1
|
Koller F, Cieslak M. A perspective from the EU: unintended genetic changes in plants caused by NGT-their relevance for a comprehensive molecular characterisation and risk assessment. Front Bioeng Biotechnol 2023; 11:1276226. [PMID: 37965049 PMCID: PMC10641861 DOI: 10.3389/fbioe.2023.1276226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Several regions in the world are currently holding discussions in regard to the regulation of new genomic techniques (NGTs) and their application in agriculture. The European Commission, for instance, is proposing the introduction of specific regulation for NGT plants. Various questions need to be answered including e.g., the extent to which NGT-induced intended and unintended genetic modifications must be subjected to a mandatory risk assessment as part of an approval procedure. This review mostly focuses on findings in regard to unintended genetic changes that can be caused by the application of NGTs. More specifically, the review deals with the application of the nuclease CRISPR/Cas, which is currently the most important tool for developing NGT plants, and its potential to introduce double strand breaks (DSBs) at a targeted DNA sequence. For this purpose, we identified the differences in comparison to non-targeted mutagenesis methods used in conventional breeding. The review concludes that unintended genetic changes caused by NGT processes are relevant to risk assessment. Due to the technical characteristics of NGTs, the sites of the unintended changes, their genomic context and their frequency (in regard to specific sites) mean that the resulting gene combinations (intended or unintended) may be unlikely to occur with conventional methods. This, in turn, implies that the biological effects (phenotypes) can also be different and may cause risks to health and the environment. Therefore, we conclude that the assessment of intended as well as unintended genetic changes should be part of a mandatory comprehensive molecular characterisation and risk assessment of NGT plants that are meant for environmental releases or for market authorisation.
Collapse
Affiliation(s)
- Franziska Koller
- Fachstelle Gentechnik und Umwelt (FGU), Munich, Bavaria, Germany
| | | |
Collapse
|
2
|
Heinemann JA, Clark K, Hiscox TC, McCabe AW, Agapito-Tenfen SZ. Are null segregants new combinations of heritable material and should they be regulated? Front Genome Ed 2023; 4:1064103. [PMID: 36704579 PMCID: PMC9871356 DOI: 10.3389/fgeed.2022.1064103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Through genome editing and other techniques of gene technology, it is possible to create a class of organism called null segregants. These genetically modified organisms (GMOs) are products of gene technology but are argued to have no lingering vestige of the technology after the segregation of chromosomes or deletion of insertions. From that viewpoint regulations are redundant because any unique potential for the use of gene technology to cause harm has also been removed. We tackle this question of international interest by reviewing the early history of the purpose of gene technology regulation. The active ingredients of techniques used for guided mutagenesis, e.g., site-directed nucleases, such as CRISPR/Cas, are promoted for having a lower potential per reaction to create a hazard. However, others see this as a desirable industrial property of the reagents that will lead to genome editing being used more and nullifying the promised hazard mitigation. The contest between views revolves around whether regulations could alter the risks in the responsible use of gene technology. We conclude that gene technology, even when used to make null segregants, has characteristics that make regulation a reasonable option for mitigating potential harm. Those characteristics are that it allows people to create more harm faster, even if it creates benefits as well; the potential for harm increases with increased use of the technique, but safety does not; and regulations can control harm scaling.
Collapse
Affiliation(s)
- Jack A. Heinemann
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Katrin Clark
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tessa C. Hiscox
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andrew W. McCabe
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sarah Z. Agapito-Tenfen
- Climate and Environment Division, NORCE Norwegian Research Centre AS, Tromsø, Norway,*Correspondence: Sarah Z. Agapito-Tenfen,
| |
Collapse
|
3
|
Jones HE, Wilson PB. Progress and opportunities through use of genomics in animal production. Trends Genet 2022; 38:1228-1252. [PMID: 35945076 DOI: 10.1016/j.tig.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 01/24/2023]
Abstract
The rearing of farmed animals is a vital component of global food production systems, but its impact on the environment, human health, animal welfare, and biodiversity is being increasingly challenged. Developments in genetic and genomic technologies have had a key role in improving the productivity of farmed animals for decades. Advances in genome sequencing, annotation, and editing offer a means not only to continue that trend, but also, when combined with advanced data collection, analytics, cloud computing, appropriate infrastructure, and regulation, to take precision livestock farming (PLF) and conservation to an advanced level. Such an approach could generate substantial additional benefits in terms of reducing use of resources, health treatments, and environmental impact, while also improving animal health and welfare.
