1
|
Oo JA, Warwick T, Pálfi K, Lam F, McNicoll F, Prieto-Garcia C, Günther S, Cao C, Zhou Y, Gavrilov AA, Razin SV, Cabrera-Orefice A, Wittig I, Pullamsetti SS, Kurian L, Gilsbach R, Schulz MH, Dikic I, Müller-McNicoll M, Brandes RP, Leisegang MS. Long non-coding RNAs direct the SWI/SNF complex to cell type-specific enhancers. Nat Commun 2025; 16:131. [PMID: 39747144 PMCID: PMC11695977 DOI: 10.1038/s41467-024-55539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state. It does so while retaining the ability to respond dynamically to cellular signals. However, the mechanisms that guide SWI/SNF to specific genomic targets have remained elusive. Here we demonstrate that trans-acting long non-coding RNAs (lncRNAs) direct the SWI/SNF complex to cell type-specific enhancers. SWI/SNF preferentially binds lncRNAs and these predominantly bind DNA targets in trans. Together they localize to enhancers, many of which are cell type-specific. Knockdown of SWI/SNF- and enhancer-bound lncRNAs causes the genome-wide redistribution of SWI/SNF away from enhancers and a concomitant differential expression of spatially connected target genes. These lncRNA-SWI/SNF-enhancer networks support an enhancer hub model of SWI/SNF genomic targeting. Our findings reveal that lncRNAs competitively recruit SWI/SNF, providing a specific and dynamic layer of control over chromatin accessibility, and reinforcing their role in mediating enhancer activity and gene expression.
Collapse
Affiliation(s)
- James A Oo
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Timothy Warwick
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Katalin Pálfi
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
| | - Frederike Lam
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Francois McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Frankfurt, Germany
| | - Cristian Prieto-Garcia
- Goethe University Frankfurt, Institute of Biochemistry II, Faculty of Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Can Cao
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Yinuo Zhou
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alfredo Cabrera-Orefice
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Goethe University Frankfurt, Functional Proteomics Center, Frankfurt, Germany
| | - Ilka Wittig
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Goethe University Frankfurt, Functional Proteomics Center, Frankfurt, Germany
| | - Soni Savai Pullamsetti
- Department of Internal Medicine, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), University of Giessen, Giessen, Germany
| | - Leo Kurian
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Ralf Gilsbach
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Marcel H Schulz
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute for Computational Genomic Medicine, Frankfurt, Germany
| | - Ivan Dikic
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute of Biochemistry II, Faculty of Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute for Molecular Biosciences, Frankfurt, Germany
- Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Ralf P Brandes
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Matthias S Leisegang
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany.
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany.
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
2
|
Wang SE, Cheng Y, Lim J, Jang MA, Forrest EN, Kim Y, Donahue M, Qiao SN, Xiong Y, Jin J, Wang S, Jiang YH. Mechanism of EHMT2-mediated genomic imprinting associated with Prader-Willi syndrome. RESEARCH SQUARE 2024:rs.3.rs-4530649. [PMID: 39011107 PMCID: PMC11247926 DOI: 10.21203/rs.3.rs-4530649/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Prader-Willi Syndrome (PWS) is caused by loss of expression of paternally expressed genes in the human 15q11.2-q13 imprinting domain. A set of imprinted genes that are active on the paternal but silenced on the maternal chromosome are intricately regulated by a bipartite imprinting center (PWS-IC) located in the PWS imprinting domain. In past work, we discovered that euchromatic histone lysine N-methyltransferase-2 (EHMT2/G9a) inhibitors were capable of un-silencing PWS-associated genes by restoring their expression from the maternal chromosome. Here, in mice lacking the Ehmt2 gene, we document un-silencing of the imprinted Snrpn/Snhg14 gene on the maternal chromosome in the late embryonic and postnatal brain. Using PWS and Angelman syndrome patient derived cells with either paternal or maternal deletion of 15q11-q13, we have found that chromatin of maternal PWS-IC is closed and has compact 3D folding confirmation. We further show that a new and distinct noncoding RNA preferentially transcribed from upstream of the PWS-IC interacts with EHMT2 and forms a heterochromatin complex to silence gene expression of SNRPN in CIS on maternal chromosome. Taken together, these findings demonstrate that allele-specific recruitment of EHMT2 is required to maintain the maternal imprints. Our findings provide novel mechanistic insights and support a new model for imprinting maintenance of the PWS imprinted domain.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Yubao Cheng
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Jaechul Lim
- Immunobiology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Emily N. Forrest
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Yuna Kim
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, TN 38105, USA
| | - Meaghan Donahue
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Sheng-Nan Qiao
