1
|
Hu Y, Liao Y, Pan S, Zhou J, Wan C, Huang F, Bai Y, Lin C, Xia Q, Liu Z, Gong J, Nie X, Wang M, Qin R. A Triple-Mismatch Differentiating assay exploiting activation and trans cleavage of CRISPR-Cas12a for mutation detection with ultra specificity and sensitivity. Biosens Bioelectron 2025; 267:116826. [PMID: 39369517 DOI: 10.1016/j.bios.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Liquid biopsy technology is non-invasive and convenient, and is currently an emerging technology for cancer screening. Among them, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 12a (Cas12a) based nucleic acid detection technology has the advantages of high sensitivity, rapidity, and easy operation. However, CRISPR-Cas12a does not discriminate single-base mismatches of targets well enough to meet the needs of clinical detection. Herein, we developed the Triple-Mismatch Differentiating (TMD) assay. This assay amplified the small thermodynamic difference in mismatches at one site at the level of CRISPR-Cas12a activation to a significant thermodynamic difference at three sites at both the level of CRISPR-Cas12a activation and trans-cleavage, which greatly improves the ability of CRISPR-Cas12a to discriminate between base mismatches. Our manipulation greatly improved the specificity of the CRISPR-Cas12a system while maintaining its inherent sensitivity and simplicity, increasing the detection limit to 0.0001%. When testing samples from pancreatic cancer patients, our results were highly consistent with NGS sequencing results. We believe that the TMD assay will provide a new technology for early cancer detection and will be widely used in the clinical practice.
Collapse
Affiliation(s)
- Yibo Hu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yangwei Liao
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jingcong Zhou
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Changqing Wan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Feiyang Huang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yu Bai
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Lin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qilong Xia
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zixi Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xiaoqi Nie
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Shum C, Han SY, Thiruvahindrapuram B, Wang Z, de Rijke J, Zhang B, Sundberg M, Chen C, Buttermore ED, Makhortova N, Howe J, Sahin M, Scherer SW. Combining Off-flow, a Nextflow-coded program, and whole genome sequencing reveals unintended genetic variation in CRISPR/Cas-edited iPSCs. Comput Struct Biotechnol J 2024; 23:638-647. [PMID: 38283851 PMCID: PMC10819409 DOI: 10.1016/j.csbj.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas nucleases and human induced pluripotent stem cell (iPSC) technology can reveal deep insight into the genetic and molecular bases of human biology and disease. Undesired editing outcomes, both on-target (at the edited locus) and off-target (at other genomic loci) hinder the application of CRISPR-Cas nucleases. We developed Off-flow, a Nextflow-coded bioinformatic workflow that takes a specific guide sequence and Cas protein input to call four separate off-target prediction programs (CHOPCHOP, Cas-Offinder, CRISPRitz, CRISPR-Offinder) to output a comprehensive list of predicted off-target sites. We applied it to whole genome sequencing (WGS) data to investigate the occurrence of unintended effects in human iPSCs that underwent repair or insertion of disease-related variants by homology-directed repair. Off-flow identified a 3-base-pair-substitution and a mono-allelic genomic deletion at the target loci, KCNQ2, in 2 clones. Unbiased WGS analysis further identified off-target missense variants and a mono-allelic genomic deletion at the targeted locus, GNAQ, in 10 clones. On-target substitution and deletions had escaped standard PCR and Sanger sequencing analysis, while missense variants at other genomic loci were not detected by Off-flow. We used these results to filter out iPSC clones for subsequent functional experiments. Off-flow, which we make publicly available, works for human and mouse genomes currently and can be adapted for other genomes. Off-flow and WGS analysis can improve the integrity of studies using CRISPR/Cas-edited cells and animal models.
Collapse
Affiliation(s)
- Carole Shum
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sang Yeon Han
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jill de Rijke
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Benjamin Zhang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Sundberg
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cidi Chen
- Human Neuron Core, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nina Makhortova
- Human Neuron Core, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mustafa Sahin
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
- Lead contact
| |
Collapse
|
3
|
Mao X, Xu J, Jiang J, Li Q, Yao P, Jiang J, Gong L, Dong Y, Tu B, Wang R, Tang H, Yao F, Wang F. Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Commun Biol 2024; 7:1454. [PMID: 39506042 PMCID: PMC11541961 DOI: 10.1038/s42003-024-07173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR/Cas12a is a highly promising detection tool. However, detecting single nucleotide variations (SNVs) remains challenging. Here, we elucidate Cas12a specificity through crRNA engineering and profiling of single- and double-base mismatch tolerance across three targets. Our findings indicate that Cas12a specificity depends on the number, type, location, and distance of mismatches within the R-loop. We also find that introducing a wobble base pair at position 14 of the R-loop does not affect the free energy change when the spacer length is truncated to 17 bp. Therefore, we develop a new universal specificity enhancement strategy via iterative crRNA design, involving truncated spacers and a wobble base pair at position 14 of the R-loop, which tremendously increases specificity without sacrificing sensitivity. Additionally, we construct a PAM-free one-pot detection platform for SARS-CoV-2 variants, which effectively distinguishes SNV targets across various GC contents. In summary, our work reveals new insights into the specificity mechanism of Cas12a and demonstrates significant potential for in vitro diagnostics.
Collapse
Affiliation(s)
- Xujian Mao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Jian Xu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jingyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Qiong Li
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Ping Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jinyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Li Gong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Yin Dong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Bowen Tu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Rong Wang
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Tang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Fang Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- Changzhou Institute for Advanced Study of Public Health, Nanjing Medical University, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Fengming Wang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Lei X, Ding L, Yang X, Xu F, Wu Y, Yu S. PAIT effect: Padlock activator inhibits the trans-cleavage activity of CRISPR/Cas12a. Biosens Bioelectron 2024; 263:116607. [PMID: 39067412 DOI: 10.1016/j.bios.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The CRISPR/Cas12a system is increasingly used in biosensor development. However, high background signal and low sensitivity for the non-nucleic acid targets detection is challenging. Here, a padlock activator which could inhibit the trans-cleavage activity of CRISPR/Cas12a system in the intact form by steric hindrance effect (PAIT effect) was designed for non-nucleic acid targets detection. The PAIT effect disappeared when padlock activator was separated into two split activators. To verify the feasibility of padlock activator, a Ca2+ sensor was developed based on PAIT effect with the assistance of DNAzyme, activity of which was Ca2+ dependent. In the presence of Ca2+, DNAzyme was activated to cleave its substrate, a padlock activator modified with adenine ribonucleotide, into split padlock activators which would trigger the trans-cleavage activity of Cas12a to generate fluorescence. There was a mathematical relationship between the fluorescence intensity and the logarithm of Ca2+ concentration ranging from 10 pM to 1 nM, with a limit of detection of 3.98 pM. The little interference of Mg2+, Mn2+, Cd2+, Cu2+, Na+, Al3+, K+, Fe2+, and Fe3+ indicated high selectivity. Recovery ranged from 93.32% to 103.28% with RSDs from 1.87% to 12.74% showed a good accuracy and reliability. Furthermore, the proposed sensor could be applied to detect Ca2+ in mineral water, milk powder and urine. The results were consistent with that of flame atomic absorption spectroscopy. Thus, PAIT effect is valuable for expanding the application boundary of CRISPR/Cas12a system.