Collapse
Affiliation(s)
- Huw E Jones
- UK Genetics for Livestock and Equines (UKGLE) Committee, Department for Environment, Food and Rural Affairs, Nobel House, 17 Smith Square, London, SW1P 3JR, UK; Nottingham Trent University, Brackenhurst Campus, Brackenhurst Lane, Southwell, NG25 0QF, UK.
| | - Philippe B Wilson
- UK Genetics for Livestock and Equines (UKGLE) Committee, Department for Environment, Food and Rural Affairs, Nobel House, 17 Smith Square, London, SW1P 3JR, UK; Nottingham Trent University, Brackenhurst Campus, Brackenhurst Lane, Southwell, NG25 0QF, UK
| |
Collapse
|
4
|
Mulè MP, Martins AJ, Tsang JS. Normalizing and denoising protein expression data from droplet-based single cell profiling. Nat Commun 2022; 13:2099. [PMID: 35440536 PMCID: PMC9018908 DOI: 10.1038/s41467-022-29356-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Multimodal single-cell profiling methods that measure protein expression with oligo-conjugated antibodies hold promise for comprehensive dissection of cellular heterogeneity, yet the resulting protein counts have substantial technical noise that can mask biological variations. Here we integrate experiments and computational analyses to reveal two major noise sources and develop a method called "dsb" (denoised and scaled by background) to normalize and denoise droplet-based protein expression data. We discover that protein-specific noise originates from unbound antibodies encapsulated during droplet generation; this noise can thus be accurately estimated and corrected by utilizing protein levels in empty droplets. We also find that isotype control antibodies and the background protein population average in each cell exhibit significant correlations across single cells, we thus use their shared variance to correct for cell-to-cell technical noise in each cell. We validate these findings by analyzing the performance of dsb in eight independent datasets spanning multiple technologies, including CITE-seq, ASAP-seq, and TEA-seq. Compared to existing normalization methods, our approach improves downstream analyses by better unmasking biologically meaningful cell populations. Our method is available as an open-source R package that interfaces easily with existing single cell software platforms such as Seurat, Bioconductor, and Scanpy and can be accessed at "dsb [ https://cran.r-project.org/package=dsb ]".
Collapse
Affiliation(s)
- Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- NIH Center for Human Immunology (CHI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
5
|
Gutierrez-Reinoso MA, Aponte PM, Garcia-Herreros M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals (Basel) 2021; 11:599. [PMID: 33668747 PMCID: PMC7996307 DOI: 10.3390/ani11030599] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Genomics comprises a set of current and valuable technologies implemented as selection tools in dairy cattle commercial breeding programs. The intensive progeny testing for production and reproductive traits based on genomic breeding values (GEBVs) has been crucial to increasing dairy cattle productivity. The knowledge of key genes and haplotypes, including their regulation mechanisms, as markers for productivity traits, may improve the strategies on the present and future for dairy cattle selection. Genome-wide association studies (GWAS) such as quantitative trait loci (QTL), single nucleotide polymorphisms (SNPs), or single-step genomic best linear unbiased prediction (ssGBLUP) methods have already been included in global dairy programs for the estimation of marker-assisted selection-derived effects. The increase in genetic progress based on genomic predicting accuracy has also contributed to the understanding of genetic effects in dairy cattle offspring. However, the crossing within inbred-lines critically increased homozygosis with accumulated negative effects of inbreeding like a decline in reproductive performance. Thus, inaccurate-biased estimations based on empirical-conventional models of dairy production systems face an increased risk of providing suboptimal results derived from errors in the selection of candidates of high genetic merit-based just on low-heritability phenotypic traits. This extends the generation intervals and increases costs due to the significant reduction of genetic gains. The remarkable progress of genomic prediction increases the accurate selection of superior candidates. The scope of the present review is to summarize and discuss the advances and challenges of genomic tools for dairy cattle selection for optimizing breeding programs and controlling negative inbreeding depression effects on productivity and consequently, achieving economic-effective advances in food production efficiency. Particular attention is given to the potential genomic selection-derived results to facilitate precision management on modern dairy farms, including an overview of novel genome editing methodologies as perspectives toward the future.
