1
|
Wu N, Gao Y, Wu J, Ke H, Zhang Y, Wang G, Wu L, Zhang G, Wang X, Ma Z. Overexpression of myo-inositol oxygenase gene GbMIOX8 promotes fiber cell elongation by altering cell wall composition in cotton. Gene 2025; 951:149387. [PMID: 40043924 DOI: 10.1016/j.gene.2025.149387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/24/2025]
Abstract
Cell elongation is an important process during cotton fiber development, ultimately determining the length of mature fibers. Myo-inositol oxygenase (MIOX) pathway provides pivotal precursors for the synthesis of non-cellulosic polysaccharides in plant cell walls. However, the role of MIOX gene in cotton fiber development has not been reported. Here, we hypothesized that Gossypium barbadense MIOX gene GbMIOX8 (GbM_D05G1480.1) could regulate fiber length by modulating cell wall composition. To test this hypothesis, we characterized the functional properties of GbMIOX8. GbMIOX8 preferentially expressed during fiber initiation and elongation in cotton and encodes non-secretory protein targeted to the cytoplasm. Overexpression of GbMIOX8 afforded transgenic A. thaliana significantly longer leaf trichomes, as well as longer hypocotyl cells compared to the wild type, with increases of at least 11 % and up to 23 %. We further overexpressed GbMIOX8 in cotton and found that transgenic cotton displayed fiber length that was increased by an average of 1.61 mm in the T1 generation and 1.93 mm in the T2 generation, respectively. Similar to Arabidopsis, transgenic cotton exhibited at least a threefold increase in myo-inositol oxygenase activity and content, boosting glucuronic acid production and reducing inositol. Furthermore, pectin and cellulose contents rose in transgenic cottons, with average rises of 19 % and 38 % respectively, indicating enhanced biosynthesis of these two cell wall components. These results revealed that GbMIOX8 played an important role in the elongation of plant cells by altering cell wall components and could be valuable for cotton fiber quality improvement.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China; Hebei Medicinal Plant Technology Innovation Center, Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.
| | - Yu Gao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Luo X, Shua Z, Zhao D, Liu B, Luo H, Chen Y, Meng D, Song Z, Yang Q, Wang Z, Tang D, Zhang X, Zhang J, Ma K, Yao W. Genome assembly of pomegranate highlights structural variations driving population differentiation and key loci underpinning cold adaption. HORTICULTURE RESEARCH 2025; 12:uhaf022. [PMID: 40206514 PMCID: PMC11979328 DOI: 10.1093/hr/uhaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 04/11/2025]
Abstract
Cold damage poses a significant challenge to the cultivation of soft-seeded pomegranate varieties, hindering the growth of the pomegranate industry. The genetic basis of cold tolerance in pomegranates has remained elusive, largely due to the lack of high-quality genome assemblies for cold-tolerant varieties and comprehensive population-scale genomic studies. In this study, we addressed these challenges by assembling a high-quality chromosome-level reference genome for 'Sanbai', a pomegranate variety renowned for its freezing resistance, achieving an impressive contig N50 of 15.93 Mb. This robust assembly, enhanced by long-read sequencing of 38 pomegranate accessions, facilitated the identification of 14 239 polymorphic structural variants, revealing their critical roles in genomic diversity and population differentiation related to cold tolerance. Of particular significance was the discovery of a ~ 5.4-Mb inversion on chromosome 1, which emerged as an important factor affecting cold tolerance in pomegranate. Moreover, through the integration of bulked segregant analysis, differential selection analysis, and genetic transformation techniques, we identified and validated the interaction between the PgNAC12 transcription factor and PgCBF1, disclosing their pivotal roles in response to cold stress. These findings mark a significant advancement in pomegranate genomics, offering novel insights into the genetic mechanisms of cold tolerance and providing valuable resources for the genetic improvement of soft-seeded pomegranate varieties.
