1
|
King DE, Beard EE, Satusky MJ, Ryde I, George A, Johnson C, Dolan EL, Zhang Y, Zhu W, Wilkins H, Corden E, Murphy SK, Erie D, Gordân R, Meyer JN. TFAM as a sensor of UVC-induced mitochondrial DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620005. [PMID: 39484377 PMCID: PMC11527015 DOI: 10.1101/2024.10.24.620005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria lack nucleotide excision DNA repair; however, mitochondrial DNA (mtDNA) is resistant to mutation accumulation following DNA damage. These observations suggest additional damage sensing or protection mechanisms. Transcription Factor A, Mitochondrial (TFAM) compacts mtDNA into nucleoids. As such, TFAM has emerged as a candidate for protecting DNA or sensing damage. To examine these possibilities, we used live-cell imaging, cell-based assays, atomic force microscopy, and high-throughput protein-DNA binding assays to characterize the binding properties of TFAM to UVC-irradiated DNA and cellular consequences of UVC irradiation. Our data indicate an increase in mtDNA degradation and turnover, without a loss in mitochondrial membrane potential that might trigger mitophagy. We identified a reduction in sequence specificity of TFAM associated with UVC irradiation and a redistribution of TFAM binding throughout the mitochondrial genome. Our AFM data show increased compaction of DNA by TFAM in the presence of damage. Despite the TFAM-mediated compaction of mtDNA, we do not observe any protective effect on DNA damage accumulation in cells or in vitro . Taken together, these studies indicate that UVC-induced DNA damage promotes compaction by TFAM, suggesting that TFAM may act as a damage sensor, sequestering damaged genomes to prevent mutagenesis by direct removal or suppression of replication.
Collapse
|
2
|
Gardasevic T, Noy A. The impact of sequence periodicity on DNA mechanics: investigating the origin of A-tract's curvature. NANOSCALE 2024; 16:18410-18420. [PMID: 39247956 DOI: 10.1039/d4nr02571g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Periodic sequences in phase with DNA helical shape are prevalent in genomes due to their capacity to modulate DNA elasticity on a global scale. However, how this occurs is not well understood. We use all-atom molecular dynamics simulations on 40 bp DNA fragments to assess the effect of periodicity on bending, twisting, and stretch elasticity. We observe that DNA static curvature is the mechanical parameter most influenced by periodicity, with A-tract sequences having the greatest effect. A-tracts generate global curvature by bending in distinct directions (minor groove and backbones) that complement the bending of the rest of DNA, which predominantly is towards the major groove. Even if A-tracts are rigid at the local scale, these small bends integrate with the greater bends from the sequences between, producing an amplifying effect. As a result, our findings support a 'delocalized bend' model in which the A-tract operates as an 'adaptable mechanical part'. By understanding how global curvature emerges from local fluctuations, we reconcile previous contradictory theories and open an avenue for manipulating DNA mechanics through sequence design.
Collapse
Affiliation(s)
- Tania Gardasevic
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
| | - Agnes Noy
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Gharui S, Sengupta D. Molecular Interactions of the Pioneer Transcription Factor GATA3 With DNA. Proteins 2024. [PMID: 39315643 DOI: 10.1002/prot.26749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
The GATA3 transcription factor is a pioneer transcription factor that is critical in the development, proliferation, and maintenance of several immune cell types. Identifying the detailed conformational dynamics and interactions of this transcription factor, as well as its clinically important population variants will allow us to unravel its mode of action. In this study, we analyze the molecular interactions of the GATA3 transcription factor bound to dsDNA as well as three clinically important population variants by atomistic molecular dynamics simulations. We identify the effect of the variants on the DNA conformational dynamics and delineate the differences compared to the wildtype transcription factor that could be related to impaired function. We highlight the structural plasticity in the binding of the GATA3 transcription factor and identify important DNA-protein contacts. Although the DNA-protein contacts are persistent and appear to be stable, they exhibit nanosecond timescale fluctuations and several binding/unbinding events. Further, we identify differential DNA binding in the three variants and show that the N-terminal binding is reduced in two of the variants. Our results indicate that reduced minor groove width and DNA diameter are important hallmarks for the binding of GATA3. Our work is an important step towards understanding the functional dynamics of the GATA3 protein and its clinically significant population variants.
Collapse
Affiliation(s)
- Sowmomita Gharui
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Durba Sengupta
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Lin Y, Chen Y, Wang H, Yu Y, Wang Y, Ma S, Wang L, Ren H, Xu K. Weak magnetic field promotes denitrification by stimulating ferromagnetic ion-containing metalloprotein expression. WATER RESEARCH 2024; 262:122116. [PMID: 39032337 DOI: 10.1016/j.watres.2024.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Weak magnetic field (WMF) has been recognized to promote biological denitrification processes; however, the underlying mechanisms remain largely unexplored, hindering the optimization of its effectiveness. Here, we systematically investigated the effects of WMF on denitrification performance, enzyme activity, microbial community, and metaproteome in packed bed bioreactors treating high nitrate wastewater under different WMF intensities and C:N ratios. Results showed that WMFs significantly promoted denitrification by consistently stimulating the activities of denitrifying reductases and NAD+/NADH biosynthesis across decreasing C:N ratios. Reductases and electron transfer enzymes involved in denitrification were overproduced due to the significantly enriched overexpression of ferromagnetic ion-containing (FIC) metalloproteins. We also observed WMFs' intensity-dependent selective pressure on microbial community structures despite the effects being limited compared to those caused by changing C:N ratios. By coupling genome-centric metaproteomics and structure prediction, we found the dominant denitrifier, Halomonas, was outcompeted by Pseudomonas and Azoarcus under WMFs, likely due to its structural deficiencies in iron uptake, suggesting that advantageous ferromagnetic ion acquisition capacity was necessary to satisfy the substrate demand for FIC metalloprotein overproduction. This study advances our understanding of the biomagnetic effects in the context of complex communities and highlights WMF's potential for manipulating FIC protein-associated metabolism and fine-tuning community structure.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yanting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Haiyue Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yuexin Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Laichun Wang
- Yixing Environmental Research Institute of Nanjing University, Yixing, 214200, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, N.O.163, Xianlin Avenue, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
5
|
Lee Y, Gu S, Al-Hashimi HM. Insights into the A-C Mismatch Conformational Ensemble in Duplex DNA and its Role in Genetic Processes through a Structure-based Review. J Mol Biol 2024; 436:168710. [PMID: 39009073 DOI: 10.1016/j.jmb.2024.168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.
Collapse
Affiliation(s)
- Yeongjoon Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America
| | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America.
| |
Collapse
|
6
|
Suo Y, Fedor JG, Zhang H, Tsolova K, Shi X, Sharma K, Kumari S, Borgnia M, Zhan P, Im W, Lee SY. Molecular basis of the urate transporter URAT1 inhibition by gout drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612563. [PMID: 39314352 PMCID: PMC11419087 DOI: 10.1101/2024.09.11.612563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hyperuricemia is a condition when uric acid, a waste product of purine metabolism, accumulates in the blood1. Untreated hyperuricemia can lead to crystal formation of monosodium urate in the joints, causing a painful inflammatory disease known as gout. These conditions are associated with many other diseases and affect a significant and increasing proportion of the population2-4. The human urate transporter 1 (URAT1) is responsible for the reabsorption of ~90% of uric acid in the kidneys back into the blood, making it a primary target for treating hyperuricemia and gout5. Despite decades of research and development, clinically available URAT1 inhibitors have limitations because the molecular basis of URAT1 inhibition by gout drugs remains unknown5. Here we present cryo-electron microscopy structures of URAT1 alone and in complex with three clinically relevant inhibitors: benzbromarone, lesinurad, and the novel compound TD-3. Together with functional experiments and molecular dynamics simulations, we reveal that these inhibitors bind selectively to URAT1 in inward-open states. Furthermore, we discover differences in the inhibitor dependent URAT1 conformations as well as interaction networks, which contribute to drug specificity. Our findings illuminate a general theme for URAT1 inhibition, paving the way for the design of next-generation URAT1 inhibitors in the treatment of gout and hyperuricemia.
