1
|
Wang Y, Lin RZ, Harris M, Lavayen B, Diwanji N, McCreedy B, Hofmeister R, Getts D. CRISPR-Enabled Autonomous Transposable Element (CREATE) for RNA-based gene editing and delivery. EMBO Rep 2025; 26:1062-1083. [PMID: 39789389 PMCID: PMC11850887 DOI: 10.1038/s44319-024-00364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
To address a wide range of genetic diseases, genome editing tools that can achieve targeted delivery of large genes without causing double-strand breaks (DSBs) or requiring DNA templates are necessary. Here, we introduce CRISPR-Enabled Autonomous Transposable Element (CREATE), a genome editing system that combines the programmability and precision of CRISPR/Cas9 with the RNA-mediated gene insertion capabilities of the human LINE-1 (L1) element. CREATE employs a modified L1 mRNA to carry a payload gene, and a Cas9 nickase to facilitate targeted editing by L1-mediated reverse transcription and integration without relying on DSBs or DNA templates. Using this system, we demonstrate programmable insertion of a 1.1 kb gene expression cassette into specific genomic loci of human cell lines and primary T cells. Mechanistic studies reveal that CREATE editing is highly specific with no observed off-target events. Together, these findings establish CREATE as a programmable, RNA-based gene delivery technology with broad therapeutic potential.
Collapse
Affiliation(s)
- Yuxiao Wang
- Myeloid Therapeutics Inc., Cambridge, MA, 02139, USA.
| | - Ruei-Zeng Lin
- Myeloid Therapeutics Inc., Cambridge, MA, 02139, USA
| | - Meghan Harris
- Myeloid Therapeutics Inc., Cambridge, MA, 02139, USA
| | | | - Neha Diwanji
- Myeloid Therapeutics Inc., Cambridge, MA, 02139, USA
| | - Bruce McCreedy
- Myeloid Therapeutics Inc., Cambridge, MA, 02139, USA
- ONK Therapeutics Ltd., Galway, Co. Galway, Ireland
| | | | - Daniel Getts
- Myeloid Therapeutics Inc., Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Chen Y, Luo S, Hu Y, Zhou Q, Li W. Protocol for evaluating the activity of R2 retrotransposons in mammalian cells. STAR Protoc 2025; 6:103538. [PMID: 39764849 PMCID: PMC11758571 DOI: 10.1016/j.xpro.2024.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Accepted: 12/05/2024] [Indexed: 01/27/2025] Open
Abstract
R2 retrotransposons can be harnessed to insert genes at targeted sites by all-RNA delivery, presenting a new technology for next-generation biotherapeutics. Here, we report a protocol for evaluating the gene integration activity of R2 retrotransposons in mammalian cells. We describe the construction of vectors separately expressing R2 protein and donor, the process of liposome transfection, and flow cytometry. This protocol provides a useful reporter system, which can be applied to evaluate the activity of other new retrotransposon systems. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Yangcan Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Shengqiu Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qi Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
3
|
Dyda F, Hickman AB. A retrotransposon for site-specific gene transfer. Nat Biotechnol 2025; 43:31-33. [PMID: 38499759 DOI: 10.1038/s41587-024-02180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Arkhipova IR, Burns KH, Lesage P. Controlling and controlled elements: highlights of the year in mobile DNA research. Mob DNA 2024; 15:27. [PMID: 39741304 DOI: 10.1186/s13100-024-00340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025] Open
Affiliation(s)
- Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Pascale Lesage
- CNRS, Institute for Research Saint Louis, Université Paris Cité (IRSL), Inserm, Paris, France
| |
Collapse
|
5
|
Gehrke L, Gonçalves VDR, Andrae D, Rasko T, Ho P, Einsele H, Hudecek M, Friedel SR. Current Non-Viral-Based Strategies to Manufacture CAR-T Cells. Int J Mol Sci 2024; 25:13685. [PMID: 39769449 PMCID: PMC11728233 DOI: 10.3390/ijms252413685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods. While viral vectors offer high transfection efficiencies, concerns regarding potential malignant transformation coupled with costly and time-consuming vector manufacturing are constant drivers in the search for cheaper, easier-to-use, safer, and more efficient alternatives. In this review, we examine different non-viral gene transfer methods as alternatives for CAR-T cell production, their advantages and disadvantages, and examples of their applications. Transposon-based gene transfer methods lead to stable but non-targeted gene integration, are easy to handle, and achieve high gene transfer rates. Programmable endonucleases allow targeted integration, reducing the potential risk of integration-mediated malignant transformation of CAR-T cells. Non-integrating CAR-encoding vectors avoid this risk completely and achieve only transient CAR expression. With these promising alternative techniques for gene transfer, all avenues are open to fully exploiting the potential of next-generation CAR-T cell therapy and applying it in a wide range of applications.