Collapse
Affiliation(s)
- Xiang Luo
- College of Agriculture, Henan University, No. 379 North Section of Mingli Road, Zhengdong New District, Zhengzhou 450046, Henan, China
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830013, Xinjiang, China
| | - Zhenyang Shua
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou 450046, Henan, China
| | - Diguang Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Southern End of Weilai Road, Guancheng District, Zhengzhou 450009, Henan, China
| | - Beibei Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Southern End of Weilai Road, Guancheng District, Zhengzhou 450009, Henan, China
| | - Hua Luo
- Zaozhuang Pomegranate Research Institute, Zaozhuang Pomegranate National Forest Germplasm Resource Bank, Shiliu Avenue, Yicheng District, Zaozhuang 277300, Shandong, China
| | - Ying Chen
- Zaozhuang Pomegranate Research Institute, Zaozhuang Pomegranate National Forest Germplasm Resource Bank, Shiliu Avenue, Yicheng District, Zaozhuang 277300, Shandong, China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zhihua Song
- College of Forestry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Zicheng Wang
- College of Agriculture, Henan University, No. 379 North Section of Mingli Road, Zhengdong New District, Zhengzhou 450046, Henan, China
| | - Dong Tang
- Bioyi Biotechnology Co., Ltd., No. 888 Gaoxin Avenue, East Lake High-Tech Development Zone, Wuhan 430075, Hubei, China
| | - Xingguo Zhang
- Bioyi Biotechnology Co., Ltd., No. 888 Gaoxin Avenue, East Lake High-Tech Development Zone, Wuhan 430075, Hubei, China
| | - Juan Zhang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Kai Ma
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, No. 403 Nanchang Road, Urumqi 830013, Xinjiang, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou 450046, Henan, China
| |
Collapse
|
3
|
Chen R, Zhang J, Li J, Chen J, Dai F, Tian Y, Hu Y, Zhu QH, Zhang T. Two duplicated GhMML3 genes coordinately control development of lint and fuzz fibers in cotton. PLANT COMMUNICATIONS 2025; 6:101281. [PMID: 39943690 DOI: 10.1016/j.xplc.2025.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/01/2025] [Accepted: 02/10/2025] [Indexed: 04/01/2025]
Abstract
Cotton produces two types of fibers: fuzz and lint. Cotton yield is determined by the number of epidermal cells that develop into lint fibers. Despite numerous studies, the genetic and molecular mechanisms that control lint and fuzz fiber development remain unclear. Here, using the recessive naked-seed or fuzzless-linted mutant (n2NSM) in combination with gene editing and complementation, we found that the recessive fuzzless gene n2 encodes the MYBMIXTA-like (MML) transcription factor GhMML3_D12. Overexpression of GhMML3_D12 in n2NSM restored fuzz fiber development, whereas CRISPR-Cas9 knockout of GhMML3_D12 in wild-type cotton (J668) resulted in a fuzzless-linted phenotype. Interestingly, simultaneous edits to GhMML3_D12 and its duplicate GhMML3_A12 resulted in plants with a fiberless (fuzzless-lintless) phenotype. Detailed investigation of the seed fiber phenotypes of segregating progeny derived from a cross between J668 and a fiberless gene-edited mutant of GhMML3 (#mml3s) not only identified progeny that mimicked natural fuzzless and fiberless mutants but also revealed that the duplicated GhMML3_A12 and GhMML3_D12 regulate the development of fuzz and lint fibers in a dose-dependent manner. Comparative transcriptome analysis and single-cell RNA sequencing identified GhMML3 as the central hub of the gene network that regulates fiber initiation and early-stage elongation. The gene regulatory network revealed potential candidate genes and key regulators that may contribute to fiber initiation and development, and a model for the control of lint and fuzz fiber development by GhMML3 was proposed. We also found that the GhMML3_D12 protein can bind directly to the promoters of GhHD-1 and GhMYB25, two key genes involved in fiber initiation, thereby activating their expression. This study provides new insights into the fundamental mechanisms that underlie cotton fiber development.
Collapse
Affiliation(s)
- Rui Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Jun Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jun Li
- Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China.
| |
Collapse
|
4
|
Cheng H, Liu S, Zhang Y, Zuo D, Wang Q, Lv L, Yang Y, Hao L, Zhang X, Zhang S, Song G. Comparative single-cell transcriptomic map reveals divergence in leaves between two cotton species at cell type resolution. J Adv Res 2025:S2090-1232(25)00256-5. [PMID: 40228790 DOI: 10.1016/j.jare.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION Leaves are important functional organs in plants that determine yield and quality of crop. Upland cotton and sea-island cotton contribute more than 90% of the cotton fiber production annually. Deciphering and utilizing the diversity of leaf cells and functional genes underlying their divergences will be highly meaningful for cotton breeding. OBJECTIVES To investigate the conserved and divergent cell types of leaves between upland cotton and sea-island cotton, identify functional genes, and explore functional cell types in response to biotic and abiotic stresses in both species. METHODS Nuclei were isolated from leaves of upland cotton CRI12 and sea-island cotton XH21, respectively, and single-nucleus RNA-seq (snRNA-seq) was performed. Based on the orthologous genes, comparative single-cell transcriptomic map (CSCTM) of two cotton species was constructed to investigate conservation and divergence of cell types, and funtional genes were validated by virus induced gene silencing. Combine CSCTM, comparative genomic and transcriptomic analysis, functional cell types were identified in response to biotic and abiotic stresses. RESULTS Total 22 and 20 distinct clusters were identified representing 6 main cell types in CRI12 and XH21, respectively. CSCTM analysis revealed a sea-island cotton-specific cell cluster, in which specifically expressed GbNF-YA7's role in pathogen resistance was validated. Meanwhile, the divergence of pigment gland development was revealed among cotton species and WRKY15 was identified to influence gossypol content without affecting pigment gland number. Moreover, integrated CSCTM and comparative genomic and transcriptomic analysis revealed genome variations could influence the gene expression in an elaborate cell type-specifc manner, highlighted the function of cotton leaf vascular tissue cells in Verticillium wilt resistance and putative functional differentiation of conserved abiotic stresses response genes. Additionally, different cell types might assume distinct roles in dealing with various stresses, forming a complex stress response system. CONCLUSIONS This study uncovered the conservation and divergence in cell types of leaves of upland cotton and sea-island cotton, which will provide a better understanding of phenotypic variation of the two species.