Collapse
Affiliation(s)
- Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Justin G. Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Han Zhang
- Departments of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Kalina Tsolova
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Xiaoyu Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P.R. China
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Shweta Kumari
- Departments of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Mario Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P.R. China
| | - Wonpil Im
- Departments of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, 18015, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| |
Collapse
|
7
|
Mitra R, Li J, Sagendorf JM, Jiang Y, Cohen AS, Chiu TP, Glasscock CJ, Rohs R. Geometric deep learning of protein-DNA binding specificity. Nat Methods 2024; 21:1674-1683. [PMID: 39103447 PMCID: PMC11399107 DOI: 10.1038/s41592-024-02372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Predicting protein-DNA binding specificity is a challenging yet essential task for understanding gene regulation. Protein-DNA complexes usually exhibit binding to a selected DNA target site, whereas a protein binds, with varying degrees of binding specificity, to a wide range of DNA sequences. This information is not directly accessible in a single structure. Here, to access this information, we present Deep Predictor of Binding Specificity (DeepPBS), a geometric deep-learning model designed to predict binding specificity from protein-DNA structure. DeepPBS can be applied to experimental or predicted structures. Interpretable protein heavy atom importance scores for interface residues can be extracted. When aggregated at the protein residue level, these scores are validated through mutagenesis experiments. Applied to designed proteins targeting specific DNA sequences, DeepPBS was demonstrated to predict experimentally measured binding specificity. DeepPBS offers a foundation for machine-aided studies that advance our understanding of molecular interactions and guide experimental designs and synthetic biology.
Collapse
Affiliation(s)
- Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jinsen Li
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jared M Sagendorf
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yibei Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Ari S Cohen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Cameron J Glasscock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Kekić T, Milisavljević N, Troussier J, Tahir A, Debart F, Lietard J. Accelerated, high-quality photolithographic synthesis of RNA microarrays in situ. SCIENCE ADVANCES 2024; 10:eado6762. [PMID: 39083603 PMCID: PMC11290486 DOI: 10.1126/sciadv.ado6762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Nucleic acid photolithography is the only microarray fabrication process that has demonstrated chemical versatility accommodating any type of nucleic acid. The current approach to RNA microarray synthesis requires long coupling and photolysis times and suffers from unavoidable degradation postsynthesis. In this study, we developed a series of RNA phosphoramidites with improved chemical and photochemical protection of the 2'- and 5'-OH functions. In so doing, we reduced the coupling time by more than half and the photolysis time by a factor of 4. Sequence libraries that would otherwise take over 6 hours to synthesize can now be prepared in half the time. Degradation is substantially lowered, and concomitantly, hybridization signals can reach over seven times those of the previous state of the art. Under those conditions, high-density RNA microarrays and RNA libraries can now be synthesized at greatly accelerated rates. We also synthesized fluorogenic RNA Mango aptamers on microarrays and investigated the effect of sequence mutations on their fluorogenic properties.
Collapse
Affiliation(s)
- Tadija Kekić
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | | | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Amina Tahir
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jory Lietard
- Institute of Inorganic Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
9
|
Yao YM, Miodownik I, O'Hagan MP, Jbara M, Afek A. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Transcription 2024:1-25. [PMID: 39033307 DOI: 10.1080/21541264.2024.2379161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
Collapse
Affiliation(s)
- Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irina Miodownik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael P O'Hagan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Rogoulenko E, Levy Y. Skipping events impose repeated binding attempts: profound kinetic implications of protein-DNA conformational changes. Nucleic Acids Res 2024; 52:6763-6776. [PMID: 38721783 PMCID: PMC11229352 DOI: 10.1093/nar/gkae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 07/09/2024] Open
Abstract
The kinetics of protein-DNA recognition, along with its thermodynamic properties, including affinity and specificity, play a central role in shaping biological function. Protein-DNA recognition kinetics are characterized by two key elements: the time taken to locate the target site amid various nonspecific alternatives; and the kinetics involved in the recognition process, which may necessitate overcoming an energetic barrier. In this study, we developed a coarse-grained (CG) model to investigate interactions between a transcription factor called the sex-determining region Y (SRY) protein and DNA, in order to probe how DNA conformational changes affect SRY-DNA recognition and binding kinetics. We find that, not only does a requirement for such a conformational DNA transition correspond to a higher energetic barrier for binding and therefore slower kinetics, it may further impede the recognition kinetics by increasing unsuccessful binding events (skipping events) where the protein partially binds its DNA target site but fails to form the specific protein-DNA complex. Such skipping events impose the need for additional cycles protein search of nonspecific DNA sites, thus significantly extending the overall recognition time. Our results highlight a trade-off between the speed with which the protein scans nonspecific DNA and the rate at which the protein recognizes its specific target site. Finally, we examine molecular approaches potentially adopted by natural systems to enhance protein-DNA recognition despite its intrinsically slow kinetics.
Collapse
Affiliation(s)
- Elena Rogoulenko
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Wang L, Zhang K, Zhang X, Tan Y, Guo L, Xia Y, Wang X. Mismatched Supramolecular Interactions Facilitate the Reprocessing of Super-Strong and Ultratough Thermoset Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311758. [PMID: 38758171 DOI: 10.1002/adma.202311758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Thermoset elastomers have been extensively applied in many fields because of their excellent mechanical strengths and durable characteristics, such as an excellent chemical resistance. However, in the context of environmental issues, the nonrecyclability of thermosets has become a major barrier to the further development of these materials. Here, a well-tailored strategy is reported to solve this problem by introducing mismatched supramolecular interactions (MMSIs) into a covalently cross-linked poly(urethane-urea) network with dynamic acylsemicarbazide moieties. The MMSIs significantly strengthen and toughen the thermoset elastomer by effectively dissipating energy and resisting external stress. In addition, the elastomer recycling efficiency is improved 2.7-fold due to the superior reversibility of the MMSIs. The optimized thermoset elastomer features outstanding characteristics, including an ultrahigh tensile strength (110.8 MPa), an unprecedented tensile toughness (1245.2 MJ m-3), as well as remarkable resistance to chemical media, creep, and damage. Most importantly, it exhibits an extraordinary multirecyclability, and the 4th recycling efficiency remains close to 100%. This scalable method promotes the development of thermosets with both high performance and excellent recyclability, thereby providing valuable guidance for addressing the issue of nonrecyclability from a molecular design standpoint.
Collapse
Affiliation(s)
- Luping Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Kaiqiang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xingxue Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Longfei Guo
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yuguo Xia
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
12
|
Nithun RV, Yao YM, Harel O, Habiballah S, Afek A, Jbara M. Site-Specific Acetylation of the Transcription Factor Protein Max Modulates Its DNA Binding Activity. ACS CENTRAL SCIENCE 2024; 10:1295-1303. [PMID: 38947213 PMCID: PMC11212134 DOI: 10.1021/acscentsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Chemical protein synthesis provides a powerful means to prepare novel modified proteins with precision down to the atomic level, enabling an unprecedented opportunity to understand fundamental biological processes. Of particular interest is the process of gene expression, orchestrated through the interactions between transcription factors (TFs) and DNA. Here, we combined chemical protein synthesis and high-throughput screening technology to decipher the role of post-translational modifications (PTMs), e.g., Lys-acetylation on the DNA binding activity of Max TF. We synthesized a focused library of singly, doubly, and triply modified Max variants including site-specifically acetylated and fluorescently tagged analogs. The resulting synthetic analogs were employed to decipher the molecular role of Lys-acetylation on the DNA binding activity and sequence specificity of Max. We provide evidence that the acetylation sites at Lys-31 and Lys-57 significantly inhibit the DNA binding activity of Max. Furthermore, by utilizing high-throughput binding measurements, we assessed the binding activities of the modified Max variants across diverse DNA sequences. Our results indicate that acetylation marks can alter the binding specificities of Max toward certain sequences flanking its consensus binding sites. Our work provides insight into the hidden molecular code of PTM-TFs and DNA interactions, paving the way to interpret gene expression regulation programs.
Collapse
Affiliation(s)
- Raj V. Nithun
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yumi Minyi Yao
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Omer Harel
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Shaimaa Habiballah
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Ariel Afek
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
13
|
Anderson CJ, Talmane L, Luft J, Connelly J, Nicholson MD, Verburg JC, Pich O, Campbell S, Giaisi M, Wei PC, Sundaram V, Connor F, Ginno PA, Sasaki T, Gilbert DM, López-Bigas N, Semple CA, Odom DT, Aitken SJ, Taylor MS. Strand-resolved mutagenicity of DNA damage and repair. Nature 2024; 630:744-751. [PMID: 38867042 PMCID: PMC11186772 DOI: 10.1038/s41586-024-07490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.