Collapse
Affiliation(s)
- Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaonan Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
5
|
Tycko J, Van MV, Aradhana, DelRosso N, Ye H, Yao D, Valbuena R, Vaughan-Jackson A, Xu X, Ludwig C, Spees K, Liu K, Gu M, Khare V, Mukund AX, Suzuki PH, Arana S, Zhang C, Du PP, Ornstein TS, Hess GT, Kamber RA, Qi LS, Khalil AS, Bintu L, Bassik MC. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat Biotechnol 2024:10.1038/s41587-024-02442-6. [PMID: 39487265 DOI: 10.1038/s41587-024-02442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
Transcriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors. We find that many effectors depend on target and DBD contexts, such as HLH domains that can act as either activators or repressors. To enable efficient perturbations, we select context-robust domains, including ZNF705 KRAB, that improve CRISPRi tools to silence promoters and enhancers. We engineer a compact human activator called NFZ, by combining NCOA3, FOXO3 and ZNF473 domains, which enables efficient CRISPRa with better viral delivery and inducible control of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mike V Van
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hanrong Ye
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Alun Vaughan-Jackson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Katherine Liu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mingxin Gu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Venya Khare
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sophia Arana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Catherine Zhang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Thea S Ornstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Gaelen T Hess
- Department of Biomolecular Chemistry and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Jabalera Y, Tascón I, Samperio S, López-Alonso JP, Gonzalez-Lopez M, Aransay AM, Abascal-Palacios G, Beisel CL, Ubarretxena-Belandia I, Perez-Jimenez R. A resurrected ancestor of Cas12a expands target access and substrate recognition for nucleic acid editing and detection. Nat Biotechnol 2024:10.1038/s41587-024-02461-3. [PMID: 39482449 DOI: 10.1038/s41587-024-02461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
The properties of Cas12a nucleases constrict the range of accessible targets and their applications. In this study, we applied ancestral sequence reconstruction (ASR) to a set of Cas12a orthologs from hydrobacteria to reconstruct a common ancestor, ReChb, characterized by near-PAMless targeting and the recognition of diverse nucleic acid activators and collateral substrates. ReChb shares 53% sequence identity with the closest Cas12a ortholog but no longer requires a T-rich PAM and can achieve genome editing in human cells at sites inaccessible to the natural FnCas12a or the engineered and PAM-flexible enAsCas12a. Furthermore, ReChb can be triggered not only by double-stranded DNA but also by single-stranded RNA and DNA targets, leading to non-specific collateral cleavage of all three nucleic acid substrates with similar efficiencies. Finally, tertiary and quaternary structures of ReChb obtained by cryogenic electron microscopy reveal the molecular details underlying its expanded biophysical activities. Overall, ReChb expands the application space of Cas12a nucleases and underscores the potential of ASR for enhancing CRISPR technologies.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Igor Tascón
- Ikerbasque Foundation for Science, Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Sara Samperio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge P López-Alonso
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Basque Resource for Electron Microscopy, Leioa, Spain
| | - Monika Gonzalez-Lopez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, ISCIII, Madrid, Spain
| | - Guillermo Abascal-Palacios
- Ikerbasque Foundation for Science, Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Iban Ubarretxena-Belandia
- Ikerbasque Foundation for Science, Bilbao, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Raul Perez-Jimenez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
- Ikerbasque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
7
|
Gandadireja AP, Vos PD, Siira SJ, Filipovska A, Rackham O. Hyperactive Nickase Activity Improves Adenine Base Editing. ACS Synth Biol 2024; 13:3128-3136. [PMID: 39298405 DOI: 10.1021/acssynbio.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Base editing technologies enable programmable single-nucleotide changes in target DNA without double-stranded DNA breaks. Adenine base editors (ABEs) allow precise conversion of adenine (A) to guanine (G). However, limited availability of optimized deaminases as well as their variable efficiencies across different target sequences can limit the ability of ABEs to achieve effective adenine editing. Here, we explored the use of a TurboCas9 nickase in an ABE to improve its genome editing activity. The resulting TurboABE exhibits amplified editing efficiency on a variety of adenine target sites without increasing off-target editing in DNA and RNA. An interesting feature of TurboABE is its ability to significantly improve the editing frequency at bases with normally inefficient editing rates in the editing window of each target DNA. Development of improved ABEs provides new possibilities for precise genetic modification of genes in living cells.
Collapse
Affiliation(s)
- Andrianto P Gandadireja
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Stefan J Siira
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- Centre for Child Health Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
- Centre for Child Health Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
8
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Liu S, He Y, Fan T, Zhu M, Qi C, Ma Y, Yang M, Yang L, Tang X, Zhou J, Zhong Z, An X, Qi Y, Zhang Y. PAM-relaxed and temperature-tolerant CRISPR-Mb3Cas12a single transcript unit systems for efficient singular and multiplexed genome editing in rice, maize, and tomato. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39387219 DOI: 10.1111/pbi.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Class 2 Type V-A CRISPR-Cas (Cas12a) nucleases are powerful genome editing tools, particularly effective in A/T-rich genomic regions, complementing the widely used CRISPR-Cas9 in plants. To enhance the utility of Cas12a, we investigate three Cas12a orthologs-Mb3Cas12a, PrCas12a, and HkCas12a-in plants. Protospacer adjacent motif (PAM) requirements, editing efficiencies, and editing profiles are compared in rice. Among these orthologs, Mb3Cas12a exhibits high editing efficiency at target sites with a simpler, relaxed TTV PAM which is less restrictive than the canonical TTTV PAM of LbCas12a and AsCas12a. To optimize Mb3Cas12a, we develop an efficient single transcription unit (STU) system by refining the linker between Mb3Cas12a and CRISPR RNA (crRNA), nuclear localization signal (NLS), and direct repeat (DR). This optimized system enables precise genome editing in rice, particularly for fine-tuning target gene expression by editing promoter regions. Further, we introduced Arginine (R) substitutions at Aspartic acid (D) 172, Asparagine (N) 573, and Lysine (K) 579 of Mb3Cas12a, creating two temperature-tolerant variants: Mb3Cas12a-R (D172R) and Mb3Cas12a-RRR (D172R/N573R/K579R). These variants demonstrate significantly improved editing efficiency at lower temperatures (22 °C and 28 °C) in rice cells, with Mb3Cas12a-RRR showing the best performance. We extend this approach by developing efficient Mb3Cas12a-RRR STU systems in maize and tomato, achieving biallelic mutants targeting single or multiple genes in T0 lines cultivated at 28 °C and 25 °C, respectively. This study significantly expands Cas12a's targeting capabilities in plant genome editing, providing valuable tools for future research and practical applications.
Collapse
Affiliation(s)
- Shishi Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao He
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Fan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Meirui Zhu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, China
| | - Caiyan Qi
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanqin Ma
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Mengqiao Yang
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Xu Tang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Zhou
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueli An
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Yong Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Liu P, Zeng J, Jiang C, Du J, Jiang L, Li S, Zeng F, Xiong E. Poly(vinylpyrrolidone)-Enhanced CRISPR-Cas System for Robust Nucleic Acid Diagnostics. Anal Chem 2024; 96:15797-15807. [PMID: 39285721 DOI: 10.1021/acs.analchem.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has opened a new path for molecular diagnostics based on RNA programmed trans-cleavage activity. However, their accessibility for highly sensitive clinical diagnostics remains insufficient. In this study, we systematically investigated the impact of various surfactants on the CRISPR-Cas12a system and found that poly(vinylpyrrolidone) (PVP), a nonionic surfactant, showed the highest enhancement effect among these tested surfactants. Additionally, the enhancement effects of PVP are compatible and versatile to CRISPR-Cas12b and Cas13a systems, improving the sensitivity of these CRISPR-Cas systems toward synthetic targets by 1-2 orders of magnitude. By integrating the PVP-enhanced CRISPR system with isothermal nucleic acid amplification, both the two- and one-step assays exhibited comparable sensitivity and specificity to gold-standard quantitative polymerase chain reaction (qPCR) in the assay of clinical human papillomavirus (HPV) samples, thereby holding significant promise for advancing clinical diagnostics and biomedical research.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiayu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Chengchuan Jiang
- Department of Cancer Center, Brain Hospital of Hunan Province & The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Jinlian Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ling Jiang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Sheng Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Fanxu Zeng
- Department of Cancer Center, Brain Hospital of Hunan Province & The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
11
|
Zhang H, Xu J, Liu S, Li H, Xu L, Wang S. Detection of MicroRNA-155 based on lambda exonuclease selective digestion and CRISPR/cas12a-assisted amplification. Anal Biochem 2024; 693:115592. [PMID: 38871161 DOI: 10.1016/j.ab.2024.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
In numerous malignancies, miRNA-155 is overexpressed and has oncogenic activity because it is one of the most efficient microRNAs for inhibiting apoptosis in human cancer cells. As a result, the highest sensitive detection of the miRNA-155 gene is a technological instrument that can enable early cancer screening. In this study, a miRNA-155 biosensor was created to create a hairpin probe that can bind to the miRNA-155 gene using lambda nucleic acid exonuclease, which can cut the 5' phosphorylated double strand, and by the DNA probe is recognized by the Cas12a enzyme, which then activates Cas12a to catalyze trans-cutting produces strong fluorescence. Research finding, the target concentration's logarithm and corresponding fluorescence intensity have a strong linear connection, and the limit of detection (LOD) of the sensing system was determined to be 8.3 pM. In addition, the biosensor displayed exceptional specificity, low false-positive signal, and high sensitivity in detecting the miRNA-155 gene in serum samples. This study's creation of a biosensor that has high sensitivity, good selectivity, and is simple to operate provides promising opportunities for research into biosensor design and early cancer detection.