Collapse
Affiliation(s)
- Hailiang Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Shang Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyun Zuo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiaolian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yi Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Lingyu Hao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shuo Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Guoli Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Hu G, Wang Z, Tian Z, Wang K, Ji G, Wang X, Zhang X, Yang Z, Liu X, Niu R, Zhu D, Zhang Y, Duan L, Ma X, Xiong X, Kong J, Zhao X, Zhang Y, Zhao J, He S, Grover CE, Su J, Feng K, Yu G, Han J, Zang X, Wu Z, Pan W, Wendel JF, Ma X. A telomere-to-telomere genome assembly of cotton provides insights into centromere evolution and short-season adaptation. Nat Genet 2025; 57:1031-1043. [PMID: 40097785 DOI: 10.1038/s41588-025-02130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Cotton (Gossypium hirsutum L.) is a key allopolyploid crop with global economic importance. Here we present a telomere-to-telomere assembly of the elite variety Zhongmian 113. Leveraging technologies including PacBio HiFi, Oxford Nanopore Technology (ONT) ultralong-read sequencing and Hi-C, our assembly surpasses previous genomes in contiguity and completeness, resolving 26 centromeric and 52 telomeric regions, 5S rDNA clusters and nucleolar organizer regions. A phylogenetically recent centromere repositioning on chromosome D08 was discovered specific to G. hirsutum, involving deactivation of an ancestral centromere and the formation of a unique, satellite repeat-based centromere. Genomic analyses evaluated favorable allele aggregation for key agronomic traits and uncovered an early-maturing haplotype derived from an 11 Mb pericentric inversion that evolved early during G. hirsutum domestication. Our study sheds light on the genomic origins of short-season adaptation, potentially involving introgression of an inversion from primitively domesticated forms, followed by subsequent haplotype differentiation in modern breeding programs.
Collapse
Affiliation(s)
- Guanjing Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenyu Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zunzhe Tian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Gaoxiang Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingxing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xianliang Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zhaoen Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuan Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruoyu Niu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuzhi Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lian Duan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xueyuan Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xianjia Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ya Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junjie Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Keyun Feng
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Xinshan Zang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Xiongfeng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Wu H, Wang L, Zhao S, Gao M, Cao J, Hao Y, Yu L, Zhao T, Wang S, Han J, Zhu Y, Zhao Y, Li J, Nie K, Lu K, Ding L, Zhang Z, Zhang T, Guan X. GhLPF1 Associated Network Is Involved with Cotton Lint Percentage Regulation Revealed by the Integrative Analysis of Spatial Transcriptome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414175. [PMID: 39932435 PMCID: PMC11967919 DOI: 10.1002/advs.202414175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/24/2025] [Indexed: 04/05/2025]
Abstract
Cotton fibers, derived from the epidermis of the ovule, provide a sustainable natural fiber source for the textile industry. Traits related to fiber yield are predominantly determined by molecular regulations in the epidermis of the outer integument (OI) region of the cotton ovule. Here, we identify an R2R3 MYB transcription factor coding gene GhLPF1 within the QTL-LP-ChrA06 locus for lint percentage (LP, percentage of lint to seed cotton) through constructing the 1-Day Post Anthesis Cotton Ovule Spatial Transcriptome Atlas. GhLPF1 is subjected as a downstream target of miR828 during fiber development. The direct downstream genes (DDGs) of GhLPF1 are biased to increased expression in GhLPF1-CR, and are preferentially expressed in OI, so that GhLPF1 is primarily a transcriptional repressor to its DDGs. Population-wide transcriptome analysis confirms that expression variation of GhLPF1-DDGs is significantly biased to negative correlation with LP, among which a type I homeobox protein-coding gene GhHB6 is further validated to be the directly downstream gene of GhLPF1. Given these data, it is demonstrated that GhLPF1 mediates a regulation network in LP as a transcriptional repressor, which makes it a valuable functional marker for fiber-trait improvement application from QTL-LP-ChrA06.
Collapse
Affiliation(s)
- Hongyu Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Luyao Wang
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Shengjun Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Mengtao Gao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
| | - Junfeng Cao
- School of Life SciencesCentre for Cell & Developmental Biology and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong999077China
| | - Yupeng Hao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Li Yu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Siyuan Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Yumeng Zhu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Jie Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Kening Lu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
| | - Linyun Ding
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Zhiyuan Zhang
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
- Seed Production and Quality Control Research CenterHainan Seed Industry LaboratorySanyaHainanChina
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| |
Collapse
|
7
|
Lv X, Song Y, Ke H, Sun Z, Zhang Y, Wang X, Ma Z, Gu Q. Genetic variation underlying nitrogen-deficiency tolerance in Gossypium hirsutum during the seedling stage. Genomics 2025; 117:111019. [PMID: 39999930 DOI: 10.1016/j.ygeno.2025.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
As over-fertilization leads to environmental concerns, selecting high yield cotton cultivars with a high nitrogen use efficiency (NUE) has become crucially important. However, the genetic effects underlying NUE traits remain unclear. In this study, a genome-wide association study (GWAS) was performed using 2.65 million high-quality single-nucleotide polymorphisms (SNPs) based on three NUE related traits at the seedling stage of 419 core accessions in four environments. A total of 21 novel loci were detected, of which, the novel peak on D10 chromosome was consistently detected for multiple traits and selected to analyze. We further identified and validated a novel candidate gene GhERF4 by RNA-seq, RT-qPCR, virus-induced gene silencing (VIGS) and overexpression methods, and the results suggest that GhERF4 plays a negative role in the regulation of N-deficiency tolerance. The identified SNPs and candidate genes provide new insights into understanding the molecular mechanism and breeding varieties in N-efficient tolerance.
