1
|
Hu H, Zhu Q, Tang H, Zhang SC, Huang YZ, Wang YF, Xu ZY, Yang XW, Zheng JH, Guo CY. The risk of treatment-related toxicities with PD-1/PD-L1 inhibitors in patients with lung cancer. Int J Cancer 2024. [PMID: 39319530 DOI: 10.1002/ijc.35195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
The risk of treatment-related toxicities with programmed cell death 1 and its ligand (PD-1/PD-L1) inhibitors in patients with lung cancer is unclear and inconclusive. PubMed, EMBASE, and the Cochrane Library databases were systematically searched without language restrictions from inception to May 31, 2024 to identify Phase 3 randomized controlled trials of lung cancer comparing PD-1/PD-L1 inhibitors versus placebo/best supportive care (alone or in combination with nontargeted chemotherapy) that had available data regarding treatment-related adverse events (TRAEs) or incidence and sample size. Random-effect models were employed to study the pooled relative risk (RR) and 95% confidence intervals (CIs). Finally, 36 trials, involving 19,693 participants, fulfilled the inclusion criteria. PD-1/PD-L1 inhibitors significantly augmented the likelihood of developing all-grade (RR, 1.03; 95% CI, 1.01-1.04, p < .01) and grade ≥3 TRAEs (RR, 1.16; 95% CI, 1.10 to 1.23, p < .01). PD-1/PD-L1 inhibitors substantially augmented the odds of developing treatment-related serious adverse events (SAEs) (RR, 1.48; 95% CI, 1.27-1.71, p < .01) and fatal adverse events (FAEs) (RR, 1.42; 95% CI, 1.11-1.82, p < .01). Subgroup analyses indicated that the RR of SAEs and FAEs were generally consistent, regardless of treatment type, tumor type, treatment setting, PD-1/PD-L1 inhibitors type and study design. The most common causes of FAEs were respiratory failure/insufficiency (33.3%), cardiac events (16.1%), and hematological disorders (10.1%). We demonstrated that PD-1/PD-L1 inhibitors were significantly correlated with higher possibility of developing treatment-related toxicities, especially SAEs and FAEs, compared with placebo/best supportive care controls.
Collapse
Affiliation(s)
- Hao Hu
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Qian Zhu
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Tang
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China
| | - Si-Cai Zhang
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yan-Ze Huang
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Ya-Fang Wang
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zhi-Yong Xu
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiong-Wen Yang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Ji-Hua Zheng
- Department of Radiation Therapy, General Hospital of Southern Theater Command, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Chang-Ying Guo
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, China
- Department of Thoracic Surgery, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Liu M, Jin S, Agabiti SS, Jensen TB, Yang T, Radda JSD, Ruiz CF, Baldissera G, Rajaei M, Townsend JP, Muzumdar MD, Wang S. Tracing the evolution of single-cell cancer 3D genomes: an atlas for cancer gene discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550157. [PMID: 37546882 PMCID: PMC10401964 DOI: 10.1101/2023.07.23.550157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Although three-dimensional (3D) genome structures are altered in cancer cells, little is known about how these changes evolve and diversify during cancer progression. Leveraging genome-wide chromatin tracing to visualize 3D genome folding directly in tissues, we generated 3D genome cancer atlases of murine lung and pancreatic adenocarcinoma. Our data reveal stereotypical, non-monotonic, and stage-specific alterations in 3D genome folding heterogeneity, compaction, and compartmentalization as cancers progress from normal to preinvasive and ultimately to invasive tumors, discovering a potential structural bottleneck in early tumor progression. Remarkably, 3D genome architectures distinguish histologic cancer states in single cells, despite considerable cell-to-cell heterogeneity. Gene-level analyses of evolutionary changes in 3D genome compartmentalization not only showed compartment-associated genes are more homogeneously regulated, but also elucidated prognostic and dependency genes in lung adenocarcinoma and a previously unappreciated role for polycomb-group protein Rnf2 in 3D genome regulation. Our results demonstrate the utility of mapping the single-cell cancer 3D genome in tissues and illuminate its potential to identify new diagnostic, prognostic, and therapeutic biomarkers in cancer.