Collapse
Affiliation(s)
- Haotian Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Jun Xu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Shiwen Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, 330029, PR China.
| | - Hongbo Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Lianlian Xu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Suqin Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| |
Collapse
|
12
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
13
|
Sinan S, Appleby NM, Chou CW, Finkelstein IJ, Russell R. Kinetic dissection of pre-crRNA binding and processing by CRISPR-Cas12a. RNA (NEW YORK, N.Y.) 2024; 30:1345-1355. [PMID: 39009379 PMCID: PMC11404446 DOI: 10.1261/rna.080088.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
CRISPR-Cas12a binds and processes a single pre-crRNA during maturation, providing a simple tool for genome editing applications. Here, we constructed a kinetic and thermodynamic framework for pre-crRNA processing by Cas12a in vitro, and we measured the contributions of distinct regions of the pre-crRNA to this reaction. We find that the pre-crRNA binds rapidly and extraordinarily tightly to Cas12a (K d = 0.6 pM), such that pre-crRNA binding is fully rate limiting for processing and therefore determines the specificity of Cas12a for different pre-crRNAs. The guide sequence contributes 10-fold to the binding affinity of the pre-crRNA, while deletion of an upstream sequence has no significant effect. After processing, the mature crRNA remains very tightly bound to Cas12a with a comparable affinity. Strikingly, the affinity contribution of the guide region increases to 600-fold after processing, suggesting that additional contacts are formed and may preorder the crRNA for efficient DNA target recognition. Using a direct competition assay, we find that pre-crRNA-binding specificity is robust to changes in the guide sequence, addition of a 3' extension, and secondary structure within the guide region. However, stable secondary structure in the guide region can strongly inhibit DNA targeting, indicating that care should be taken in crRNA design. Together, our results provide a quantitative framework for pre-crRNA binding and processing by Cas12a and suggest strategies for optimizing crRNA design in genome editing applications.
Collapse
Affiliation(s)
- Selma Sinan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Nathan M Appleby
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
14
|
Hasanzadeh A, Ebadati A, Saeedi S, Kamali B, Noori H, Jamei B, Hamblin MR, Liu Y, Karimi M. Nucleic acid-responsive smart systems for controlled cargo delivery. Biotechnol Adv 2024; 74:108393. [PMID: 38825215 DOI: 10.1016/j.biotechadv.2024.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arefeh Ebadati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular and Cell Biology, University of California, Merced, Merced, USA
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kamali
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Jamei
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, Xie X, Wen J, Yang Z, Liu YG, Zhu Q. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnol Adv 2024; 74:108382. [PMID: 38801866 DOI: 10.1016/j.biotechadv.2024.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years. However, the characteristics and applications of different subfamilies within the type V protein family have not been systematically summarized. In this review, we focus on the characteristics of type V effector (CRISPR/Cas12) proteins and the current methods used to discover new effector proteins. We also summarize recent modifications based on engineering of type V effectors. In addition, we introduce the applications of type V effectors for gene editing in animals and plants, including the development of base editors, tools for regulating gene expression, methods for gene targeting, and biosensors. We emphasize the prospects for development and application of CRISPR/Cas12 effectors with the goal of better utilizing toolkits based on this protein family for crop improvement and enhanced agricultural production.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zi Yang
- College of Natural & Agricultural Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Cheng P, Mao C, Tang J, Yang S, Cheng Y, Wang W, Gu Q, Han W, Chen H, Li S, Chen Y, Zhou J, Li W, Pan A, Zhao S, Huang X, Zhu S, Zhang J, Shu W, Wang S. Zero-shot prediction of mutation effects with multimodal deep representation learning guides protein engineering. Cell Res 2024; 34:630-647. [PMID: 38969803 PMCID: PMC11369238 DOI: 10.1038/s41422-024-00989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024] Open
Abstract
Mutations in amino acid sequences can provoke changes in protein function. Accurate and unsupervised prediction of mutation effects is critical in biotechnology and biomedicine, but remains a fundamental challenge. To resolve this challenge, here we present Protein Mutational Effect Predictor (ProMEP), a general and multiple sequence alignment-free method that enables zero-shot prediction of mutation effects. A multimodal deep representation learning model embedded in ProMEP was developed to comprehensively learn both sequence and structure contexts from ~160 million proteins. ProMEP achieves state-of-the-art performance in mutational effect prediction and accomplishes a tremendous improvement in speed, enabling efficient and intelligent protein engineering. Specifically, ProMEP accurately forecasts mutational consequences on the gene-editing enzymes TnpB and TadA, and successfully guides the development of high-performance gene-editing tools with their engineered variants. The gene-editing efficiency of a 5-site mutant of TnpB reaches up to 74.04% (vs 24.66% for the wild type); and the base editing tool developed on the basis of a TadA 15-site mutant (in addition to the A106V/D108N double mutation that renders deoxyadenosine deaminase activity to TadA) exhibits an A-to-G conversion frequency of up to 77.27% (vs 69.80% for ABE8e, a previous TadA-based adenine base editor) with significantly reduced bystander and off-target effects compared to ABE8e. ProMEP not only showcases superior performance in predicting mutational effects on proteins but also demonstrates a great capability to guide protein engineering. Therefore, ProMEP enables efficient exploration of the gigantic protein space and facilitates practical design of proteins, thereby advancing studies in biomedicine and synthetic biology.
Collapse
Affiliation(s)
- Peng Cheng
- Bioinformatics Center of AMMS, Beijing, China
| | - Cong Mao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin Tang
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Sen Yang
- Bioinformatics Center of AMMS, Beijing, China
| | - Yu Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wuke Wang
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Qiuxi Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Han
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Hao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sihan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | - Wuju Li
- Bioinformatics Center of AMMS, Beijing, China
| | - Aimin Pan
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou, Zhejiang, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Jun Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing, China.
| | | |
Collapse
|
17
|
Yang LZ, Min YH, Liu YX, Gao BQ, Liu XQ, Huang Y, Wang H, Yang L, Liu ZJ, Chen LL. CRISPR-array-mediated imaging of non-repetitive and multiplex genomic loci in living cells. Nat Methods 2024; 21:1646-1657. [PMID: 38965442 DOI: 10.1038/s41592-024-02333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.
Collapse
Affiliation(s)
- Liang-Zhong Yang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi-Hui Min
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Xin Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bao-Qing Gao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Qi Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youkui Huang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Wang
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhe J Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
18
|
Xiao YL, Wu Y, Tang W. An adenine base editor variant expands context compatibility. Nat Biotechnol 2024; 42:1442-1453. [PMID: 38168987 DOI: 10.1038/s41587-023-01994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024]
Abstract
Adenine base editors (ABEs) are precise gene-editing agents that convert A:T pairs into G:C through a deoxyinosine intermediate. Existing ABEs function most effectively when the target A is in a TA context. Here we evolve the Escherichia coli transfer RNA-specific adenosine deaminase (TadA) to generate TadA8r, which extends potent deoxyadenosine deamination to RA (R = A or G) and is faster in processing GA than TadA8.20 and TadA8e, the two most active TadA variants reported so far. ABE8r, comprising TadA8r and a Streptococcus pyogenes Cas9 nickase, expands the editing window at the protospacer adjacent motif-distal end and outperforms ABE7.10, ABE8.20 and ABE8e in correcting disease-associated G:C-to-A:T transitions in the human genome, with a controlled off-target profile. We show ABE8r-mediated editing of clinically relevant sites that are poorly accessed by existing editors, including sites in PCSK9, whose disruption reduces low-density lipoprotein cholesterol, and ABCA4-p.Gly1961Glu, the most frequent mutation in Stargardt disease.
Collapse
Affiliation(s)
- Yu-Lan Xiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yuan Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Fukuda N, Soga K, Taguchi C, Narushima J, Sakata K, Kato R, Yoshiba S, Shibata N, Kondo K. Cell cycle arrest combined with CDK1 inhibition suppresses genome-wide mutations by activating alternative DNA repair genes during genome editing. J Biol Chem 2024; 300:107695. [PMID: 39159810 PMCID: PMC11416245 DOI: 10.1016/j.jbc.2024.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
Cells regularly repair numerous mutations. However, the effect of CRISPR/Cas9-induced dsDNA breaks on the repair processes of naturally occurring genome-wide mutations is unclear. In this study, we used TSCE5 cells with the heterozygous thymidine kinase genotype (TK+/-) to examine these effects. We strategically inserted the target sites for guide RNA (gRNA)/Cas9 and I-SceI into the functional allele and designed the experiment such that deletions of > 81 bp or base substitutions within exon five disrupted the TK gene, resulting in a TK-/- genotype. TSCE5 cells in the resting state exhibited 16 genome-wide mutations that affected cellular functions. After gRNA/Cas9 editing, these cells produced 859 mutations, including 67 high-impact variants that severely affected cellular functions under standard culture conditions. Mutation profile analysis indicated a significant accumulation of C to A substitutions, underscoring the widespread induction of characteristic mutations by gRNA/Cas9. In contrast, gRNA/Cas9-edited cells under conditions of S∼G2/M arrest and cyclin-dependent kinase 1 inhibition showed only five mutations. Transcriptomic analysis revealed the downregulation of DNA replication genes and upregulation of alternative DNA repair genes, such as zinc finger protein 384 (ZNF384) and dual specificity phosphatase, under S∼G2/M conditions. Additionally, activation of nucleotide and base excision repair gene, including O-6-methylguanine-DNA methyltransferase and xeroderma pigmentosum complementation group C, was observed. This study highlights the profound impact of CRISPR/Cas9 editing on genome-wide mutation processes and underscores the emergence of novel DNA repair pathways. Finally, our findings provide significant insights into the maintenance of genome integrity during genome editing.