Collapse
Affiliation(s)
- Craig J Anderson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lana Talmane
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - John Connelly
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory Medicine, NHS Lothian, Edinburgh, UK
| | - Michael D Nicholson
- CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jan C Verburg
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susan Campbell
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marco Giaisi
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pei-Chi Wei
- Brain Mosaicism and Tumorigenesis (B400), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vasavi Sundaram
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul A Ginno
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Colin A Semple
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Division of Regulatory Genomics and Cancer Evolution (B270), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sarah J Aitken
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Martin S Taylor
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
14
|
Qin T, Wang Y, Pu Z, Shi N, Dormatey R, Wang H, Sun C. Comprehensive Transcriptome and Proteome Analyses Reveal the Drought Responsive Gene Network in Potato Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1530. [PMID: 38891338 PMCID: PMC11175002 DOI: 10.3390/plants13111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The root system plays a decisive role in the growth and development of plants. The water requirement of a root system depends strongly on the plant species. Potatoes are an important food and vegetable crop grown worldwide, especially under irrigation in arid and semi-arid regions. However, the expected impact of global warming on potato yields calls for an investigation of genes related to root development and drought resistance signaling pathways in potatoes. In this study, we investigated the molecular mechanisms of different drought-tolerant potato root systems in response to drought stress under controlled water conditions, using potato as a model. We analyzed the transcriptome and proteome of the drought-sensitive potato cultivar Atlantic (Atl) and the drought-tolerant cultivar Qingshu 9 (Q9) under normal irrigation (CK) and weekly drought stress (D). The results showed that a total of 14,113 differentially expressed genes (DEGs) and 5596 differentially expressed proteins (DEPs) were identified in the cultivars. A heat map analysis of DEGs and DEPs showed that the same genes and proteins in Atl and Q9 exhibited different expression patterns under drought stress. Weighted gene correlation network analysis (WGCNA) showed that in Atl, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)-enriched pathways were related to pyruvate metabolism and glycolysis, as well as cellular signaling and ion transmembrane transporter protein activity. However, GO terms and KEGG-enriched pathways related to phytohormone signaling and the tricarboxylic acid cycle were predominantly enriched in Q9. The present study provides a unique genetic resource to effectively explore the functional genes and uncover the molecular regulatory mechanism of the potato root system in response to drought stress.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Zhuanfang Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Ningfan Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Richard Dormatey
- CSIR—Crops Research Institute, P.O. Box 3785, Kumasi 00233, Ghana;
| | - Huiqiong Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (T.Q.); (Y.W.); (Z.P.); (N.S.); (H.W.)
| |
Collapse
|
15
|
Manghrani A, Rangadurai AK, Szekely O, Liu B, Guseva S, Al-Hashimi HM. Quantitative and systematic NMR measurements of sequence-dependent A-T Hoogsteen dynamics uncovers unique conformational specificity in the DNA double helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594415. [PMID: 38798635 PMCID: PMC11118333 DOI: 10.1101/2024.05.15.594415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The propensities to form lowly-populated short-lived conformations of DNA could vary with sequence, providing an important source of sequence-specificity in biochemical reactions. However, comprehensively measuring how these dynamics vary with sequence is challenging. Using 1H CEST and 13C R 1 ρ NMR, we measured Watson-Crick to Hoogsteen dynamics for an A-T base pair in thirteen trinucleotide sequence contexts. The Hoogsteen population and exchange rate varied 4-fold and 16-fold, respectively, and were dependent on both the 3'- and 5'-neighbors but only weakly dependent on monovalent ion concentration (25 versus 100 mM NaCl) and pH (6.8 versus 8.0). Flexible TA and CA dinucleotide steps exhibited the highest Hoogsteen populations, and their kinetics rates strongly depended on the 3'-neighbor. In contrast, the stiffer AA and GA steps had the lowest Hoogsteen population, and their kinetics were weakly dependent on the 3'-neighbor. The Hoogsteen lifetime was especially short when G-C neighbors flanked the A-T base pair. The Hoogsteen dynamics had a distinct sequence-dependence compared to duplex stability and minor groove width. Thus, our results uncover a unique source of sequence-specificity hidden within the DNA double helix in the form of A-T Hoogsteen dynamics and establish the utility of 1H CEST to quantitively measure sequence-dependent DNA dynamics.
Collapse
Affiliation(s)
- Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Or Szekely
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27705, United States
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
16
|
Gu S, Al-Hashimi HM. Direct Measurement of 8OG Syn-Anti Flips in Mutagenic 8OG·A and Long-Range Damage-Dependent Hoogsteen Breathing Dynamics Using 1H CEST NMR. J Phys Chem B 2024; 128:4087-4096. [PMID: 38644782 DOI: 10.1021/acs.jpcb.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter their propensities to form low-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn·Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly populated (pop. ∼ 5%) and short-lived (lifetime ∼50 ms) nonmutagenic 8OGanti·Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on the labeled partner adenine. The Watson-Crick-like 8OGsyn·Aanti mismatch also rescued the kinetics of Hoogsteen motions at distant A-T base pairs, which the G·A mismatch had slowed down. The results lend further support for 8OGanti·Aanti as a minor conformational state of 8OG·A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
17
|
Li J, Chiu TP, Rohs R. Predicting DNA structure using a deep learning method. Nat Commun 2024; 15:1243. [PMID: 38336958 PMCID: PMC10858265 DOI: 10.1038/s41467-024-45191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Understanding the mechanisms of protein-DNA binding is critical in comprehending gene regulation. Three-dimensional DNA structure, also described as DNA shape, plays a key role in these mechanisms. In this study, we present a deep learning-based method, Deep DNAshape, that fundamentally changes the current k-mer based high-throughput prediction of DNA shape features by accurately accounting for the influence of extended flanking regions, without the need for extensive molecular simulations or structural biology experiments. By using the Deep DNAshape method, DNA structural features can be predicted for any length and number of DNA sequences in a high-throughput manner, providing an understanding of the effects of flanking regions on DNA structure in a target region of a sequence. The Deep DNAshape method provides access to the influence of distant flanking regions on a region of interest. Our findings reveal that DNA shape readout mechanisms of a core target are quantitatively affected by flanking regions, including extended flanking regions, providing valuable insights into the detailed structural readout mechanisms of protein-DNA binding. Furthermore, when incorporated in machine learning models, the features generated by Deep DNAshape improve the model prediction accuracy. Collectively, Deep DNAshape can serve as versatile and powerful tool for diverse DNA structure-related studies.
Collapse
Affiliation(s)
- Jinsen Li
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA.
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
18
|
Gu S, Al-Hashimi HM. Direct Measurement of 8OG syn-anti Flips in Mutagenic 8OG•A and Long-Range Damage-Dependent Hoogsteen Breathing Dynamics Using 1H CEST NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575532. [PMID: 38293035 PMCID: PMC10827055 DOI: 10.1101/2024.01.15.575532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Elucidating how damage impacts DNA dynamics is essential for understanding the mechanisms of damage recognition and repair. Many DNA lesions alter the propensities to form lowly-populated and short-lived conformational states. However, NMR methods to measure these dynamics require isotopic enrichment, which is difficult for damaged nucleotides. Here, we demonstrate the utility of the 1H chemical exchange saturation transfer (CEST) NMR experiment in measuring the dynamics of oxidatively damaged 8-oxoguanine (8OG) in the mutagenic 8OGsyn•Aanti mismatch. Using 8OG-H7 as an NMR probe of the damaged base, we directly measured 8OG syn-anti flips to form a lowly-populated (pop. ~ 5%) and short-lived (lifetime ~ 50 ms) non-mutagenic 8OGanti•Aanti. These exchange parameters were in quantitative agreement with values from 13C off-resonance R1ρ and CEST on a labeled partner adenine. The Watson-Crick-like 8OGsyn•Aanti mismatch also rescued the kinetics of Hoogsteen motions at distance A-T base pairs, which the G•A mismatch had slowed down. The results lend further support for 8OGanti•Aanti as a minor conformational state of 8OG•A, reveal that 8OG damage can impact Hoogsteen dynamics at a distance, and demonstrate the utility of 1H CEST for measuring damage-dependent dynamics in unlabeled DNA.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Ashwood B, Jones MS, Lee Y, Sachleben JR, Ferguson AL, Tokmakoff A. Molecular insight into how the position of an abasic site modifies DNA duplex stability and dynamics. Biophys J 2024; 123:118-133. [PMID: 38006207 PMCID: PMC10808028 DOI: 10.1016/j.bpj.2023.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023] Open
Abstract
Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base-pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization of the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base-pairing to minimize the barrier height.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Michael S Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois
| | - Yumin Lee
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois.
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
21
|
Vojsovič M, Kratochvilová L, Valková N, Šislerová L, El Rashed Z, Menichini P, Inga A, Monti P, Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024; 216:14-23. [PMID: 37838351 DOI: 10.1016/j.biochi.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.
Collapse
Affiliation(s)
- Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic.
