1
|
Yang Y, Gan M, Liu C, Xie Z, Wang M, Zhou C, Cheng W, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Wang J, Shen L, Zhu L. Analysis of genetic evolutionary differences among four Tibetan pig populations in China. Genomics 2024; 116:110950. [PMID: 39393592 DOI: 10.1016/j.ygeno.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Tibetan pigs are a locally bred domestic pig breed originating from the Tibetan Plateau in China. They can be categorized into four distinct groups based on their geographical locations: Sichuan Tibetan pigs, Tibetan pigs from Tibet, Yunnan Tibetan pigs, and Gansu Tibetan pigs. This study aimed to explore population diversity, genetic structure and selection signals among Tibetan pigs in four Chinese national nature reserves. The results show that there is different observed heterozygosity among Tibetan pig populations (0.1957-0.1978). Ratio of runs of homozygosity (Froh) calculation of four Tibetan pig populations by runs of homozygosity (ROH) revealed the presence of inbreeding within the population (0.0336-0.0378). Analysis of the genetic structure demonstrated distinct population stratification among the four Tibetan pig populations, with each showing relatively independent evolutionary directions. Furthermore, Five methods (FST, Piratio, ROD, Tajima's D, XP-CLR) were used to artificially select evolutionary trajectories. The results mainly involved processes such as DNA repair, immune regulation, muscle fat deposition and adaptation to hypoxia. In conclusion, this study enhances our understanding of the genetic characteristics of Tibetan pig populations and provides a theoretical reference for the conservation of resources across different populations of Tibetan pigs.
Collapse
Affiliation(s)
- Yiting Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengpeng Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Cheng
- National Animal Husbandry Service, Beijing 100125, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Mohanty JK, Yadav A, Narnoliya L, Thakro V, Nayyar H, Dixit GP, Jha UC, Vara Prasad PV, Agarwal P, Parida SK. A Next-Generation Combinatorial Genomic Strategy Scans Genomic Loci Governing Heat Stress Tolerance in Chickpea. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39360859 DOI: 10.1111/pce.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
In the wake of rising earth temperature, chickpea crop production is haunted by the productivity crisis. Chickpea, a cool season legume manifests tolerance in several agro-physiological level, which is complex quantitative in nature, and regulated by multiple genes and genetic networks. Understanding the molecular genetic basis of this tolerance and identifying key regulators can leverage chickpea breeding against heat stress. This study employed a genomics-assisted breeding strategy utilizing multi-locus GWAS to identify 10 key genomic regions linked to traits contributing to heat stress tolerance in chickpea. These loci subsequently delineated few key candidates and hub regulatory genes, such as RAD23b, CIPK25, AAE19, CK1 and WRKY40, through integrated genomics, transcriptomics and interactive analyses. The differential transcript accumulation of these identified candidates in contrasting chickpea accessions suggests their potential role in heat stress tolerance. Differential ROS accumulation along with their scavengers' transcript abundance aligning with the expression of identified candidates in the contrasting chickpea accessions persuade their regulatory significance. Additionally, their functional significance is ascertained by heterologous expression and subsequent heat stress screening. The high confidence genomic loci and the superior genes and natural alleles delineated here has great potential for swift genomic interventions to enhance heat resilience and yield stability in chickpea.
Collapse
Affiliation(s)
- Jitendra K Mohanty
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Antima Yadav
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Laxmi Narnoliya
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Virevol Thakro
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Girish P Dixit
- Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
- Sustainable Intensification Innovation Lab, Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Pinky Agarwal
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Swarup K Parida
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| |
Collapse
|
3
|
Wang S, Yue Z, Yu C, Wang R, Sui Y, Hou Y, Zhao Y, Zhao L, Chen C, Yang Z, Shao K. Genome-wide association study identifies the genetic basis of key agronomic traits in 207 sugar beet accessions. HORTICULTURE RESEARCH 2024; 11:uhae230. [PMID: 39415969 PMCID: PMC11481341 DOI: 10.1093/hr/uhae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
Sugar beet (Beta vulgaris) has emerged as one of the two primary crops, alongside sugarcane, for global sugar production. Comprehensively understanding sucrose synthesis, transport, and accumulation in sugar beet holds great significance for enhancing sugar production. In this study, we collected a diverse set of 269 sugar beet accessions worldwide and measured 12 phenotypes, comprising biomass, soluble sugar content, and 10 taproot-related traits. We re-sequenced 207 accessions to explore genetic diversity and population structure. Then we employed a genome-wide association study (GWAS) and RNA-seq to identify single-nucleotide polymorphisms and genes associated with natural phenotypic variations. Our findings revealed a panel of genes potentially regulating biomass and sugar accumulation, notably the dual-role gene UDP-glucose 4-epimerase, which genetically balances sugar accumulation and cell wall synthesis. In summary, this study provides a foundation for molecular breeding in sugar beet.
Collapse
Affiliation(s)
- Sufang Wang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhiyong Yue
- College of Medicine, Xi’an International University, Xi’an 710077, China
| | - Chao Yu
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ruili Wang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Yang Sui
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Yaguang Hou
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ying Zhao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Lingling Zhao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Chunmei Chen
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Zhimin Yang
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| | - Ke Shao
- Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China
| |
Collapse
|
4
|
Bankin M, Tyrykin Y, Duk M, Samsonova M, Kozlov K. Modeling Chickpea Productivity with Artificial Image Objects and Convolutional Neural Network. PLANTS (BASEL, SWITZERLAND) 2024; 13:2444. [PMID: 39273927 PMCID: PMC11397516 DOI: 10.3390/plants13172444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The chickpea plays a significant role in global agriculture and occupies an increasing share in the human diet. The main aim of the research was to develop a model for the prediction of two chickpea productivity traits in the available dataset. Genomic data for accessions were encoded in Artificial Image Objects, and a model for the thousand-seed weight (TSW) and number of seeds per plant (SNpP) prediction was constructed using a Convolutional Neural Network, dictionary learning and sparse coding for feature extraction, and extreme gradient boosting for regression. The model was capable of predicting both traits with an acceptable accuracy of 84-85%. The most important factors for model solution were identified using the dense regression attention maps method. The SNPs important for the SNpP and TSW traits were found in 34 and 49 genes, respectively. Genomic prediction with a constructed model can help breeding programs harness genotypic and phenotypic diversity to more effectively produce varieties with a desired phenotype.
Collapse
Affiliation(s)
- Mikhail Bankin
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Yaroslav Tyrykin
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Duk
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Konstantin Kozlov
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
5
|
He C, Ding CHQ. A novel classification algorithm for customer churn prediction based on hybrid Ensemble-Fusion model. Sci Rep 2024; 14:20179. [PMID: 39215049 PMCID: PMC11364882 DOI: 10.1038/s41598-024-71168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Nowadays, customer churn issues are becoming more and more important, which is one of the most important metrics for evaluating the health of a business it is difficult to measure success without measuring customer churn metrics. However, it has become a challenge for the industry to predict when customers are churning or preparing to churn and to take the necessary action at the critical time before they do. At the same time, how to keep the place of deep research on the 17 machine learning algorithms in 9 major classes of machine learning classics production is the first problem we are facing. Through customer churn deep research, we mentioned the Ensemble-Fusion model based on machine learning and introduced a smart intelligent system to help reduce the actual customer churn about the production. Comparing with most popular predictive models, such as the Support vector machine algorithm, Random Forest algorithm, K-Nearest-Neighbor algorithm, Gradient boosting algorithm, Logistic regression algorithm, Bayesian algorithm, Decision tree algorithm, and Neural network algorithm are applied to check the effect on accuracy, AUC, and F1-score. By comparing with 17 algorithms in 9 categories of machine learning classics, the data prediction accuracy of the Ensemble-Fusion model reaches 95.35%, AUC score reaches 91% and F1-Score reaches 96.96%. The experimental results show that the data prediction accuracy of the Ensemble-Fusion model outperforms that of other benchmark algorithms.
Collapse
Affiliation(s)
- Chenggang He
- School of Public Safety and Emergency Management, Anhui University of Science and Technology, No.15 Fengxia Road, Hefei, 230041, Anhui, China.
- School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230039, Anhui, China.
| | - Chris H Q Ding
- School Department of Computer Science and Engineering, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX, 76019, USA
- School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230039, Anhui, China
| |
Collapse
|
6
|
Yang J, Cai Z, Fang Y, Shan B, Zhang R, Lin L, Li Y, Zhang J. Whole-Genome Resequencing Reveals Signatures of Adaptive Evolution in Acanthopagrus latus and Rhabdosargus sarba. Animals (Basel) 2024; 14:2339. [PMID: 39199873 PMCID: PMC11350792 DOI: 10.3390/ani14162339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Acanthopagrus latus and Rhabdosargus sarba are economically important marine species along the coast of China, with similar external morphological characteristics and living habits, with wide distribution and strong adaptability. To investigate the molecular mechanisms underlying the adaptive evolution of these two species, we conducted whole-genome resequencing of 10 individuals of both species from the coastal waters of Wuyu Island, Fujian, China, using high-throughput sequencing technology. We obtained SNP, InDel, CNV, and SV variation information and annotated these variations, constructing a genomic variation database for both species. By comparing the resequencing data with reference genomes, we identified 9,829,511 SNP loci in the population of A. latus and 34,051,056 SNP loci in the population of R. sarba. Using whole-genome SNP data, we employed Fst and ROD methods to identify candidate genomic regions under selection. Functional annotation and enrichment analysis using GO and KEGG databases revealed potential adaptive evolution in R. sarba associated with immune response, feeding, growth and development, and locomotion, while A. latus showed potential adaptive evolution associated with immune response, nervous system, growth and development, and metabolism.
Collapse
Affiliation(s)
- Jingyu Yang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.Y.); (Z.C.); (Y.F.); (R.Z.); (L.L.)
| | - Zizi Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.Y.); (Z.C.); (Y.F.); (R.Z.); (L.L.)
- School of Life Science, Central China Normal University, Wuhan 430079, China
| | - Yan Fang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.Y.); (Z.C.); (Y.F.); (R.Z.); (L.L.)
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Binbin Shan
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China;
| | - Ran Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.Y.); (Z.C.); (Y.F.); (R.Z.); (L.L.)
| | - Longshan Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.Y.); (Z.C.); (Y.F.); (R.Z.); (L.L.)
- Fisheries College, Jimei University, Xiamen 361021, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.Y.); (Z.C.); (Y.F.); (R.Z.); (L.L.)
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| | - Jing Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.Y.); (Z.C.); (Y.F.); (R.Z.); (L.L.)
- Fisheries College, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China
| |
Collapse
|
7
|
Chu L, Yang K, Chen C, Zhao B, Hou Y, Wang W, Zhao P, Wang K, Wang B, Xiao Y, Li Y, Li Y, Song Q, Liu B, Fan R, Bohra A, Yu J, Sonnenschein EC, Varshney RK, Tian Z, Jian J, Wan P. Chromosome-level reference genome and resequencing of 322 accessions reveal evolution, genomic imprint and key agronomic traits in adzuki bean. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2173-2185. [PMID: 38497586 PMCID: PMC11258975 DOI: 10.1111/pbi.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/22/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Adzuki bean (Vigna angularis) is an important legume crop cultivated in over 30 countries worldwide. We developed a high-quality chromosome-level reference genome of adzuki bean cultivar Jingnong6 by combining PacBio Sequel long-read sequencing with short-read and Hi-C technologies. The assembled genome covers 97.8% of the adzuki bean genome with a contig N50 of approximately 16 Mb and a total of 32 738 protein-coding genes. We also generated a comprehensive genome variation map of adzuki bean by whole-genome resequencing (WGRS) of 322 diverse adzuki beans accessions including both wild and cultivated. Furthermore, we have conducted comparative genomics and a genome-wide association study (GWAS) on key agricultural traits to investigate the evolution and domestication. GWAS identified several candidate genes, including VaCycA3;1, VaHB15, VaANR1 and VaBm, that exhibited significant associations with domestication traits. Furthermore, we conducted functional analyses on the roles of VaANR1 and VaBm in regulating seed coat colour. We provided evidence for the highest genetic diversity of wild adzuki (Vigna angularis var. nipponensis) in China with the presence of the most original wild adzuki bean, and the occurrence of domestication process facilitating transition from wild to cultigen. The present study elucidates the genetic basis of adzuki bean domestication traits and provides crucial genomic resources to support future breeding efforts in adzuki bean.