Collapse
Affiliation(s)
- Nozomi Fukuda
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Keisuke Soga
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Chie Taguchi
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Jumpei Narushima
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kozue Sakata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Reiko Kato
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoko Yoshiba
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kazunari Kondo
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan; Faculty of Food and Health Sciences, Showa Women's University, Tokyo, Japan.
| |
Collapse
|
20
|
Peng D, Vangipuram M, Wong J, Leonetti M. protoSpaceJAM: an open-source, customizable and web-accessible design platform for CRISPR/Cas insertional knock-in. Nucleic Acids Res 2024; 52:e68. [PMID: 38922690 PMCID: PMC11347160 DOI: 10.1093/nar/gkae553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
CRISPR/Cas-mediated knock-in of DNA sequences enables precise genome engineering for research and therapeutic applications. However, designing effective guide RNAs (gRNAs) and homology-directed repair (HDR) donors remains a bottleneck. Here, we present protoSpaceJAM, an open-source algorithm to automate and optimize gRNA and HDR donor design for CRISPR/Cas insertional knock-in experiments, currently supporting SpCas9, SpCas9-VQR and enAsCas12a Cas enzymes. protoSpaceJAM utilizes biological rules to rank gRNAs based on specificity, distance to insertion site, and position relative to regulatory regions. protoSpaceJAM can introduce 'recoding' mutations (silent mutations and mutations in non-coding sequences) in HDR donors to prevent re-cutting and increase knock-in efficiency. Users can customize parameters and design double-stranded or single-stranded donors. We validated protoSpaceJAM's design rules by demonstrating increased knock-in efficiency with recoding mutations and optimal strand selection for single-stranded donors. An additional module enables the design of genotyping primers for deep sequencing of edited alleles. Overall, protoSpaceJAM streamlines and optimizes CRISPR knock-in experimental design in a flexible and modular manner to benefit diverse research and therapeutic applications. protoSpaceJAM is available open-source as an interactive web tool at protospacejam.czbiohub.org or as a standalone Python package at github.com/czbiohub-sf/protoSpaceJAM.
Collapse
Affiliation(s)
- Duo Peng
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Joan Wong
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | |
Collapse
|
21
|
Lau CH, Liang QL, Zhu H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res 2024:10.1007/s11248-024-00404-x. [PMID: 39158822 DOI: 10.1007/s11248-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
22
|
Sahu S, Castro M, Muldoon JJ, Asija K, Wyman SK, Krishnappa N, de Onate L, Eyquem J, Nguyen DN, Wilson RC. Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) in primary human immune cells and hematopoietic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603391. [PMID: 39071446 PMCID: PMC11275745 DOI: 10.1101/2024.07.14.603391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in, and base editing. PERC involves mixing the CRISPR ribonucleoprotein enzyme with peptide and then incubating the formulation with cultured cells. For efficient transgene knock-in, adeno-associated virus (AAV) bearing homology-directed repair template DNA may be included. In contrast to electroporation, PERC is appealing as it requires no dedicated hardware and has less impact on cell phenotype and viability. Due to the gentle nature of PERC, delivery can be performed multiple times without substantial impact to cell health or phenotype. Here we report methods for improved PERC-mediated editing of T cells as well as novel methods for PERC-mediated editing of HSPCs, including knockout and precise knock-in. Editing efficiencies can surpass 90% using either Cas9 or Cas12a in primary T cells or HSPCs. Because PERC calls for only three readily available reagents - protein, RNA, and peptide - and does not require dedicated hardware for any step, PERC demands no special expertise and is exceptionally straightforward to adopt. The inherent compatibility of PERC with established cell engineering pipelines makes this approach appealing for rapid deployment in research and clinical settings.
Collapse
|
23
|
Jin YY, Zhang P, Liu LL, Zhao X, Hu XQ, Liu SZ, Li ZK, Liu Q, Wang JQ, Hao DL, Zhang ZQ, Chen HZ, Liu DP. Enhancing homology-directed repair efficiency with HDR-boosting modular ssDNA donor. Nat Commun 2024; 15:6843. [PMID: 39122671 PMCID: PMC11315919 DOI: 10.1038/s41467-024-50788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Despite the potential of small molecules and recombinant proteins to enhance the efficiency of homology-directed repair (HDR), single-stranded DNA (ssDNA) donors, as currently designed and chemically modified, remain suboptimal for precise gene editing. Here, we screen the biased ssDNA binding sequences of DNA repair-related proteins and engineer RAD51-preferred sequences into HDR-boosting modules for ssDNA donors. Donors with these modules exhibit an augmented affinity for RAD51, thereby enhancing HDR efficiency across various genomic loci and cell types when cooperated with Cas9, nCas9, and Cas12a. By combining with an inhibitor of non-homologous end joining (NHEJ) or the HDRobust strategy, these modular ssDNA donors achieve up to 90.03% (median 74.81%) HDR efficiency. The HDR-boosting modules targeting an endogenous protein enable a chemical modification-free strategy to improve the efficacy of ssDNA donors for precise gene editing.
Collapse
Affiliation(s)
- Ying-Ying Jin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Peng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Le-Le Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiang Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiao-Qing Hu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Si-Zhe Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Ze-Kun Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Qian Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jian-Qiao Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - De-Long Hao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zhu-Qin Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Hou-Zao Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - De-Pei Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Haihe Laboratory of Cell Ecosystem, Tianjin, 300301, China.
| |
Collapse
|
24
|
Li T, Li S, Kang Y, Zhou J, Yi M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J Transl Med 2024; 22:749. [PMID: 39118151 PMCID: PMC11312220 DOI: 10.1186/s12967-024-05570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system, a groundbreaking innovation in genetic engineering, has revolutionized our approach to surmounting complex diseases, culminating in CASGEVY™ approved for sickle cell anemia. Derived from a microbial immune defense mechanism, CRISPR/Cas9, characterized as precision, maneuverability and universality in gene editing, has been harnessed as a versatile tool for precisely manipulating DNA in mammals. In the process of applying it to practice, the consecutive exploitation of novel orthologs and variants never ceases. It's conducive to understanding the essentialities of diseases, particularly cancer, which is crucial for diagnosis, prevention, and treatment. CRISPR/Cas9 is used not only to investigate tumorous genes functioning but also to model disparate cancers, providing valuable insights into tumor biology, resistance, and immune evasion. Upon cancer therapy, CRISPR/Cas9 is instrumental in developing individual and precise cancer therapies that can selectively activate or deactivate genes within tumor cells, aiming to cripple tumor growth and invasion and sensitize cancer cells to treatments. Furthermore, it facilitates the development of innovative treatments, enhancing the targeting efficiency of reprogrammed immune cells, exemplified by advancements in CAR-T regimen. Beyond therapy, it is a potent tool for screening susceptible genes, offering the possibility of intervening before the tumor initiative or progresses. However, despite its vast potential, the application of CRISPR/Cas9 in cancer research and therapy is accompanied by significant efficacy, efficiency, technical, and safety considerations. Escalating technology innovations are warranted to address these issues. The CRISPR/Cas9 system is revolutionizing cancer research and treatment, opening up new avenues for advancements in our understanding and management of cancers. The integration of this evolving technology into clinical practice promises a new era of precision oncology, with targeted, personalized, and potentially curative therapies for cancer patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China
| | - Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Yue Kang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
25
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
26
|
Cai Z, Xie W, Bao Z. Broadening the targetable space: engineering and discovery of PAM-flexible Cas proteins. Trends Microbiol 2024; 32:728-731. [PMID: 38816311 DOI: 10.1016/j.tim.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
The application of CRISPR-Cas systems has been hindered by their requirement for long protospacer-adjacent motifs (PAMs). Recent engineering and discovery of PAM-flexible Cas proteins have substantially broadened the targetable DNA sequence space, thereby facilitating genome editing and improving derivative technologies such as gene regulation, seamless cloning, and large-scale genetic screens.