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Zeinab El Rashed
- Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Paola Menichini
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Paola Monti
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| |
Collapse
|
22
|
Mitra R, Li J, Sagendorf JM, Jiang Y, Chiu TP, Rohs R. DeepPBS: Geometric deep learning for interpretable prediction of protein-DNA binding specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571942. [PMID: 38293168 PMCID: PMC10827229 DOI: 10.1101/2023.12.15.571942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Predicting specificity in protein-DNA interactions is a challenging yet essential task for understanding gene regulation. Here, we present Deep Predictor of Binding Specificity (DeepPBS), a geometric deep-learning model designed to predict binding specificity across protein families based on protein-DNA structures. The DeepPBS architecture allows investigation of different family-specific recognition patterns. DeepPBS can be applied to predicted structures, and can aid in the modeling of protein-DNA complexes. DeepPBS is interpretable and can be used to calculate protein heavy atom-level importance scores, demonstrated as a case-study on p53-DNA interface. When aggregated at the protein residue level, these scores conform well with alanine scanning mutagenesis experimental data. The inference time for DeepPBS is sufficiently fast for analyzing simulation trajectories, as demonstrated on a molecular-dynamics simulation of a Drosophila Hox-DNA tertiary complex with its cofactor. DeepPBS and its corresponding data resources offer a foundation for machine-aided protein-DNA interaction studies, guiding experimental choices and complex design, as well as advancing our understanding of molecular interactions.
Collapse
|
23
|
Biswas A, Basu A. The impact of the sequence-dependent physical properties of DNA on chromatin dynamics. Curr Opin Struct Biol 2023; 83:102698. [PMID: 37696706 DOI: 10.1016/j.sbi.2023.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
The local mechanical properties of DNA depend on local sequence. Here we review recent genomic, structural, and computational efforts at deciphering the "mechanical code", i.e., the mapping between sequence and mechanics. We then discuss works that suggest how evolution has exploited the mechanical code to control the energetics of DNA-deforming biological processes such as nucleosome organization, transcription factor binding, DNA supercoiling, gene regulation, and 3D chromatin organization. As a whole, these recent works suggest that DNA sequence in diverse organisms can encode regulatory information governing diverse processes via the mechanical code.
Collapse
Affiliation(s)
- Aditi Biswas
- Department of Biosciences, Durham University, Durham, UK
| | - Aakash Basu
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
24
|
Chen J, Lu J, Liu J, Fang J, Zhong X, Song J. DNA conformational dynamics in the context-dependent non-CG CHH methylation by plant methyltransferase DRM2. J Biol Chem 2023; 299:105433. [PMID: 37926286 PMCID: PMC10711165 DOI: 10.1016/j.jbc.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023] Open
Abstract
DNA methylation provides an important epigenetic mechanism that critically regulates gene expression, genome imprinting, and retrotransposon silencing. In plants, DNA methylation is prevalent not only in a CG dinucleotide context but also in non-CG contexts, namely CHG and CHH (H = C, T, or A) methylation. It has been established that plant non-CG DNA methylation is highly context dependent, with the +1- and +2-flanking sequences enriched with A/T nucleotides. How DNA sequence, conformation, and dynamics influence non-CG methylation remains elusive. Here, we report structural and biochemical characterizations of the intrinsic substrate preference of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), a plant DNA methyltransferase responsible for establishing all cytosine methylation and maintaining CHH methylation. Among nine CHH motifs, the DRM2 methyltransferase (MTase) domain shows marked substrate preference toward CWW (W = A or T) motifs, correlating well with their relative abundance in planta. Furthermore, we report the crystal structure of DRM2 MTase in complex with a DNA duplex containing a flexible TpA base step at the +1/+2-flanking sites of the target nucleotide. Comparative structural analysis of the DRM2-DNA complexes provides a mechanism by which flanking nucleotide composition impacts DRM2-mediated DNA methylation. Furthermore, the flexibility of the TpA step gives rise to two alternative DNA conformations, resulting in different interactions with DRM2 and consequently temperature-dependent shift of the substrate preference of DRM2. Together, this study provides insights into how the interplay between the conformational dynamics of DNA and temperature as an environmental factor contributes to the context-dependent CHH methylation by DRM2.
Collapse
Affiliation(s)
- Jianbin Chen
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, California, USA.
| |
Collapse
|
25
|
Martin V, Zhuang F, Zhang Y, Pinheiro K, Gordân R. High-throughput data and modeling reveal insights into the mechanisms of cooperative DNA-binding by transcription factor proteins. Nucleic Acids Res 2023; 51:11600-11612. [PMID: 37889068 PMCID: PMC10681739 DOI: 10.1093/nar/gkad872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Cooperative DNA-binding by transcription factor (TF) proteins is critical for eukaryotic gene regulation. In the human genome, many regulatory regions contain TF-binding sites in close proximity to each other, which can facilitate cooperative interactions. However, binding site proximity does not necessarily imply cooperative binding, as TFs can also bind independently to each of their neighboring target sites. Currently, the rules that drive cooperative TF binding are not well understood. In addition, it is oftentimes difficult to infer direct TF-TF cooperativity from existing DNA-binding data. Here, we show that in vitro binding assays using DNA libraries of a few thousand genomic sequences with putative cooperative TF-binding events can be used to develop accurate models of cooperativity and to gain insights into cooperative binding mechanisms. Using factors ETS1 and RUNX1 as our case study, we show that the distance and orientation between ETS1 sites are critical determinants of cooperative ETS1-ETS1 binding, while cooperative ETS1-RUNX1 interactions show more flexibility in distance and orientation and can be accurately predicted based on the affinity and sequence/shape features of the binding sites. The approach described here, combining custom experimental design with machine-learning modeling, can be easily applied to study the cooperative DNA-binding patterns of any TFs.
Collapse
Affiliation(s)
- Vincentius Martin
- Department of Computer Science, Durham, NC 27708, USA
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
| | - Farica Zhuang
- Department of Computer Science, Durham, NC 27708, USA
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
| | - Yuning Zhang
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
- Program in Computational Biology & Bioinformatics, Durham, NC 27708, USA
| | - Kyle Pinheiro
- Department of Computer Science, Durham, NC 27708, USA
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
| | - Raluca Gordân
- Department of Computer Science, Durham, NC 27708, USA
- Center for Genomic & Computational Biology, Durham, NC 27708, USA
- Department of Biostatistics & Bioinformatics, Department of Molecular Genetics and Microbiology, Department of Cell Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
26
|
Nithun RV, Yao YM, Lin X, Habiballah S, Afek A, Jbara M. Deciphering the Role of the Ser-Phosphorylation Pattern on the DNA-Binding Activity of Max Transcription Factor Using Chemical Protein Synthesis. Angew Chem Int Ed Engl 2023; 62:e202310913. [PMID: 37642402 DOI: 10.1002/anie.202310913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The chemical synthesis of site-specifically modified transcription factors (TFs) is a powerful method to investigate how post-translational modifications (PTMs) influence TF-DNA interactions and impact gene expression. Among these TFs, Max plays a pivotal role in controlling the expression of 15 % of the genome. The activity of Max is regulated by PTMs; Ser-phosphorylation at the N-terminus is considered one of the key regulatory mechanisms. In this study, we developed a practical synthetic strategy to prepare homogeneous full-length Max for the first time, to explore the impact of Max phosphorylation. We prepared a focused library of eight Max variants, with distinct modification patterns, including mono-phosphorylated, and doubly phosphorylated analogues at Ser2/Ser11 as well as fluorescently labeled variants through native chemical ligation. Through comprehensive DNA binding analyses, we discovered that the phosphorylation position plays a crucial role in the DNA-binding activity of Max. Furthermore, in vitro high-throughput analysis using DNA microarrays revealed that the N-terminus phosphorylation pattern does not interfere with the DNA sequence specificity of Max. Our work provides insights into the regulatory role of Max's phosphorylation on the DNA interactions and sequence specificity, shedding light on how PTMs influence TF function.
Collapse
Affiliation(s)
- Raj V Nithun
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaoxi Lin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shaimaa Habiballah
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
27
|
Li J, Chiu TP, Rohs R. Deep DNAshape: Predicting DNA shape considering extended flanking regions using a deep learning method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563383. [PMID: 37961633 PMCID: PMC10634709 DOI: 10.1101/2023.10.22.563383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Understanding the mechanisms of protein-DNA binding is critical in comprehending gene regulation. Three-dimensional DNA shape plays a key role in these mechanisms. In this study, we present a deep learning-based method, Deep DNAshape, that fundamentally changes the current k -mer based high-throughput prediction of DNA shape features by accurately accounting for the influence of extended flanking regions, without the need for extensive molecular simulations or structural biology experiments. By using the Deep DNAshape method, refined DNA shape features can be predicted for any length and number of DNA sequences in a high-throughput manner, providing a deeper understanding of the effects of flanking regions on DNA shape in a target region of a sequence. Deep DNAshape method provides access to the influence of distant flanking regions on a region of interest. Our findings reveal that DNA shape readout mechanisms of a core target are quantitatively affected by flanking regions, including extended flanking regions, providing valuable insights into the detailed structural readout mechanisms of protein-DNA binding. Furthermore, when incorporated in machine learning models, the features generated by Deep DNAshape improve the model prediction accuracy. Collectively, Deep DNAshape can serve as a versatile and powerful tool for diverse DNA structure-related studies.