Collapse
Affiliation(s)
- Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei Province/Hebei Agricultural University, Baoding, China
| | - Yuxin Song
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei Province/Hebei Agricultural University, Baoding, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei Province/Hebei Agricultural University, Baoding, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei Province/Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei Province/Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei Province/Hebei Agricultural University, Baoding, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei Province/Hebei Agricultural University, Baoding, China.
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei Province/Hebei Agricultural University, Baoding, China.
| |
Collapse
|
8
|
Kun W, Shoupu H, Yuxian Z. Cotton2035: From genomics research to optimized breeding. MOLECULAR PLANT 2025; 18:298-312. [PMID: 39844464 DOI: 10.1016/j.molp.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Cotton is the world's most important natural fiber crop and serves as an ideal model for studying plant genome evolution, cell differentiation, elongation, and cell wall biosynthesis. The first draft genome assembly for Gossypium raimondii, completed in 2012, marked the beginning of global efforts in studying cotton genomics. Over the past decade, the cotton research community has continued to assemble and refine the genomes for both wild and cultivated Gossypium species. With the accumulation of de novo genome assemblies and resequencing data across virous cotton populations, significant progress has been made in uncovering the genetic basis of key agronomic traits. Achieving the goal of cotton genomics-to-breeding (G2B) will require a deeper understanding of the spatiotemporal regulatory mechanisms involved in genome information storage and expression. We advocate for a cotton ENCODE project to systematically decode the functional elements and regulatory networks within the cotton genome. Technological advances, particularly on single-cell sequencing and high-resolution spatiotemporal omics, will be essential for elucidating these regulatory mechanisms. By integrating multi-omics data, genome editing tools, and artificial intelligence, these efforts will empower the genomics-driven strategies needed for future cotton G2B breeding.
Collapse
Affiliation(s)
- Wang Kun
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China.
| | - He Shoupu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572000, China.
| | - Zhu Yuxian
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
Zhang D, Wang Y, Gu Q, Liu L, Wang Z, Zhang J, Meng C, Yang J, Zhang Z, Ma Z, Wang X, Zhang Y. Cotton RLP6 Interacts With NDR1/HIN6 to Enhance Verticillium Wilt Resistance via Altering ROS and SA. MOLECULAR PLANT PATHOLOGY 2025; 26:e70052. [PMID: 39841622 PMCID: PMC11753439 DOI: 10.1111/mpp.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025]
Abstract
Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes. Here, we discovered a species-diversified structural variation (SV) in the promoter of receptor-like protein 6 (RLP6) that caused distinctly higher expression level of RLP6 in G. barbadense with the SV than G. hirsutum without the SV. Functional experiments showed that RLP6 is an important regulator in mediating VW resistance. Overexpressing RLP6 significantly enhanced resistance and root growth, whereas the opposite phenotype appeared in RLP6-silenced cotton. A series of experiments indicated that RLP6 regulated reactive oxygen species (ROS) and salicylic acid (SA) signalling, which induced diversified defence-related gene expression with pathogenesis-related (PR) proteins and cell wall proteins enrichments for resistance improvement. These findings could be valuable for the transfer of the G. barbadense SV locus to improve G. hirsutum VW resistance in future crop disease resistance breeding.