Collapse
Affiliation(s)
- Miao Liu
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Shengyan Jin
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Sherry S. Agabiti
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
| | - Tyler B. Jensen
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
| | - Tianqi Yang
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Jonathan S. D. Radda
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Christian F. Ruiz
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
| | - Gabriel Baldissera
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Moein Rajaei
- Department of Biostatistics, Yale School of Public Health, Yale University; New Haven, CT 06510, USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, Yale University; New Haven, CT 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University; New Haven, CT 06510, USA
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University; New Haven, CT 06510, USA
| | - Mandar Deepak Muzumdar
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University; New Haven, CT 06510, USA
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University; New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University; New Haven, CT 06510, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University; New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University; New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University; New Haven, CT 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Liver Center, Yale University School of Medicine; New Haven, CT 06510, USA
| |
Collapse
|
3
|
Huang P, Wen F, Tuerhong N, Yang Y, Li Q. Neoantigens in cancer immunotherapy: focusing on alternative splicing. Front Immunol 2024; 15:1437774. [PMID: 39055714 PMCID: PMC11269099 DOI: 10.3389/fimmu.2024.1437774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Alternative splicing (AS) functions as a crucial program in transcriptional modulation, leading to proteomic diversity and functional alterations of proteins. These splicing actions induce various neoantigens that hold prognostic significance and contribute to various aspects of cancer progression, including immune responses against cancer. The advent of immunotherapy has remarkably revolutionized tumor therapy. In this regard, AS-derived neoantigens are potent targets for cancer vaccines and chimeric antigen receptor (CAR) T cell therapies. In this review, we outline that AS-derived neoantigens serve as promising immunotherapeutic targets and guide immunotherapy strategies. This evidence contributes to a deeper comprehension of the complexity of proteomic diversity and provides novel perspectives and techniques for precision medicine in immunotherapy. Moreover, we underscore the obstacles that are awaited to be addressed for this novel approach to become clinically applicable.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nuerye Tuerhong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Vaishnavi A, Kinsey CG, McMahon M. Preclinical Modeling of Pathway-Targeted Therapy of Human Lung Cancer in the Mouse. Cold Spring Harb Perspect Med 2024; 14:a041385. [PMID: 37788883 PMCID: PMC10760064 DOI: 10.1101/cshperspect.a041385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Animal models, particularly genetically engineered mouse models (GEMMs), continue to have a transformative impact on our understanding of the initiation and progression of hematological malignancies and solid tumors. Furthermore, GEMMs have been employed in the design and optimization of potent anticancer therapies. Increasingly, drug responses are assessed in mouse models either prior, or in parallel, to the implementation of precision medical oncology, in which groups of patients with genetically stratified cancers are treated with drugs that target the relevant oncoprotein such that mechanisms of drug sensitivity or resistance may be identified. Subsequently, this has led to the design and preclinical testing of combination therapies designed to forestall the onset of drug resistance. Indeed, mouse models of human lung cancer represent a paradigm for how a wide variety of GEMMs, driven by a variety of oncogenic drivers, have been generated to study initiation, progression, and maintenance of this disease as well as response to drugs. These studies have now expanded beyond targeted therapy to include immunotherapy. We highlight key aspects of the relationship between mouse models and the evolution of therapeutic approaches, including oncogene-targeted therapies, immunotherapies, acquired drug resistance, and ways in which successful antitumor strategies improve on efficiently translating preclinical approaches into successful antitumor strategies in patients.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Zavitsanou AM, Pillai R, Hao Y, Wu WL, Bartnicki E, Karakousi T, Rajalingam S, Herrera A, Karatza A, Rashidfarrokhi A, Solis S, Ciampricotti M, Yeaton AH, Ivanova E, Wohlhieter CA, Buus TB, Hayashi M, Karadal-Ferrena B, Pass HI, Poirier JT, Rudin CM, Wong KK, Moreira AL, Khanna KM, Tsirigos A, Papagiannakopoulos T, Koralov SB. KEAP1 mutation in lung adenocarcinoma promotes immune evasion and immunotherapy resistance. Cell Rep 2023; 42:113295. [PMID: 37889752 PMCID: PMC10755970 DOI: 10.1016/j.celrep.2023.113295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer treatment has benefited greatly through advancements in immunotherapies. However, immunotherapy often fails in patients with specific mutations like KEAP1, which are frequently found in lung adenocarcinoma. We established an antigenic lung cancer model and used it to explore how Keap1 mutations remodel the tumor immune microenvironment. Using single-cell technology and depletion studies, we demonstrate that Keap1-mutant tumors diminish dendritic cell and T cell responses driving immunotherapy resistance. This observation was corroborated in patient samples. CRISPR-Cas9-mediated gene targeting revealed that hyperactivation of the NRF2 antioxidant pathway is responsible for diminished immune responses in Keap1-mutant tumors. Importantly, we demonstrate that combining glutaminase inhibition with immune checkpoint blockade can reverse immunosuppression, making Keap1-mutant tumors susceptible to immunotherapy. Our study provides new insight into the role of KEAP1 mutations in immune evasion, paving the way for novel immune-based therapeutic strategies for KEAP1-mutant cancers.
Collapse
Affiliation(s)
- Anastasia-Maria Zavitsanou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Ray Pillai
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, NY, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Warren L Wu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Eric Bartnicki
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA; Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Triantafyllia Karakousi
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Sahith Rajalingam
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Alberto Herrera
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Angeliki Karatza
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Sabrina Solis
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA; NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Metamia Ciampricotti
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna H Yeaton
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Ellie Ivanova
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Corrin A Wohlhieter
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Terkild B Buus
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Makiko Hayashi
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Harvey I Pass
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Andre L Moreira
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kamal M Khanna
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA; Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, NY, USA; Institute for Computational Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
| | - Sergei B Koralov
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Ruiz CF, Garcia C, Jacox JB, Lawres L, Muzumdar MD. Decoding the obesity-cancer connection: lessons from preclinical models of pancreatic adenocarcinoma. Life Sci Alliance 2023; 6:e202302228. [PMID: 37648285 PMCID: PMC10474221 DOI: 10.26508/lsa.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.