Collapse
Affiliation(s)
- Leon Gehrke
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Vasco Dos Reis Gonçalves
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Dominik Andrae
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Tamas Rasko
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Patrick Ho
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, 97070 Würzburg, Germany
| | - Sabrina R. Friedel
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Padmaswari MH, Bulliard G, Agrawal S, Jia MS, Khadgi S, Murach KA, Nelson CE. Precision and efficacy of RNA-guided DNA integration in high-expressing muscle loci. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102320. [PMID: 39398225 PMCID: PMC11466678 DOI: 10.1016/j.omtn.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Gene replacement therapies primarily rely on adeno-associated virus (AAV) vectors for transgene expression. However, episomal expression can decline over time due to vector loss or epigenetic silencing. CRISPR-based integration methods offer promise for long-term transgene insertion. While the development of transgene integration methods has made substantial progress, identifying optimal insertion loci remains challenging. Skeletal muscle is a promising tissue for gene replacement owing to low invasiveness of intramuscular injections, relative proportion of body mass, the multinucleated nature of muscle, and the potential for reduced adverse effects. Leveraging endogenous promoters in skeletal muscle, we evaluated two highly expressing loci using homology-independent targeted integration (HITI) to integrate reporter or therapeutic genes in mouse myoblasts and skeletal muscle tissue. We hijacked the muscle creatine kinase (Ckm) and myoglobin (Mb) promoters by co-delivering CRISPR-Cas9 and a donor plasmid with promoterless constructs encoding green fluorescent protein (GFP) or human Factor IX (hFIX). Additionally, we deeply profiled our genome and transcriptome outcomes from targeted integration and evaluated the safety of the proposed sites. This study introduces a proof-of-concept technology for achieving high-level therapeutic gene expression in skeletal muscle, with potential applications in targeted integration-based medicine and synthetic biology.
Collapse
Affiliation(s)
- Made Harumi Padmaswari
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | | | - Shilpi Agrawal
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Mary S. Jia
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A. Murach
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E. Nelson
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
7
|
Thawani A, Rodríguez-Vargas A, Van Treeck B, Hassan NT, Adelson DL, Nogales E, Collins K. Structures of vertebrate R2 retrotransposon complexes during target-primed reverse transcription and after second strand nicking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623112. [PMID: 39605677 PMCID: PMC11601368 DOI: 10.1101/2024.11.11.623112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
R2 retrotransposons are model site-specific eukaryotic non-LTR retrotransposons that copy-and-paste into gene loci encoding ribosomal RNAs. Recently we demonstrated that avian A-clade R2 proteins achieve efficient and precise insertion of transgenes into their native safe-harbor loci in human cells. The features of A-clade R2 proteins that support gene insertion are not characterized. Here, we report high resolution cryo-electron microscopy structures of two vertebrate A-clade R2 proteins, avian and testudine, at the initiation of target-primed reverse transcription and one structure after cDNA synthesis and second strand nicking. Using biochemical and cellular assays we discover the basis for high selectivity of template use and unique roles for each of the expanded A-clade zinc-finger domains in nucleic acid recognition. Reverse transcriptase active site architecture is reinforced by an unanticipated insertion motif in vertebrate A-clade R2 proteins. Our work brings first insights to A-clade R2 protein structure during gene insertion and enables further improvement and adaptation of R2-based systems for precise transgene insertion.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Nozhat T Hassan
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kathleen Collins
- California Institute for Quantitative Biosciences (QB3), Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Palm SM, Van Treeck B, Collins K. Experimental considerations for precise RNA-mediated insertion of transgenes. Methods Enzymol 2024; 705:1-24. [PMID: 39389660 DOI: 10.1016/bs.mie.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Precise RNA-mediated insertion of transgenes (PRINT) is a pioneering method for site-specific, safe-harbor transgene supplementation of the human genome that harnesses a eukaryotic retroelement protein and relies solely on the delivery of RNA. Here we outline important considerations in the design of the two required RNAs, details for the production and transfection of these RNAs to cells, and read-outs for successful transgene addition. Throughout, tips and key concepts are laid out to enable general use of this method.
Collapse
Affiliation(s)
- Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States
| | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States.
| |
Collapse
|
9
|
Chen Y, Luo S, Hu Y, Mao B, Wang X, Lu Z, Shan Q, Zhang J, Wang S, Feng G, Wang C, Liang C, Tang N, Niu R, Wang J, Han J, Yang N, Wang H, Zhou Q, Li W. All-RNA-mediated targeted gene integration in mammalian cells with rationally engineered R2 retrotransposons. Cell 2024; 187:4674-4689.e18. [PMID: 38981481 DOI: 10.1016/j.cell.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
All-RNA-mediated targeted gene integration methods, rendering reduced immunogenicity, effective deliverability with non-viral vehicles, and a low risk of random mutagenesis, are urgently needed for next-generation gene addition technologies. Naturally occurring R2 retrotransposons hold promise in this context due to their site-specific integration profile. Here, we systematically analyzed the biodiversity of R2 elements and screened several R2 orthologs capable of full-length gene insertion in mammalian cells. Robust R2 system gene integration efficiency was attained using combined donor RNA and protein engineering. Importantly, the all-RNA-delivered engineered R2 system showed effective integration activity, with efficiency over 60% in mouse embryos. Unbiased high-throughput sequencing demonstrated that the engineered R2 system exhibited high on-target integration specificity (99%). In conclusion, our study provides engineered R2 tools for applications based on hit-and-run targeted DNA integration and insights for further optimization of retrotransposon systems.