Collapse
Affiliation(s)
- Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Lixia Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zixu Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm ResourcesHebei Agricultural UniversityBaodingChina
| |
Collapse
|
10
|
Guo A, Nie H, Li H, Li B, Cheng C, Jiang K, Zhu S, Zhao N, Hua J. The miR3367-lncRNA67-GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:169-190. [PMID: 39526576 PMCID: PMC11734110 DOI: 10.1111/jipb.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Cytoplasmic male sterile (CMS) lines play a crucial role in utilization of heterosis in crop plants. However, the mechanism underlying the manipulation of male sterility in cotton by long non-coding RNA (lncRNA) and brassinosteroids (BRs) remains elusive. Here, using an integrative approach combining lncRNA transcriptomic profiles with virus-induced gene silencing experiments, we identify a flower bud-specific lncRNA in the maintainer line 2074B, lncRNA67, negatively modulating with male sterility in upland cotton (Gossypium hirsutum). lncRNA67 positively regulates cytochrome P274B (GhCYP724B), which acted as an eTM (endogenous target mimic) for miR3367. The suppression of GhCYP724B induced symptoms of BR deficiency and male semi-sterility in upland cotton as well as in tobacco, which resulted from a reduction in the endogenous BR contents. GhCYP724B regulates BRs synthesis by interacting with GhDIM and GhCYP90B, two BRs biosynthesis proteins. Additionally, GhCYP724B suppressed a unique chimeric open reading frame (Aorf27) in 2074A mitochondrial genome. Ectopic expression of Aorf27 in yeast inhibited cellular growth, and over expression of Aorf27 in tobacco showed male sterility. Overall, the results proved that the miR3367-lncRNA67-GhCYP724B module positively regulates male sterility by modulating BRs biosynthesis. The findings uncovered the function of lncRNA67-GhCYP724B in male sterility, providing a new mechanism for understanding male sterility in upland cotton.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Kaiyun Jiang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Shengwei Zhu
- Key Laboratory of Plant Molecular Physiology, Institute of BotanyChinese Academy of SciencesBeijing100093China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
11
|
Wang G, Zhang D, Wang H, Kong J, Chen Z, Ruan C, Deng C, Zheng Q, Guo Z, Liu H, Li W, Wang X, Guo W. Natural SNP Variation in GbOSM1 Promotor Enhances Verticillium Wilt Resistance in Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406522. [PMID: 39413014 PMCID: PMC11615771 DOI: 10.1002/advs.202406522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Osmotin is classified as the pathogenesis-related protein 5 group. However, its molecular mechanism involved in plant disease resistance remains largely unknown. Here, a Verticillium wilt (VW) resistance-related osmotin gene is identified in Gossypium barbadense (Gb), GbOSM1. GbOSM1 is preferentially expressed in the roots of disease-resistant G. barbadense acc. Hai7124 and highly induced by Verticillium dahliae (Vd). Silencing GbOSM1 reduces the VW resistance of Hai7124, while overexpression of GbOSM1 in disease-susceptible G. hirsutum improves tolerance. GbOSM1 predominantly localizes in tonoplasts, while it relocates to the apoplast upon exposure to osmotic stress or Vd infection. GbOSM1 confers VW resistance by hydrolyzing cell wall polysaccharides of Vd and activating plant immune pathways. Natural variation contributes to a differential CCAAT/CCGAT elements in the OSM1 promoter in cotton accessions. All G. hirsutum (Gh) exhibit the CCAAT haplotype, while there are two haplotypes of CCAAT/CCGAT in G. barbadense, with higher expression and stronger VW resistance in CCGAT haplotype. A NFYA5 transcription factor binds to the CCAAT element of GhOSM1 promoter and inhibits its transcription. Silencing GhNFYA5 results in higher GhOSM1 expression and enhances VW resistance. These results broaden the insights into the functional mechanisms of osmotin and provide an effective strategy to breed VW-resistant cotton.
Collapse
Affiliation(s)
- Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Jinmin Kong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Zhiguo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Chaofeng Ruan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Chaoyang Deng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Qihang Zheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Hanqiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| | - Xinyu Wang
- College of Life SciencesNanjing Agricultural UniversityNanjing210095China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and ApplicationNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
12
|
Liú R, Xiāo X, Gōng J, Lǐ J, Yán H, Gě Q, Lú Q, Lǐ P, Pān J, Shāng H, Shí Y, Chén Q, Yuán Y, Gǒng W. Genetic linkage analysis of stable QTLs in Gossypium hirsutum RIL population revealed function of GhCesA4 in fiber development. J Adv Res 2024; 65:33-46. [PMID: 38065406 PMCID: PMC11519737 DOI: 10.1016/j.jare.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/27/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Upland cotton is an important allotetrapolyploid crop providing natural fibers for textile industry. Under the present high-level breeding and production conditions, further simultaneous improvement of fiber quality and yield is facing unprecedented challenges due to their complex negative correlations. OBJECTIVES The study was to adequately identify quantitative trait loci (QTLs) and dissect how they orchestrate the formation of fiber quality and yield. METHODS A high-density genetic map (HDGM) based on an intraspecific recombinant inbred line (RIL) population consisting of 231 individuals was used to identify QTLs and QTL clusters of fiber quality and yield traits. The weighted gene correlation network analysis (WGCNA) package in R software was utilized to identify WGCNA network and hub genes related to fiber development. Gene functions were verified via virus-induced gene silencing (VIGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 strategies. RESULTS An HDGM consisting of 8045 markers was constructed spanning 4943.01 cM of cotton genome. A total of 295 QTLs were identified based on multi-environmental phenotypes. Among 139 stable QTLs, including 35 newly identified ones, seventy five were of fiber quality and 64 yield traits. A total of 33 QTL clusters harboring 74 QTLs were identified. Eleven candidate hub genes were identified via WGCNA using genes in all stable QTLs and QTL clusters. The relative expression profiles of these hub genes revealed their correlations with fiber development. VIGS and CRISPR/Cas9 edition revealed that the hub gene cellulose synthase 4 (GhCesA4, GH_D07G2262) positively regulate fiber length and fiber strength formation and negatively lint percentage. CONCLUSION Multiple analyses demonstrate that the hub genes harbored in the QTLs orchestrate the fiber development. The hub gene GhCesA4 has opposite pleiotropic effects in regulating trait formation of fiber quality and yield. The results facilitate understanding the genetic basis of negative correlation between cotton fiber quality and yield.