Collapse
Affiliation(s)
- Christian F Ruiz
- https://ror.org/03v76x132 Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- https://ror.org/03v76x132 Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Cathy Garcia
- https://ror.org/03v76x132 Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- https://ror.org/03v76x132 Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Jeremy B Jacox
- https://ror.org/03v76x132 Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- https://ror.org/03v76x132 Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- https://ror.org/03v76x132 Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Lawres
- https://ror.org/03v76x132 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mandar D Muzumdar
- https://ror.org/03v76x132 Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- https://ror.org/03v76x132 Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- https://ror.org/03v76x132 Department of Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, USA
- https://ror.org/03v76x132 Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
8
|
Carbone FR, Mackay LK. Functional T cell tolerance by peripheral tissue-based checkpoint control. Nat Immunol 2023; 24:1224-1225. [PMID: 37474656 DOI: 10.1038/s41590-023-01574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Affiliation(s)
- Francis R Carbone
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.
| | - Laura K Mackay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
9
|
Damo M, Hornick NI, Venkat A, William I, Clulo K, Venkatesan S, He J, Fagerberg E, Loza JL, Kwok D, Tal A, Buck J, Cui C, Singh J, Damsky WE, Leventhal JS, Krishnaswamy S, Joshi NS. PD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens. Nature 2023; 619:151-159. [PMID: 37344588 PMCID: PMC10989189 DOI: 10.1038/s41586-023-06217-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
The peripheral T cell repertoire of healthy individuals contains self-reactive T cells1,2. Checkpoint receptors such as PD-1 are thought to enable the induction of peripheral tolerance by deletion or anergy of self-reactive CD8 T cells3-10. However, this model is challenged by the high frequency of immune-related adverse events in patients with cancer who have been treated with checkpoint inhibitors11. Here we developed a mouse model in which skin-specific expression of T cell antigens in the epidermis caused local infiltration of antigen-specific CD8 T cells with an effector gene-expression profile. In this setting, PD-1 enabled the maintenance of skin tolerance by preventing tissue-infiltrating antigen-specific effector CD8 T cells from (1) acquiring a fully functional, pathogenic differentiation state, (2) secreting significant amounts of effector molecules, and (3) gaining access to epidermal antigen-expressing cells. In the absence of PD-1, epidermal antigen-expressing cells were eliminated by antigen-specific CD8 T cells, resulting in local pathology. Transcriptomic analysis of skin biopsies from two patients with cutaneous lichenoid immune-related adverse events showed the presence of clonally expanded effector CD8 T cells in both lesional and non-lesional skin. Thus, our data support a model of peripheral T cell tolerance in which PD-1 allows antigen-specific effector CD8 T cells to co-exist with antigen-expressing cells in tissues without immunopathology.
Collapse
Affiliation(s)
- Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah I Hornick
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Aarthi Venkat
- Departments of Genetics and of Computer Science, Yale University School of Medicine, New Haven, CT, USA
| | - Ivana William
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kathryn Clulo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Srividhya Venkatesan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jiaming He
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jennifer L Loza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Darwin Kwok
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Aya Tal
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jessica Buck
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jaiveer Singh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - William E Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan S Leventhal
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Smita Krishnaswamy
- Departments of Genetics and of Computer Science, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Hebert JD, Neal JW, Winslow MM. Dissecting metastasis using preclinical models and methods. Nat Rev Cancer 2023; 23:391-407. [PMID: 37138029 DOI: 10.1038/s41568-023-00568-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
Metastasis has long been understood to lead to the overwhelming majority of cancer-related deaths. However, our understanding of the metastatic process, and thus our ability to prevent or eliminate metastases, remains frustratingly limited. This is largely due to the complexity of metastasis, which is a multistep process that likely differs across cancer types and is greatly influenced by many aspects of the in vivo microenvironment. In this Review, we discuss the key variables to consider when designing assays to study metastasis: which source of metastatic cancer cells to use and where to introduce them into mice to address different questions of metastasis biology. We also examine methods that are being used to interrogate specific steps of the metastatic cascade in mouse models, as well as emerging techniques that may shed new light on previously inscrutable aspects of metastasis. Finally, we explore approaches for developing and using anti-metastatic therapies, and how mouse models can be used to test them.
Collapse
Affiliation(s)
- Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Bosenberg M, Liu ET, Yu CI, Palucka K. Mouse models for immuno-oncology. Trends Cancer 2023:S2405-8033(23)00041-9. [PMID: 37087398 DOI: 10.1016/j.trecan.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/24/2023]
Abstract
Realizing the clinical promise of cancer immunotherapy is hindered by gaps in our knowledge of in vivo mechanisms underlying treatment response as well as treatment limiting toxicity. Preclinical in vivo model systems and technologies are required to address these knowledge gaps and to surmount the challenges faced in the clinical application of immunotherapy. Mice are commonly used for basic and translational research to support development and testing of immune interventions, including for cancer. Here, we discuss the advantages and the limitations of current models as well as future developments.