Collapse
Affiliation(s)
- Zhenkun Cai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weiyu Xie
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zehua Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China; Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
27
|
Zhang G, Song Z, Huang S, Wang Y, Sun J, Qiao L, Li G, Feng Y, Han W, Tang J, Chen Y, Huang X, Liu F, Wang X, Liu J. nCas9 Engineering for Improved Target Interaction Presents an Effective Strategy to Enhance Base Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405426. [PMID: 38881503 PMCID: PMC11336945 DOI: 10.1002/advs.202405426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Base editors (BEs) are a recent generation of genome editing tools that couple a cytidine or adenosine deaminase activity to a catalytically impaired Cas9 moiety (nCas9) to enable specific base conversions at the targeted genomic loci. Given their strong application potential, BEs are under active developments toward greater levels of efficiency and safety. Here, a previously overlooked nCas9-centric strategy is explored for enhancement of BE. Based on a cytosine BE (CBE), 20 point mutations associated with nCas9-target interaction are tested. Subsequently, from the initial positive X-to-arginine hits, combinatorial modifications are applied to establish further enhanced CBE variants (1.1-1.3). Parallel nCas9 modifications in other versions of CBEs including A3A-Y130F-BE4max, YEE-BE4max, CGBE, and split-AncBE4max, as well as in the context of two adenine BEs (ABE), likewise enhance their respective activities. The same strategy also substantially improves the efficiencies of high-fidelity nCas9/BEs. Further evidence confirms that the stabilization of nCas9-substrate interactions underlies the enhanced BE activities. In support of their translational potential, the engineered CBE and ABE variants respectively enable 82% and 25% higher rates of editing than the controls in primary human T-cells. This study thus demonstrates a highly adaptable strategy for enhancing BE, and for optimizing other forms of Cas9-derived tools.
Collapse
Affiliation(s)
| | - Ziguo Song
- International Joint Agriculture Research Center for Animal Bio‐BreedingMinistry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Yafeng Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Jiayuan Sun
- International Joint Agriculture Research Center for Animal Bio‐BreedingMinistry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Lu Qiao
- Zhejiang LabHangzhouZhejiang311121China
| | - Guanglei Li
- Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech University100 Haike Rd., Pudong New AreaShanghai201210China
| | | | - Wei Han
- Zhejiang LabHangzhouZhejiang311121China
| | - Jin Tang
- Zhejiang LabHangzhouZhejiang311121China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio‐BreedingMinistry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Furui Liu
- Zhejiang LabHangzhouZhejiang311121China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio‐BreedingMinistry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease StudyModel Animal Research Center at Medical School of Nanjing UniversityNanjing210061China
| |
Collapse
|
28
|
Shi X, Gekas C, Verduzco D, Petiwala S, Jeffries C, Lu C, Murphy E, Anton T, Vo AH, Xiao Z, Narayanan P, Sun BC, D'Souza AL, Barnes JM, Roy S, Ramathal C, Flister MJ, Dezso Z. Building a translational cancer dependency map for The Cancer Genome Atlas. NATURE CANCER 2024; 5:1176-1194. [PMID: 39009815 PMCID: PMC11358024 DOI: 10.1038/s43018-024-00789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/31/2024] [Indexed: 07/17/2024]
Abstract
Cancer dependency maps have accelerated the discovery of tumor vulnerabilities that can be exploited as drug targets when translatable to patients. The Cancer Genome Atlas (TCGA) is a compendium of 'maps' detailing the genetic, epigenetic and molecular changes that occur during the pathogenesis of cancer, yet it lacks a dependency map to translate gene essentiality in patient tumors. Here, we used machine learning to build translational dependency maps for patient tumors, which identified tumor vulnerabilities that predict drug responses and disease outcomes. A similar approach was used to map gene tolerability in healthy tissues to prioritize tumor vulnerabilities with the best therapeutic windows. A subset of patient-translatable synthetic lethalities were experimentally tested, including PAPSS1/PAPSS12 and CNOT7/CNOT78, which were validated in vitro and in vivo. Notably, PAPSS1 synthetic lethality was driven by collateral deletion of PAPSS2 with PTEN and was correlated with patient survival. Finally, the translational dependency map is provided as a web-based application for exploring tumor vulnerabilities.
Collapse
Affiliation(s)
- Xu Shi
- AbbVie Bay Area, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ferreira da Silva J, Tou CJ, King EM, Eller ML, Rufino-Ramos D, Ma L, Cromwell CR, Metovic J, Benning FMC, Chao LH, Eichler FS, Kleinstiver BP. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. Nat Biotechnol 2024:10.1038/s41587-024-02324-x. [PMID: 39039307 DOI: 10.1038/s41587-024-02324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
Genome editing technologies based on DNA-dependent polymerases (DDPs) could offer several benefits compared with other types of editors to install diverse edits. Here, we develop click editing, a genome writing platform that couples the advantageous properties of DDPs with RNA-programmable nickases to permit the installation of a range of edits, including substitutions, insertions and deletions. Click editors (CEs) leverage the 'click'-like bioconjugation ability of HUH endonucleases with single-stranded DNA substrates to covalently tether 'click DNA' (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs and their clkDNAs, we demonstrate the ability to install precise genome edits with minimal indels in diverse immortalized human cell types and primary fibroblasts with precise editing efficiencies of up to ~30%. Editing efficiency can be improved by rapidly screening clkDNA oligonucleotides with various modifications, including repair-evading substitutions. Click editing is a precise and versatile genome editing approach for diverse biological applications.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Connor J Tou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M King
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA
| | - Madeline L Eller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Christopher R Cromwell
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jasna Metovic
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Florian S Eichler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Jiang K, Yan Z, Di Bernardo M, Sgrizzi SR, Villiger L, Kayabolen A, Kim B, Carscadden JK, Hiraizumi M, Nishimasu H, Gootenberg JS, Abudayyeh OO. Rapid protein evolution by few-shot learning with a protein language model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604015. [PMID: 39071429 PMCID: PMC11275896 DOI: 10.1101/2024.07.17.604015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Directed evolution of proteins is critical for applications in basic biological research, therapeutics, diagnostics, and sustainability. However, directed evolution methods are labor intensive, cannot efficiently optimize over multiple protein properties, and are often trapped by local maxima. In silico-directed evolution methods incorporating protein language models (PLMs) have the potential to accelerate this engineering process, but current approaches fail to generalize across diverse protein families. We introduce EVOLVEpro, a few-shot active learning framework to rapidly improve protein activity using a combination of PLMs and protein activity predictors, achieving improved activity with as few as four rounds of evolution. EVOLVEpro substantially enhances the efficiency and effectiveness of in silico protein evolution, surpassing current state-of-the-art methods and yielding proteins with up to 100-fold improvement of desired properties. We showcase EVOLVEpro for five proteins across three applications: T7 RNA polymerase for RNA production, a miniature CRISPR nuclease, a prime editor, and an integrase for genome editing, and a monoclonal antibody for epitope binding. These results demonstrate the advantages of few-shot active learning with small amounts of experimental data over zero-shot predictions. EVOLVEpro paves the way for broader applications of AI-guided protein engineering in biology and medicine.
Collapse
Affiliation(s)
- Kaiyi Jiang
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
- Department of Bioengineering Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Zhaoqing Yan
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Matteo Di Bernardo
- Department of Bioengineering Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Samantha R. Sgrizzi
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Lukas Villiger
- Department of Dermatology and Allergology Kantonspital St. Gallen St. Gallen, 9000, Switzerland
| | - Alisan Kayabolen
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Byungji Kim
- Koch Institute for Integrative Cancer Research At MIT Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Josephine K. Carscadden
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Inamori Research Institute for Science 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Jonathan S. Gootenberg
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Omar O. Abudayyeh
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| |
Collapse
|
31
|
Xiao MS, Damodaran AP, Kumari B, Dickson E, Xing K, On TA, Parab N, King HE, Perez AR, Guiblet WM, Duncan G, Che A, Chari R, Andresson T, Vidigal JA, Weatheritt RJ, Aregger M, Gonatopoulos-Pournatzis T. Genome-scale exon perturbation screens uncover exons critical for cell fitness. Mol Cell 2024; 84:2553-2572.e19. [PMID: 38917794 PMCID: PMC11246229 DOI: 10.1016/j.molcel.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/04/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.