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Cell Biology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| | - Yong-hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Neuroscience, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Pediatrics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Saha D, Animireddy S, Lee J, Thommen A, Murvin MM, Lu Y, Calabrese JM, Bartholomew B. Enhancer switching in cell lineage priming is linked to eRNA, Brg1's AT-hook, and SWI/SNF recruitment. Mol Cell 2024; 84:1855-1869.e5. [PMID: 38593804 PMCID: PMC11104297 DOI: 10.1016/j.molcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/24/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
RNA transcribed from enhancers, i.e., eRNA, has been suggested to directly activate transcription by recruiting transcription factors and co-activators. Although there have been specific examples of eRNA functioning in this way, it is not clear how general this may be. We find that the AT-hook of SWI/SNF preferentially binds RNA and, as part of the esBAF complex, associates with eRNA transcribed from intronic and intergenic regions. Our data suggest that SWI/SNF is globally recruited in cis by eRNA to cell-type-specific enhancers, representative of two distinct stages that mimic early mammalian development, and not at enhancers that are shared between the two stages. In this manner, SWI/SNF facilitates recruitment and/or activation of MLL3/4, p300/CBP, and Mediator to stage-specific enhancers and super-enhancers that regulate the transcription of metabolic and cell lineage priming-related genes. These findings highlight a connection between ATP-dependent chromatin remodeling and eRNA in cell identity and typical- and super-enhancer activation.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA
| | - Anna Thommen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - McKenzie M Murvin
- Department of Pharmacology, RNA Discovery Center, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Curriculum in Mechanistic, Interdisciplinary Studies in Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA
| | - J Mauro Calabrese
- Department of Pharmacology, RNA Discovery Center, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA; Curriculum in Mechanistic, Interdisciplinary Studies in Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Center, Houston, TX 77054, USA; UT MD Anderson Cancer, Center for Cancer Epigenetics, Houston, TX 77054, USA.
| |
Collapse
|
4
|
Li F, Chen X. Contribution and underlying mechanisms of lncRNA TRPM2-AS in the development and progression of human cancers. Pathol Res Pract 2023; 251:154887. [PMID: 37871443 DOI: 10.1016/j.prp.2023.154887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Long-stranded non-coding RNAs (lncRNAs) are RNA molecules that are longer than 200 nucleotides and do not code for proteins. They play a significant role in various biological processes, including epigenetics, cell cycle, and cell differentiation. Many studies have shown that the occurrence of human cancer is closely related to the abnormal expression of lncRNA. In recent years, lncRNAs have been a hot topic in cancer research. TRPM2-AS, a novel lncRNA, is aberrantly expressed in many human cancers, and its overexpression is strongly linked to poor clinical outcomes in patients. It has been demonstrated that TRPM2-AS acts as a ceRNA, participates in signaling pathways, and interacts with biological proteins and other molecular mechanisms to regulate gene expression. In addition, it can regulate the proliferation, migration, invasion, apoptosis, and treatment resistance of cancer cells. As a result, TRPM2-AS may be a potential target for cancer treatment and a possible biomarker for cancer prognosis. This review outlined the expression, biological processes, and molecular mechanisms of TRPM2-AS in various malignancies, and discussed potential therapeutic uses.
Collapse
Affiliation(s)
- Fei Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiuwei Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
5
|
Cherney RE, Eberhard QE, Giri G, Mills CA, Porrello A, Zhang Z, White D, Trotman JB, Herring LE, Dominguez D, Calabrese JM. SAFB associates with nascent RNAs and can promote gene expression in mouse embryonic stem cells. RNA (NEW YORK, N.Y.) 2023; 29:1535-1556. [PMID: 37468167 PMCID: PMC10578485 DOI: 10.1261/rna.079569.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Scaffold attachment factor B (SAFB) is a conserved RNA-binding protein that is essential for early mammalian development. However, the functions of SAFB in mouse embryonic stem cells (ESCs) have not been characterized. Using RNA immunoprecipitation followed by RNA-seq (RIP-seq), we examined the RNAs associated with SAFB in wild-type and SAFB/SAFB2 double-knockout ESCs. SAFB predominantly associated with introns of protein-coding genes through purine-rich motifs. The transcript most enriched in SAFB association was the lncRNA Malat1, which also contains a purine-rich region in its 5' end. Knockout of SAFB/SAFB2 led to differential expression of approximately 1000 genes associated with multiple biological processes, including apoptosis, cell division, and cell migration. Knockout of SAFB/SAFB2 also led to splicing changes in a set of genes that were largely distinct from those that exhibited changes in expression level. The spliced and nascent transcripts of many genes whose expression levels were positively regulated by SAFB also associated with high levels of SAFB, implying that SAFB binding promotes their expression. Reintroduction of SAFB into double-knockout cells restored gene expression toward wild-type levels, an effect again observable at the level of spliced and nascent transcripts. Proteomics analysis revealed a significant enrichment of nuclear speckle-associated and RS domain-containing proteins among SAFB interactors. Neither Xist nor Polycomb functions were dramatically altered in SAFB/2 knockout ESCs. Our findings suggest that among other potential functions in ESCs, SAFB promotes the expression of certain genes through its ability to bind nascent RNA.