Collapse
Affiliation(s)
- Ruìxián Liú
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Xiànghuī Xiāo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China; College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Jǔwǔ Gōng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jùnwén Lǐ
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hàoliàng Yán
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qún Gě
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Quánwěi Lú
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Péngtāo Lǐ
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Jìngtāo Pān
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Hǎihóng Shāng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yùzhēn Shí
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qúanjiā Chén
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China.
| | - Yǒulù Yuán
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Wànkuí Gǒng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
13
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
14
|
Zhang C, Shao Z, Kong Y, Du H, Li W, Yang Z, Li X, Ke H, Sun Z, Shao J, Chen S, Zhang H, Chu J, Xing X, Tian R, Qin N, Li J, Huang M, Sun Y, Huo X, Meng C, Wang G, Liu Y, Ma Z, Tian S, Li X. High-quality genome of a modern soybean cultivar and resequencing of 547 accessions provide insights into the role of structural variation. Nat Genet 2024; 56:2247-2258. [PMID: 39251789 DOI: 10.1038/s41588-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Soybean provides protein, oil and multiple health-related compounds. Understanding the effects of structural variations (SVs) on economic traits in modern breeding is important for soybean improvement. Here we assembled the high-quality genome of modern cultivar Nongdadou2 (NDD2) and identified 25,814 SV-gene pairs compared to 29 reported genomes, with 13 NDD2-private SVs validated in 547 deep-resequencing (average = 18.05-fold) accessions, which advances our understanding of genomic variation biology. We found some insertions/deletions involved in seed protein and weight formation, an inversion related to adaptation to drought and a large intertranslocation implicated in a key divergence event in soybean. Of 749,714 SVs from 547 accessions, 6,013 were significantly associated with 22 yield-related and seed-quality-related traits determined in ten location × year environments. We uncovered 1,761 associated SVs that hit genes or regulatory regions, with 12 in GmMQT influencing oil and isoflavone contents. Our work provides resources and insights into SV roles in soybean improvement.
Collapse
Affiliation(s)
- Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| | - Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xiangkong Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Jiabiao Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Shiliang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Jiahao Chu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Rui Tian
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Ning Qin
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Junru Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Meihong Huang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Yaqian Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xiaobo Huo
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Yuan Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, China.
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
15
|
Han B, Zhang W, Wang F, Yue P, Liu Z, Yue D, Zhang B, Ma Y, Lin Z, Yu Y, Wang Y, Zhang X, Yang X. Dissecting the Superior Drivers for the Simultaneous Improvement of Fiber Quality and Yield Under Drought Stress Via Genome-Wide Artificial Introgressions of Gossypium barbadense into Gossypium hirsutum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400445. [PMID: 38984458 PMCID: PMC11425955 DOI: 10.1002/advs.202400445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Indexed: 07/11/2024]
Abstract
Global water scarcity and extreme weather intensify drought stress, significantly reducing cotton yield and quality worldwide. Drought treatments are conducted using a population of chromosome segment substitution lines generated from E22 (G. hirsutum) and 3-79 (G. barbadense) as parental lines either show superior yields or fiber quality under both control and drought conditions. Fourteen datasets, covering 4 yields and 4 quality traits, are compiled and assessed for drought resistance using the drought resistance coefficient (DRC) and membership function value of drought resistance (MFVD). Genome-wide association studies, linkage analysis, and bulked segregant analysis are combined to analyze the DR-related QTL. A total of 121 significant QTL are identified by DRC and MFVD of the 8 traits. CRISPR/Cas9 and virus-induced gene silencing techniques verified DRR1 and DRT1 as pivotal genes in regulating drought resistant of cotton, with hap3-79 exhibiting greater drought resistance than hapE22 concerning DRR1 and DRT1. Moreover, 14 markers with superior yield and fiber quality are selected for drought treatment. This study offers valuable insights into yield and fiber quality variations between G. hirsutum and G. barbadense amid drought, providing crucial theoretical and technological backing for developing cotton varieties resilient to drought, with high yield and superior fiber quality.