Collapse
Affiliation(s)
- Liwei Chu
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
- College of Life and HealthDalian UniversityDalianLiaoningChina
| | - Kai Yang
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | | | - Bo Zhao
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | - Yanan Hou
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | | | - Pu Zhao
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | - Kaili Wang
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | | | - Ying Xiao
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | - Yongqiang Li
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | - Yisong Li
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | - Qijian Song
- Soybean Genomics and Improvement LaboratoryBeltsville Agricultural Research Center, USDA‐ARSBeltsvilleMarylandUSA
| | - Biao Liu
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | - Ruoxi Fan
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | - Abhishek Bohra
- WA State Agricultural Biotechnology CentreCentre for Crop and Food Innovation, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Jianping Yu
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology CentreCentre for Crop and Food Innovation, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jianbo Jian
- BGI GenomicsBGI‐ShenzhenShenzhenChina
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Ping Wan
- College of Plant Science and TechnologyKey Laboratory of New Technology in Agricultural ApplicationBeijing University of AgricultureBeijingChina
| |
Collapse
|
8
|
Jha UC, Nayyar H, Thudi M, Beena R, Vara Prasad PV, Siddique KHM. Unlocking the nutritional potential of chickpea: strategies for biofortification and enhanced multinutrient quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1391496. [PMID: 38911976 PMCID: PMC11190093 DOI: 10.3389/fpls.2024.1391496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
Chickpea (Cicer arietinum L.) is a vital grain legume, offering an excellent balance of protein, carbohydrates, fats, fiber, essential micronutrients, and vitamins that can contribute to addressing the global population's increasing food and nutritional demands. Chickpea protein offers a balanced source of amino acids with high bioavailability. Moreover, due to its balanced nutrients and affordable price, chickpea is an excellent alternative to animal protein, offering a formidable tool for combating hidden hunger and malnutrition, particularly prevalent in low-income countries. This review examines chickpea's nutritional profile, encompassing protein, amino acids, carbohydrates, fatty acids, micronutrients, vitamins, antioxidant properties, and bioactive compounds of significance in health and pharmaceutical domains. Emphasis is placed on incorporating chickpeas into diets for their myriad health benefits and nutritional richness, aimed at enhancing human protein and micronutrient nutrition. We discuss advances in plant breeding and genomics that have facilitated the discovery of diverse genotypes and key genomic variants/regions/quantitative trait loci contributing to enhanced macro- and micronutrient contents and other quality parameters. Furthermore, we explore the potential of innovative breeding tools such as CRISPR/Cas9 in enhancing chickpea's nutritional profile. Envisioning chickpea as a nutritionally smart crop, we endeavor to safeguard food security, combat hunger and malnutrition, and promote dietary diversity within sustainable agrifood systems.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Council of Agricultural Research (ICAR) – Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
- Department of Agronomy, Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Mahender Thudi
- College of Agriculture, Family Sciences and Technology, Fort Valley State University, Fort Valley, GA, United States
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agriculture University, Thiruvananthapuram, Kerala, India
| | - P. V. Vara Prasad
- Department of Agronomy, Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
9
|
Khan AW, Garg V, Sun S, Gupta S, Dudchenko O, Roorkiwal M, Chitikineni A, Bayer PE, Shi C, Upadhyaya HD, Bohra A, Bharadwaj C, Mir RR, Baruch K, Yang B, Coyne CJ, Bansal KC, Nguyen HT, Ronen G, Aiden EL, Veneklaas E, Siddique KHM, Liu X, Edwards D, Varshney RK. Cicer super-pangenome provides insights into species evolution and agronomic trait loci for crop improvement in chickpea. Nat Genet 2024; 56:1225-1234. [PMID: 38783120 DOI: 10.1038/s41588-024-01760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Chickpea (Cicer arietinum L.)-an important legume crop cultivated in arid and semiarid regions-has limited genetic diversity. Efforts are being undertaken to broaden its diversity by utilizing its wild relatives, which remain largely unexplored. Here, we present the Cicer super-pangenome based on the de novo genome assemblies of eight annual Cicer wild species. We identified 24,827 gene families, including 14,748 core, 2,958 softcore, 6,212 dispensable and 909 species-specific gene families. The dispensable genome was enriched for genes related to key agronomic traits. Structural variations between cultivated and wild genomes were used to construct a graph-based genome, revealing variations in genes affecting traits such as flowering time, vernalization and disease resistance. These variations will facilitate the transfer of valuable traits from wild Cicer species into elite chickpea varieties through marker-assisted selection or gene-editing. This study offers valuable insights into the genetic diversity and potential avenues for crop improvement in chickpea.
Collapse
Affiliation(s)
- Aamir W Khan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Vanika Garg
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Saurabh Gupta
- Curtin Health Innovation Research Institute (CHIRI), Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Olga Dudchenko
- Department of Molecular and Human Genetics, Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | - Hari D Upadhyaya
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, USA
| | - Abhishek Bohra
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir,Wadura Campus, Kashmir, India
| | | | | | - Clarice J Coyne
- USDA-ARS Plant Germplasm Introduction and Testing, Washington State University, Pullman, WA, USA
| | - Kailash C Bansal
- National Academy of Agricultural Sciences (NAAS), NASC Complex, New Delhi, India
| | - Henry T Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Gil Ronen
- NRGene Ltd, Park HaMada, Ness Ziona, Israel
| | - Erez Lieberman Aiden
- Department of Molecular and Human Genetics, Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Erik Veneklaas
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kadambot H M Siddique
- UWA Institute of Agriculture, and School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Xin Liu
- BGI Research, Qingdao, China.
- BGI Research, Shenzhen, China.
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
10
|
Garg V, Barmukh R, Chitikineni A, Roorkiwal M, Ojiewo C, Bohra A, Thudi M, Singh VK, Kudapa H, Saxena RK, Fountain J, Mir RR, Bharadwaj C, Chen X, Xin L, Pandey MK. Celebrating Professor Rajeev K. Varshney's transformative research odyssey from genomics to the field on his induction as Fellow of the Royal Society. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1504-1515. [PMID: 38206288 PMCID: PMC11123405 DOI: 10.1111/pbi.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today. His ground-breaking work, especially his effort to list orphan tropical crops to genomic resource-rich entities, has been transformative. Beyond his scientific achievements, Professor Varshney is recognized by his colleagues as an exemplary mentor, fostering the growth of future researchers, building institutional capacity, and strengthening scientific capability. His focus on translational genomics and strengthening seed system in developing countries for the improvement of agriculture has made a tangible impact on farmers' lives. His skills have been best utilized in roles at leading research centres where he has applied his expertise to deliver a new vision for crop improvement. These efforts have now been recognized by the Royal Society with the award of the Fellowship (FRS). As we mark this significant milestone in his career, we not only celebrate Professor Varshney's accomplishments but also his wider contributions that continue to transform the agricultural landscape.
Collapse
Affiliation(s)
- Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rutwik Barmukh
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Annapurna Chitikineni
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUAE
| | - Chris Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya
| | - Abhishek Bohra
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | | | - Vikas K. Singh
- International Rice Research Institute (IRRI)‐South‐Asia HubInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Jake Fountain
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of AgricultureSKUAST‐KashmirWaduraIndia
| | | | - Xiaoping Chen
- Crops Research InstituteGuangdong Academy of Agricultural Sciences (GDAAS)GuangzhouChina
| | | | - Manish K. Pandey
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
11
|
Daware A, Mohanty JK, Narnoliya L, Singh A, Rathore D, Thakro V, Francis A, Singh NP, Francis P, Tripathi S, Chattopadhyay D, Parida SK. Uncovering DNA methylation landscapes to decipher evolutionary footprints of phenotypic diversity in chickpea. DNA Res 2024; 31:dsae013. [PMID: 38702947 PMCID: PMC11149376 DOI: 10.1093/dnares/dsae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Genetic diversity and environmental factors are long believed to be the dominant contributors to phenotypic diversity in crop plants. However, it has been recently established that, besides genetic variation, epigenetic variation, especially variation in DNA methylation, plays a significant role in determining phenotypic diversity in crop plants. Therefore, assessing DNA methylation diversity in crop plants becomes vital, especially in the case of crops like chickpea, which has a narrow genetic base. Thus, in the present study, we employed whole-genome bisulfite sequencing to assess DNA methylation diversity in wild and cultivated (desi and kabuli) chickpea. This revealed extensive DNA methylation diversity in both wild and cultivated chickpea. Interestingly, the methylation diversity was found to be significantly higher than genetic diversity, suggesting its potential role in providing vital phenotypic diversity for the evolution and domestication of the Cicer gene pool. The phylogeny based on DNA methylation variation also indicates a potential complementary role of DNA methylation variation in addition to DNA sequence variation in shaping chickpea evolution. Besides, the study also identified diverse epi-alleles of many previously known genes of agronomic importance. The Cicer MethVarMap database developed in this study enables researchers to readily visualize methylation variation within the genes and genomic regions of their interest (http://223.31.159.7/cicer/public/). Therefore, epigenetic variation like DNA methylation variation can potentially explain the paradox of high phenotypic diversity despite the narrow genetic base in chickpea and can potentially be employed for crop improvement.
Collapse
Affiliation(s)
- Anurag Daware
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akansha Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepanshi Rathore
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aleena Francis
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nagendra Pratap Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Philip Francis
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Indian Institute of Pulses Research (IIPR), Uttar Pradesh, Kanpur 208024, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
12
|
Prakash NR, Kumar K, Muthusamy V, Zunjare RU, Hossain F. Unique genetic architecture of prolificacy in 'Sikkim Primitive' maize unraveled through whole-genome resequencing-based DNA polymorphism. PLANT CELL REPORTS 2024; 43:134. [PMID: 38702564 DOI: 10.1007/s00299-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
KEY MESSAGE 'Sikkim Primitive' maize landrace, unique for prolificacy (7-9 ears per plant) possesses unique genomic architecture in branching and inflorescence-related gene(s), and locus Zm00001eb365210 encoding glycosyltransferases was identified as the putative candidate gene underlying QTL (qProl-SP-8.05) for prolificacy. The genotype possesses immense usage in breeding high-yielding baby-corn genotypes. 'Sikkim Primitive' is a native landrace of North Eastern Himalayas, and is characterized by having 7-9 ears per plant compared to 1-2 ears in normal maize. Though 'Sikkim Primitive' was identified in the 1960s, it has not been characterized at a whole-genome scale. Here, we sequenced the entire genome of an inbred (MGUSP101) derived from 'Sikkim Primitive' along with three non-prolific (HKI1128, UMI1200, and HKI1105) and three prolific (CM150Q, CM151Q and HKI323) inbreds. A total of 942,417 SNPs, 24,160 insertions, and 27,600 deletions were identified in 'Sikkim Primitive'. The gene-specific functional mutations in 'Sikkim Primitive' were classified as 10,847 missense (54.36%), 402 non-sense (2.015%), and 8,705 silent (43.625%) mutations. The number of transitions and transversions specific to 'Sikkim Primitive' were 666,021 and 279,950, respectively. Among all base changes, (G to A) was the most frequent (215,772), while (C to G) was the rarest (22,520). Polygalacturonate 4-α-galacturonosyltransferase enzyme involved in pectin biosynthesis, cell-wall organization, nucleotide sugar, and amino-sugar metabolism was found to have unique alleles in 'Sikkim Primitive'. The analysis further revealed the Zm00001eb365210 gene encoding glycosyltransferases as the putative candidate underlying QTL (qProl-SP-8.05) for prolificacy in 'Sikkim Primitive'. High-impact nucleotide variations were found in ramosa3 (Zm00001eb327910) and zeaxanthin epoxidase1 (Zm00001eb081460) genes having a role in branching and inflorescence development in 'Sikkim Primitive'. The information generated unraveled the genetic architecture and identified key genes/alleles unique to the 'Sikkim Primitive' genome. This is the first report of whole-genome characterization of the 'Sikkim Primitive' landrace unique for its high prolificacy.
