. They are attributable to nucleotide salvage and the activity of otherwise mitochondrial METTL4, and may be considered as a price that cells pay for adenine methylation in RNA and/or organellar DNA. Cells minimize this price by sanitizing dNTP pools to limit 6mA incorporation, and by converting 6mA that has been incorporated into DNA back to adenine. Hence, 6mA in nuclear DNA should be described as an epigenetic mark only in basal fungi, ciliates and green algae, but not in animals and plants.
Collapse
Affiliation(s)
- Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Humberto Fernandes
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Zhang X, Blumenthal RM, Cheng X. A Role for N6-Methyladenine in DNA Damage Repair. Trends Biochem Sci 2020; 46:175-183. [PMID: 33077363 DOI: 10.1016/j.tibs.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
The leading cause of mutation due to oxidative damage is 8-oxo-2'-deoxyguanosine (8-oxoG) mispairing with adenine (Ade), which can occur in two ways. First, guanine of a G:C DNA base pair can be oxidized. If not repaired in time, DNA polymerases can mispair Ade with 8-oxoG in the template. This 8-oxoG:A can be repaired by enzymes that remove Ade opposite to template 8-oxoG, or 8-oxoG opposite to Cyt. Second, free 8-oxo-dGTP can be misincorporated by DNA polymerases into DNA opposite template Ade. However, there is no known repair activity that removes 8-oxoG opposite to template Ade. We suggest that a major role of N6-methyladenine in mammalian DNA is minimizing incorporation of 8-oxoG opposite to Ade by DNA polymerases following adduct formation.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|