Collapse
Affiliation(s)
- Mei-Sheng Xiao
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Arun Prasath Damodaran
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| | - Bandana Kumari
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Ethan Dickson
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Kun Xing
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Tyler A On
- Molecular Targets Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Nikhil Parab
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Helen E King
- EMBL Australia and Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Alexendar R Perez
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wilfried M Guiblet
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Gerard Duncan
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21701, USA
| | - Anney Che
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21701, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21701, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Robert J Weatheritt
- EMBL Australia and Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Michael Aregger
- Molecular Targets Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| | - Thomas Gonatopoulos-Pournatzis
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| |
Collapse
|
32
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
33
|
Melore SM, Hamilton MC, Reddy TE. HyperCas12a enables highly-multiplexed epigenome editing screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602263. [PMID: 39026853 PMCID: PMC11257430 DOI: 10.1101/2024.07.08.602263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Interactions between multiple genes or cis-regulatory elements (CREs) underlie a wide range of biological processes in both health and disease. High-throughput screens using dCas9 fused to epigenome editing domains have allowed researchers to assess the impact of activation or repression of both coding and non-coding genomic regions on a phenotype of interest, but assessment of genetic interactions between those elements has been limited to pairs. Here, we combine a hyper-efficient version of Lachnospiraceae bacterium dCas12a (dHyperLbCas12a) with RNA Polymerase II expression of long CRISPR RNA (crRNA) arrays to enable efficient highly-multiplexed epigenome editing. We demonstrate that this system is compatible with several activation and repression domains, including the P300 histone acetyltransferase domain and SIN3A interacting domain (SID). We also show that the dCas12a platform can perform simultaneous activation and repression using a single crRNA array via co-expression of multiple dCas12a orthologues. Lastly, demonstrate that the dCas12a system is highly effective for high-throughput screens. We use dHyperLbCas12a-KRAB and a ~19,000-member barcoded library of crRNA arrays containing six crRNAs each to dissect the independent and combinatorial contributions of CREs to the dose-dependent control of gene expression at a glucocorticoid-responsive locus. The tools and methods introduced here create new possibilities for highly multiplexed control of gene expression in a wide variety of biological systems.
Collapse
Affiliation(s)
- Schuyler M. Melore
- University Program in Genetics & Genomics, Duke University, Durham, NC, USA
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Center for Combinatorial Gene Regulation, Duke University, Durham, NC, USA
| | - Marisa C. Hamilton
- University Program in Genetics & Genomics, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Center for Combinatorial Gene Regulation, Duke University, Durham, NC, USA
| | - Timothy E. Reddy
- University Program in Genetics & Genomics, Duke University, Durham, NC, USA
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Center for Combinatorial Gene Regulation, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Han L, Hu Y, Mo Q, Yang H, Gu F, Bai F, Sun Y, Ma H. Engineering miniature IscB nickase for robust base editing with broad targeting range. Nat Chem Biol 2024:10.1038/s41589-024-01670-w. [PMID: 38977788 DOI: 10.1038/s41589-024-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
IscB has a similar domain organization to Cas9, but the small size of IscB is better suited for delivery by adeno-associated virus. To improve the low editing efficiency of OgeuIscB (IscB from human gut metagenome) in mammalian cells, we developed high-efficiency miniature base editors by engineering OgeuIscB nickase and its cognate ωRNA, termed IminiBEs. We demonstrated the robust editing efficiency of IminiCBE (67% on average) or IminiABE (52% on average). Fusing non-specific DNA-binding protein Sso7d to IminiBEs increased the editing efficiency of low-efficiency sites by around two- to threefold, and we termed it SIminiBEs. In addition, IminiCBE and SIminiCBE recognize NNRR, NNRY and NNYR target-adjacent motifs, which broaden the canonical NWRRNA target-adjacent motif sites for the wild-type IscB nickase. Overall, IminiBEs and SIminiBEs are efficient miniature base editors for site-specific genomic mutations.
Collapse
Affiliation(s)
- Linxiao Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yueer Hu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Feng Gu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
35
|
Yan H, Tan X, Zou S, Sun Y, Ke A, Tang W. Assessing and engineering the IscB-ωRNA system for programmed genome editing. Nat Chem Biol 2024:10.1038/s41589-024-01669-3. [PMID: 38977787 DOI: 10.1038/s41589-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
OMEGA RNA (ωRNA)-guided endonuclease IscB, the evolutionary ancestor of Cas9, is an attractive system for in vivo genome editing because of its compact size and mechanistic resemblance to Cas9. However, wild-type IscB-ωRNA systems show limited activity in human cells. Here we report enhanced OgeuIscB, which, with eight amino acid substitutions, displayed a fourfold increase in in vitro DNA-binding affinity and a 30.4-fold improvement in insertion-deletion (indel) formation efficiency in human cells. Paired with structure-guided ωRNA engineering, the enhanced OgeuIscB-ωRNA systems efficiently edited the human genome across 26 target sites, attaining up to 87.3% indel and 62.2% base-editing frequencies. Both wild-type and engineered OgeuIscB-ωRNA showed moderate fidelity in editing the human genome, with off-target profiles revealing key determinants of target selection including an NARR target-adjacent motif (TAM) and the TAM-proximal 14 nucleotides in the R-loop. Collectively, our engineered OgeuIscB-ωRNA systems are programmable, potent and sufficiently specific for human genome editing.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xiaoqing Tan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Siyuan Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yihong Sun
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
37
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
38
|
Bubeck F, Grimm D. When size matters: A novel compact Cas12a variant for in vivo genome editing. PLoS Biol 2024; 22:e3002637. [PMID: 39018342 PMCID: PMC11253977 DOI: 10.1371/journal.pbio.3002637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
A new study characterizes and improves a novel small Cas12a variant before adapting it for in vivo genome editing by delivery via adeno-associated virus (AAV) vectors, showcasing the potential of small CRISPR systems and their compatibility with viral vectors.
Collapse
Affiliation(s)
- Felix Bubeck
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, BQ0030, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, BQ0030, Heidelberg University, Heidelberg, Germany
- Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Acharya S, Ansari AH, Kumar Das P, Hirano S, Aich M, Rauthan R, Mahato S, Maddileti S, Sarkar S, Kumar M, Phutela R, Gulati S, Rahman A, Goel A, Afzal C, Paul D, Agrawal T, Pulimamidi VK, Jalali S, Nishimasu H, Mariappan I, Nureki O, Maiti S, Chakraborty D. PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics. Nat Commun 2024; 15:5471. [PMID: 38942756 PMCID: PMC11213958 DOI: 10.1038/s41467-024-49233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024] Open
Abstract
The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise, with a negligible affinity for mismatched substrates, but its low cellular targeting efficiency limits therapeutic use. Here, we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.5-fold. The enFnCas9 proteins with single mismatch specificity expanded the target range of FnCas9-based CRISPR diagnostics to detect the pathogenic DNA signatures. They outperform Streptococcus pyogenes Cas9 (SpCas9) and its engineered derivatives in on-target editing efficiency, knock-in rates, and off-target specificity. enFnCas9 can be combined with extended gRNAs for robust base editing at sites which are inaccessible to PAM-constrained canonical base editors. Finally, we demonstrate an RPE65 mutation correction in a Leber congenital amaurosis 2 (LCA2) patient-specific iPSC line using enFnCas9 adenine base editor, highlighting its therapeutic utility.
Collapse
Affiliation(s)
- Sundaram Acharya
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prosad Kumar Das
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Meghali Aich
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Riya Rauthan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudipta Mahato
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Savitri Maddileti
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sajal Sarkar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rhythm Phutela
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sneha Gulati
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Abdul Rahman
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Arushi Goel
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C Afzal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Deepanjan Paul
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Trupti Agrawal
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Kumar Pulimamidi
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Subhadra Jalali
- Srimati Kannuri Santhamma Centre for vitreoretinal diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan
| | - Indumathi Mariappan
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
40
|
Liu Z, Liu H, Huang C, Zhou Q, Luo Y. Hybrid Cas12a Variants with Relaxed PAM Requirements Expand Genome Editing Compatibility. ACS Synth Biol 2024; 13:1809-1819. [PMID: 38819403 DOI: 10.1021/acssynbio.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Cas12a is a widely used programmable nuclease for genome editing across a variety of organisms, but its application is limited by its PAM recognition restriction. To alleviate these PAM constraints, protein engineering efforts have been applied to expand the PAM recognition range. In this study, we designed and constructed 990 synthetic hybrid Cas12a chimeras through domain shuffling and screened an efficient hybrid Cas12a (ehCas12a) that could recognize a broad range PAM of 5'-TYYN-3' (Y is T or C and N is A, T, C, or G). Furthermore, we constructed an ehCas12a variant, ehCas12a RRVR (T167R/N572R/K578V/N582R), with expanded PAM preference to 5'-TNYN, TWRV-3' (W is A or T, R is A or G, and V is A, C, or G), which can efficiently recognize -2* A/G PAMs that are barely recognized by Cas12a-type proteins and their mutants. Finally, we demonstrated that the DNase-inactivated ehCas12a RRVR base editor (dehCas12a RRVR-BE) was capable of targeting noncanonical PAMs in vivo and disease-related loci for potential therapeutic applications. Overall, our findings highlight the modular design and reconfiguration of Cas proteins for enhanced functionality.