Collapse
Affiliation(s)
- Nitish Ranjan Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India.
| |
Collapse
|
13
|
Panigrahi S, Kumar U, Swami S, Singh Y, Balyan P, Singh KP, Dhankher OP, Varshney RK, Roorkiwal M, Amiri KM, Mir RR. Meta QTL analysis for dissecting abiotic stress tolerance in chickpea. BMC Genomics 2024; 25:439. [PMID: 38698307 PMCID: PMC11067088 DOI: 10.1186/s12864-024-10336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea. RESULTS A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses.
Collapse
Affiliation(s)
- Sourav Panigrahi
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India.
- Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India.
| | - Sonu Swami
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
- Department of Botany & Plant Physiology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India
- Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, USA
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Khaled Ma Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-Kashmir), Srinagar, J&K, India.
| |
Collapse
|
14
|
Danakumara T, Kumar N, Patil BS, Kumar T, Bharadwaj C, Jain PK, Nimmy MS, Joshi N, Parida SK, Bindra S, Kole C, Varshney RK. Unraveling the genetics of heat tolerance in chickpea landraces ( Cicer arietinum L.) using genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1376381. [PMID: 38590753 PMCID: PMC10999645 DOI: 10.3389/fpls.2024.1376381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Chickpea, being an important grain legume crop, is often confronted with the adverse effects of high temperatures at the reproductive stage of crop growth, drastically affecting yield and overall productivity. The current study deals with an extensive evaluation of chickpea genotypes, focusing on the traits associated with yield and their response to heat stress. Notably, we observed significant variations for these traits under both normal and high-temperature conditions, forming a robust basis for genetic research and breeding initiatives. Furthermore, the study revealed that yield-related traits exhibited high heritability, suggesting their potential suitability for marker-assisted selection. We carried out single-nucleotide polymorphism (SNP) genotyping using the genotyping-by-sequencing (GBS) method for a genome-wide association study (GWAS). Overall, 27 marker-trait associations (MTAs) linked to yield-related traits, among which we identified five common MTAs displaying pleiotropic effects after applying a stringent Bonferroni-corrected p-value threshold of <0.05 [-log10(p) > 4.95] using the BLINK (Bayesian-information and linkage-disequilibrium iteratively nested keyway) model. Through an in-depth in silico analysis of these markers against the CDC Frontier v1 reference genome, we discovered that the majority of the SNPs were located at or in proximity to gene-coding regions. We further explored candidate genes situated near these MTAs, shedding light on the molecular mechanisms governing heat stress tolerance and yield enhancement in chickpeas such as indole-3-acetic acid-amido synthetase GH3.1 with GH3 auxin-responsive promoter and pentatricopeptide repeat-containing protein, etc. The harvest index (HI) trait was associated with marker Ca3:37444451 encoding aspartic proteinase ortholog sequence of Oryza sativa subsp. japonica and Medicago truncatula, which is known for contributing to heat stress tolerance. These identified MTAs and associated candidate genes may serve as valuable assets for breeding programs dedicated to tailoring chickpea varieties resilient to heat stress and climate change.
Collapse
Affiliation(s)
| | - Neeraj Kumar
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | | | - Tapan Kumar
- International Centre for Agricultural Research in the Dry Areas, Amlaha, Madhya Pradesh, India
| | | | | | | | - Nilesh Joshi
- ICAR- Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Chittaranjan Kole
- Prof. Chittaranjan Kole Foundation for Science & Society, Kolkatta, India
| | | |
Collapse
|
15
|
Krieg CP, Smith DD, Adams MA, Berger J, Layegh Nikravesh N, von Wettberg EJ. Greater ecophysiological stress tolerance in the core environment than in extreme environments of wild chickpea (Cicer reticulatum). Sci Rep 2024; 14:5744. [PMID: 38459248 PMCID: PMC10923935 DOI: 10.1038/s41598-024-56457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Global climate change and land use change underlie a need to develop new crop breeding strategies, and crop wild relatives (CWR) have become an important potential source of new genetic material to improve breeding efforts. Many recent approaches assume adaptive trait variation increases towards the relative environmental extremes of a species range, potentially missing valuable trait variation in more moderate or typical climates. Here, we leveraged distinct genotypes of wild chickpea (Cicer reticulatum) that differ in their relative climates from moderate to more extreme and perform targeted assessments of drought and heat tolerance. We found significance variation in ecophysiological function and stress tolerance between genotypes but contrary to expectations and current paradigms, it was individuals from more moderate climates that exhibited greater capacity for stress tolerance than individuals from warmer and drier climates. These results indicate that wild germplasm collection efforts to identify adaptive variation should include the full range of environmental conditions and habitats instead of only environmental extremes, and that doing so may significantly enhance the success of breeding programs broadly.
Collapse
Affiliation(s)
| | | | - Mark A Adams
- Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Jens Berger
- CSIRO, Agriculture and Food, Perth, WA, Australia
| | | | - Eric J von Wettberg
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
16
|
Lu Q, Huang L, Liu H, Garg V, Gangurde SS, Li H, Chitikineni A, Guo D, Pandey MK, Li S, Liu H, Wang R, Deng Q, Du P, Varshney RK, Liang X, Hong Y, Chen X. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet 2024; 56:530-540. [PMID: 38378864 DOI: 10.1038/s41588-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement.
Collapse
Affiliation(s)
- Qing Lu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Lu Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Annapurna Chitikineni
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Dandan Guo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shaoxiong Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Haiyan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Runfeng Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Quanqing Deng
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Puxuan Du
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| |
Collapse
|
17
|
Thudi M, Samineni S, Li W, Boer MP, Roorkiwal M, Yang Z, Ladejobi F, Zheng C, Chitikineni A, Nayak S, He Z, Valluri V, Bajaj P, Khan AW, Gaur PM, van Eeuwijk F, Mott R, Xin L, Varshney RK. Whole genome resequencing and phenotyping of MAGIC population for high resolution mapping of drought tolerance in chickpea. THE PLANT GENOME 2024; 17:e20333. [PMID: 37122200 DOI: 10.1002/tpg2.20333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Terminal drought is one of the major constraints to crop production in chickpea (Cicer arietinum L.). In order to map drought tolerance related traits at high resolution, we sequenced multi-parent advanced generation intercross (MAGIC) population using whole genome resequencing approach and phenotyped it under drought stress environments for two consecutive years (2013-14 and 2014-15). A total of 52.02 billion clean reads containing 4.67 TB clean data were generated on the 1136 MAGIC lines and eight parental lines. Alignment of clean data on to the reference genome enabled identification of a total, 932,172 of SNPs, 35,973 insertions, and 35,726 deletions among the parental lines. A high-density genetic map was constructed using 57,180 SNPs spanning a map distance of 1606.69 cM. Using compressed mixed linear model, genome-wide association study (GWAS) enabled us to identify 737 markers significantly associated with days to 50% flowering, days to maturity, plant height, 100 seed weight, biomass, and harvest index. In addition to the GWAS approach, an identity-by-descent (IBD)-based mixed model approach was used to map quantitative trait loci (QTLs). The IBD-based mixed model approach detected major QTLs that were comparable to those from the GWAS analysis as well as some exclusive QTLs with smaller effects. The candidate genes like FRIGIDA and CaTIFY4b can be used for enhancing drought tolerance in chickpea. The genomic resources, genetic map, marker-trait associations, and QTLs identified in the study are valuable resources for the chickpea community for developing climate resilient chickpeas.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, India
| | - Srinivasan Samineni
- Crop Improvement Program-Asia, ICRISAT, Patancheru, India
- International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Wenhao Li
- Wageningen University and Research, Wageningen, The Netherlands
| | - Martin P Boer
- Wageningen University and Research, Wageningen, The Netherlands
| | - Manish Roorkiwal
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Funmi Ladejobi
- Department of Genetics, Evolution and Environment, Genetics Institute, University College London, London, UK
| | - Chaozhi Zheng
- Wageningen University and Research, Wageningen, The Netherlands
- BGI-Shenzhen, Shenzhen, China
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Sourav Nayak
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Vinod Valluri
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Aamir W Khan
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Pooran M Gaur
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, India
- The UWA Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | | | - Richard Mott
- Department of Genetics, Evolution and Environment, Genetics Institute, University College London, London, UK
| | - Liu Xin
- BGI-Shenzhen, Shenzhen, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
18
|
Wang Y, Niu S, Deng X, Bai D, Chen Z, Deng X, Huang D. Genome-wide association study, population structure, and genetic diversity of the tea plant in Guizhou Plateau. BMC PLANT BIOLOGY 2024; 24:79. [PMID: 38287242 PMCID: PMC10826100 DOI: 10.1186/s12870-024-04761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Guizhou Plateau, as one of the original centers of tea plant, has a profound multi-ethnic cultural heritage and abundant tea germplasm resources. However, the impact of indigenous community factors on the genetic diversity, population structure and geographical distribution of tea plant is still unclear. RESULTS Using the genotyping-by-sequencing (GBS) approach, we collected 415 tea plant accessions from the study sites, estimated genetic diversity, developed a core collection, and conducted a genome-wide association study (GWAS) based on 99,363 high-quality single-nucleotide polymorphisms (SNPs). A total of 415 tea accessions were clustered into six populations (GP01, GP02, GP03, GP04, GP05 and GP06), and the results showed that GP04 and GP05 had the highest and lowest genetic diversity (Pi = 0.214 and Pi = 0.145, respectively). Moreover, 136 tea accessions (33%) were selected to construct the core set that can represent the genetic diversity of the whole collection. By analyzing seven significant SNP markers associated with the traits such as the germination period of one bud and two leaves (OTL) and the germination period of one bud and three leaves (OtL), four candidate genes possibly related to OTL and OtL were identified. CONCLUSIONS This study revealed the impact of indigenous communities on the population structure of 415 tea accessions, indicating the importance of cultural practices for protection and utilization of tea plant genetic resources. Four potential candidate genes associated with the OTL and OtL of tea plant were also identified, which will facilitate genetic research, germplasm conservation, and breeding.