Collapse
Affiliation(s)
- Rachel E Cherney
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Quinn E Eberhard
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gilbert Giri
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christine A Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alessandro Porrello
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhiyue Zhang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - David White
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jackson B Trotman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
6
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. Biol Open 2023; 12:bio059955. [PMID: 37283223 PMCID: PMC10259849 DOI: 10.1242/bio.059955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
Affiliation(s)
- Rachel E. Cherney
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Christine A. Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Proteomics Core Facility, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - Aki K. Braceros
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | - J. Mauro Calabrese
- Department of Pharmacology, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- RNA Discovery Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
8
|
Cherney RE, Mills CA, Herring LE, Braceros AK, Calabrese JM. A monoclonal antibody raised against human EZH2 cross-reacts with the RNA-binding protein SAFB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535391. [PMID: 37066147 PMCID: PMC10103960 DOI: 10.1101/2023.04.03.535391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.
Collapse
|
9
|
Reddy D, Bhattacharya S, Levy M, Zhang Y, Gogol M, Li H, Florens L, Workman JL. Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO Rep 2023; 24:e55345. [PMID: 36354291 PMCID: PMC9827562 DOI: 10.15252/embr.202255345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Paraspeckles are subnuclear RNA-protein structures that are implicated in important processes including cellular stress response, differentiation, and cancer progression. However, it is unclear how paraspeckles impart their physiological effect at the molecular level. Through biochemical analyses, we show that paraspeckles interact with the SWI/SNF chromatin-remodeling complex. This is specifically mediated by the direct interaction of the long-non-coding RNA NEAT1 of the paraspeckles with ARID1B of the cBAF-type SWI/SNF complex. Strikingly, ARID1B depletion, in addition to resulting in loss of interaction with the SWI/SNF complex, decreases the binding of paraspeckle proteins to chromatin modifiers, transcription factors, and histones. Functionally, the loss of ARID1B and NEAT1 influences the transcription and the alternative splicing of a common set of genes. Our findings reveal that dynamic granules such as the paraspeckles may leverage the specificity of epigenetic modifiers to impart their regulatory effect, thus providing a molecular basis for their function.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | | | - Ying Zhang
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | - Hua Li
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | | |
Collapse
|
10
|
Yang M, Sun Y, Ji H, Zhang Q. Identification and validation of endocrine resistance-related and immune-related long non-coding RNA (lncRNA) signatures for predicting endocrinotherapy response and prognosis in breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1399. [PMID: 36660659 PMCID: PMC9843421 DOI: 10.21037/atm-22-6158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Background Endocrine resistance remains a major challenge in breast cancer (BRCA). Increasing evidence has revealed that long non-coding RNA (lncRNA) are closely implicated in tumorigenesis, drug resistance, and the immune-related pathways of cancer. However, the immune-related lncRNA remains to be thoroughly investigated in predicting the endocrine therapeutic response and prognosis of BRCA. Methods Based on the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, and calculating the correlation of lncRNAs with immune-related genes obtained from ImmPort and InnateDB databases, we finally obtained endocrine resistance-related and immune-related long non-coding RNAs (ERIR-lncRNAs). Univariate Cox and least absolute shrinkage and selection operator (LASSO) Cox regression were performed to screen prognosis-associated ERIR-lncRNAs and establish signatures, using 2 separate datasets from GEO for external validation. Principal component analysis (PCA), Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, and multivariate Cox regression were performed to demonstrate the robustness and predictability of the signature. We investigated tumor immune infiltration and tumor mutation burden (TMB) between high- and low-risk groups, and the role of key lncRNAs in endocrine resistant breast cancer was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR), Cell Counting Kit 8 (CCK 8) and transwell assays. Results A total of 781 endocrine resistance related lncRNAs were identified, of which 12 lncRNAs were associated with immunity. Then, three ERIR-lncRNAs with prognostic relevance were screened to successfully construct the risk signature. Compared to sensitive patients, the endocrine resistant patients had higher risk scores in both the training and validation sets (P<0.05). The high-risk group had significantly shorter survival times (P<0.001) with area under the curve (AUC) values of 0.710, 0.649, and 0.672 at 1, 3, and 5 years. Univariate and multivariate Cox regression indicated that our signature was an independent prognostic factor (P<0.001). Through immune infiltration analysis, it was revealed that the high-risk scores were associated with T follicular helper (Tfh) differentiation and exhibited a pro-tumor phenomenon with the Th1/Th2 balance shifting toward Th2. The key lncRNAs promote cell proliferation and migration as confirmed by qRT-PCR, CCK-8 and transwell assays. Conclusions The ERIR-lncRNA signature is valuable in predicting endocrine therapeutic response and prognosis of BRCA, revealing a potential relationship between endocrine resistance and TME.