Collapse
|
28
|
Westwood MN, Pilarski A, Johnson C, Mamoud S, Meints GA. Backbone Conformational Equilibrium in Mismatched DNA Correlates with Enzyme Activity. Biochemistry 2023; 62:2816-2827. [PMID: 37699121 PMCID: PMC10552547 DOI: 10.1021/acs.biochem.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023]
Abstract
T:G mismatches in mammals arise primarily from the deamination of methylated CpG sites or the incorporation of improper nucleotides. The process by which repair enzymes such as thymine DNA glycosylase (TDG) identify a canonical DNA base in the incorrect pairing context remains a mystery. However, the abundant contacts of the repair enzymes with the DNA backbone suggest a role for protein-phosphate interaction in the recognition and repair processes, where conformational properties may facilitate the proper interactions. We have previously used 31P NMR to investigate the energetics of DNA backbone BI-BII interconversion and the effect of a mismatch or lesion compared to canonical DNA and found stepwise differences in ΔG of 1-2 kcal/mol greater than equivalent steps in unmodified DNA. We have currently compared our results to substrate dependence for TDG, MBD4, M. HhaI, and CEBPβ, testing for correlations to sequence and base-pair dependence. We found strong correlations of our DNA phosphate backbone equilibrium (Keq) to different enzyme kinetics or binding parameters of these varied enzymes, suggesting that the backbone equilibrium may play an important role in mismatch recognition and/or conformational rearrangement and energetics during nucleotide flipping or other aspects of enzyme interrogation of the DNA substrate.
Collapse
Affiliation(s)
- M. N. Westwood
- Biophysics
Program, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - A. Pilarski
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - C. Johnson
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - S. Mamoud
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - G. A. Meints
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| |
Collapse
|
29
|
Gao P, Yang M, Chen Y, Yan J, Han M, Deng H, Qian K, Yang J, Lu Y, Zhou L, Huang A, Li X, Deng W, Long Q. A spacer design strategy for CRISPR-Cas12f1 with single-nucleotide polymorphism mutation resolution capability and its application in the mutations diagnosis of pathogens. J Med Virol 2023; 95:e29189. [PMID: 37855689 DOI: 10.1002/jmv.29189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Infectious diseases remain a major global issue in public health. It is important to develop rapid, sensitive, and accurate diagnostic methods to detect pathogens and their mutations. Cas12f1 is an exceptionally compact RNA-guided nuclease and have the potential to fulfill the clinical needs. Based on the interaction between crRNA-SSDNA binary sequence and Cas12f1, here, we addressed the essential features that determine the recognition ability of CRISPR-Cas12f1 single-nucleotide polymorphism (SNP), such as the length of spacer region and the base pairing region that determines the trans-cleavage of ssDNA. A fine-tuning spacer design strategy is also proposed to enhance the SNP recognition capability of CRISPR-Cas12f1. The optimized spacer confers the Cas12f1 system a strong SNP identification capability for viral or bacterial drug-resistance mutations, with a specificity ratio ranging from 19.63 to 110.20 and an admirable sensitivity up to 100 copy/μL. Together, the spacer screening and CRISPR-Cas12f1 based SNP identification method, is sensitive and versatile, and will have a wide application prospect in pathogen DNA mutation diagnosis and other mutation profiling.
Collapse
Affiliation(s)
- Panqi Gao
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Maoyi Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jun Yan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Miaomiao Han
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Keli Qian
- Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiandong Yang
- Urumqi Municipal Centre for Disease Control and Prevention, Xinjiang, China
| | - Yaoqin Lu
- Urumqi Municipal Centre for Disease Control and Prevention, Xinjiang, China
| | - Ling Zhou
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wanyan Deng
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Quanxin Long
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Siebert R, Ammerpohl O, Rossini M, Herb D, Rau S, Plenio MB, Jelezko F, Ankerhold J. A quantum physics layer of epigenetics: a hypothesis deduced from charge transfer and chirality-induced spin selectivity of DNA. Clin Epigenetics 2023; 15:145. [PMID: 37684676 PMCID: PMC10492394 DOI: 10.1186/s13148-023-01560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms are informational cellular processes instructing normal and diseased phenotypes. They are associated with DNA but without altering the DNA sequence. Whereas chemical processes like DNA methylation or histone modifications are well-accepted epigenetic mechanisms, we herein propose the existence of an additional quantum physics layer of epigenetics. RESULTS We base our hypothesis on theoretical and experimental studies showing quantum phenomena to be active in double-stranded DNA, even under ambient conditions. These phenomena include coherent charge transfer along overlapping pi-orbitals of DNA bases and chirality-induced spin selectivity. Charge transfer via quantum tunneling mediated by overlapping orbitals results in charge delocalization along several neighboring bases, which can even be extended by classical (non-quantum) electron hopping. Such charge transfer is interrupted by flipping base(s) out of the double-strand e.g., by DNA modifying enzymes. Charge delocalization can directly alter DNA recognition by proteins or indirectly by DNA structural changes e.g., kinking. Regarding sequence dependency, charge localization, shown to favor guanines, could influence or even direct epigenetic changes, e.g., modification of cytosines in CpG dinucleotides. Chirality-induced spin selectivity filters electrons for their spin along DNA and, thus, is not only an indicator for quantum coherence but can potentially affect DNA binding properties. CONCLUSIONS Quantum effects in DNA are prone to triggering and manipulation by external means. By the hypothesis put forward here, we would like to foster research on "Quantum Epigenetics" at the interface of medicine, biology, biochemistry, and physics to investigate the potential epigenetic impact of quantum physical principles on (human) life.
Collapse
Affiliation(s)
- Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany.
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Mirko Rossini
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany
- Institute for Complex Quantum Systems, Ulm University, 89069, Ulm, Germany
| | - Dennis Herb
- Institute for Complex Quantum Systems, Ulm University, 89069, Ulm, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| | - Martin B Plenio
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany
- Institute of Theoretical Physics, Ulm University, 89081, Ulm, Germany
| | - Fedor Jelezko
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany
- Institute for Quantum Optics, Ulm University, 89081, Ulm, Germany
| | - Joachim Ankerhold
- Center for Integrated Quantum Science and Technology (IQST) Ulm-Stuttgart, Ulm, Germany
- Institute for Complex Quantum Systems, Ulm University, 89069, Ulm, Germany
| |
Collapse
|
31
|
Zhang X, Mei LC, Gao YY, Hao GF, Song BA. Web tools support predicting protein-nucleic acid complexes stability with affinity changes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1781. [PMID: 36693636 DOI: 10.1002/wrna.1781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
Numerous biological processes, such as transcription, replication, and translation, rely on protein-nucleic acid interactions (PNIs). Demonstrating the binding stability of protein-nucleic acid complexes is vital to deciphering the code for PNIs. Numerous web-based tools have been developed to attach importance to protein-nucleic acid stability, facilitating the prediction of PNIs characteristics rapidly. However, the data and tools are dispersed and lack comprehensive integration to understand the stability of PNIs better. In this review, we first summarize existing databases for evaluating the stability of protein-nucleic acid binding. Then, we compare and evaluate the pros and cons of web tools for forecasting the interaction energies of protein-nucleic acid complexes. Finally, we discuss the application of combining models and capabilities of PNIs. We may hope these web-based tools will facilitate the discovery of recognition mechanisms for protein-nucleic acid binding stability. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Long-Can Mei
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| | - Bao-An Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
32
|
Liu Z, Samee M. Structural underpinnings of mutation rate variations in the human genome. Nucleic Acids Res 2023; 51:7184-7197. [PMID: 37395403 PMCID: PMC10415140 DOI: 10.1093/nar/gkad551] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023] Open
Abstract
Single nucleotide mutation rates have critical implications for human evolution and genetic diseases. Importantly, the rates vary substantially across the genome and the principles underlying such variations remain poorly understood. A recent model explained much of this variation by considering higher-order nucleotide interactions in the 7-mer sequence context around mutated nucleotides. This model's success implicates a connection between DNA shape and mutation rates. DNA shape, i.e. structural properties like helical twist and tilt, is known to capture interactions between nucleotides within a local context. Thus, we hypothesized that changes in DNA shape features at and around mutated positions can explain mutation rate variations in the human genome. Indeed, DNA shape-based models of mutation rates showed similar or improved performance over current nucleotide sequence-based models. These models accurately characterized mutation hotspots in the human genome and revealed the shape features whose interactions underlie mutation rate variations. DNA shape also impacts mutation rates within putative functional regions like transcription factor binding sites where we find a strong association between DNA shape and position-specific mutation rates. This work demonstrates the structural underpinnings of nucleotide mutations in the human genome and lays the groundwork for future models of genetic variations to incorporate DNA shape.