Collapse
Affiliation(s)
- Yihan Wang
- College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Suzhen Niu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China.
| | - Xinyue Deng
- School of Architecture, Guizhou university, Guiyang, Guizhou Province, 550025, China
| | - Dingchen Bai
- College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Zhengwu Chen
- lnstitute of Tea, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, 550006, China.
| | - Xiuling Deng
- College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Dejun Huang
- College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| |
Collapse
|
19
|
Kohli M, Bansal H, Mishra GP, Dikshit HK, Reddappa SB, Roy A, Sinha SK, Shivaprasad K, Kumari N, Kumar A, Kumar RR, Nair RM, Aski M. Genome-wide association studies for earliness, MYMIV resistance, and other associated traits in mungbean ( Vigna radiata L. Wilczek) using genotyping by sequencing approach. PeerJ 2024; 12:e16653. [PMID: 38288464 PMCID: PMC10823994 DOI: 10.7717/peerj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Yellow mosaic disease (YMD) remains a major constraint in mungbean (Vigna radiata (L.)) production; while short-duration genotypes offer multiple crop cycles per year and help in escaping terminal heat stress, especially during summer cultivation. A comprehensive genotyping by sequencing (GBS)-based genome-wide association studies (GWAS) analysis was conducted using 132 diverse mungbean genotypes for traits like flowering time, YMD resistance, soil plant analysis development (SPAD) value, trichome density, and leaf area. The frequency distribution revealed a wide range of values for all the traits. GBS studies identified 31,953 high-quality single nucleotide polymorphism (SNPs) across all 11 mungbean chromosomes and were used for GWAS. Structure analysis revealed the presence of two genetically distinct populations based on ΔK. The linkage disequilibrium (LD) varied throughout the chromosomes and at r2 = 0.2, the mean LD decay was estimated as 39.59 kb. Two statistical models, mixed linear model (MLM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) identified 44 shared SNPs linked with various candidate genes. Notable candidate genes identified include FPA for flowering time (VRADI10G01470; chr. 10), TIR-NBS-LRR for mungbean yellow mosaic India virus (MYMIV) resistance (VRADI09G06940; chr. 9), E3 ubiquitin-protein ligase RIE1 for SPAD value (VRADI07G28100; chr. 11), WRKY family transcription factor for leaf area (VRADI03G06560; chr. 3), and LOB domain-containing protein 21 for trichomes (VRADI06G04290; chr. 6). In-silico validation of candidate genes was done through digital gene expression analysis using Arabidopsis orthologous (compared with Vigna radiata genome). The findings provided valuable insight for marker-assisted breeding aiming for the development of YMD-resistant and early-maturing mungbean varieties.
Collapse
Affiliation(s)
- Manju Kohli
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Hina Bansal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | | | - Anirban Roy
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Subodh Kumar Sinha
- Biotechnology, National Institute of Plant Biotechnology, New Delhi, Delhi, India
| | - K.M. Shivaprasad
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Nikki Kumari
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Ranjeet R. Kumar
- Biochemistry, Indian Agricultural Research Institute, New Delhi, Delhi, India
| | | | - Muraleedhar Aski
- Genetics, Indian Agricultural Research Institute, Delhi, Delhi, India
| |
Collapse
|
20
|
He S, Li G, Zhang J, Ding Y, Wu H, Xie J, Wu H, Yang Z. The effect of environmental factors on the genetic differentiation of Cucurbita ficifolia populations based on whole-genome resequencing. BMC PLANT BIOLOGY 2023; 23:647. [PMID: 38102604 PMCID: PMC10722772 DOI: 10.1186/s12870-023-04602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Cucurbita ficifolia is one of the squash species most resistant to fungal pathogens, and has especially high resistance to melon Fusarium wilt. This species is therefore an important germplasm resource for the breeding of squash and melon cultivars. RESULTS Whole-genome resequencing of 223 individuals from 32 populations in Yunnan Province, the main cucurbit production area in China, was performed and 3,855,120 single-nucleotide polymorphisms (SNPs) and 1,361,000 InDels were obtained. SNP analysis suggested that levels of genetic diversity in C. ficifolia were high, but that different populations showed no significant genetic differentiation or geographical structure, and that individual C. ficifolia plants with fruit rinds of a similar color did not form independent clusters. A Mantel test conducted in combination with geographical distance and environmental factors suggested that genetic distance was not correlated with geographical distance, but had a significant correlation with environmental distance. Further associations between the genetic data and five environmental factors were analyzed using whole-genome association analysis. SNPs associated with each environmental factor were investigated and genes 250 kb upstream and downstream from associated SNPs were annotated. Overall, 15 marker-trait-associated SNPs (MTAs) and 293 genes under environmental selection were identified. The identified genes were involved in cell membrane lipid metabolism, macromolecular complexes, catalytic activity and other related aspects. Ecological niche modeling was used to simulate the distribution of C. ficifolia across time, from the present and into the future. We found that the area suitable for C. ficifolia changed with the changing climate in different periods. CONCLUSIONS Resequencing of the C. ficifolia accessions has allowed identification of genetic markers, such as SNPs and InDels. The SNPs identified in this study suggest that environmental factors mediated the formation of the population structure of C. ficifolia in China. These SNPs and Indels might also contribute to the variation in important pathways of genes for important agronomic traits such as yield, disease resistance and stress tolerance. Moreover, the genome resequencing data and the genetic markers identified from 223 accessions provide insight into the genetic variation of the C. ficifolia germplasm and will facilitate a broad range of genetic studies.
Collapse
Affiliation(s)
- Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Gengyun Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jing Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yumei Ding
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hongzhi Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junjun Xie
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hang Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
21
|
Donde R, Kohli PS, Pandey M, Sirohi U, Singh B, Giri J. Dissecting chickpea genomic loci associated with the root penetration responsive traits in compacted soil. PLANTA 2023; 259:17. [PMID: 38078944 DOI: 10.1007/s00425-023-04294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Soil compaction reduces root exploration in chickpea. We found genes related to root architectural traits in chickpea that can help understand and improve root growth in compacted soils. Soil compaction is a major concern for modern agriculture, as it constrains plant root growth, leading to reduced resource acquisition. Phenotypic variation for root system architecture (RSA) traits in compacted soils is present for various crops; however, studies on genetic associations with these traits are lacking. Therefore, we investigated RSA traits in different soil compaction levels and identified significant genomic associations in chickpea. We conducted a Genome-Wide Association Study (GWAS) of 210 chickpea accessions for 13 RSA traits under three bulk densities (BD) (1.1BD, 1.6BD, and 1.8BD). Soil compaction decreases root exploration by reducing 12 RSA traits, except average diameter (AD). Further, AD is negatively correlated with lateral root traits, and this correlation increases in 1.8BD, suggesting the negative effect of AD on lateral root traits. Interestingly, we identified probable candidate genes such as GLP3 and LRX for lateral root traits and CRF1-like for total length (TL) in 1.6BD soil. In heavy soil compaction, DGK2 is associated with lateral root traits. Reduction in laterals during soil compaction is mainly due to delayed seedling establishment, thus making lateral root number a critical trait. Interestingly, we also found a higher contribution of the GxE component of the number of root tips (Tips) to the total variation than the other lateral traits. We also identified a pectin esterase, PPE8B, associated with Tips in high soil compaction and a significantly associated SNP with the relative change in Tips depicting a trade-off between Tips and AD. Identified genes and loci would help develop soil-compaction-resistant chickpea varieties.
Collapse
Affiliation(s)
- Ravindra Donde
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawandeep Singh Kohli
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mandavi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhagat Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
22
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
23
|
Bulut M, Wendenburg R, Bitocchi E, Bellucci E, Kroc M, Gioia T, Susek K, Papa R, Fernie AR, Alseekh S. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1152-1171. [PMID: 37285370 DOI: 10.1111/tpj.16329] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Legumes represent an important component of human and livestock diets; they are rich in macro- and micronutrients such as proteins, dietary fibers and polyunsaturated fatty acids. Whilst several health-promoting and anti-nutritional properties have been associated with grain content, in-depth metabolomics characterization of major legume species remains elusive. In this article, we used both gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to assess the metabolic diversity in the five legume species commonly grown in Europe, including common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), lentil (Lens culinaris), white lupin (Lupinus albus) and pearl lupin (Lupinus mutabilis), at the tissue level. We were able to detect and quantify over 3400 metabolites covering major nutritional and anti-nutritional compounds. Specifically, the metabolomics atlas includes 224 derivatized metabolites, 2283 specialized metabolites and 923 lipids. The data generated here will serve the community as a basis for future integration to metabolomics-assisted crop breeding and facilitate metabolite-based genome-wide association studies to dissect the genetic and biochemical bases of metabolism in legume species.
Collapse
Affiliation(s)
- Mustafa Bulut
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Regina Wendenburg
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, Poznan, 60-479, Poland
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, Ancona, 60131, Italy
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| |
Collapse
|
24
|
Benali A, El Haddad N, Patil SB, Goyal A, Hejjaoui K, El Baouchi A, Gaboun F, Taghouti M, Ouhssine M, Kumar S. Impact of Terminal Heat and Combined Heat-Drought Stress on Plant Growth, Yield, Grain Size, and Nutritional Quality in Chickpea ( Cicer arietinum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3726. [PMID: 37960082 PMCID: PMC10650860 DOI: 10.3390/plants12213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
Chickpea is the third most consumed pulse and provides a kit of essential nutrients for an exponential population. High temperatures and drought stress are two major abiotic stresses that cause serious effects on chickpea growth and development. The comprehension of abiotic stresses' impact on chickpea productivity and nutritional quality will permit the selection of promising genotypes. The current study aimed to assess the impact of heat and drought stresses on plant growth, grain yield and its components, grain size, and nutritional quality in chickpea. For this purpose, 43 international chickpea genotypes were evaluated under normal, heat, and combined heat-drought stress conditions. The findings revealed a significant decrease of over 50% in plant height, biological yield, and seed yield under both stress conditions. Grain size and hundred-seed weight were the most heritable traits under normal, heat, and combined heat-drought stress. Proteins were accumulated under both stresses, evolving from 20.26% for normal conditions to 22.19% for heat stress and to 21.94% for combined heat-drought stress. For minerals, significant variation between treatments was observed for Mn, Mg, and Na. Our results also showed a significant impact of genotype and genotype-environment interaction factors only on K content. Using selection indices, 22 genotypes were identified as highly tolerant to the combined heat-drought stress, while eleven genotypes were heat-tolerant. Mineral profile analysis according to the contrasting tolerance clusters revealed decreased potassium content in susceptible genotypes, indicating genetic potential in the studied chickpea collection, ensuring tolerance to both stresses while maintaining good grain quality.
Collapse
Affiliation(s)
- Aouatif Benali
- Laboratory of Agro-Physiology, Biotechnology, Environment and Quality, Department of Biology, Faculty of Sciences, IbnTofail University, Kenitra 14000, Morocco;
- National Institute of Agricultural Research (INRA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco; (N.E.H.); (S.B.P.); (A.G.)
| | - Noureddine El Haddad
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco; (N.E.H.); (S.B.P.); (A.G.)
| | - Somanagouda B. Patil
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco; (N.E.H.); (S.B.P.); (A.G.)
| | - Aakash Goyal
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco; (N.E.H.); (S.B.P.); (A.G.)
| | - Kamal Hejjaoui
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco; (K.H.)
| | - Adil El Baouchi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco; (K.H.)
| | - Fatima Gaboun
- National Institute of Agricultural Research (INRA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco
| | - Mouna Taghouti
- National Institute of Agricultural Research (INRA), Rabat-Instituts, Rue Hafiane Cherkaoui, Rabat 10101, Morocco
| | - Mohammed Ouhssine
- Laboratory of Agro-Physiology, Biotechnology, Environment and Quality, Department of Biology, Faculty of Sciences, IbnTofail University, Kenitra 14000, Morocco;
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi 110012, India
| |
Collapse
|
25
|
Joshi B, Singh S, Tiwari GJ, Kumar H, Boopathi NM, Jaiswal S, Adhikari D, Kumar D, Sawant SV, Iquebal MA, Jena SN. Genome-wide association study of fiber yield-related traits uncovers the novel genomic regions and candidate genes in Indian upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1252746. [PMID: 37941674 PMCID: PMC10630025 DOI: 10.3389/fpls.2023.1252746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is a major fiber crop that is cultivated worldwide and has significant economic importance. India harbors the largest area for cotton cultivation, but its fiber yield is still compromised and ranks 22nd in terms of productivity. Genetic improvement of cotton fiber yield traits is one of the major goals of cotton breeding, but the understanding of the genetic architecture underlying cotton fiber yield traits remains limited and unclear. To better decipher the genetic variation associated with fiber yield traits, we conducted a comprehensive genome-wide association mapping study using 117 Indian cotton germplasm for six yield-related traits. To accomplish this, we generated 2,41,086 high-quality single nucleotide polymorphism (SNP) markers using genotyping-by-sequencing (GBS) methods. Population structure, PCA, kinship, and phylogenetic analyses divided the germplasm into two sub-populations, showing weak relatedness among the germplasms. Through association analysis, 205 SNPs and 134 QTLs were identified to be significantly associated with the six fiber yield traits. In total, 39 novel QTLs were identified in the current study, whereas 95 QTLs overlapped with existing public domain data in a comparative analysis. Eight QTLs, qGhBN_SCY_D6-1, qGhBN_SCY_D6-2, qGhBN_SCY_D6-3, qGhSI_LI_A5, qGhLI_SI_A13, qGhLI_SI_D9, qGhBW_SCY_A10, and qGhLP_BN_A8 were identified. Gene annotation of these fiber yield QTLs revealed 2,509 unique genes. These genes were predominantly enriched for different biological processes, such as plant cell wall synthesis, nutrient metabolism, and vegetative growth development in the gene ontology (GO) enrichment study. Furthermore, gene expression analysis using RNAseq data from 12 diverse cotton tissues identified 40 candidate genes (23 stable and 17 novel genes) to be transcriptionally active in different stages of fiber, ovule, and seed development. These findings have revealed a rich tapestry of genetic elements, including SNPs, QTLs, and candidate genes, and may have a high potential for improving fiber yield in future breeding programs for Indian cotton.