Collapse
Affiliation(s)
- Zhenyu Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huayi Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chaoqun Huang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Zhou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
41
|
Liu Y, Liu X, Wei D, Dang L, Xu X, Huang S, Li L, Wu S, Wu J, Liu X, Sun W, Tao W, Wei Y, Huang X, Li K, Wang X, Zhou F. CoHIT: a one-pot ultrasensitive ERA-CRISPR system for detecting multiple same-site indels. Nat Commun 2024; 15:5014. [PMID: 38866774 PMCID: PMC11169540 DOI: 10.1038/s41467-024-49414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Genetic testing is crucial for precision cancer medicine. However, detecting multiple same-site insertions or deletions (indels) is challenging. Here, we introduce CoHIT (Cas12a-based One-for-all High-speed Isothermal Test), a one-pot CRISPR-based assay for indel detection. Leveraging an engineered AsCas12a protein variant with high mismatch tolerance and broad PAM scope, CoHIT can use a single crRNA to detect multiple NPM1 gene c.863_864 4-bp insertions in acute myeloid leukemia (AML). After optimizing multiple parameters, CoHIT achieves a detection limit of 0.01% and rapid results within 30 minutes, without wild-type cross-reactivity. It successfully identifies NPM1 mutations in 30 out of 108 AML patients and demonstrates potential in monitoring minimal residual disease (MRD) through continuous sample analysis from three patients. The CoHIT method is also competent for detecting indels of KIT, BRAF, and EGFR genes. Integration with lateral flow test strips and microfluidic chips highlights CoHIT's adaptability and multiplexing capability, promising significant advancements in clinical cancer diagnostics.
Collapse
Affiliation(s)
- Yin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Wuhan University Shenzhen Research Institute, Shenzhen, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xinyi Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dongyi Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lu Dang
- Department of Reproductive Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoran Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | | | - Liwen Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wenjun Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Wanyu Tao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xingxu Huang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modeatarn Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
42
|
Hebert JD, Xu H, Tang YJ, Ruiz PA, Detrick CR, Wang J, Hughes NW, Donosa O, Andrejka L, Karmakar S, Aboiralor I, Tang R, Sage J, Cong L, Petrov DA, Winslow MM. Efficient and multiplexed somatic genome editing with Cas12a mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583774. [PMID: 38496463 PMCID: PMC10942438 DOI: 10.1101/2024.03.07.583774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Somatic genome editing in mouse models has increased our understanding of the in vivo effects of genetic alterations in areas ranging from neuroscience to cancer biology and beyond. However, existing models are limited in their ability to create multiple targeted edits. Thus, our understanding of the complex genetic interactions that underlie development, homeostasis, and disease remains incomplete. Cas12a is an RNA-guided endonuclease with unique attributes that enable simple targeting of multiple genes with crRNA arrays containing tandem guides. To accelerate and expand the generation of complex genotypes in somatic cells, we generated transgenic mice with Cre-regulated and constitutive expression of enhanced Acidaminococcus sp. Cas12a (enAsCas12a). In these mice, enAsCas12a-mediated somatic genome editing robustly generated compound genotypes, as exemplified by the initiation of diverse cancer types driven by homozygous inactivation of trios of tumor suppressor genes. We further integrated these modular crRNA arrays with clonal barcoding to quantify the size and number of tumors with each array, as well as the efficiency of each crRNA. These Cas12a alleles will enable the rapid generation of disease models and broadly facilitate the high-throughput investigation of coincident genomic alterations in somatic cells in vivo .
Collapse
|
43
|
Wang X, Cai C, Lv W, Chen K, Li J, Liao K, Zhang Y, Huang H, Lin Y, Rong Z, Duan X. Short cell-penetration peptide conjugated bioreducible polymer enhances gene editing of CRISPR system. J Nanobiotechnology 2024; 22:284. [PMID: 38790037 PMCID: PMC11127455 DOI: 10.1186/s12951-024-02554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
CRISPR-based gene therapy offers precise targeting and specific editing of disease-related gene sequences, potentially yielding long-lasting treatment effects. However, efficient delivery remains a significant challenge for its widespread application. In this study, we design a novel short peptide-conjugated bioreducible polymer named TSPscp as a safe and effective delivery vector for the CRISPR system. Our results show that TSPscp markedly boosts transcriptional activation and genome editing activities of multiple CRISPR systems as confirmed by decomposition-seq and Deep-seq, which is resulted from its capability in facilitating delivery of plasmid DNA by promoting cellular uptake and lysosomal escape. Additionally, TSPscp further enhances genome editing of CRISPR by delivery of minicircle DNA, a condensed form of regular plasmid DNA. More importantly, TSPscp significantly improves delivery and genome editing of CRISPR system in vivo. In summary, our study highlights TSPscp as a promising delivery tool for CRISPR applications in vivo.
Collapse
Affiliation(s)
- Xiaobo Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Chengyuan Cai
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Weiqi Lv
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Kechen Chen
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Jiaxin Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Kaitong Liao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Yanqun Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China.
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
44
|
Hsiung CCS, Wilson CM, Sambold NA, Dai R, Chen Q, Teyssier N, Misiukiewicz S, Arab A, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations. Nat Biotechnol 2024:10.1038/s41587-024-02224-0. [PMID: 38760567 DOI: 10.1038/s41587-024-02224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2024] [Indexed: 05/19/2024]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting one to three genomic sites per cell. We engineer an Acidaminococcus Cas12a (AsCas12a) variant, multiplexed transcriptional interference AsCas12a (multiAsCas12a), that incorporates R1226A, a mutation that stabilizes the ribonucleoprotein-DNA complex via DNA nicking. The multiAsCas12a-KRAB fusion improves CRISPRi activity over DNase-dead AsCas12a-KRAB fusions, often rescuing the activities of lentivirally delivered CRISPR RNAs (crRNA) that are inactive when used with the latter. multiAsCas12a-KRAB supports CRISPRi using 6-plex crRNA arrays in high-throughput pooled screens. Using multiAsCas12a-KRAB, we discover enhancer elements and dissect the combinatorial function of cis-regulatory elements in human cells. These results instantiate a group testing framework for efficiently surveying numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
Affiliation(s)
- C C-S Hsiung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - C M Wilson
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | | | - R Dai
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Q Chen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - N Teyssier
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - S Misiukiewicz
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - A Arab
- Arc Institute, Palo Alto, CA, USA
| | - T O'Loughlin
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - J C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - L A Gilbert
- Department of Urology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
45
|
Wu Y, Jin R, Chang Y, Liu M. A high-fidelity DNAzyme-assisted CRISPR/Cas13a system with single-nucleotide resolved specificity. Chem Sci 2024; 15:6934-6942. [PMID: 38725495 PMCID: PMC11077575 DOI: 10.1039/d4sc01501k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
A CRISPR/Cas system represents an innovative tool for developing a new-generation biosensing and diagnostic strategy. However, the off-target issue (i.e., mistaken cleavage of nucleic acid targets and reporters) remains a great challenge for its practical applications. We hypothesize that this issue can be overcome by taking advantage of the site-specific cleavage ability of RNA-cleaving DNAzymes. To test this idea, we propose a DNAzyme Operation Enhances the Specificity of CRISPR/Cas13a strategy (termed DOES-CRISPR) to overcome the problem of relatively poor specificity that is typical of the traditional CRISPR/Cas13a system. The key to the design is that the partial hybridization of the CRISPR RNA (crRNA) with the cleavage fragment of off-target RNA was not able to activate the collateral cleavage activity of Cas13a. We showed that DOES-CRISPR can significantly improve the specificity of traditional CRISPR/Cas13a-based molecular detection by up to ∼43-fold. The broad utility of the strategy is illustrated through engineering three different systems for the detection of microRNAs (miR-17 and let-7e), CYP2C19*17 gene, SARS-Cov-2 variants (Gamma, Delta, and Omicron) and Omicron subtypes (BQ.1 and XBB.1) with single-nucleotide resolved specificity. Finally, clinical evaluation of this assay using 10 patient blood samples demonstrated a clinical sensitivity of 100% and specificity of 100% for genotyping CYP2C19*17, and analyzing 20 throat swab samples provided a diagnostic sensitivity of 95% and specificity of 100% for Omicron detection, and a clinical sensitivity of 92% and specificity of 100% for XBB.1 detection.