Collapse
Affiliation(s)
- Yangcan Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shengqiu Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bangwei Mao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinge Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongbao Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtong Shan
- Northeast Agricultural University, Harbin 150030, China
| | - Jin Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guihai Feng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chenxin Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chen Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Tang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Rui Niu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqiang Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Jiabao Han
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qi Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
10
|
Palm SM, Horton CA, Zhang X, Collins K. Structure and sequence at an RNA template 5' end influence insertion of transgenes by an R2 retrotransposon protein. RNA (NEW YORK, N.Y.) 2024; 30:1227-1245. [PMID: 38960642 PMCID: PMC11331408 DOI: 10.1261/rna.080031.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
R2 non-long terminal repeat retrotransposons insert site-specifically into ribosomal RNA genes (rDNA) in a broad range of multicellular eukaryotes. R2-encoded proteins can be leveraged to mediate transgene insertion at 28S rDNA loci in cultured human cells. This strategy, precise RNA-mediated insertion of transgenes (PRINT), relies on the codelivery of an mRNA encoding R2 protein and an RNA template encoding a transgene cassette of choice. Here, we demonstrate that the PRINT RNA template 5' module, which as a complementary DNA 3' end will generate the transgene 5' junction with rDNA, influences the efficiency and mechanism of gene insertion. Iterative design and testing identified optimal 5' modules consisting of a hepatitis delta virus-like ribozyme fold with high thermodynamic stability, suggesting that RNA template degradation from its 5' end may limit transgene insertion efficiency. We also demonstrate that transgene 5' junction formation can be either precise, formed by annealing the 3' end of first-strand complementary DNA with the upstream target site, or imprecise, by end-joining, but this difference in junction formation mechanism is not a major determinant of insertion efficiency. Sequence characterization of imprecise end-joining events indicates surprisingly minimal reliance on microhomology. Our findings expand the current understanding of the role of R2 retrotransposon transcript sequence and structure, and especially the 5' ribozyme fold, for retrotransposon mobility and RNA-templated gene synthesis in cells.
Collapse
Affiliation(s)
- Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Connor A Horton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Johnson ML, Hay BA, Maselko M. Altering traits and fates of wild populations with Mendelian DNA sequence modifying Allele Sails. Nat Commun 2024; 15:6665. [PMID: 39138152 PMCID: PMC11322531 DOI: 10.1038/s41467-024-50992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Population-scale genome modification can alter the composition or fate of wild populations. Synthetic gene drives provide one set of tools, but their use is complicated by scientific, regulatory, and social issues associated with transgene persistence and flow. Here we propose an alternative approach. An Allele Sail consists of a genome editor (the Wind) that introduces DNA sequence edits, and is inherited in a Mendelian fashion. Meanwhile, the edits (the Sail) experience an arithmetic, Super-Mendelian increase in frequency. We model this system and identify contexts in which a single, low frequency release of an editor brings edits to a very high frequency. We also identify conditions in which manipulation of sex determination can bring about population suppression. In regulatory frameworks that distinguish between transgenics (GMO) and their edited non-transgenic progeny (non-GMO) Allele Sails may prove useful since the spread and persistence of the GM component can be limited.
Collapse
Affiliation(s)
- Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC156-29, Pasadena, CA, 91125, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC156-29, Pasadena, CA, 91125, USA.
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
12
|
Lee RJ, Horton CA, Van Treeck B, McIntyre JJR, Collins K. Conserved and divergent DNA recognition specificities and functions of R2 retrotransposon N-terminal domains. Cell Rep 2024; 43:114239. [PMID: 38753487 PMCID: PMC11204384 DOI: 10.1016/j.celrep.2024.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/04/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
R2 non-long terminal repeat (non-LTR) retrotransposons are among the most extensively distributed mobile genetic elements in multicellular eukaryotes and show promise for applications in transgene supplementation of the human genome. They insert new gene copies into a conserved site in 28S ribosomal DNA with exquisite specificity. R2 clades are defined by the number of zinc fingers (ZFs) at the N terminus of the retrotransposon-encoded protein, postulated to additively confer DNA site specificity. Here, we illuminate general principles of DNA recognition by R2 N-terminal domains across and between clades, with extensive, specific recognition requiring only one or two compact domains. DNA-binding and protection assays demonstrate broadly shared as well as clade-specific DNA interactions. Gene insertion assays in cells identify the N-terminal domains sufficient for target-site insertion and reveal roles in second-strand cleavage or synthesis for clade-specific ZFs. Our results have implications for understanding evolutionary diversification of non-LTR retrotransposon insertion mechanisms and the design of retrotransposon-based gene therapies.
Collapse
Affiliation(s)
- Rosa Jooyoung Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Connor A Horton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jeremy J R McIntyre
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|