Collapse
Affiliation(s)
- Ming Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yutian Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China;,Heilongjiang Cancer Prevention and Treatment Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China;,Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China;,Heilongjiang Cancer Prevention and Treatment Institute, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
11
|
Abstract
Metastasis is a major contributor to cancer-associated deaths. It is characterized by a multistep process that occurs through the acquisition of molecular and phenotypic changes enabling cancer cells from a primary tumour to disseminate and colonize at distant organ sites. Over the past decade, the discovery and characterization of long noncoding RNAs (lncRNAs) have revealed the diversity of their regulatory roles, including key contributions throughout the metastatic cascade. Here, we review how lncRNAs promote metastasis by functioning in discrete pro-metastatic steps including the epithelial-mesenchymal transition, invasion and migration and organotrophic colonization, and by influencing the metastatic tumour microenvironment, often by interacting within ribonucleoprotein complexes or directly with other nucleic acid entities. We discuss well-characterized lncRNAs with in vivo phenotypes and highlight mechanistic commonalities such as convergence with the TGFβ-ZEB1/ZEB2 axis or the nuclear factor-κB pathway, in addition to lncRNAs with controversial mechanisms and the influence of methodologies on mechanistic interpretation. Furthermore, some lncRNAs can help identify tumours with increased metastatic risk and spur novel therapeutic strategies, with several lncRNAs having shown potential as novel targets for antisense oligonucleotide therapy in animal models. In addition to well-characterized examples of lncRNAs functioning in metastasis, we discuss controversies and ongoing challenges in lncRNA biology. Finally, we present areas for future study for this rapidly evolving field.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
12
|
Lawrence MG, Porter LH, Clouston D, Murphy DG, Frydenberg M, Taylor RA, Risbridger GP. Knowing what's growing: Why ductal and intraductal prostate cancer matter. Sci Transl Med 2021; 12:12/533/eaaz0152. [PMID: 32132214 DOI: 10.1126/scitranslmed.aaz0152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Prostate cancer is a common malignancy, but only some tumors are lethal. Accurately identifying these tumors will improve clinical practice and instruct research. Aggressive cancers often have distinctive pathologies, including intraductal carcinoma of the prostate (IDC-P) and ductal adenocarcinoma. Here, we review the importance of these pathologies because they are often overlooked, especially in genomics and preclinical testing. Pathology, genomics, and patient-derived models show that IDC-P and ductal adenocarcinoma accompany multiple markers of poor prognosis. Consequently, "knowing what is growing" will help translate preclinical research to pinpoint and treat high-risk prostate cancer in the clinic.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia.,Epworth HealthCare, Melbourne, VIC 3000, Australia
| | - Mark Frydenberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Australian Urology Associates, Melbourne, VIC 3000, Australia.,Department of Urology, Cabrini Health, Malvern, VIC 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Huang K, Tang Y. SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop. Cell Death Dis 2021; 12:188. [PMID: 33589600 PMCID: PMC7884413 DOI: 10.1038/s41419-021-03455-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to investigate the mechanism of SChLAP1 (second chromosome locus associated with prostate-1) on microRNA expression in prostate cancer. Differential expression of lncRNAs and microRNA prostate cancer cells were predicted by informatics and confirmed by qRT-PCR. SChLAP1-interacting proteins were characterized by RNA pull-down combined with western blotting, which was verified using RIP and qPCR analysis. Then ChIP assay and DNA pull-down were used to validate the binding of DNMT3a and HEK27me3 with miRNA gene promoters. Target genes of miRNAs were bioinformatically predicted and validated by dual-luciferase reporter assays. The tumorigenicity of prostate cancer cells was assessed using the cancer cell line-based xenograft (CDX) model. We found that SChLAP1 expression was significantly elevated in prostate cancer tissues and cell lines, which was negatively correlated with miR-340 expression. SChLAP1 directly binds with EZH2 and repressed multiple miRNA expression on chromosome 5 including the miR-340-3p in prostate cancer cells through recruiting H3K27me3 to mediate promoter methylation modification of miR-340-5p/miR-143-3p/miR-145-5p to suppress gene transcription. Moreover, DNMT3a was one of the common target genes of miR-340-5p/miR-143-3p/miR-145-5p in prostate cancer cells. And SChLAP1/EZH2 could also promote prostate cancer tumor development via the interaction of microRNA-DNMT3a signaling pathways in xenograft nude mice. Altogether, our results suggest that SChLAP1 enhanced the proliferation, migration, and tumorigenicity of prostate cancer cells through interacting with EZH2 to recruit H2K27me3 and mediate promoter methylation modification of miR-340-5p/miR-143-3p/miR-145-5p with a DNMT3a-feedback loop.