Collapse
Affiliation(s)
- Bei Han
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Wenhao Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Fengjiao Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Pengkai Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Zhilin Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yu Yu
- Cotton InstituteXinjiang Academy of Agriculture and Reclamation ScienceShihezi832000China
| | - Yanqin Wang
- College of Life SciencesTarim UniversityAlar843300China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
16
|
Chen BZ, Yang ZJ, Wang WB, Hao TT, Yu PB, Dong Y, Yu WB. Chromosome-level genome assembly and annotation of Flueggea virosa (Phyllanthaceae). Sci Data 2024; 11:875. [PMID: 39138223 PMCID: PMC11322648 DOI: 10.1038/s41597-024-03681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Flueggea virosa (Roxb. ex Willd.) Royle, an evergreen shrub and small tree in the Phyllanthaceae family, holds significant potential in garden landscaping and pharmacological applications. However, the lack of genomic data has hindered further scientific understanding of its horticultural and medicinal values. In this study, we have assembled a haplotype-resolved genome of F. virosa for the first time. The two haploid genomes, named haplotype A genome and haplotype B genome, are 487.33 Mb and 477.53 Mb in size, respectively, with contig N50 lengths of 31.45 Mb and 32.81 Mb. More than 99% of the assembled sequences were anchored to 13 pairs of pseudo-chromosomes. Furthermore, 21,587 and 21,533 protein-coding genes were predicted in haplotype A and haplotype B genomes, respectively. The availability of this chromosome-level genome fills the gap in genomic data for F. virosa and provides valuable resources for molecular studies of this species, supporting future research on speciation, functional genomics, and comparative genomics within the Phyllanthaceae family.
Collapse
Affiliation(s)
- Bao-Zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Zi-Jiang Yang
- Bioinformatics group, Wageningen University and Research, Wageningen, Netherlands
| | - Wei-Bin Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Ting-Ting Hao
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Peng-Ban Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Wen-Bin Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| |
Collapse
|
17
|
Wu C, Xiao S, Zhang X, Ren W, Shangguan X, Li S, Zuo D, Cheng H, Zhang Y, Wang Q, Lv L, Li P, Song G. GhHDZ76, a cotton HD-Zip transcription factor, involved in regulating the initiation and early elongation of cotton fiber development in G. hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112132. [PMID: 38788903 DOI: 10.1016/j.plantsci.2024.112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
In this study, the whole HD-Zip family members of G. hirsutum were identified, and GhHDZ76 was classified into the HD-Zip IV subgroup. GhHDZ76 was predominantly expressed in the 0-5 DPA of fiber development stage and localized in the nucleus. Overexpression of GhHDZ76 significantly increased the length and density of trichomes in Arabidopsis thaliana. The fiber length of GhHDZ76 knockout lines by CRISPR/Cas9 was significantly shorter than WT at the early elongation and mature stage, indicating that GhHDZ76 positively regulate the fiber elongation. Scanning electron microscopy showed that the number of ovule surface protrusion of 0 DPA of GhHDZ76 knockout lines was significantly lower than WT, suggesting that GhHDZ76 can also promote the initiation of fiber development. The transcript level of GhWRKY16, GhRDL1, GhEXPA1 and GhMYB25 genes related to fiber initiation and elongation in GhHDZ76 knockout lines were significantly decreased. Yeast two-hybrid and Luciferase complementation imaging (LCI) assays showed that GhHDZ76 can interact with GhWRKY16 directly. As a transcription factor, GhHDZ76 has transcriptional activation activity, which could bind to L1-box elements of the promoters of GhRDL1 and GhEXPA1. Double luciferase reporter assay showed that the GhWRKY16 could enhance the transcriptional activity of GhHDZ76 to pGhRDL1, but it did not promote the transcriptional activity of GhHDZ76 to pGhEXPA1. GhHDZ76 protein may also promote the transcriptional activity of GhWRKY16 to the downstream target gene GhMYB25. Our results provided a new gene resource for fiber development and a theoretical basis for the genetic improvement of cotton fiber quality.
Collapse
Affiliation(s)
- Cuicui Wu
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng 044000, China
| | - Shuiping Xiao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Economic Crops Research Institute of Jiangxi Province, Nanchang 330000, China
| | - Xianliang Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), changji 831100, China
| | - Wenbin Ren
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng 044000, China
| | - Xiaoxia Shangguan
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng 044000, China
| | - Shuyan Li
- Anyang Institute of Technology, Anyang 455000, China
| | - Dongyun Zuo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailiang Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiaolian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengbo Li
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng 044000, China.
| | - Guoli Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
18
|
Gu Q, Lv X, Zhang D, Zhang Y, Wang X, Ke H, Yang J, Chen B, Wu L, Zhang G, Wang X, Sun Z, Ma Z. Deepening genomic sequences of 1081 Gossypium hirsutum accessions reveals novel SNPs and haplotypes relevant for practical breeding utility. Genomics 2024; 116:110848. [PMID: 38663523 DOI: 10.1016/j.ygeno.2024.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
Fiber quality is a major breeding goal in cotton, but phenotypically direct selection is often hindered. In this study, we identified fiber quality and yield related loci using GWAS based on 2.97 million SNPs obtained from 10.65× resequencing data of 1081 accessions. The results showed that 585 novel fiber loci, including two novel stable SNP peaks associated with fiber length on chromosomes At12 and Dt05 and one novel genome regions linked with fiber strength on chromosome Dt12 were identified. Furthermore, by means of gene expression analysis, GhM_A12G0090, GhM_D05G1692, GhM_D12G3135 were identified and GhM_D11G2208 function was identified in Arabidopsis. Additionally, 14 consistent and stable superior haplotypes were identified, and 25 accessions were detected as possessing these 14 superior haplotype in breeding. This study providing fundamental insight relevant to identification of genes associated with fiber quality and yield will enhance future efforts toward improvement of upland cotton.