Collapse
Affiliation(s)
- Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 05-0150, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
- Campus Cumbayá, Instituto de Investigaciones en Biomedicina “One-health”, Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
6
|
Mueller ML, Cole JB, Connors NK, Johnston DJ, Randhawa IAS, Van Eenennaam AL. Comparison of Gene Editing Versus Conventional Breeding to Introgress the POLLED Allele Into the Tropically Adapted Australian Beef Cattle Population. Front Genet 2021; 12:593154. [PMID: 33643378 PMCID: PMC7905321 DOI: 10.3389/fgene.2021.593154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Dehorning is the process of physically removing horns to protect animals and humans from injury, but the process is costly, unpleasant, and faces increasing public scrutiny. Genetic selection for polled (hornless), which is genetically dominant to horned, is a long-term solution to eliminate the need for dehorning. However, due to the limited number of polled Australian Brahman bulls, the northern Australian beef cattle population remains predominantly horned. The potential to use gene editing to produce high-genetic-merit polled cattle was recently demonstrated. To further explore the concept, this study simulated introgression of the POLLED allele into a tropically adapted Australian beef cattle population via conventional breeding or gene editing (top 1% or 10% of seedstock bulls/year) for 3 polled mating schemes and compared results to baseline selection on genetic merit (Japan Ox selection index, $JapOx) alone, over the course of 20 years. The baseline scenario did not significantly decrease the 20-year HORNED allele frequency (80%), but resulted in one of the fastest rates of genetic gain ($8.00/year). Compared to the baseline, the conventional breeding scenarios where polled bulls were preferentially used for breeding, regardless of their genetic merit, significantly decreased the 20-year HORNED allele frequency (30%), but resulted in a significantly slower rate of genetic gain ($6.70/year, P ≤ 0.05). The mating scheme that required the exclusive use of homozygous polled bulls, resulted in the lowest 20-year HORNED allele frequency (8%), but this conventional breeding scenario resulted in the slowest rate of genetic gain ($5.50/year). The addition of gene editing the top 1% or 10% of seedstock bull calves/year to each conventional breeding scenario resulted in significantly faster rates of genetic gain (up to $8.10/year, P ≤ 0.05). Overall, our study demonstrates that, due to the limited number of polled Australian Brahman bulls, strong selection pressure on polled will be necessary to meaningfully increase the number of polled animals in this population. Moreover, these scenarios illustrate how gene editing could be a tool for accelerating the development of high-genetic-merit homozygous polled sires to mitigate the current trade-off of slower genetic gain associated with decreasing HORNED allele frequency in the Australian Brahman population.
Collapse
Affiliation(s)
- Maci L. Mueller
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agricultural, Beltsville, MD, United States
| | - Natalie K. Connors
- Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, Australia
| | - David J. Johnston
- Animal Genetics and Breeding Unit (AGBU), University of New England, Armidale, NSW, Australia
| | | | | |
Collapse
|
7
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Casacuberta J, Gennaro A, Paraskevopoulos K, Raffaello T, Rostoks N. Applicability of the EFSA Opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis. EFSA J 2020; 18:e06299. [PMID: 33281977 PMCID: PMC7684970 DOI: 10.2903/j.efsa.2020.6299] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The European Commission requested the EFSA Panel on Genetically Modified Organisms (GMO) to assess whether section 4 (hazard identification) and the conclusions of EFSA's Scientific opinion on the risk assessment of plants developed using zinc finger nuclease type 3 technique (ZFN-3) and other site-directed nucleases (SDN) with similar function are valid for plants developed via SDN-1, SDN-2 and oligonucleotide-directed mutagenesis (ODM). In delivering this Opinion, the GMO Panel compared the hazards associated with plants produced via SDN-1, SDN-2 and ODM with those associated with plants obtained via both SDN-3 and conventional breeding. Unlike for SDN-3 methods, the application of SDN-1, SDN-2 and ODM approaches aims to modify genomic sequences in a way which can result in plants not containing any transgene, intragene or cisgene. Consequently, the GMO Panel concludes that those considerations which are specifically related to the presence of a transgene, intragene or cisgene included in section 4 and the conclusions of the Opinion on SDN-3 are not relevant to plants obtained via SDN-1, SDN-2 or ODM as defined in this Opinion. Overall, the GMO Panel did not identify new hazards specifically linked to the genomic modification produced via SDN-1, SDN-2 or ODM as compared with both SDN-3 and conventional breeding. Furthermore, the GMO Panel considers that the existing Guidance for risk assessment of food and feed from genetically modified plants and the Guidance on the environmental risk assessment of genetically modified plants are sufficient but are only partially applicable to plants generated via SDN-1, SDN-2 or ODM. Indeed, those guidance documents' requirements that are linked to the presence of exogenous DNA are not relevant for the risk assessment of plants developed via SDN-1, SDN-2 or ODM approaches if the genome of the final product does not contain exogenous DNA.
Collapse
|