Collapse
Affiliation(s)
- Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Ruigang Jin
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| |
Collapse
|
46
|
Xun G, Zhu Z, Singh N, Lu J, Jain PK, Zhao H. Harnessing noncanonical crRNA for highly efficient genome editing. Nat Commun 2024; 15:3823. [PMID: 38714643 PMCID: PMC11076584 DOI: 10.1038/s41467-024-48012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/18/2024] [Indexed: 05/10/2024] Open
Abstract
The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target. The resulting CRISPR-Cas12a (named zCRISPR-Cas12a thereafter) shows an on-target editing efficiency comparable to that of the CRISPR-Cas9 system but with much lower off-target effects than the CRISPR-Cas9 system in mammalian cells. In addition, zCRISPR-Cas12a can be used for precise gene knock-in and highly efficient multiplex genome editing. Overall, the zCRISPR-Cas12a system is superior to the CRISPR-Cas9 system, and our simple crRNA engineering strategy may be extended to other CRISPR-Cas family members as well as their derivatives.
Collapse
Affiliation(s)
- Guanhua Xun
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Zhixin Zhu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Nilmani Singh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Jingxia Lu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Piyush K Jain
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Huimin Zhao
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
47
|
Rananaware SR, Meister KS, Shoemaker GM, Vesco EK, Sandoval LSW, Lewis JG, Bodin AP, Karalkar VN, Lange IH, Pizzano BLM, Chang M, Ahmadimashhadi MR, Flannery SJ, Nguyen LT, Wang GP, Jain PK. PAM-free diagnostics with diverse type V CRISPR-Cas systems. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.02.24306194. [PMID: 38746294 PMCID: PMC11092703 DOI: 10.1101/2024.05.02.24306194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Type V CRISPR-Cas effectors have revolutionized molecular diagnostics by facilitating the detection of nucleic acid biomarkers. However, their dependence on the presence of protospacer adjacent motif (PAM) sites on the target double-stranded DNA (dsDNA) greatly limits their flexibility as diagnostic tools. Here we present a novel method named PICNIC that solves the PAM problem for CRISPR-based diagnostics with just a simple ∼10-min modification to contemporary CRISPR-detection protocols. Our method involves the separation of dsDNA into individual single-stranded DNA (ssDNA) strands through a high- temperature and high-pH treatment. We then detect the released ssDNA strands with diverse Cas12 enzymes in a PAM-free manner. We show the utility of PICNIC by successfully applying it for PAM-free detection with three different subtypes of the Cas12 family- Cas12a, Cas12b, and Cas12i. Notably, by combining PICNIC with a truncated 15-nucleotide spacer containing crRNA, we demonstrate PAM-independent detection of clinically important single- nucleotide polymorphisms with CRISPR. We apply this approach to detect the presence of a drug-resistant variant of HIV-1, specifically the K103N mutant, that lacks a PAM site in the vicinity of the mutation. Additionally, we successfully translate our approach to clinical samples by detecting and genotyping HCV-1a and HCV-1b variants with 100% specificity at a PAM-less site within the HCV genome. In summary, PICNIC is a simple yet groundbreaking method that enhances the flexibility and precision of CRISPR-Cas12-based diagnostics by eliminating the restriction of the PAM sequence.
Collapse
|
48
|
Wang H, Zhou J, Lei J, Mo G, Wu Y, Liu H, Pang Z, Du M, Zhou Z, Paek C, Sun Z, Chen Y, Wang Y, Chen P, Yin L. Engineering of a compact, high-fidelity EbCas12a variant that can be packaged with its crRNA into an all-in-one AAV vector delivery system. PLoS Biol 2024; 22:e3002619. [PMID: 38814985 PMCID: PMC11139299 DOI: 10.1371/journal.pbio.3002619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
The CRISPR-associated endonuclease Cas12a has become a powerful genome-editing tool in biomedical research due to its ease of use and low off-targeting. However, the size of Cas12a severely limits clinical applications such as adeno-associated virus (AAV)-based gene therapy. Here, we characterized a novel compact Cas12a ortholog, termed EbCas12a, from the metagenome-assembled genome of a currently unclassified Erysipelotrichia. It has the PAM sequence of 5'-TTTV-3' (V = A, G, C) and the smallest size of approximately 3.47 kb among the Cas12a orthologs reported so far. In addition, enhanced EbCas12a (enEbCas12a) was also designed to have comparable editing efficiency with higher specificity to AsCas12a and LbCas12a in mammalian cells at multiple target sites. Based on the compact enEbCas12a, an all-in-one AAV delivery system with crRNA for Cas12a was developed for both in vitro and in vivo applications. Overall, the novel smallest high-fidelity enEbCas12a, this first case of the all-in-one AAV delivery for Cas12a could greatly boost future gene therapy and scientific research.
Collapse
Affiliation(s)
- Hongjian Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guosheng Mo
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ziyan Pang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Mingkun Du
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zihao Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chonil Paek
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongshun Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Xin Y, Feng H, He C, Lu H, Zuo E, Yan N. Development of a universal antibiotic resistance screening system for efficient enrichment of C-to-G and A-to-G base editing. Int J Biol Macromol 2024; 268:131785. [PMID: 38679258 DOI: 10.1016/j.ijbiomac.2024.131785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/31/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
To expand the scope of genomic editing, a C-to-G transversion-based editor called CGBE has been developed for precise single-nucleotide genomic editing. However, limited editing efficiency and product purity have hindered the development and application of CGBE. In this study, we introduced the Puromycin-Resistance Screening System, referred to as CGBE/ABE-PRSS, to select genetically modified cells via the CGBE or ABE editors. The CGBE/ABE-PRSS system significantly improves the enrichment efficiency of CGBE- or ABE-modified cells, showing enhancements of up to 59.6 % compared with the controls. Our findings indicate that the CGBE/ABE-PRSS, when driven by the CMV promoter, results in a higher enrichment of edited cells compared to the CAG and EF1α promoters. Furthermore, we demonstrate that this system is compatible with different versions of both CGBE and ABE, enabling various cell species and simultaneous multiplexed genome editing without any detectable random off-targets. In conclusion, our developed CGBE/ABE-PRSS system facilitates the selection of edited cells and holds promise in both basic engineering and gene therapy applications.
Collapse
Affiliation(s)
- Ying Xin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenfei He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongjiang Lu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nana Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China..
| |
Collapse
|
50
|
Nguyen NTK, Lee SS, Chen PH, Chang YH, Pham NN, Chang CW, Pham DH, Ngo DKT, Dang QT, Truong VA, Truong VA, Chang YH, Hu YC. Enhanced Calvarial Bone Repair Using ASCs Engineered with RNA-Guided Split dCas12a System that Co-Activates Sox 5, Sox6, and Long Non-Coding RNA H19. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306612. [PMID: 38126683 DOI: 10.1002/smll.202306612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Healing of large calvarial bone defects remains challenging. An RNA-guided Split dCas12a system is previously harnessed to activate long non-coding RNA H19 (lncRNA H19, referred to as H19 thereafter) in bone marrow-derived mesenchymal stem cells (BMSCs). H19 activation in BMSCs induces chondrogenic differentiation, switches bone healing pathways, and improves calvarial bone repair. Since adipose-derived stem cells (ASCs) can be harvested more easily in large quantity, here it is aimed to use ASCs as an alternative cell source. However, H19 activation alone using the Split dCas12a system in ASCs failed to elicit evident chondrogenesis. Therefore, split dCas12a activators are designed more to co-activate other chondroinductive transcription factors (Sox5, Sox6, and Sox9) to synergistically potentiate differentiation. It is found that co-activation of H19/Sox5/Sox6 in ASCs elicited more potent chondrogenic differentiation than activation of Sox5/Sox6/Sox9 or H19 alone. Co-activating H19/Sox5/Sox6 in ASCs significantly augmented in vitro cartilage formation and in vivo calvarial bone healing. These data altogether implicated the potentials of the Split dCas12a system to trigger multiplexed gene activation in ASCs for differentiation pathway reprogramming and tissue regeneration.
Collapse
Affiliation(s)
- Nuong Thi Kieu Nguyen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Shung Lee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Pin-Hsin Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Nam Ngoc Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dang Huu Pham
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dung Kim Thi Ngo
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Quyen Thuc Dang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Vy Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, 33305, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|