Collapse
Affiliation(s)
- Kai Huang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, P.R. China
| | - Yuxin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, P.R. China.
| |
Collapse
|
14
|
Hartley A, Leung HY, Ahmad I. Targeting the BAF complex in advanced prostate cancer. Expert Opin Drug Discov 2021; 16:173-181. [PMID: 32936685 DOI: 10.1080/17460441.2020.1821644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The BRG1/BRM associated factors (BAF) complex is a chromatin remodeling SWI/SNF which is mutated in 20% of cancers. This complex has many interchangeable subunits which may have oncogenic or tumor suppressor activity in a context-dependent manner. The BAF complex is mutated in 35-50% of metastatic prostate cancer (PC); however, its role in advanced disease is unclear. This review attempts to consolidate current knowledge of the BAF complex in PC and explore potential therapeutic approaches. AREAS COVERED This review covers the known roles of some BAF subunits, their alterations, and the models which best explain their mechanisms in driving PC. Following this, the authors provide their expert perspective on how this complex could be targeted in the future with a personalized medicine approach. EXPERT OPINION Personalized medicine would allow for patient stratification to exploit synthetic lethal strategies in targeting a mutated BAF complex as shown experimentally in other cancers. BAF dependency can also be targeted in patients stratified for other molecular markers such as BRG1 targeting in phosphatase and tensin homolog (PTEN) deficient PC.
Collapse
Affiliation(s)
- Andrew Hartley
- Urology Research Group, CRUK Beatson Institute , Glasgow, UK
| | - Hing Y Leung
- Urology Research Group, CRUK Beatson Institute , Glasgow, UK
- Institue of Cancer Sciences, University of Glasgow , Glasgow, UK
| | - Imran Ahmad
- Urology Research Group, CRUK Beatson Institute , Glasgow, UK
- Institue of Cancer Sciences, University of Glasgow , Glasgow, UK
| |
Collapse
|
15
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Long non-coding RNAs: the tentacles of chromatin remodeler complexes. Cell Mol Life Sci 2021; 78:1139-1161. [PMID: 33001247 PMCID: PMC11072783 DOI: 10.1007/s00018-020-03646-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
Abstract
Chromatin remodeler complexes regulate gene transcription, DNA replication and DNA repair by changing both nucleosome position and post-translational modifications. The chromatin remodeler complexes are categorized into four families: the SWI/SNF, INO80/SWR1, ISWI and CHD family. In this review, we describe the subunits of these chromatin remodeler complexes, in particular, the recently identified members of the ISWI family and novelties of the CHD family. Long non-coding (lnc) RNAs regulate gene expression through different epigenetic mechanisms, including interaction with chromatin remodelers. For example, interaction of lncBRM with BRM inhibits the SWI/SNF complex associated with a differentiated phenotype and favors assembly of a stem cell-related SWI/SNF complex. Today, over 50 lncRNAs have been shown to affect chromatin remodeler complexes and we here discuss the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Neve
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France.