Collapse
Affiliation(s)
- Babita Joshi
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Singh
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gopal Ji Tiwari
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
| | - Harish Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Regional Research Station, Faridkot, Punjab, India
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dibyendu Adhikari
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Lucknow, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Samir V. Sawant
- Molecular Biology & Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Satya Narayan Jena
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
26
|
Soliman AA, Mousa MI, Mosalam AM, Ghareeb ZE, Ibrahim SD, Rehan M, Yu H, He Y. The Potential Genetic Effect for Yield and Foliar Disease Resistance in Faba Bean ( Vicia faba L.) Assessed via Morphological and SCoT Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3645. [PMID: 37896108 PMCID: PMC10610329 DOI: 10.3390/plants12203645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Faba bean is considered one of the most prominent grain legumes, with high protein content for human food consumption and livestock feed. The present study evaluated the nature of gene action and determined the genetic diversity among different populations of three crosses for resistance to foliar diseases at the molecular level. Analysis of variance exposed significant differences among the generations for all measured traits. Both dominance and additive gene effects were essential, but dominance genes, for the most part, exhibited greater effects than additive ones. This indicates an essential role for dominant genes alongside the additives one in inheriting such traits. The third cross (Marina × Giza 40) gave desired significant and positive (additive × additive) values for the number of pods/plant, seeds/plant, and seed yield/plant, in addition to desirable negative values for chocolate spot and rust characteristics. Furthermore, assessing the lines under study using seven SCoT primers disclosed three bands with recorded molecular weights of 260, 207, and 178 bp, generated by SCoT-1, SCoT-4, and SCoT-7 primers, respectively. These bands exist in the resistant parent (Marina), which could be attributed to the high-disease-resistance phenotypes, and they are absent in the sensitive parent (Giza 40) and other putative sensitive lines. Based on the molecular profiles and the genetic similarity between parents and the selected lines, the highest similarity value (0.91) was detected between Marina genotype and BC1, revealing a high foliar disease resistance. Meanwhile, Giza 40 (susceptible to foliar diseases) exhibited the maximum value (0.93) with F2. Additionally, cluster analysis based on genetic relationships was performed, and a high level of correlation between the results of PCR-based SCoT analysis and the foliar disease reactions was observed in the field. Consequently, this study concluded that SCoT markers created reliable banding profiles for evaluating genetic polymorphism among faba bean lines, which could be a foundation for developing an efficient breeding program.
Collapse
Affiliation(s)
- Alaa A. Soliman
- Food Legumes Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt;
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China;
| | - Manar I. Mousa
- Food Legumes Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Abeer M. Mosalam
- Department of Agronomy, Faculty of Agriculture, Damietta University, New Damietta 34511, Egypt;
| | - Zeinab E. Ghareeb
- Center Laboratory for Design and Statistical Analysis Research, Agricultural Research Center, Giza 12619, Egypt;
| | - Shafik D. Ibrahim
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Haitian Yu
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China;
| | - Yuhua He
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China;
| |
Collapse
|
27
|
Chen C, Zhang K, Liu F, Wang X, Yao Y, Niu X, He Y, Hong J, Liu F, Gao Q, Zhang Y, Li Y, Wang M, Lin J, Fan Y, Ren K, Shen L, Gao B, Ren X, Yang W, Georgiev MI, Zhang X, Zhou M. Resequencing of global Lotus corniculatus accessions reveals population distribution and genetic loci, associated with cyanogenic glycosides accumulation and growth traits. BMC Biol 2023; 21:176. [PMID: 37592232 PMCID: PMC10433565 DOI: 10.1186/s12915-023-01670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Lotus corniculatus is a widely distributed perennial legume whose great adaptability to different environments and resistance to barrenness make it an excellent forage and ecological restoration plant. However, its molecular genetics and genomic relationships among populations are yet to be uncovered. RESULT Here we report on a genomic variation map from worldwide 272 L. corniculatus accessions by genome resequencing. Our analysis suggests that L. corniculatus accessions have high genetic diversity and could be further divided into three subgroups, with the genetic diversity centers were located in Transcaucasia. Several candidate genes and SNP site associated with CNglcs content and growth traits were identified by genome-wide associated study (GWAS). A non-synonymous in LjMTR was responsible for the decreased expression of CNglcs synthesis genes and LjZCD was verified to positively regulate CNglcs synthesis gene CYP79D3. The LjZCB and an SNP in LjZCA promoter were confirmed to be involved in plant growth. CONCLUSION This study provided a large number of genomic resources and described genetic relationship and population structure among different accessions. Moreover, we attempt to provide insights into the molecular studies and breeding of CNglcs and growth traits in L. corniculatus.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fu Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xia Wang
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, 100177, China
| | - Yang Yao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Hong
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Fang Liu
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Qiu Gao
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yi Zhang
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yurong Li
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Meijuan Wang
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Jizhen Lin
- National Herbage Gempiasm Bank of China, National Animal Husbandry Service, Beijing, 100125, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kui Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lunhao Shen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xue Ren
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weifei Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
28
|
Song B, Ning W, Wei D, Jiang M, Zhu K, Wang X, Edwards D, Odeny DA, Cheng S. Plant genome resequencing and population genomics: Current status and future prospects. MOLECULAR PLANT 2023; 16:1252-1268. [PMID: 37501370 DOI: 10.1016/j.molp.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Advances in DNA sequencing technology have sparked a genomics revolution, driving breakthroughs in plant genetics and crop breeding. Recently, the focus has shifted from cataloging genetic diversity in plants to exploring their functional significance and delivering beneficial alleles for crop improvement. This transformation has been facilitated by the increasing adoption of whole-genome resequencing. In this review, we summarize the current progress of population-based genome resequencing studies and how these studies affect crop breeding. A total of 187 land plants from 163 countries have been resequenced, comprising 54 413 accessions. As part of resequencing efforts 367 traits have been surveyed and 86 genome-wide association studies have been conducted. Economically important crops, particularly cereals, vegetables, and legumes, have dominated the resequencing efforts, leaving a gap in 49 orders, including Lycopodiales, Liliales, Acorales, Austrobaileyales, and Commelinales. The resequenced germplasm is distributed across diverse geographic locations, providing a global perspective on plant genomics. We highlight genes that have been selected during domestication, or associated with agronomic traits, and form a repository of candidate genes for future research and application. Despite the opportunities for cross-species comparative genomics, many population genomic datasets are not accessible, impeding secondary analyses. We call for a more open and collaborative approach to population genomics that promotes data sharing and encourages contribution-based credit policy. The number of plant genome resequencing studies will continue to rise with the decreasing DNA sequencing costs, coupled with advances in analysis and computational technologies. This expansion, in terms of both scale and quality, holds promise for deeper insights into plant trait genetics and breeding design.
Collapse
Affiliation(s)
- Bo Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Huazhong Agricultural University, College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Kun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xingwei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, Nairobi, Kenya
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
29
|
Abdul Aziz M, Masmoudi K. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms. Int J Mol Sci 2023; 24:9813. [PMID: 37372961 DOI: 10.3390/ijms24129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop's salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances in transcriptomic technologies have revealed the untapped genetic diversity of CWRs that represents a practical gene pool for improving the plant's adaptability to salt stress. Thus, the present study emphasizes the transcriptomics of CWRs for salinity stress tolerance. In this review, the impacts of salt stress on the plant's physiological processes and development are overviewed, and the transcription factors (TFs) regulation of salinity stress tolerance is investigated. In addition to the molecular regulation, a brief discussion on the phytomorphological adaptation of plants under saline environments is provided. The study further highlights the availability and use of transcriptomic resources of CWR and their contribution to pangenome construction. Moreover, the utilization of CWRs' genetic resources in the molecular breeding of crops for salinity stress tolerance is explored. Several studies have shown that cytoplasmic components such as calcium and kinases, and ion transporter genes such as Salt Overly Sensitive 1 (SOS1) and High-affinity Potassium Transporters (HKTs) are involved in the signaling of salt stress, and in mediating the distribution of excess Na+ ions within the plant cells. Recent comparative analyses of transcriptomic profiling through RNA sequencing (RNA-Seq) between the crops and their wild relatives have unraveled several TFs, stress-responsive genes, and regulatory proteins for generating salinity stress tolerance. This review specifies that the use of CWRs transcriptomics in combination with modern breeding experimental approaches such as genomic editing, de novo domestication, and speed breeding can accelerate the CWRs utilization in the breeding programs for enhancing the crop's adaptability to saline conditions. The transcriptomic approaches optimize the crop genomes with the accumulation of favorable alleles that will be indispensable for designing salt-resilient crops.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
30
|
Yadav AK, Singh CK, Kalia RK, Mittal S, Wankhede DP, Kakani RK, Ujjainwal S, Aakash, Saroha A, Nathawat NS, Rani R, Panchariya P, Choudhary M, Solanki K, Chaturvedi KK, Archak S, Singh K, Singh GP, Singh AK. Genetic diversity, population structure, and genome-wide association study for the flowering trait in a diverse panel of 428 moth bean (Vigna aconitifolia) accessions using genotyping by sequencing. BMC PLANT BIOLOGY 2023; 23:228. [PMID: 37120525 PMCID: PMC10148550 DOI: 10.1186/s12870-023-04215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Moth bean (Vigna aconitifolia) is an underutilized, protein-rich legume that is grown in arid and semi-arid areas of south Asia and is highly resistant to abiotic stresses such as heat and drought. Despite its economic importance, the crop remains unexplored at the genomic level for genetic diversity and trait mapping studies. To date, there is no report of SNP marker discovery and association mapping of any trait in this crop. Therefore, this study aimed to dissect the genetic diversity, population structure and marker-trait association for the flowering trait in a diversity panel of 428 moth bean accessions using genotyping by sequencing (GBS) approach. RESULTS A total of 9078 high-quality single nucleotide polymorphisms (SNPs) were discovered by genotyping of 428 moth bean accessions. Model-based structure analysis and PCA grouped the moth bean accessions into two subpopulations. Cluster analysis revealed accessions belonging to the Northwestern region of India had higher variability than accessions from the other regions suggesting that this region represents its center of diversity. AMOVA revealed more variations within individuals (74%) and among the individuals (24%) than among the populations (2%). Marker-trait association analysis using seven multi-locus models including mrMLM, FASTmrEMMA FASTmrEMMA, ISIS EM-BLASSO, MLMM, BLINK and FarmCPU revealed 29 potential genomic regions for the trait days to 50% flowering, which were consistently detected in three or more models. Analysis of the allelic effect of the major genomic regions explaining phenotypic variance of more than 10% and those detected in at least 2 environments showed 4 genomic regions with significant phenotypic effect on this trait. Further, we also analyzed genetic relationships among the Vigna species using SNP markers. The genomic localization of moth bean SNPs on genomes of closely related Vigna species demonstrated that maximum numbers of SNPs were getting localized on Vigna mungo. This suggested that the moth bean is most closely related to V. mungo. CONCLUSION Our study shows that the north-western regions of India represent the center of diversity of the moth bean. Further, the study revealed flowering-related genomic regions/candidate genes which can be potentially exploited in breeding programs to develop early-maturity moth bean varieties.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Chandan Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Rajwant K Kalia
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | | | - Rajesh K Kakani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shraddha Ujjainwal
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Aakash
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Ankit Saroha
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - N S Nathawat
- ICAR- Central Arid Zone Research Institute, Regional Research Station, Bikaner, Rajasthan, India
| | - Reena Rani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Pooja Panchariya
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Manoj Choudhary
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Kantilal Solanki
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - K K Chaturvedi
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Sunil Archak
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Kuldeep Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | | | - Amit Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India.
| |
Collapse
|
31
|
Skovbjerg CK, Angra D, Robertson-Shersby-Harvie T, Kreplak J, Keeble-Gagnère G, Kaur S, Ecke W, Windhorst A, Nielsen LK, Schiemann A, Knudsen J, Gutierrez N, Tagkouli V, Fechete LI, Janss L, Stougaard J, Warsame A, Alves S, Khazaei H, Link W, Torres AM, O'Sullivan DM, Andersen SU. Genetic analysis of global faba bean diversity, agronomic traits and selection signatures. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:114. [PMID: 37074596 PMCID: PMC10115707 DOI: 10.1007/s00122-023-04360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP markers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.