Collapse
Affiliation(s)
- Marcus Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA.
| | - Chun I Yu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA.
| |
Collapse
|
12
|
Kumar S, Singh SK, Srivastava P, Suresh S, Rana B, Rana A. Interplay between MAP kinases and tumor microenvironment: Opportunity for immunotherapy in pancreatic cancer. Adv Cancer Res 2023. [PMID: 37268394 DOI: 10.1016/bs.acr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC), commonly called pancreatic cancer, is aggressive cancer usually detected at a late stage, limiting treatment options with modest clinical responses. It is projected that by 2030, PDAC will be the second most common cause of cancer-related mortality in the United States. Drug resistance in PDAC is common and significantly affects patients' overall survival (OS). Oncogenic KRAS mutations are nearly uniform in PDAC, affecting over 90% of patients. However, effective drugs directed to target prevalent KRAS mutants in pancreatic cancer are not in clinical practice. Accordingly, efforts are continued on identifying alternative druggable target(s) or approaches to improve patient outcomes with PDAC. In most PDAC cases, the KRAS mutations turn-on the RAF-MEK-MAPK pathways, leading to pancreatic tumorigenesis. The MAPK signaling cascade (MAP4K→MAP3K→MAP2K→MAPK) plays a central role in the pancreatic cancer tumor microenvironment (TME) and chemotherapy resistance. The immunosuppressive pancreatic cancer TME is another unfavorable factor affecting the therapeutic efficacy of chemotherapy and immunotherapy. The immune checkpoint proteins (ICPs), including CTLA-4, PD-1, PD-L1, and PD-L2, are critical players in T cell dysfunction and pancreatic tumor cell growth. Here, we review the activation of MAPKs, a molecular trait of KRAS mutations and their impact on pancreatic cancer TME, chemoresistance, and expression of ICPs that could influence the clinical outcomes in PDAC patients. Therefore, understanding the interplay between MAPK pathways and TME could help to design rational therapy combining immunotherapy and MAPK inhibitors for pancreatic cancer treatment.
Collapse
|
13
|
Siddiqui M, Tous C, Wong WW. Small molecule-inducible gene regulatory systems in mammalian cells: progress and design principles. Curr Opin Biotechnol 2022; 78:102823. [PMID: 36332343 PMCID: PMC9951109 DOI: 10.1016/j.copbio.2022.102823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022]
Abstract
Small molecule-inducible gene circuits are some of the most important tools in biology because they provide a convenient way to exert precise regulation of biological systems. These systems typically are designed to govern gene activation, repression, or disruption at multiple levels, such as through genome modification, transcription, translation, or post-translational regulation of protein activity. Due to their importance, many new systems have been created in the past few years to address different needs or afford orthogonality. They can be broadly characterized based on the inducer used, the mode of regulation, and the effector protein enabling the regulation. Furthermore, each synthetic circuit has varying performance metrics and design considerations. Here, we provide a concise comparison of recently developed tools and recommend standardized metrics for evaluating their performance and potential as biological interrogators or therapeutics.
Collapse
Affiliation(s)
- Menna Siddiqui
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Cristina Tous
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Boumelha J, de Carné Trécesson S, Law EK, Romero-Clavijo P, Coelho MA, Ng K, Mugarza E, Moore C, Rana S, Caswell DR, Murillo M, Hancock DC, Argyris PP, Brown WL, Durfee C, Larson LK, Vogel RI, Suárez-Bonnet A, Priestnall SL, East P, Ross SJ, Kassiotis G, Molina-Arcas M, Swanton C, Harris R, Downward J. An Immunogenic Model of KRAS-Mutant Lung Cancer Enables Evaluation of Targeted Therapy and Immunotherapy Combinations. Cancer Res 2022; 82:3435-3448. [PMID: 35930804 PMCID: PMC7613674 DOI: 10.1158/0008-5472.can-22-0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Mutations in oncogenes such as KRAS and EGFR cause a high proportion of lung cancers. Drugs targeting these proteins cause tumor regression but ultimately fail to elicit cures. As a result, there is an intense interest in how to best combine targeted therapies with other treatments, such as immunotherapies. However, preclinical systems for studying the interaction of lung tumors with the host immune system are inadequate, in part due to the low tumor mutational burden in genetically engineered mouse models. Here we set out to develop mouse models of mutant KRAS-driven lung cancer with an elevated tumor mutational burden by expressing the human DNA cytosine deaminase, APOBEC3B, to mimic the mutational signature seen in human lung cancer. This failed to substantially increase clonal tumor mutational burden and autochthonous tumors remained refractory to immunotherapy. However, establishing clonal cell lines from these tumors enabled the generation of an immunogenic syngeneic transplantation model of KRAS-mutant lung adenocarcinoma that was sensitive to immunotherapy. Unexpectedly, antitumor immune responses were not directed against neoantigens but instead targeted derepressed endogenous retroviral antigens. The ability of KRASG12C inhibitors to cause regression of KRASG12C -expressing tumors was markedly potentiated by the adaptive immune system, highlighting the importance of using immunocompetent models for evaluating targeted therapies. Overall, this model provides a unique opportunity for the study of combinations of targeted and immunotherapies in immune-hot lung cancer. SIGNIFICANCE This study develops a mouse model of immunogenic KRAS-mutant lung cancer to facilitate the investigation of optimal combinations of targeted therapies with immunotherapies.