| | - Nicolas Jonckheere
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Audrey Vincent
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Isabelle Van Seuningen
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| |
Collapse
|
16
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
17
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
18
|
Cyrta J, Augspach A, De Filippo MR, Prandi D, Thienger P, Benelli M, Cooley V, Bareja R, Wilkes D, Chae SS, Cavaliere P, Dephoure N, Uldry AC, Lagache SB, Roma L, Cohen S, Jaquet M, Brandt LP, Alshalalfa M, Puca L, Sboner A, Feng F, Wang S, Beltran H, Lotan T, Spahn M, Kruithof-de Julio M, Chen Y, Ballman KV, Demichelis F, Piscuoglio S, Rubin MA. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat Commun 2020; 11:5549. [PMID: 33144576 PMCID: PMC7642293 DOI: 10.1038/s41467-020-19328-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10–20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors. The differentiation of prostate adenocarcinoma to neuroendocrine prostate cancer (CRPC-NE) is a mechanism of resistance to androgen deprivation therapy. Here the authors show that SWI/SNF chromatin-remodeling complex is deregulated in CRPC-NE and that the complex interacts with different lineage specific factors throughout prostate cancer transdifferentiation.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.,The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Anke Augspach
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Maria Rosaria De Filippo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008, Bern, Switzerland.,Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland
| | - Davide Prandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy
| | - Phillip Thienger
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Matteo Benelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy.,Bioinformatics Unit, Hospital of Prato, 59100, Prato, Italy
| | - Victoria Cooley
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rohan Bareja
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David Wilkes
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Sung-Suk Chae
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Paola Cavaliere
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Anne-Christine Uldry
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Sophie Braga Lagache
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Luca Roma
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland
| | - Sandra Cohen
- Department of Laboratory Medicine and Pathology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Muriel Jaquet
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Laura P Brandt
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Loredana Puca
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Andrea Sboner
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.,HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Felix Feng
- Proteomics Mass Spectrometry Core Facility, University of Bern, 3010, Bern, Switzerland
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Himisha Beltran
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Tamara Lotan
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Martin Spahn
- Lindenhofspital Bern, Prostate Center Bern, 3012, Bern, Switzerland.,Department of Urology, Essen University Hospital, University of Duisburg-Essen, 47057, Essen, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.,Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008, Bern, Switzerland.,Department of Urology, Inselspital, 3010, Bern, Switzerland
| | - Yu Chen
- Department of Medicine, Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Karla V Ballman
- Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Demichelis
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122, Trento, Italy
| | - Salvatore Piscuoglio
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, 4051, Basel, Switzerland.,Visceral Surgery Research Laboratory, Clarunis, Department of Biomedicine, University of Basel, 4051, Basel, Switzerland.,Clarunis Universitäres Bauchzentrum Basel, 4002, Basel, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland. .,Inselspital, 3010, Bern, Switzerland. .,Bern Center for Precision Medicine, 3008, Bern, Switzerland.
| |
Collapse
|
19
|
Trotman JB, Lee DM, Cherney RE, Kim SO, Inoue K, Schertzer MD, Bischoff SR, Cowley DO, Calabrese J. Elements at the 5' end of Xist harbor SPEN-independent transcriptional antiterminator activity. Nucleic Acids Res 2020; 48:10500-10517. [PMID: 32986830 PMCID: PMC7544216 DOI: 10.1093/nar/gkaa789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 12/22/2022] Open
Abstract
The Xist lncRNA requires Repeat A, a conserved RNA element located in its 5' end, to induce gene silencing during X-chromosome inactivation. Intriguingly, Repeat A is also required for production of Xist. While silencing by Repeat A requires the protein SPEN, how Repeat A promotes Xist production remains unclear. We report that in mouse embryonic stem cells, expression of a transgene comprising the first two kilobases of Xist (Xist-2kb) causes transcriptional readthrough of downstream polyadenylation sequences. Readthrough required Repeat A and the ∼750 nucleotides downstream, did not require SPEN, and was attenuated by splicing. Despite associating with SPEN and chromatin, Xist-2kb did not robustly silence transcription, whereas a 5.5-kb Xist transgene robustly silenced transcription and read through its polyadenylation sequence. Longer, spliced Xist transgenes also induced robust silencing yet terminated efficiently. Thus, in contexts examined here, Xist requires sequence elements beyond its first two kilobases to robustly silence transcription, and the 5' end of Xist harbors SPEN-independent transcriptional antiterminator activity that can repress proximal cleavage and polyadenylation. In endogenous contexts, this antiterminator activity may help produce full-length Xist RNA while rendering the Xist locus resistant to silencing by the same repressive complexes that the lncRNA recruits to other genes.