Collapse
Affiliation(s)
- Cathrine Kiel Skovbjerg
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark.
| | - Deepti Angra
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | | | - Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Wolfgang Ecke
- Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Alex Windhorst
- Georg-August-Universität Göttingen, DNPW, Carl-Sprengel 1, Germany
| | | | | | | | - Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Vasiliki Tagkouli
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Lavinia Ioana Fechete
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Luc Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Ahmed Warsame
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Sheila Alves
- Crops Research, Teagasc, Oak Park, Carlow, Ireland
| | - Hamid Khazaei
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Wolfgang Link
- Georg-August-Universität Göttingen, DNPW, Carl-Sprengel 1, Germany
| | - Ana Maria Torres
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | | | | |
Collapse
|
32
|
Basu U, Parida SK. The developmental dynamics in cool season legumes with focus on chickpea. PLANT MOLECULAR BIOLOGY 2023; 111:473-491. [PMID: 37016106 DOI: 10.1007/s11103-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Chickpea is one of the most widely consumed grain legume world-wide. Advances in next-generation sequencing and genomics tools have led to genetic dissection and identification of potential candidate genes regulating agronomic traits in chickpea. However, the developmental particularities and its potential in reforming the yield and nutritional value remain largely unexplored. Studies in crops such as rice, maize, tomato and pea have highlighted the contribution of key regulator of developmental events in yield related traits. A comprehensive knowledge on the development aspects of a crop can pave way for new vistas to explore. Pea and Medicago are the close relatives of genus Cicer and the basic developmental events in these legumes are similar. However, there are some distinct developmental features in chickpea which hold potential for future crop improvement endeavours. The global chickpea germplasm encompasses wide range of diversities in terms of morphology at both vegetative and reproductive stages. There is an immediate need for understanding the genetic and molecular basis of this diversity and utilizing them for the yield contributing trait improvement. The review discusses some of the key developmental events which have potential in yield enhancement and the lessons which can be learnt from model legumes in this regard.
Collapse
Affiliation(s)
- Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box: 10531, New Delhi, 110067, India
| | - Swarup K Parida
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box: 10531, New Delhi, 110067, India.
| |
Collapse
|
33
|
Channale S, Thompson JP, Varshney RK, Thudi M, Zwart RS. Multi-locus genome-wide association study of chickpea reference set identifies genetic determinants of Pratylenchus thornei resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1139574. [PMID: 37035083 PMCID: PMC10080060 DOI: 10.3389/fpls.2023.1139574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Pratylenchus thornei is an economically important species of root-lesion nematode adversely affecting chickpea (Cicer arietinum) yields globally. Integration of resistant crops in farming systems is recognised as the most effective and sustainable management strategy for plant-parasitic nematodes. However, breeding for P. thornei resistance in chickpea is limited by the lack of genetic diversity. We deployed a genome-wide association approach to identify genomic regions and candidate genes associated with P. thornei resistance in 285 genetically diverse chickpea accessions. Chickpea accessions were phenotyped for P. thornei resistance in replicated glasshouse experiments performed for two years (2018 and 2020). Whole genome sequencing data comprising 492,849 SNPs were used to implement six multi-locus GWAS models. Fourteen chickpea genotypes were found to be resistant to P. thornei. Of the six multi-locus GWAS methods deployed, FASTmrMLM was found to be the best performing model. In all, 24 significant quantitative trait nucleotides (QTNs) were identified, of which 13 QTNs were associated with lower nematode population density and 11 QTNs with higher nematode population density. These QTNs were distributed across all of the chickpea chromosomes, except chromosome 8. We identified, receptor-linked kinases (RLKs) on chromosomes 1, 4 and 6, GDSL-like Lipase/Acylhydrolase on chromosome 3, Aspartic proteinase-like and Thaumatin-like protein on chromosome 4, AT-hook DNA-binding and HSPRO2 on chromosome 6 as candidate genes for P. thornei resistance in the chickpea reference set. New sources of P. thornei resistant genotypes were identified that can be harnessed into breeding programs and putative candidate P. thornei resistant genes were identified that can be explored further to develop molecular markers and accelerate the incorporation of improved P. thornei resistance into elite chickpea cultivars.
Collapse
Affiliation(s)
- Sonal Channale
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - John P. Thompson
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Rajeev K. Varshney
- Centre for Crop & Food Innovation, Murdoch University, Perth, WA, Australia
| | - Mahendar Thudi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - Rebecca S. Zwart
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- School of Agriculture and Environmental Science, Faculty of Health, Engineering and Science, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
34
|
Chang Y, Peng L, Ji L, Wang S, Wang L, Wu J. Genome-wise association study identified genomic regions associated with drought tolerance in mungbean (Vigna radiata (L.) R. Wilczek). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:40. [PMID: 36897414 DOI: 10.1007/s00122-023-04303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
A total of 282 mungbean accessions were resequenced to identify genome-wide variants and construct a highly precise variant map, and drought tolerance-related loci and superior alleles were identified by GWAS. Mungbean (Vigna radiata (L.) R. Wilczek) is an important food legume crop that is highly adapted to drought environments, but severe drought significantly curtails mungbean production. Here, we resequenced 282 mungbean accessions to identify genome-wide variants and constructed a highly precise map of mungbean variants. A genome-wide association study was performed to identify genomic regions for 14 drought tolerance-related traits in plants grown under stress and well-watered conditions over three years. One hundred forty-six SNPs associated with drought tolerance were detected, and 26 candidate loci associated with more than two traits were subsequently selected. Two hundred fifteen candidate genes were identified at these loci, including eleven transcription factor genes, seven protein kinase genes and other protein coding genes that may respond to drought stress. Furthermore, we identified superior alleles that were associated with drought tolerance and positively selected during the breeding process. These results provide valuable genomic resources for molecular breeding and will accelerate future efforts aimed at mungbean improvement.
Collapse
Affiliation(s)
- Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Peng
- Institute of Food Crop, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Liang Ji
- Institute of Food Crop, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
35
|
Cheng L, Li M, Wang Y, Han Q, Hao Y, Qiao Z, Zhang W, Qiu L, Gong A, Zhang Z, Li T, Luo S, Tang L, Liu D, Yin H, Lu S, Balbuena TS, Zhao Y. Transcriptome-based variations effectively untangling the intraspecific relationships and selection signals in Xinyang Maojian tea population. FRONTIERS IN PLANT SCIENCE 2023; 14:1114284. [PMID: 36890899 PMCID: PMC9986275 DOI: 10.3389/fpls.2023.1114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As one of the world's top three popular non-alcoholic beverages, tea is economically and culturally valuable. Xinyang Maojian, this elegant green tea, is one of the top ten famous tea in China and has gained prominence for thousands of years. However, the cultivation history of Xinyang Maojian tea population and selection signals of differentiation from the other major variety Camellia sinensis var. assamica (CSA) remain unclear. We newly generated 94 Camellia sinensis (C. sinensis) transcriptomes including 59 samples in the Xinyang area and 35 samples collected from 13 other major tea planting provinces in China. Comparing the very low resolution of phylogeny inferred from 1785 low-copy nuclear genes with 94 C. sinensis samples, we successfully resolved the phylogeny of C. sinensis samples by 99,115 high-quality SNPs from the coding region. The sources of tea planted in the Xinyang area were extensive and complex. Specifically, Shihe District and Gushi County were the two earliest tea planting areas in Xinyang, reflecting a long history of tea planting. Furthermore, we identified numerous selection sweeps during the differentiation of CSA and CSS and these positive selection genes are involved in many aspects such as regulation of secondary metabolites synthesis, amino acid metabolism, photosynthesis, etc. Numerous specific selective sweeps of modern cultivars were annotated with functions in various different aspects, indicating the CSS and CSA populations possibly underwent independent specific domestication processes. Our study indicated that transcriptome-based SNP-calling is an efficient and cost-effective method in untangling intraspecific phylogenetic relationships. This study provides a significant understanding of the cultivation history of the famous Chinese tea Xinyang Maojian and unravels the genetic basis of physiological and ecological differences between the two major tea subspecies.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yachao Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhen Qiao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Lin Qiu
- Institute of Forestry Science, Xinyang Forestry Bureau, Xinyang, Henan, China
| | - Andong Gong
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhihan Zhang
- College of Engineering and Technology, Northeast Forestry University, Harbin, China
| | - Tao Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shanshan Luo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Linshuang Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Daliang Liu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Hao Yin
- College of Agriculture, Guizhou University, Guiyang, China
| | - Song Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, Sao Paulo State University, Jaboticabal, Brazil
| | - Yiyong Zhao
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
36
|
Chen Z, Wang L, Cardoso JA, Zhu S, Liu G, Rao IM, Lin Y. Improving phosphorus acquisition efficiency through modification of root growth responses to phosphate starvation in legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1094157. [PMID: 36844096 PMCID: PMC9950756 DOI: 10.3389/fpls.2023.1094157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is one of the essential macronutrients for plant growth and development, and it is an integral part of the major organic components, including nucleic acids, proteins and phospholipids. Although total P is abundant in most soils, a large amount of P is not easily absorbed by plants. Inorganic phosphate (Pi) is the plant-available P, which is generally immobile and of low availability in soils. Hence, Pi starvation is a major constraint limiting plant growth and productivity. Enhancing plant P efficiency can be achieved by improving P acquisition efficiency (PAE) through modification of morpho-physiological and biochemical alteration in root traits that enable greater acquisition of external Pi from soils. Major advances have been made to dissect the mechanisms underlying plant adaptation to P deficiency, especially for legumes, which are considered important dietary sources for humans and livestock. This review aims to describe how legume root growth responds to Pi starvation, such as changes in the growth of primary root, lateral roots, root hairs and cluster roots. In particular, it summarizes the various strategies of legumes to confront P deficiency by regulating root traits that contribute towards improving PAE. Within these complex responses, a large number of Pi starvation-induced (PSI) genes and regulators involved in the developmental and biochemical alteration of root traits are highlighted. The involvement of key functional genes and regulators in remodeling root traits provides new opportunities for developing legume varieties with maximum PAE needed for regenerative agriculture.