Collapse
Affiliation(s)
| | | | - Emily K. Law
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA, 55455
| | | | | | - Kevin Ng
- Retroviral Immunology Laboratory
| | | | | | - Sareena Rana
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Miguel Murillo
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA, 55455
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN, USA, 55455
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA, 55455
| | - Cameron Durfee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA, 55455
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Lindsay K. Larson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA, 55455
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA, 55455
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, MN, USA, 55455
| | - Alejandro Suárez-Bonnet
- Experimental Histopathology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | - Simon L. Priestnall
- Experimental Histopathology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | | | | | | | | | | | - Reuben Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA, 55455
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Julian Downward
- Oncogene Biology Laboratory
- Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
15
|
Atkins MB, Abu-Sbeih H, Ascierto PA, Bishop MR, Chen DS, Dhodapkar M, Emens LA, Ernstoff MS, Ferris RL, Greten TF, Gulley JL, Herbst RS, Humphrey RW, Larkin J, Margolin KA, Mazzarella L, Ramalingam SS, Regan MM, Rini BI, Sznol M. Maximizing the value of phase III trials in immuno-oncology: A checklist from the Society for Immunotherapy of Cancer (SITC). J Immunother Cancer 2022; 10:jitc-2022-005413. [PMID: 36175037 PMCID: PMC9528604 DOI: 10.1136/jitc-2022-005413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2022] [Indexed: 11/03/2022] Open
Abstract
The broad activity of agents blocking the programmed cell death protein 1 and its ligand (the PD-(L)1 axis) revolutionized oncology, offering long-term benefit to patients and even curative responses for tumors that were once associated with dismal prognosis. However, only a minority of patients experience durable clinical benefit with immune checkpoint inhibitor monotherapy in most disease settings. Spurred by preclinical and correlative studies to understand mechanisms of non-response to the PD-(L)1 antagonists and by combination studies in animal tumor models, many drug development programs were designed to combine anti-PD-(L)1 with a variety of approved and investigational chemotherapies, tumor-targeted therapies, antiangiogenic therapies, and other immunotherapies. Several immunotherapy combinations improved survival outcomes in a variety of indications including melanoma, lung, kidney, and liver cancer, among others. This immunotherapy renaissance, however, has led to many combinations being advanced to late-stage development without definitive predictive biomarkers, limited phase I and phase II data, or clinical trial designs that are not optimized for demonstrating the unique attributes of immune-related antitumor activity-for example, landmark progression-free survival and overall survival. The decision to activate a study at an individual site is investigator-driven, and generalized frameworks to evaluate the potential for phase III trials in immuno-oncology to yield positive data, particularly to increase the number of curative responses or otherwise advance the field have thus far been lacking. To assist in evaluating the potential value to patients and the immunotherapy field of phase III trials, the Society for Immunotherapy of Cancer (SITC) has developed a checklist for investigators, described in this manuscript. Although the checklist focuses on anti-PD-(L)1-based combinations, it may be applied to any regimen in which immune modulation is an important component of the antitumor effect.
Collapse
Affiliation(s)
- Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | | | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione "G Pascale", Napoli, Italy
| | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, Illinois, USA
| | - Daniel S Chen
- Engenuity Life Sciences, Burlingame, California, USA
| | - Madhav Dhodapkar
- Center for Cancer Immunology, Winship Cancer Institute at Emory University, Atlanta, Georgia, USA
| | - Leisha A Emens
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Marc S Ernstoff
- DCTD/DTP-IOB, ImmunoOncology Branch, NCI, Bethesda, Maryland, USA
| | | | - Tim F Greten
- Gastrointestinal Malignancies Section, National Cancer Institue CCR Liver Program, Bethesda, Maryland, USA
| | - James L Gulley
- Center for Immuno-Oncology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Kim A Margolin
- St. John's Cancer Institute, Santa Monica, California, USA
| | - Luca Mazzarella
- Experimental Oncology, New Drug Development, European Instititue of Oncology IRCCS, Milan, Italy
| | | | - Meredith M Regan
- Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mario Sznol
- Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Velaga R, Koo KM, Mainwaring PN. Harnessing gene fusion-derived neoantigens for 'cold' breast and prostate tumor immunotherapy. Immunotherapy 2022; 14:1165-1179. [PMID: 36043380 DOI: 10.2217/imt-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast and prostate cancers are generally considered immunologically 'cold' tumors due to multiple mechanisms rendering them unresponsive to immune checkpoint blockade therapies. With little success in garnering positive outcomes in modern immunotherapeutic clinical trials, it is prudent to re-examine the role of immunogenic neoantigens in these cold tumors. Gene fusions are driver mutations in hormone-driven cancers that can result in alternative mutation-specific neoantigens to promote immunotherapy sensitivity. This review focuses on 1) gene fusion formation mechanisms in neoantigen generation; 2) gene fusion neoantigens in cancer immunotherapeutic strategies and associated clinical trials; and 3) challenges and opportunities in computational and liquid biopsy technologies. This review is anticipated to initiate further research into gene fusion neoantigens of cold tumors for further experimental validation.