Collapse
Affiliation(s)
- Zian Liu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
33
|
Samee MAH. Noncanonical binding of transcription factors: time to revisit specificity? Mol Biol Cell 2023; 34:pe4. [PMID: 37486893 PMCID: PMC10398899 DOI: 10.1091/mbc.e22-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Transcription factors (TFs) are one of the most studied classes of DNA-binding proteins that have a direct functional impact on gene transcription and thus, on human physiology and disease. The mechanisms that TFs use for recognizing target DNA binding sites have been studied for nearly five decades, yet they remain poorly understood. It is classically assumed that a TF recognizes a specific sequence pattern, or motif, as its binding sites. However, recent studies are consistently finding examples of noncanonical binding, that is, TFs binding at sites that do not resemble their sequence motifs. Here we review the current literature on four major types of noncanonical TF binding, namely binding based on DNA shape readout, at Guanine-quadruplex structures, at repeat sequences, and bispecific binding. These examples point to a critical need for studies to unify our current observations, many of which are at odds with the "one TF, one motif" view, into a more comprehensive definition of the DNA-binding specificity of TFs.
Collapse
|
34
|
Ashwood B, Jones MS, Lee Y, Sachleben JR, Ferguson AL, Tokmakoff A. Molecular insight into how the position of an abasic site and its sequence environment influence DNA duplex stability and dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550182. [PMID: 37546925 PMCID: PMC10401965 DOI: 10.1101/2023.07.22.550182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base pairing to minimize the barrier height.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Michael S. Jones
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yumin Lee
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, 929 East 57 Street, Chicago, Illinois 60637, United States
| |
Collapse
|
35
|
Satange R, Chang CC, Li L, Lin SH, Neidle S, Hou MH. Synergistic binding of actinomycin D and echinomycin to DNA mismatch sites and their combined anti-tumour effects. Nucleic Acids Res 2023; 51:3540-3555. [PMID: 36919604 PMCID: PMC10164580 DOI: 10.1093/nar/gkad156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Combination cancer chemotherapy is one of the most useful treatment methods to achieve a synergistic effect and reduce the toxicity of dosing with a single drug. Here, we use a combination of two well-established anticancer DNA intercalators, actinomycin D (ActD) and echinomycin (Echi), to screen their binding capabilities with DNA duplexes containing different mismatches embedded within Watson-Crick base-pairs. We have found that combining ActD and Echi preferentially stabilised thymine-related T:T mismatches. The enhanced stability of the DNA duplex-drug complexes is mainly due to the cooperative binding of the two drugs to the mismatch duplex, with many stacking interactions between the two different drug molecules. Since the repair of thymine-related mismatches is less efficient in mismatch repair (MMR)-deficient cancer cells, we have also demonstrated that the combination of ActD and Echi exhibits enhanced synergistic effects against MMR-deficient HCT116 cells and synergy is maintained in a MMR-related MLH1 gene knockdown in SW620 cells. We further accessed the clinical potential of the two-drug combination approach with a xenograft mouse model of a colorectal MMR-deficient cancer, which has resulted in a significant synergistic anti-tumour effect. The current study provides a novel approach for the development of combination chemotherapy for the treatment of cancers related to DNA-mismatches.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung402, Taiwan
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung402, Taiwan
| | - Chih-Chun Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung402, Taiwan
| | - Long‐Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung402, Taiwan
| | - Sheng-Hao Lin
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung402, Taiwan
- Division of Chest Medicine, Changhua Christian Hospital, Changhua City, Taiwan
- Departement of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung402, Taiwan
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung402, Taiwan
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung402, Taiwan
| |
Collapse
|
36
|
Ken ML, Roy R, Geng A, Ganser LR, Manghrani A, Cullen BR, Schulze-Gahmen U, Herschlag D, Al-Hashimi HM. RNA conformational propensities determine cellular activity. Nature 2023; 617:835-841. [PMID: 37198487 PMCID: PMC10429349 DOI: 10.1038/s41586-023-06080-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Cellular processes are the product of interactions between biomolecules, which associate to form biologically active complexes1. These interactions are mediated by intermolecular contacts, which if disrupted, lead to alterations in cell physiology. Nevertheless, the formation of intermolecular contacts nearly universally requires changes in the conformations of the interacting biomolecules. As a result, binding affinity and cellular activity crucially depend both on the strength of the contacts and on the inherent propensities to form binding-competent conformational states2,3. Thus, conformational penalties are ubiquitous in biology and must be known in order to quantitatively model binding energetics for protein and nucleic acid interactions4,5. However, conceptual and technological limitations have hindered our ability to dissect and quantitatively measure how conformational propensities affect cellular activity. Here we systematically altered and determined the propensities for forming the protein-bound conformation of HIV-1 TAR RNA. These propensities quantitatively predicted the binding affinities of TAR to the RNA-binding region of the Tat protein and predicted the extent of HIV-1 Tat-dependent transactivation in cells. Our results establish the role of ensemble-based conformational propensities in cellular activity and reveal an example of a cellular process driven by an exceptionally rare and short-lived RNA conformational state.
Collapse
Affiliation(s)
- Megan L Ken
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Laura R Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA, USA.
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
37
|
Ashwood B, Jones MS, Ferguson AL, Tokmakoff A. Disruption of energetic and dynamic base pairing cooperativity in DNA duplexes by an abasic site. Proc Natl Acad Sci U S A 2023; 120:e2219124120. [PMID: 36976762 PMCID: PMC10083564 DOI: 10.1073/pnas.2219124120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
DNA duplex stability arises from cooperative interactions between multiple adjacent nucleotides that favor base pairing and stacking when formed as a continuous stretch rather than individually. Lesions and nucleobase modifications alter this stability in complex manners that remain challenging to understand despite their centrality to biology. Here, we investigate how an abasic site destabilizes small DNA duplexes and reshapes base pairing dynamics and hybridization pathways using temperature-jump infrared spectroscopy and coarse-grained molecular dynamics simulations. We show how an abasic site splits the cooperativity in a short duplex into two segments, which destabilizes small duplexes as a whole and enables metastable half-dissociated configurations. Dynamically, it introduces an additional barrier to hybridization by constraining the hybridization mechanism to a step-wise process of nucleating and zipping a stretch on one side of the abasic site and then the other.
Collapse
Affiliation(s)
- Brennan Ashwood
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| | - Michael S. Jones
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL60637
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL60637
| | - Andrei Tokmakoff
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL60637
| |
Collapse
|
38
|
Mielko Z, Zhang Y, Sahay H, Liu Y, Schaich MA, Schnable B, Morrison AM, Burdinski D, Adar S, Pufall M, Van Houten B, Gordân R, Afek A. UV irradiation remodels the specificity landscape of transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2217422120. [PMID: 36888663 PMCID: PMC10089200 DOI: 10.1073/pnas.2217422120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Somatic mutations are highly enriched at transcription factor (TF) binding sites, with the strongest trend being observed for ultraviolet light (UV)-induced mutations in melanomas. One of the main mechanisms proposed for this hypermutation pattern is the inefficient repair of UV lesions within TF-binding sites, caused by competition between TFs bound to these lesions and the DNA repair proteins that must recognize the lesions to initiate repair. However, TF binding to UV-irradiated DNA is poorly characterized, and it is unclear whether TFs maintain specificity for their DNA sites after UV exposure. We developed UV-Bind, a high-throughput approach to investigate the impact of UV irradiation on protein-DNA binding specificity. We applied UV-Bind to ten TFs from eight structural families, and found that UV lesions significantly altered the DNA-binding preferences of all the TFs tested. The main effect was a decrease in binding specificity, but the precise effects and their magnitude differ across factors. Importantly, we found that despite the overall reduction in DNA-binding specificity in the presence of UV lesions, TFs can still compete with repair proteins for lesion recognition, in a manner consistent with their specificity for UV-irradiated DNA. In addition, for a subset of TFs, we identified a surprising but reproducible effect at certain nonconsensus DNA sequences, where UV irradiation leads to a high increase in the level of TF binding. These changes in DNA-binding specificity after UV irradiation, at both consensus and nonconsensus sites, have important implications for the regulatory and mutagenic roles of TFs in the cell.