Collapse
Affiliation(s)
- Zhijian Chen
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Linjie Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Guodao Liu
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Yan Lin
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
37
|
Kudapa H, Barmukh R, Garg V, Chitikineni A, Samineni S, Agarwal G, Varshney RK. Comprehensive Transcriptome Profiling Uncovers Molecular Mechanisms and Potential Candidate Genes Associated with Heat Stress Response in Chickpea. Int J Mol Sci 2023; 24:ijms24021369. [PMID: 36674889 PMCID: PMC9865869 DOI: 10.3390/ijms24021369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Chickpea (Cicer arietinum L.) production is highly susceptible to heat stress (day/night temperatures above 32/20 °C). Identifying the molecular mechanisms and potential candidate genes underlying heat stress response is important for increasing chickpea productivity. Here, we used an RNA-seq approach to investigate the transcriptome dynamics of 48 samples which include the leaf and root tissues of six contrasting heat stress responsive chickpea genotypes at the vegetative and reproductive stages of plant development. A total of 14,544 unique, differentially expressed genes (DEGs) were identified across different combinations studied. These DEGs were mainly involved in metabolic processes, cell wall remodeling, calcium signaling, and photosynthesis. Pathway analysis revealed the enrichment of metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction, under heat stress conditions. Furthermore, heat-responsive genes encoding bHLH, ERF, WRKY, and MYB transcription factors were differentially regulated in response to heat stress, and candidate genes underlying the quantitative trait loci (QTLs) for heat tolerance component traits, which showed differential gene expression across tolerant and sensitive genotypes, were identified. Our study provides an important resource for dissecting the role of candidate genes associated with heat stress response and also paves the way for developing climate-resilient chickpea varieties for the future.
Collapse
Affiliation(s)
- Himabindu Kudapa
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Vanika Garg
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
- Murdoch’s Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
- Murdoch’s Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Srinivasan Samineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Gaurav Agarwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
- Plant Biology Laboratories, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
- Murdoch’s Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence:
| |
Collapse
|
38
|
Dossou SSK, Song S, Liu A, Li D, Zhou R, Berhe M, Zhang Y, Sheng C, Wang Z, You J, Wang L. Resequencing of 410 Sesame Accessions Identifies SINST1 as the Major Underlying Gene for Lignans Variation. Int J Mol Sci 2023; 24:1055. [PMID: 36674569 PMCID: PMC9860558 DOI: 10.3390/ijms24021055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sesame is a promising oilseed crop that produces specific lignans of clinical importance. Hence, a molecular description of the regulatory mechanisms of lignan biosynthesis is essential for crop improvement. Here, we resequence 410 sesame accessions and identify 5.38 and 1.16 million SNPs (single nucleotide polymorphisms) and InDels, respectively. Population genomic analyses reveal that sesame has evolved a geographic pattern categorized into northern (NC), middle (MC), and southern (SC) groups, with potential origin in the southern region and subsequent introduction to the other regions. Selective sweeps analysis uncovers 120 and 75 significant selected genomic regions in MC and NC groups, respectively. By screening these genomic regions, we unveiled 184 common genes positively selected in these subpopulations for exploitation in sesame improvement. Genome-wide association study identifies 17 and 72 SNP loci for sesamin and sesamolin variation, respectively, and 11 candidate causative genes. The major pleiotropic SNPC/A locus for lignans variation is located in the exon of the gene SiNST1. Further analyses revealed that this locus was positively selected in higher lignan content sesame accessions, and the "C" allele is favorable for a higher accumulation of lignans. Overexpression of SiNST1C in sesame hairy roots significantly up-regulated the expression of SiMYB58, SiMYB209, SiMYB134, SiMYB276, and most of the monolignol biosynthetic genes. Consequently, the lignans content was significantly increased, and the lignin content was slightly increased. Our findings provide insights into lignans and lignin regulation in sesame and will facilitate molecular breeding of elite varieties and marker-traits association studies.
Collapse
Affiliation(s)
- Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Laboratory of Plant Physiology and Biotechnologies, Faculty of Sciences, University of Lomé, Lomé 01BP 1515, Togo
| | - Shengnan Song
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Aili Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chen Sheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhijian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
39
|
Mmbando GS. Challenges and prospects in using biotechnological interventions in O. glaberrima, an African cultivated rice. GM CROPS & FOOD 2022; 13:372-387. [DOI: 10.1080/21645698.2022.2149212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma (Udom), Dodoma, Tanzania
| |
Collapse
|
40
|
Wang G, Chen Q, Yang Y, Duan Y, Yang Y. Exchanges of economic plants along the land silk road. BMC PLANT BIOLOGY 2022; 22:619. [PMID: 36581803 PMCID: PMC9801618 DOI: 10.1186/s12870-022-04022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUD The greatest contribution of the Silk Road is to communicate among different countries and nationalities, and promote two-way cultural exchanges between the East and the West. We now have clearer understanding about how material civilization and religious culture of Central Asia and West Asia spread eastward along the Land Silk Road. However, there is controversial about how crops migrate along the Land Silk Road. RESULTS We summarize archaeology, genetics, and genomics data to explore crop migration patterns. Of the 207 crops that were domesticated along the Land Silk Road, 19 for which genomic evidence was available were selected for discussion. CONCLUSIONS There were conflicting lines of evidence for the domestication of Tibetan barley, mustard, lettuce, buckwheat, and chickpea. The main reasons for the conflicting results may include incomplete early knowledge, record differences in different period, sample sizes, and data analysis techniques. There was strong evidence that Tibetan barley, barley, wheat, and jujube were introduced into China before the existence of the Land Silk Road; and mustard, lettuce, buckwheat, chickpea, alfalfa, walnut, cauliflower, grape, spinach, apple, cucumber, mulberry, and pea spread to China via trade and human migration along the Land Silk Road.
Collapse
Affiliation(s)
- Guangyan Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qian Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuanwen Duan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
41
|
Kumar B, Singh AK, Bahuguna RN, Pareek A, Singla‐Pareek SL. Orphan crops: A genetic treasure trove for hunting stress tolerance genes. Food Energy Secur 2022. [DOI: 10.1002/fes3.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Brijesh Kumar
- Plant Stress Biology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Anil Kumar Singh
- ICAR‐National Institute for Plant Biotechnology LBS Centre New Delhi India
| | - Rajeev Nayan Bahuguna
- Center for Advanced Studies on Climate Change Dr. Rajendra Prasad Central Agricultural University Bihar Pusa, Samastipur India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Sneh L. Singla‐Pareek
- Plant Stress Biology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| |
Collapse
|
42
|
Gangurde SS, Xavier A, Naik YD, Jha UC, Rangari SK, Kumar R, Reddy MSS, Channale S, Elango D, Mir RR, Zwart R, Laxuman C, Sudini HK, Pandey MK, Punnuri S, Mendu V, Reddy UK, Guo B, Gangarao NVPR, Sharma VK, Wang X, Zhao C, Thudi M. Two decades of association mapping: Insights on disease resistance in major crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1064059. [PMID: 37082513 PMCID: PMC10112529 DOI: 10.3389/fpls.2022.1064059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Climate change across the globe has an impact on the occurrence, prevalence, and severity of plant diseases. About 30% of yield losses in major crops are due to plant diseases; emerging diseases are likely to worsen the sustainable production in the coming years. Plant diseases have led to increased hunger and mass migration of human populations in the past, thus a serious threat to global food security. Equipping the modern varieties/hybrids with enhanced genetic resistance is the most economic, sustainable and environmentally friendly solution. Plant geneticists have done tremendous work in identifying stable resistance in primary genepools and many times other than primary genepools to breed resistant varieties in different major crops. Over the last two decades, the availability of crop and pathogen genomes due to advances in next generation sequencing technologies improved our understanding of trait genetics using different approaches. Genome-wide association studies have been effectively used to identify candidate genes and map loci associated with different diseases in crop plants. In this review, we highlight successful examples for the discovery of resistance genes to many important diseases. In addition, major developments in association studies, statistical models and bioinformatic tools that improve the power, resolution and the efficiency of identifying marker-trait associations. Overall this review provides comprehensive insights into the two decades of advances in GWAS studies and discusses the challenges and opportunities this research area provides for breeding resistant varieties.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alencar Xavier
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Uday Chand Jha
- Indian Council of Agricultural Research (ICAR), Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | | | - Raj Kumar
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - M. S. Sai Reddy
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Sonal Channale
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Reyazul Rouf Mir
- Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Sopore, India
| | - Rebecca Zwart
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
| | - C. Laxuman
- Zonal Agricultural Research Station (ZARS), Kalaburagi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Manish K. Pandey
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Somashekhar Punnuri
- College of Agriculture, Family Sciences and Technology, Dr. Fort Valley State University, Fort Valley, GA, United States
| | - Venugopal Mendu
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, West Virginia, WV, United States
| | - Baozhu Guo
- Crop Genetics and Breeding Research, United States Department of Agriculture (USDA) - Agriculture Research Service (ARS), Tifton, GA, United States
| | | | - Vinay K. Sharma
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| | - Mahendar Thudi
- Dr. Rajendra Prasad Central Agricultural University (RPCAU), Bihar, India
- Crop Health Center, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, China
| |
Collapse
|
43
|
Zhang H, Mascher M, Abbo S, Jayakodi M. Advancing Grain Legumes Domestication and Evolution Studies with Genomics. PLANT & CELL PHYSIOLOGY 2022; 63:1540-1553. [PMID: 35534441 PMCID: PMC9680859 DOI: 10.1093/pcp/pcac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Grain legumes were domesticated in parallel with cereals in several regions of the world and formed the economic basis of early farming cultures. Since then, legumes have played a vital role in human and animal diets and in fostering agrobiodiversity. Increasing grain legume cultivation will be crucial to safeguard nutritional security and the resilience of agricultural ecosystems across the globe. A better understanding of the molecular underpinnings of domestication and crop evolution of grain legumes may be translated into practical approaches in modern breeding programs to stabilize yield, which is threatened by evolving pathogens and changing climates. During recent decades, domestication research in all crops has greatly benefited from the fast progress in genomic technologies. Yet still, many questions surrounding the domestication and diversification of legumes remain unanswered. In this review, we assess the potential of genomic approaches in grain legume research. We describe the centers of origin and the crucial domestication traits of grain legumes. In addition, we survey the effect of domestication on both above-ground and below-ground traits that have economic importance. Finally, we discuss open questions in grain legume domestication and diversification and outline how to bridge the gap between the preservation of historic crop diversity and their utilization in modern plant breeding.
Collapse
Affiliation(s)
- Hailin Zhang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
| | - Shahal Abbo
- The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| |
Collapse
|
44
|
Bohra A, Tiwari A, Kaur P, Ganie SA, Raza A, Roorkiwal M, Mir RR, Fernie AR, Smýkal P, Varshney RK. The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies. PLANT & CELL PHYSIOLOGY 2022; 63:1554-1572. [PMID: 35713290 PMCID: PMC9680861 DOI: 10.1093/pcp/pcac086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.