Collapse
Affiliation(s)
- Ravi Velaga
- Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kevin M Koo
- XING Technologies Pty Ltd, Brisbane, QLD 4073, Australia.,The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
| | | |
Collapse
|
17
|
Purcarea A, Jarosch S, Barton J, Grassmann S, Pachmayr L, D'Ippolito E, Hammel M, Hochholzer A, Wagner KI, van den Berg JH, Buchholz VR, Haanen JBAG, Busch DH, Schober K. Signatures of recent activation identify a circulating T cell compartment containing tumor-specific antigen receptors with high avidity. Sci Immunol 2022; 7:eabm2077. [PMID: 35960818 DOI: 10.1126/sciimmunol.abm2077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cell receptor (TCR) avidity is assumed to be a major determinant of the spatiotemporal fate and protective capacity of tumor-specific T cells. However, monitoring polyclonal T cell responses with known TCR avidities in vivo over space and time remains challenging. Here, we investigated the fate and functionality of tumor neoantigen-specific T cells with TCRs of distinct avidities in a well-established, reductionist preclinical tumor model and human patients with melanoma. To this end, we used polyclonal T cell transfers with in-depth characterized TCRs together with flow cytometric phenotyping in mice inoculated with MC38 OVA tumors. Transfer of T cells from retrogenic mice harboring TCRs with high avidity resulted in best tumor protection. Unexpectedly, we found that both high- and low-avidity T cells are similarly abundant within the tumor and adopt concordant phenotypic signs of exhaustion. Outside the tumor, high-avidity TCR T cells were not generally overrepresented but, instead, selectively enriched in T cell populations with intermediate PD-1 protein expression. Single-cell sequencing of neoantigen-specific T cells from two patients with melanoma-combined with transgenic reexpression of identified TCRs by CRISPR-Cas9-mediated orthotopic TCR replacement-revealed high-functionality TCRs to be enriched in T cells with RNA signatures of recent activation. Furthermore, of 130 surface protein candidates, PD-1 surface expression was most consistently enriched in functional TCRs. Together, our findings show that tumor-reactive TCRs with high protective capacity circulating in peripheral blood are characterized by a signature of recent activation.
Collapse
Affiliation(s)
- Anna Purcarea
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Jack Barton
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Simon Grassmann
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Ludwig Pachmayr
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Anna Hochholzer
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Karolin I Wagner
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | | | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - John B A G Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany.,Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München (TUM), Munich, Germany.,Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie, und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Roelofsen L, Kaptein P, Thommen D. Multimodal predictors for precision immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2022; 14:100071. [PMID: 35755892 PMCID: PMC9216437 DOI: 10.1016/j.iotech.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune checkpoint blockade (ICB) unleashes immune cells to attack tumors, thereby inducing durable clinical responses in many cancer types. The number of patients responding to ICB is modest, however, and combination treatments are likely needed to overcome the multifaceted suppressive pathways active in the tumor microenvironment (TME). The development of precision immuno-oncology (IO) strategies allowing to identify the optimal treatment of each patient upfront is therefore a pivotal question in the field of cancer immunotherapy. Although single-parameter biomarkers can enrich for response to ICB, their predictive capacity is far from perfect and their clinical utility is complicated by their continuous nature and the difficulty to determine cut-offs that reliably distinguish responding patients from those without clinical benefit. The antitumor immune response that is induced or reinvigorated by immunotherapy is a complex cascade of events requiring the interplay of multiple cell types. To move towards precision IO, it is therefore essential to understand for each individual patient at which level(s) the antitumor immune response failed and how it can be therapeutically restored. Holistic approaches to profile human tumor microenvironments and treatment-induced responses may help to identify critical rate-limiting factors of antitumor immunity. These factors need to be translated into clinically applicable multimodal predictors that allow for the selection of the best IO treatment. This review discusses strategies to (i) create such holistic views of antitumor immunity, (ii) identify measurable parameters capturing the complexity of a patient's immune status, and (iii) facilitate the incorporation of precision IO research in the clinic.
Collapse
Affiliation(s)
| | | | - D.S. Thommen
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Connolly KA, Fitzgerald B, Damo M, Joshi NS. Novel Mouse Models for Cancer Immunology. ANNUAL REVIEW OF CANCER BIOLOGY 2022; 6:269-291. [PMID: 36875867 PMCID: PMC9979244 DOI: 10.1146/annurev-cancerbio-070620-105523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mouse models for the study of cancer immunology provide excellent systems in which to test biological mechanisms of the immune response against cancer. Historically, these models have been designed to have different strengths based on the current major research questions at the time. As such, many mouse models of immunology used today were not originally developed to study questions currently plaguing the relatively new field of cancer immunology, but instead have been adapted for such purposes. In this review, we discuss various mouse model of cancer immunology in a historical context as a means to provide a fuller perspective of each model's strengths. From this outlook, we discuss the current state of the art and strategies for tackling future modeling challenges.