Collapse
Affiliation(s)
- Zachery Mielko
- Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC 27708
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Department of Computer Science, Duke University, Durham, NC 27708
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708
| | - Harshit Sahay
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
| | - Yiling Liu
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27708
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
| | - Matthew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
| | - Brittani Schnable
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Abigail M Morrison
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Debbie Burdinski
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Miles Pufall
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
| | - Bennett Van Houten
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham NC 27708
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- UPMC-Hillman Cancer Center, Pittsburgh, PA 15213
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA 15213
| | - Raluca Gordân
- Department of Computer Science, Duke University, Durham, NC 27708
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
39
|
Sun J, Wang J, Chen X. Functionalization of Mesoporous Silica with a G-A-Mismatched dsDNA Chain for Efficient Identification and Selective Capturing of the MutY Protein. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8884-8894. [PMID: 36757327 DOI: 10.1021/acsami.2c19257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
MUTYH adenine DNA glycosylase and its homologous protein (collectively MutY) are typical DNA glycosylases with a [4Fe4S] cluster and a helix-hairpin-helix (HhH) motif in its structure. In the present work, the binding behaviors of the MutY protein to dsDNA containing different base mismatches were investigated. The type and distribution of base mismatch in the dsDNA chain were found to influence the DNA-protein binding interaction greatly. The [4Fe4S] cluster of the MutY protein is able to identify a G-A mismatch in the dsDNA chain specifically by monitoring the anomalies of charge transport in the dsDNA chain, allowing the entrance of the identified dsDNA chain into the internal cavity of the MutY protein and the strong DNA-protein binding at the HhH motif of the protein through multiple H-bonds. The dsDNA chain with a centrally located G-A mismatch is thus functionalized on mesoporous silica (MSN) via amination reaction, and the obtained dsDNA(G-A)@MSN is used as a powerful sorbent for the selective capturing of the MutY protein from complex samples. By using 0.5% NH3·H2O (m/v) as a stripping reagent, efficient isolation of the MutY protein from different cell lines and bacteria is achieved and the recovered MutY protein is demonstrated to maintain favorable DNA adenine glycosylase activity.
Collapse
Affiliation(s)
- Jingqi Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, Liaoning 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, Liaoning 110819, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, Liaoning 110819, China
| |
Collapse
|
40
|
Abstract
DNA-binding proteins play important roles in various cellular processes, but the mechanisms by which proteins recognize genomic target sites remain incompletely understood. Functional groups at the edges of the base pairs (bp) exposed in the DNA grooves represent physicochemical signatures. As these signatures enable proteins to form specific contacts between protein residues and bp, their study can provide mechanistic insights into protein-DNA binding. Existing experimental methods, such as X-ray crystallography, can reveal such mechanisms based on physicochemical interactions between proteins and their DNA target sites. However, the low throughput of structural biology methods limits mechanistic insights for selection of many genomic sites. High-throughput binding assays enable prediction of potential target sites by determining relative binding affinities of a protein to massive numbers of DNA sequences. Many currently available computational methods are based on the sequence of standard Watson-Crick bp. They assume that the contribution of overall binding affinity is independent for each base pair, or alternatively include dinucleotides or short k-mers. These methods cannot directly expand to physicochemical contacts, and they are not suitable to apply to DNA modifications or non-Watson-Crick bp. These variations include DNA methylation, and synthetic or mismatched bp. The proposed method, DeepRec, can predict relative binding affinities as function of physicochemical signatures and the effect of DNA methylation or other chemical modifications on binding. Sequence-based modeling methods are in comparison a coarse-grain description and cannot achieve such insights. Our chemistry-based modeling framework provides a path towards understanding genome function at a mechanistic level.
Collapse
|
41
|
Satange R, Rode AB, Hou MH. Revisiting recent unusual drug-DNA complex structures: Implications for cancer and neurological disease diagnostics and therapeutics. Bioorg Med Chem 2022; 76:117094. [PMID: 36410206 DOI: 10.1016/j.bmc.2022.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
42
|
Lüking M, Elf J, Levy Y. Conformational Change of Transcription Factors from Search to Specific Binding: A lac Repressor Case Study. J Phys Chem B 2022; 126:9971-9984. [PMID: 36416228 PMCID: PMC9743208 DOI: 10.1021/acs.jpcb.2c05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In a process known as facilitated diffusion, DNA-binding proteins find their target sites by combining three-dimensional diffusion and one-dimensional scanning of the DNA. Following the trade-off between speed and stability, agile exploration of DNA requires loose binding, whereas, at the DNA target site, the searching protein needs to establish tight interactions with the DNA. To enable both efficient search and stable binding, DNA-binding proteins and DNA often switch conformations upon recognition. Here, we study the one-dimensional diffusion and DNA binding of the dimeric lac repressor (LacI), which was reported to adopt two different conformations when binding different conformations of DNA. Using coarse-grained molecular dynamic simulations, we studied the diffusion and the sequence-specific binding of these conformations of LacI, as well as their truncated or monomeric variants, with two DNA conformations: straight and bent. The simulations were compared to experimental observables. This study supports that linear diffusion along DNA combines tight rotation-coupled groove tracking and rotation-decoupled hopping, where the protein briefly dissociates and reassociates just a few base pairs away. Tight groove tracking is crucial for target-site recognition, while hopping speeds up the overall search process. We investigated the diffusion of different LacI conformations on DNA and show how the flexibility of LacI's hinge regions ensures agility on DNA as well as faithful groove tracking. If the hinge regions instead form α-helices at the protein-DNA interface, tight groove tracking is not possible. On the contrary, the helical hinge region is essential for tight binding to bent, specific DNA, for the formation of the specific complex. Based on our study of different encounter complexes, we argue that the conformational change in LacI and DNA bending are somewhat coupled. Our findings underline the importance of two distinct protein conformations for facilitated diffusion and specific binding, respectively.
Collapse
Affiliation(s)
- Malin Lüking
- Department
of Cell- and Molecular Biology-ICM, Uppsala
University, Uppsala, Uppsala County751 24, Sweden
| | - Johan Elf
- Department
of Cell- and Molecular Biology-ICM, Uppsala
University, Uppsala, Uppsala County751 24, Sweden
| | - Yaakov Levy
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot, Central District76100, Israel,. Tel.: 972-8-9344587
| |
Collapse
|
43
|
In praise of research in fundamental biology. Nature 2022; 612:7. [DOI: 10.1038/d41586-022-04172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Pacesa M, Lin CH, Cléry A, Saha A, Arantes PR, Bargsten K, Irby MJ, Allain FHT, Palermo G, Cameron P, Donohoue PD, Jinek M. Structural basis for Cas9 off-target activity. Cell 2022; 185:4067-4081.e21. [PMID: 36306733 PMCID: PMC10103147 DOI: 10.1016/j.cell.2022.09.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/01/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The target DNA specificity of the CRISPR-associated genome editor nuclease Cas9 is determined by complementarity to a 20-nucleotide segment in its guide RNA. However, Cas9 can bind and cleave partially complementary off-target sequences, which raises safety concerns for its use in clinical applications. Here, we report crystallographic structures of Cas9 bound to bona fide off-target substrates, revealing that off-target binding is enabled by a range of noncanonical base-pairing interactions within the guide:off-target heteroduplex. Off-target substrates containing single-nucleotide deletions relative to the guide RNA are accommodated by base skipping or multiple noncanonical base pairs rather than RNA bulge formation. Finally, PAM-distal mismatches result in duplex unpairing and induce a conformational change in the Cas9 REC lobe that perturbs its conformational activation. Together, these insights provide a structural rationale for the off-target activity of Cas9 and contribute to the improved rational design of guide RNAs and off-target prediction algorithms.
Collapse
Affiliation(s)
- Martin Pacesa
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Chun-Han Lin
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Antoine Cléry
- Institute of Biochemistry, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Pablo R Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Katja Bargsten
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthew J Irby
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Frédéric H-T Allain
- Institute of Biochemistry, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, USA
| | - Peter Cameron
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Paul D Donohoue
- Caribou Biosciences, 2929 Seventh Street Suite 105, Berkeley, CA 94710, USA
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
45
|
Xu J, Pratt HE, Moore JE, Gerstein MB, Weng Z. Building integrative functional maps of gene regulation. Hum Mol Genet 2022; 31:R114-R122. [PMID: 36083269 PMCID: PMC9585680 DOI: 10.1093/hmg/ddac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Every cell in the human body inherits a copy of the same genetic information. The three billion base pairs of DNA in the human genome, and the roughly 50 000 coding and non-coding genes they contain, must thus encode all the complexity of human development and cell and tissue type diversity. Differences in gene regulation, or the modulation of gene expression, enable individual cells to interpret the genome differently to carry out their specific functions. Here we discuss recent and ongoing efforts to build gene regulatory maps, which aim to characterize the regulatory roles of all sequences in a genome. Many researchers and consortia have identified such regulatory elements using functional assays and evolutionary analyses; we discuss the results, strengths and shortcomings of their approaches. We also discuss new techniques the field can leverage and emerging challenges it will face while striving to build gene regulatory maps of ever-increasing resolution and comprehensiveness.