Collapse
Affiliation(s)
- Jackson B Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | - David M Lee
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Chapel Hill, NC 27599, USA
| | - Rachel E Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Chapel Hill, NC 27599, USA
| | - Susan O Kim
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | - Kaoru Inoue
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | - Megan D Schertzer
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, Chapel Hill, NC 27599, USA
| | - Steven R Bischoff
- Animal Models Core, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Animal Models Core, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Lin X, Kapoor A, Gu Y, Chow MJ, Xu H, Major P, Tang D. Assessment of biochemical recurrence of prostate cancer (Review). Int J Oncol 2019; 55:1194-1212. [PMID: 31638194 PMCID: PMC6831208 DOI: 10.3892/ijo.2019.4893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The assessment of the risk of biochemical recurrence (BCR) is critical in the management of males with prostate cancer (PC). Over the past decades, a comprehensive effort has been focusing on improving risk stratification; a variety of models have been constructed using PC-associated pathological features and molecular alterations occurring at the genome, protein and RNA level. Alterations in RNA expression (lncRNA, miRNA and mRNA) constitute the largest proportion of the biomarkers of BCR. In this article, we systemically review RNA-based BCR biomarkers reported in PubMed according to the PRISMA guidelines. Individual miRNAs, mRNAs, lncRNAs and multi-gene panels, including the commercially available signatures, Oncotype DX and Prolaris, will be discussed; details related to cohort size, hazard ratio and 95% confidence intervals will be provided. Mechanistically, these individual biomarkers affect multiple pathways critical to tumorigenesis and progression, including epithelial-mesenchymal transition (EMT), phosphatase and tensin homolog (PTEN), Wnt, growth factor receptor, cell proliferation, immune checkpoints and others. This variety in the mechanisms involved not only validates their associations with BCR, but also highlights the need for the coverage of multiple pathways in order to effectively stratify the risk of BCR. Updates of novel biomarkers and their mechanistic insights are considered, which suggests new avenues to pursue in the prediction of BCR. Additionally, the management of patients with BCR and the potential utility of the stratification of the risk of BCR in salvage treatment decision making for these patients are briefly covered. Limitations will also be discussed.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anil Kapoor
- The Research Institute of St. Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mathilda Jing Chow
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
21
|
Ho PJ, Lloyd SM, Bao X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 2019; 146:146/19/dev178780. [PMID: 31570369 DOI: 10.1242/dev.178780] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The BAF (SWI/SNF) chromatin remodeling complex plays a crucial role in modulating spatiotemporal gene expression during mammalian development. Although its remodeling activity was characterized in vitro decades ago, the complex actions of BAF in vivo have only recently begun to be unraveled. In living cells, BAF only binds to and remodels a subset of genomic locations. This selectivity of BAF genomic targeting is crucial for cell-type specification and for mediating precise responses to environmental signals. Here, we provide an overview of the distinct molecular mechanisms modulating BAF chromatin binding, including its combinatory assemblies, DNA/histone modification-binding modules and post-translational modifications, as well as its interactions with proteins, RNA and lipids. This Review aims to serve as a primer for future studies to decode the actions of BAF in developmental processes.
Collapse
Affiliation(s)
- Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Department of Dermatology, Northwestern University, Evanston, IL 60208, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
22
|
Schertzer MD, Braceros KCA, Starmer J, Cherney RE, Lee DM, Salazar G, Justice M, Bischoff SR, Cowley DO, Ariel P, Zylka MJ, Dowen JM, Magnuson T, Calabrese JM. lncRNA-Induced Spread of Polycomb Controlled by Genome Architecture, RNA Abundance, and CpG Island DNA. Mol Cell 2019; 75:523-537.e10. [PMID: 31256989 PMCID: PMC6688959 DOI: 10.1016/j.molcel.2019.05.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/10/2019] [Accepted: 05/17/2019] [Indexed: 01/28/2023]
Abstract
Long noncoding RNAs (lncRNAs) cause Polycomb repressive complexes (PRCs) to spread over broad regions of the mammalian genome. We report that in mouse trophoblast stem cells, the Airn and Kcnq1ot1 lncRNAs induce PRC-dependent chromatin modifications over multi-megabase domains. Throughout the Airn-targeted domain, the extent of PRC-dependent modification correlated with intra-nuclear distance to the Airn locus, preexisting genome architecture, and the abundance of Airn itself. Specific CpG islands (CGIs) displayed characteristics indicating that they nucleate the spread of PRCs upon exposure to Airn. Chromatin environments surrounding Xist, Airn, and Kcnq1ot1 suggest common mechanisms of PRC engagement and spreading. Our data indicate that lncRNA potency can be tightly linked to lncRNA abundance and that within lncRNA-targeted domains, PRCs are recruited to CGIs via lncRNA-independent mechanisms. We propose that CGIs that autonomously recruit PRCs interact with lncRNAs and their associated proteins through three-dimensional space to nucleate the spread of PRCs in lncRNA-targeted domains.