Collapse
Affiliation(s)
- Kelli A. Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
20
|
Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, Damo M, Cheung JF, Mao T, Askari AS, Chen S, Fitzgerald B, Foster GG, Eisenbarth SC, Zhao H, Craft J, Joshi NS. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 2021; 184:6101-6118.e13. [PMID: 34852236 PMCID: PMC8671355 DOI: 10.1016/j.cell.2021.11.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022]
Abstract
CD4 T follicular helper (TFH) cells support B cells, which are critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found enrichment of TFH cell transcriptional signature correlates with GC B cell signature and with prolonged survival in individuals with lung adenocarcinoma (LUAD). We further developed a murine LUAD model in which tumor cells express B cell- and T cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells, as well as interleukin (IL)-21 primarily produced by TFH cells, are necessary for tumor control and effector CD8 T cell function. Development of TFH cells requires B cells and B cell-recognized neoantigens. Thus, tumor neoantigens can regulate the fate of tumor-specific CD4 T cells by facilitating their interactions with tumor-specific B cells, which in turn promote anti-tumor immunity by enhancing CD8 T cell effector functions.
Collapse
Affiliation(s)
- Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiawei Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie F Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan S Askari
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gena G Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA; Department of Lab Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Joseph Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
22
|
Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, William I, Hornick NI, Fitzgerald BL, Damo M, Kasmani MY, Cui C, Fagerberg E, Monroy I, Hutchins A, Cheung JF, Foster GG, Mariuzza DL, Nader M, Zhao H, Cui W, Krishnaswamy S, Joshi NS. A reservoir of stem-like CD8 + T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci Immunol 2021; 6:eabg7836. [PMID: 34597124 PMCID: PMC8593910 DOI: 10.1126/sciimmunol.abg7836] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
“Stem-like” TCF1+ CD8+ T (TSL) cells are necessary for long-term maintenance of T cell responses and the efficacy of immunotherapy, but, as tumors contain signals that should drive T cell terminal differentiation, how these cells are maintained in tumors remains unclear. In this study, we found that a small number of TCF1+ tumor-specific CD8+ T cells were present in lung tumors throughout their development. Yet, most intratumoral T cells differentiated as tumors progressed, corresponding with an immunologic shift in the tumor microenvironment (TME) from “hot” (T cell inflamed) to “cold” (non–T cell inflamed). By contrast, most tumor-specific CD8+ T cells in tumor-draining lymph nodes (dLNs) had functions and gene expression signatures similar to TSL from chronic lymphocytic choriomeningitis virus infection, and this population was stable over time despite the changes in the TME. dLN T cells were the developmental precursors of, and were clonally related to, their more differentiated intratumoral counterparts. Our data support the hypothesis that dLN T cells are the developmental precursors of the TCF1+ T cells in tumors that are maintained by continuous migration. Last, CD8+ T cells similar to TSL were also present in LNs from patients with lung adenocarcinoma, suggesting that a similar model may be relevant in human disease. Thus, we propose that the dLN TSL reservoir has a critical function in sustaining antitumor T cells during tumor development and in protecting them from the terminal differentiation that occurs in the TME.
Collapse
Affiliation(s)
- Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Manik Kuchroo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Aarthi Venkat
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jiawei Wang
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Ivana William
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Noah I Hornick
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Brittany L Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Isabel Monroy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Amanda Hutchins
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Julie F Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Gena G Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Dylan L Mariuzza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Mursal Nader
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI 53213, USA
| | - Smita Krishnaswamy
- Department of Genetics and Computer Science, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
23
|
Fitzgerald B, Connolly KA, Cui C, Fagerberg E, Mariuzza DL, Hornick NI, Foster GG, William I, Cheung JF, Joshi NS. A mouse model for the study of anti-tumor T cell responses in Kras-driven lung adenocarcinoma. CELL REPORTS METHODS 2021; 1:100080. [PMID: 34632444 PMCID: PMC8500377 DOI: 10.1016/j.crmeth.2021.100080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
Kras-driven lung adenocarcinoma (LUAD) is the most common lung cancer. A significant fraction of patients with Kras-driven LUAD respond to immunotherapy, but mechanistic studies of immune responses against LUAD have been limited because of a lack of immunotherapy-responsive models. We report the development of the immunogenic KP × NINJA (inversion inducible joined neoantigen) (KP-NINJA) LUAD model. This model allows temporal uncoupling of antigen and tumor induction, which allows one to wait until after infection-induced inflammation has subsided to induce neoantigen expression by tumors. Neoantigen expression is restricted to EPCAM+ cells in the lung and expression of neoantigen was more consistent between tumors than when neoantigens were encoded on lentiviruses. Moreover, tumors were infiltrated by tumor-specific CD8 T cells. Finally, LUAD cell lines derived from KP-NINJA mice were immunogenic and responded to immune checkpoint therapy (anti-PD1 and anti-CTLA4), providing means for future studies into the immunobiology of therapeutic responses in LUAD.