Collapse
Affiliation(s)
- Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Abha Tiwari
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kalyanpur, Kanpur 208024, India
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, Santiniketan Road, Bolpur 731235, India
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and Biotechnology (KCGEB), UAE University, Sheik Khalifa Bin Zayed Street, Al Ain, Abu Dhabi 15551, UAE
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST, Shalimar, Srinagar 190025, India
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Křížkovského 511/8, Olomouc 78371, Czech Republic
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
45
|
Liu C, Wang Y, Peng J, Fan B, Xu D, Wu J, Cao Z, Gao Y, Wang X, Li S, Su Q, Zhang Z, Wang S, Wu X, Shang Q, Shi H, Shen Y, Wang B, Tian J. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. PLANT COMMUNICATIONS 2022; 3:100352. [PMID: 35752938 PMCID: PMC9700124 DOI: 10.1016/j.xplc.2022.100352] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 05/29/2023]
Abstract
Mung bean is an economically important legume crop species that is used as a food, consumed as a vegetable, and used as an ingredient and even as a medicine. To explore the genomic diversity of mung bean, we assembled a high-quality reference genome (Vrad_JL7) that was ∼479.35 Mb in size, with a contig N50 length of 10.34 Mb. A total of 40,125 protein-coding genes were annotated, representing ∼96.9% of the genetic region. We also sequenced 217 accessions, mainly landraces and cultivars from China, and identified 2,229,343 high-quality single-nucleotide polymorphisms (SNPs). Population structure revealed that the Chinese accessions diverged into two groups and were distinct from non-Chinese lines. Genetic diversity analysis based on genomic data from 750 accessions in 23 countries supported the hypothesis that mung bean was first domesticated in south Asia and introduced to east Asia probably through the Silk Road. We constructed the first pan-genome of mung bean germplasm and assembled 287.73 Mb of non-reference sequences. Among the genes, 83.1% were core genes and 16.9% were variable. Presence/absence variation (PAV) events of nine genes involved in the regulation of the photoperiodic flowering pathway were identified as being under selection during the adaptation process to promote early flowering in the spring. Genome-wide association studies (GWASs) revealed 2,912 SNPs and 259 gene PAV events associated with 33 agronomic traits, including a SNP in the coding region of the SWEET10 homolog (jg24043) involved in crude starch content and a PAV event in a large fragment containing 11 genes for color-related traits. This high-quality reference genome and pan-genome will provide insights into mung bean breeding.
Collapse
Affiliation(s)
- Changyou Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Yan Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | | | - Baojie Fan
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Dongxu Xu
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075300, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhimin Cao
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Yunqing Gao
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075300, China
| | - Xueqing Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Shutong Li
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075300, China
| | - Qiuzhu Su
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Zhixiao Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Shen Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Xingbo Wu
- Tropical Research and Education Center, Department of Environmental Horticulture, University of Florida, 18905 SW 280th St, Homestead, FL 33031, USA
| | - Qibing Shang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075300, China
| | - Huiying Shi
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | - Yingchao Shen
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China
| | | | - Jing Tian
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, China.
| |
Collapse
|
46
|
Singh G, Gudi S, Amandeep, Upadhyay P, Shekhawat PK, Nayak G, Goyal L, Kumar D, Kumar P, Kamboj A, Thada A, Shekhar S, Koli GK, DP M, Halladakeri P, Kaur R, Kumar S, Saini P, Singh I, Ayoubi H. Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:1035878. [PMID: 36438090 PMCID: PMC9682257 DOI: 10.3389/fpls.2022.1035878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2023]
Abstract
The fluctuating climates, rising human population, and deteriorating arable lands necessitate sustainable crops to fulfil global food requirements. In the countryside, legumes with intriguing but enigmatic nitrogen-fixing abilities and thriving in harsh climatic conditions promise future food security. However, breaking the yield plateau and achieving higher genetic gain are the unsolved problems of legume improvement. Present study gives emphasis on 15 important legume crops, i.e., chickpea, pigeonpea, soybean, groundnut, lentil, common bean, faba bean, cowpea, lupin, pea, green gram, back gram, horse gram, moth bean, rice bean, and some forage legumes. We have given an overview of the world and India's area, production, and productivity trends for all legume crops from 1961 to 2020. Our review article investigates the importance of gene pools and wild relatives in broadening the genetic base of legumes through pre-breeding and alien gene introgression. We have also discussed the importance of integrating genomics, phenomics, speed breeding, genetic engineering and genome editing tools in legume improvement programmes. Overall, legume breeding may undergo a paradigm shift once genomics and conventional breeding are integrated in the near future.
Collapse
Affiliation(s)
- Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Upadhyay
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pooja Kanwar Shekhawat
- Division of Crop Improvement, Plant Breeding and Genetics, Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute, Karnal, Haryana, India
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Rajasthan, India
| | - Gyanisha Nayak
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Lakshay Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Deepak Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Akashdeep Kamboj
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Shweta Shekhar
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Ganesh Kumar Koli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Meghana DP
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, Gujarat, India
| | - Rajvir Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sumit Kumar
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pawan Saini
- CSB-Central Sericultural Research & Training Institute (CSR&TI), Ministry of Textiles, Govt. of India, Jammu- Kashmir, Pampore, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Habiburahman Ayoubi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
47
|
Istanbuli T, Abu Assar A, Tawkaz S, Kumar T, Alsamman AM, Hamwieh A. The interaction between drought stress and nodule formation under multiple environments in chickpea. PLoS One 2022; 17:e0276732. [PMID: 36301853 PMCID: PMC9612560 DOI: 10.1371/journal.pone.0276732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental stresses, particularly drought, limit symbiotic nitrogen fixation in legumes, resulting in decreased yielding capacity. Drought is one of the most important constraints limiting yield potential in crops and it is the major abiotic stress that can cause more than 70% yield loss in chickpea. In this study, a total of two hundred four chickpea (Cicer arietinum L.) genotypes were selected to study the interaction between drought stress and nodule formation. This interaction was assessed by using morphological, yield and yield components. The field experiments were laid out in two locations (Terbol and Kfardan stations, Bekaa valley, Lebanon) using Alpha lattice design with two replications and two watering treatments (irrigation and rainfed) during 2016 and 2017 seasons. Parameters that were measured include days to 50% flowering (DFL), day to maturity (DM), plant height (PLH), nodule biomass (NB), nodule fresh weight (NFW), nodule dry weight (NDW), grain yield (GY), Biological yield (BY), 100 seed weight (100SW) and drought tolerance stress (DTS). The results indicated a significant variation between genotypes, environments and other morphological, yield and yield components traits. Drought stress reduced significantly the yield and the nodule's characteristics, biological and grain yield. The genotypes with the highest levels of drought tolerance, such as IG70399, IG8256, IG71832, IG70270, and IG70272, showed a minimal decrease in yield and nodule biomass. Nodule observations significantly and positively correlated with GY (0.36-0.38) under drought stress treatment. The correlation values for nodule characteristics with DFL and DM were higher under drought stress compared to irrigated conditions. This is a comparative study between drought stress and nodule formation traits associated with morphological, yield and yield components traits.
Collapse
Affiliation(s)
- Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
- * E-mail: (TI); (AH)
| | - Ahmed Abu Assar
- Department of Oil Crops, Agriculture Research Center (ARC), Wad Madani, Sudan
| | - Sawsan Tawkaz
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Tapan Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Amlaha, India
| | - Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
- * E-mail: (TI); (AH)
| |
Collapse
|
48
|
Elango D, Wang W, Thudi M, Sebastiar S, Ramadoss BR, Varshney RK. Genome-wide association mapping of seed oligosaccharides in chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:1024543. [PMID: 36352859 PMCID: PMC9638045 DOI: 10.3389/fpls.2022.1024543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Chickpea (Cicer arietinum L.) is one of the major pulse crops, rich in protein, and widely consumed all over the world. Most legumes, including chickpeas, possess noticeable amounts of raffinose family oligosaccharides (RFOs) in their seeds. RFOs are seed oligosaccharides abundant in nature, which are non-digestible by humans and animals and cause flatulence and severe abdominal discomforts. So, this study aims to identify genetic factors associated with seed oligosaccharides in chickpea using the mini-core panel. We have quantified the RFOs (raffinose and stachyose), ciceritol, and sucrose contents in chickpea using high-performance liquid chromatography. A wide range of variations for the seed oligosaccharides was observed between the accessions: 0.16 to 15.13 mg g-1 raffinose, 2.77 to 59.43 mg g-1 stachyose, 4.36 to 90.65 mg g-1 ciceritol, and 3.57 to 54.12 mg g-1 for sucrose. Kabuli types showed desirable sugar profiles with high sucrose, whereas desi types had high concentrations RFOs. In total, 48 single nucleotide polymorphisms (SNPs) were identified for all the targeted sugar types, and nine genes (Ca_06204, Ca_04353, and Ca_20828: Phosphatidylinositol N-acetylglucosaminyltransferase; Ca_17399 and Ca_22050: Remorin proteins; Ca_11152: Protein-serine/threonine phosphatase; Ca_10185, Ca_14209, and Ca_27229: UDP-glucose dehydrogenase) were identified as potential candidate genes for sugar metabolism and transport in chickpea. The accessions with low RFOs and high sucrose contents may be utilized in breeding specialty chickpeas. The identified candidate genes could be exploited in marker-assisted breeding, genomic selection, and genetic engineering to improve the sugar profiles in legumes and other crop species.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Department of Plant Science, Penn State University, University Park, PA, United States
| | - Wanyan Wang
- Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Mahender Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Centre for Crop Health, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Genetics Gains Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sheelamary Sebastiar
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)-Sugarcane Breeding Institute, Coimbatore, India
| | - Bharathi Raja Ramadoss
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Rajeev K. Varshney
- Genetics Gains Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
49
|
Han X, Li L, Chen H, Liu L, Sun L, Wang X, Xiang Y, Wan Z, Liu C. Resequencing of 558 Chinese mungbean landraces identifies genetic loci associated with key agronomic traits. FRONTIERS IN PLANT SCIENCE 2022; 13:1043784. [PMID: 36311125 PMCID: PMC9597495 DOI: 10.3389/fpls.2022.1043784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Mungbean is a warm-season annual food legume and plays important role in supplying food and nutritional security in many tropical countries. However, the genetic basis of its agronomic traits remains poorly understood. Therefore, we resequenced 558 Chinese mungbean landraces and produced a comprehensive map of mungbean genomic variation. We phenotyped all landraces in six different environments. Genome-wide association studies (GWAS) produced 110 signals significantly associated with nine agronomic traits, for which several candidate genes were identified. Overall, this study provides new insight into the genetic architecture of mungbean agronomic traits. Moreover, the genome-wide variations identified here should be valuable resources for future breeding studies of this important food legume.
Collapse
Affiliation(s)
- Xuesong Han
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, China
| | - Li Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, China
| | - Hongwei Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, China
| | - Liangjun Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, China
| | - Longqin Sun
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, China
| | - Xingmin Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, China
| | - Yantao Xiang
- College of Agronomy, Yangtze University, Jingzhou, China
| | - Zhenghuang Wan
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, China
| | - Changyan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, China
| |
Collapse
|
50
|
Sardos J, Breton C, Perrier X, Van den Houwe I, Carpentier S, Paofa J, Rouard M, Roux N. Hybridization, missing wild ancestors and the domestication of cultivated diploid bananas. FRONTIERS IN PLANT SCIENCE 2022; 13:969220. [PMID: 36275535 PMCID: PMC9586208 DOI: 10.3389/fpls.2022.969220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 06/08/2023]
Abstract
Hybridization and introgressions are important evolutionary forces in plants. They contribute to the domestication of many species, including understudied clonal crops. Here, we examine their role in the domestication of a clonal crop of outmost importance, banana (Musa ssp.). We used genome-wide SNPs generated for 154 diploid banana cultivars and 68 samples of the wild M. acuminata to estimate and geo-localize the contribution of the different subspecies of M. acuminata to cultivated banana. We further investigated the wild to domesticate transition in New Guinea, an important domestication center. We found high levels of admixture in many cultivars and confirmed the existence of unknown wild ancestors with unequal contributions to cultivated diploid. In New Guinea, cultivated accessions exhibited higher diversity than their direct wild ancestor, the latter recovering from a bottleneck. Introgressions, balancing selection and positive selection were identified as important mechanisms for banana domestication. Our results shed new lights on the radiation of M. acuminata subspecies and on how they shaped banana domestication. They point candidate regions of origin for two unknown ancestors and suggest another contributor in New Guinea. This work feed research on the evolution of clonal crops and has direct implications for conservation, collection, and breeding.
Collapse
Affiliation(s)
- Julie Sardos
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| | - Catherine Breton
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| | - Xavier Perrier
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | | | - Janet Paofa
- Papua New Guinea (PNG) National Agricultural Research Institute, Southern Regional Centre, Laloki, Port Moresby, Papua New Guinea
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| | - Nicolas Roux
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, France
| |
Collapse
|