Collapse
Affiliation(s)
- Megan D Schertzer
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Keean C A Braceros
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua Starmer
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel E Cherney
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M Lee
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gabriela Salazar
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan Justice
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven R Bischoff
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Ariel
- Microscopy Services Laboratory and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jill M Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Lee DM, Trotman JB, Cherney RE, Inoue K, Schertzer MD, Bischoff SR, Cowley DO, Calabrese JM. RETRACTED: A 5' fragment of Xist can sequester RNA produced from adjacent genes on chromatin. Nucleic Acids Res 2019; 47:7049-7062. [PMID: 31114903 PMCID: PMC6648342 DOI: 10.1093/nar/gkz432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Xist requires Repeat-A, a protein-binding module in its first two kilobases (2kb), to repress transcription. We report that when expressed as a standalone transcript in mouse embryonic stem cells (ESCs), the first 2kb of Xist (Xist-2kb) does not induce transcriptional silencing. Instead, Xist-2kb sequesters RNA produced from adjacent genes on chromatin. Sequestration does not spread beyond adjacent genes, requires the same sequence elements in Repeat-A that full-length Xist requires to repress transcription and can be induced by lncRNAs with similar sequence composition to Xist-2kb. We did not detect sequestration by full-length Xist, but we did detect it by mutant forms of Xist with attenuated transcriptional silencing capability. Xist-2kb associated with SPEN, a Repeat-A binding protein required for Xist-induced transcriptional silencing, but SPEN was not necessary for sequestration. Thus, when expressed in mouse ESCs, a 5' fragment of Xist that contains Repeat-A sequesters RNA from adjacent genes on chromatin and associates with the silencing factor SPEN, but it does not induce transcriptional silencing. Instead, Xist-induced transcriptional silencing requires synergy between Repeat-A and additional sequence elements in Xist. We propose that sequestration is mechanistically related to the Repeat-A dependent stabilization and tethering of Xist near actively transcribed regions of chromatin.
Collapse
Affiliation(s)
- David M Lee
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jackson B Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel E Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kaoru Inoue
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Megan D Schertzer
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven R Bischoff
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Animal Models Core, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Yang R, Liu N, Chen L, Jiang Y, Shi Y, Mao C, Liu Y, Wang M, Lai W, Tang H, Gao M, Xiao D, Wang X, Yu F, Cao Y, Yan Q, Liu S, Tao Y. LSH interacts with and stabilizes GINS4 transcript that promotes tumourigenesis in non-small cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:280. [PMID: 31253190 PMCID: PMC6599244 DOI: 10.1186/s13046-019-1276-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
Background Elucidating mechanisms in oncogenes and epigenetic modifiers are needed to gain insights into the etiology and treatment of cancer, regulation of oncogene by chromatin modifiers at post-transcriptional level is critical and remains unclear. We have investigated the role of GINS4 in NSCLC. Methods The expression of chromatin modifier lymphoid-specific helicase (LSH) and GINS4 was assessed in tumor and normal tissue from 79 patients with NSCLC with clinical characteristics. HBE, A549, H358, and H522, PC9, 95C and 95D were cultured after overexpression or silencing of GIAT4RA. Cell proliferation assay, cell migration and invasion assays, plate colony formation assay, immunofluorescence assay, Operetta® high-content screening and analysis, Western blot analysis and Co-Immunoprecipitation (Co-IP) assay, RNA immunoprecipitation assay and tumor growth assay was used to address the potential interplay of between GINS4 and LSH, and the functional of GINS4. Results GINS4 is highly expressed in lung cancer cells and tissues, and GINS4 expression is not association with clinical risk factors, but linked with clinical stage and lymphatic metastasis status. Higher expression of GINS4 poorly linked with overall survival in lung adenocarcinomas. Furthermore, GINS4 promoted many characteristics of tumorigenesis including cell growth, clonal formation, migration and invasion, epithelial–mesenchymal transition, tumor sphere and tumor growth in vivo. Interestingly, our results demonstrated that LSH increases GINS4 expression through binding to 3’UTR region of GINS4 and stabilizing its mRNA levels. Finally, LSH overexpression rescues GINS4 knockdown-induced features. Conclusions GINS4 facilitates lung cancer progression by promoting key characteristics of tumor potential, and LSH epigenetically interacts with and stabilizes GINS4 transcripts. Electronic supplementary material The online version of this article (10.1186/s13046-019-1276-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Na Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ling Chen
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yiqun Jiang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ying Shi
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Chao Mao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yating Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Min Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Weiwei Lai
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Haosheng Tang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Menghui Gao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya Cao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute; School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|