Collapse
Affiliation(s)
- Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Kelli A. Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Dylan L. Mariuzza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Noah I. Hornick
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Gena G. Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ivana William
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Julie F. Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
24
|
Sahenk Z, Ozes B, Murrey D, Myers M, Moss K, Yalvac ME, Ridgley A, Chen L, Mendell JR. Systemic delivery of AAVrh74.tMCK.hCAPN3 rescues the phenotype in a mouse model for LGMD2A/R1. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:401-414. [PMID: 34514031 PMCID: PMC8413669 DOI: 10.1016/j.omtm.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
Limb girdle muscular dystrophy (LGMD) 2A/R1, caused by mutations in the CAPN3 gene and CAPN3 loss of function, is known to play a role in disease pathogenicity. In this study, AAVrh74.tMCK.CAPN3 was delivered systemically to two different age groups of CAPN3 knockout (KO) mice; each group included two treatment cohorts receiving low (1.17 × 1014 vg/kg) and high (2.35 × 1014 vg/kg) doses of the vector and untreated controls. Treatment efficacy was tested 20 weeks after gene delivery using functional (treadmill), physiological (in vivo muscle contractility assay), and histopathological outcomes. AAV.CAPN3 gene therapy resulted in significant, robust improvements in functional outcomes and muscle physiology at low and high doses in both age groups. Histological analyses of skeletal muscle showed remodeling of muscle, a switch to fatigue-resistant oxidative fibers in females, and fiber size increases in both sexes. Safety studies revealed no organ tissue abnormalities; specifically, there was no histopathological evidence of cardiotoxicity. These results show that CAPN3 gene replacement therapy improved the phenotype in the CAPN3 KO mouse model at both doses independent of age at the time of vector administration. The improvements were supported by an absence of cardiotoxicity, showing the efficacy and safety of the AAV.CAPN3 vector as a potential gene therapy for LGMDR1.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Burcak Ozes
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Darren Murrey
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Morgan Myers
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Kyle Moss
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Alicia Ridgley
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Lei Chen
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Rm. WA 3024, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
25
|
Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, Bosenberg M, Ceol CJ, Burd CE, Chi P, Herlyn M, Holmen SL, Karreth FA, Kaufman CK, Khan S, Kobold S, Leucci E, Levy C, Lombard DB, Lund AW, Marie KL, Marine JC, Marais R, McMahon M, Robles-Espinoza CD, Ronai ZA, Samuels Y, Soengas MS, Villanueva J, Weeraratna AT, White RM, Yeh I, Zhu J, Zon LI, Hurlbert MS, Merlino G. Melanoma models for the next generation of therapies. Cancer Cell 2021; 39:610-631. [PMID: 33545064 PMCID: PMC8378471 DOI: 10.1016/j.ccell.2021.01.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance. Additionally, we discuss the opportunity for building models for rare subtypes of melanomas, which represent an unmet critical need. Finally, we identify key recommendations for melanoma models that may improve accuracy of preclinical testing and predict efficacy in clinical trials, to help usher in the next generation of melanoma therapies.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Kristen L Mueller
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Niroshana Anandasabapathy
- Department of Dermatology, Meyer Cancer Center, Program in Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY 10026, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France; INSERM, Biology and Pathologies of Melanocytes, Team 1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology, and Immunobiology, Yale University, New Haven, CT, USA
| | - Craig J Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology, and Genetics, The Ohio State University, Biomedical Research Tower, Room 918, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Sheri L Holmen
- Department of Surgery, University of Utah Health Sciences Center, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Charles K Kaufman
- Washington University School of Medicine, Department of Medicine, Division of Oncology, Department of Developmental Biology, McDonnell Science Building, 4518 McKinley Avenue, St. Louis, MO 63110, USA
| | - Shaheen Khan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany; Member of the German Center for Lung Research (DZL), German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium; Trace, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium
| | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David B Lombard
- Department of Pathology, Institute of Gerontology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kerrie L Marie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Richard Marais
- CRUK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Martin McMahon
- Department of Dermatology & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico; Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria S Soengas
- Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Jessie Villanueva
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, and Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Richard M White
- Department of Cancer Biology & Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Glenn Merlino
- Center for Cancer Research, NCI, NIH, 37 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Hynds RE, Frese KK, Pearce DR, Grönroos E, Dive C, Swanton C. Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biol 2021; 11:200247. [PMID: 33435818 PMCID: PMC7881177 DOI: 10.1098/rsob.200247] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although advances are being made towards earlier detection and the development of impactful targeted therapies and immunotherapies, the 5-year survival of patients with advanced disease is still below 20%. Effective cancer research relies on pre-clinical model systems that accurately reflect the evolutionary course of disease progression and mimic patient responses to therapy. Here, we review pre-clinical models, including genetically engineered mouse models and patient-derived materials, such as cell lines, primary cell cultures, explant cultures and xenografts, that are currently being used to interrogate NSCLC evolution from pre-invasive disease through locally invasive cancer to the metastatic colonization of distant organ sites.
Collapse
Affiliation(s)
- Robert E. Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kristopher K. Frese
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Alderley Park, Macclesfield, UK
| | - David R. Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Alderley Park, Macclesfield, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|