Collapse
Affiliation(s)
- Jinrui Xu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Henry E Pratt
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
46
|
Balcão VM, Basu A, Cieza B, Rossi FN, Pereira C, Vila MM, Setubal JC, Ha T, da Silva AM. Pseudomonas-tailed lytic phages: genome mechanical analysis and putative correlation with virion morphogenesis yield. Future Microbiol 2022; 17:1009-1026. [PMID: 35880493 DOI: 10.2217/fmb-2021-0293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To unveil a putative correlation between phage genome flexibility and virion morphogenesis yield. Materials & methods: A deeper analysis of the mechanical properties of three Pseudomonas aeruginosa lytic phage genomes was undertaken, together with full genome cyclizability calculations. Results & conclusion: A putative correlation was established among phage genome flexibility, eclipse timeframe and virion particle morphogenesis yield, with a more flexible phage genome leading to a higher burst size and a more rigid phage genome leading to lower burst sizes. The results obtained are highly relevant to understand the influence of the phage genome plasticity on the virion morphogenesis yield inside the infected bacterial host cells and assumes particular relevance in the actual context of bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Victor M Balcão
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, 18023-000, Brazil.,Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, P-3810-193, Portugal
| | - Aakash Basu
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Basilio Cieza
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Fernando N Rossi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Carla Pereira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, P-3810-193, Portugal
| | - Marta Mdc Vila
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, 18023-000, Brazil
| | - João C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Taekjip Ha
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
47
|
Satange R, Kao SH, Chien CM, Chou SH, Lin CC, Neidle S, Hou MH. Staggered intercalation of DNA duplexes with base-pair modulation by two distinct drug molecules induces asymmetric backbone twisting and structure polymorphism. Nucleic Acids Res 2022; 50:8867-8881. [PMID: 35871296 PMCID: PMC9410880 DOI: 10.1093/nar/gkac629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of multiple drugs simultaneously targeting DNA is a promising strategy in cancer therapy for potentially overcoming single drug resistance. In support of this concept, we report that a combination of actinomycin D (ActD) and echinomycin (Echi), can interact in novel ways with native and mismatched DNA sequences, distinct from the structural effects produced by either drug alone. Changes in the former with GpC and CpG steps separated by a A:G or G:A mismatch or in a native DNA with canonical G:C and C:G base pairs, result in significant asymmetric backbone twists through staggered intercalation and base pair modulations. A wobble or Watson–Crick base pair at the two drug-binding interfaces can result in a single-stranded ‘chair-shaped’ DNA duplex with a straight helical axis. However, a novel sugar-edged hydrogen bonding geometry in the G:A mismatch leads to a ‘curved-shaped’ duplex. Two non-canonical G:C Hoogsteen base pairings produce a sharply kinked duplex in different forms and a four-way junction-like superstructure, respectively. Therefore, single base pair modulations on the two drug-binding interfaces could significantly affect global DNA structure. These structures thus provide a rationale for atypical DNA recognition via multiple DNA intercalators and a structural basis for the drugs’ potential synergetic use.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics, National Chung Hsing University , Taichung 402, Taiwan
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University , Taichung 402, Taiwan
| | - Shih-Hao Kao
- Institute of Biotechnology, National Chung Hsing University , Taichung 402, Taiwan
| | - Ching-Ming Chien
- Institute of Genomics and Bioinformatics, National Chung Hsing University , Taichung 402, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung Hsing University , Taichung 402, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung Hsing University , Taichung 402, Taiwan
| | - Stephen Neidle
- The School of Pharmacy, University College London , London WC1N 1AX, United Kingdom
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University , Taichung 402, Taiwan
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University , Taichung 402, Taiwan
- Institute of Biotechnology, National Chung Hsing University , Taichung 402, Taiwan
| |
Collapse
|
48
|
Simple synthesis of massively parallel RNA microarrays via enzymatic conversion from DNA microarrays. Nat Commun 2022; 13:3772. [PMID: 35773271 PMCID: PMC9246885 DOI: 10.1038/s41467-022-31370-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
RNA catalytic and binding interactions with proteins and small molecules are fundamental elements of cellular life processes as well as the basis for RNA therapeutics and molecular engineering. In the absence of quantitative predictive capacity for such bioaffinity interactions, high throughput experimental approaches are needed to sufficiently sample RNA sequence space. Here we report on a simple and highly accessible approach to convert commercially available customized DNA microarrays of any complexity and density to RNA microarrays via a T7 RNA polymerase-mediated extension of photocrosslinked methyl RNA primers and subsequent degradation of the DNA templates. RNA microarrays have many potential applications, but are difficult to produce. Here, the AUs present a method for converting commercial, customizable DNA microarrays into RNA microarrays using an accessible three-step process involving primer photocrosslinking, extension, and template degradation.
Collapse
|
49
|
Measuring thermodynamic preferences to form non-native conformations in nucleic acids using ultraviolet melting. Proc Natl Acad Sci U S A 2022; 119:e2112496119. [PMID: 35671421 PMCID: PMC9214542 DOI: 10.1073/pnas.2112496119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thermodynamic preferences to form non-native conformations are crucial for understanding how nucleic acids fold and function. However, they are difficult to measure experimentally because this requires accurately determining the population of minor low-abundance (<10%) conformations in a sea of other conformations. Here, we show that melting experiments enable facile measurements of thermodynamic preferences to adopt nonnative conformations in DNA and RNA. The key to this "delta-melt" approach is to use chemical modifications to render specific minor non-native conformations the major state. The validity and robustness of delta-melt is established for four different non-native conformations under various physiological conditions and sequence contexts through independent measurements of thermodynamic preferences using NMR. Delta-melt is faster relative to NMR, simple, and cost-effective and enables thermodynamic preferences to be measured for exceptionally low-populated conformations. Using delta-melt, we obtained rare insights into conformational cooperativity, obtaining evidence for significant cooperativity (1.0 to 2.5 kcal/mol) when simultaneously forming two adjacent Hoogsteen base pairs. We also measured the thermodynamic preferences to form G-C+ and A-T Hoogsteen and A-T base open states for nearly all 16 trinucleotide sequence contexts and found distinct sequence-specific variations on the order of 2 to 3 kcal/mol. This rich landscape of sequence-specific non-native minor conformations in the DNA double helix may help shape the sequence specificity of DNA biochemistry. Thus, melting experiments can now be used to access thermodynamic information regarding regions of the free energy landscape of biomolecules beyond the native folded and unfolded conformations.
Collapse
|
50
|
Das S, Roy S, Bhattacharyya D. Understanding the role of non-Watson-Crick base pairs in DNA-protein recognition: Structural and energetic aspects using crystallographic database analysis and quantum chemical calculation. Biopolymers 2022; 113:e23492. [PMID: 35615897 DOI: 10.1002/bip.23492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
Specific recognition of DNA base sequences by proteins is vital for life-cycles of all organisms. In a large number of crystal structures of protein-DNA complexes, DNA conformation significantly deviates from the canonical B-DNA structure. A key question is whether such alternate conformations exist prior to protein binding and one is selected for complexation or the structure observed is induced by protein binding. Non-canonical base pairs, such as Hoogsteen base pairs, are often observed in crystal structures of protein-DNA complexes. We decided to explore whether the occurrence of such non-canonical base pairs in protein-DNA complexes is induced by the protein or is selected from pre-existing conformations. Detailed quantum chemical calculations with dispersion-corrected density functional theory (DFT-D) indicated that most of the non-canonical base pairs with DNA bases are stable even in the absence of the interacting amino acids. However, the G:G Hoogsteen base pair, which also appears in the telomere structure, appears to be unstable in the absence of other stabilizing agents, such as positively charged amino acids. Thus, the stability of many of the non-canonical base pair containing duplexes may be close to the canonical B-DNA structure and hence energetically accessible in the ground state; suggesting that the selection from pre-existing conformations may be an important mechanism for observed non-canonical base pairs in protein-DNA complexes.
Collapse
Affiliation(s)
- Soumi Das
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | | |
Collapse
|