Collapse
Affiliation(s)
- Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xingyi Wang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China.
| |
Collapse
|
19
|
Guo A, Li H, Huang Y, Ma X, Li B, Du X, Cui Y, Zhao N, Hua J. Yield-related quantitative trait loci identification and lint percentage hereditary dissection under salt stress in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:115-136. [PMID: 38573794 DOI: 10.1111/tpj.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/07/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear. Here, we employed a recombinant inbred line population in upland cotton (Gossypium hirsutum L.) and investigated the effects of salt stress on five yield and yield component traits, including seed cotton yield per plant, lint yield per plant, boll number per plant, boll weight, and LP. Between three datasets of salt stress (E1), normal growth (E2), and the difference values dataset of salt stress and normal conditions (D-value), 87, 82, and 55 quantitative trait loci (QTL) were detectable, respectively. In total, five QTL (qLY-Chr6-2, qBNP-Chr4-1, qBNP-Chr12-1, qBNP-Chr15-5, qLP-Chr19-2) detected in both in E1 and D-value were salt related QTL, and three stable QTL (qLP-Chr5-3, qLP-Chr13-1, qBW-Chr5-5) were detected both in E1 and E2 across 3 years. Silencing of nine genes within a stable QTL (qLP-Chr5-3) highly expressed in fiber developmental stages increased LP and decreased fiber length (FL), indicating that multiple minor-effect genes clustered on Chromosome 5 regulate LP and FL. Additionally, the difference in LP caused by Gh_A05G3226 is mainly in transcription level rather than in the sequence difference. Moreover, silencing of salt related gene (GhDAAT) within qBNP-Chr4-1 decreased salt tolerance in cotton. Our findings shed light on the regulatory mechanisms underlining cotton salt tolerance and fiber initiation.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xiaoqing Ma
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Xiaoqi Du
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Yanan Cui
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| |
Collapse
|
20
|
Song X, Zhu G, Su X, Yu Y, Duan Y, Wang H, Shang X, Xu H, Chen Q, Guo W. Combined genome and transcriptome analysis of elite fiber quality in Gossypium barbadense. PLANT PHYSIOLOGY 2024; 195:2158-2175. [PMID: 38513701 DOI: 10.1093/plphys/kiae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Gossypium barbadense, which is one of several species of cotton, is well known for its superior fiber quality. However, the genetic basis of its high-quality fiber remains largely unexplored. Here, we resequenced 269 G. barbadense accessions. Phylogenetic structure analysis showed that the set of accessions was clustered into 3 groups: G1 and G2 mainly included modern cultivars from Xinjiang, China, and G3 was related to widely introduced accessions in different regions worldwide. A genome-wide association study of 5 fiber quality traits across multiple field environments identified a total of 512 qtls (main-effect QTLs) and 94 qtlEs (QTL-by-environment interactions) related to fiber quality, of which 292 qtls and 57 qtlEs colocated with previous studies. We extracted the genes located in these loci and performed expression comparison, local association analysis, and introgression segment identification. The results showed that high expression of hormone-related genes during fiber development, introgressions from Gossypium hirsutum, and the recombination of domesticated elite allelic variation were 3 major contributors to improve the fiber quality of G. barbadense. In total, 839 candidate genes with encoding region variations associated with elite fiber quality were mined. We confirmed that haplotype GB_D03G0092H traced to G. hirsutum introgression, with a 1-bp deletion leading to a frameshift mutation compared with GB_D03G0092B, significantly improved fiber quality. GB_D03G0092H is localized in the plasma membrane, while GB_D03G0092B is in both the nucleus and plasma membrane. Overexpression of GB_D03G0092H in Arabidopsis (Arabidopsis thaliana) significantly improved the elongation of longitudinal cells. Our study systematically reveals the genetic basis of the superior fiber quality of G. barbadense and provides elite segments and gene resources for breeding high-quality cotton cultivars.
Collapse
Affiliation(s)
- Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiujuan Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yujia Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijiang Xu
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Liu S, Cheng H, Zhang Y, He M, Zuo D, Wang Q, Lv L, Lin Z, Liu J, Song G. Cotton transposon-related variome reveals roles of transposon-related variations in modern cotton cultivation. J Adv Res 2024:S2090-1232(24)00209-1. [PMID: 38810909 DOI: 10.1016/j.jare.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION Transposon plays a vital role in cotton genome evolution, contributing to the expansion and divergence of genomes within the Gossypium genus. However, knowledge of transposon activity in modern cotton cultivation is limited. OBJECTIVES In this study, we aimed to construct transposon-related variome within Gossypium genus and reveal role of transposon-related variations during cotton cultivation. In addition, we try to identify valuable transposon-related variations for cotton breeding. METHODS We utilized graphical genome construction to build up the graphical transposon-related variome. Based on the graphical variome, we integrated t-test, eQTL analysis and Mendelian Randomization (MR) to identify valuable transposon activities and elite genes. In addition, a convolutional neural network (CNN) model was constructed to evaluate epigenomic effects of transposon-related variations. RESULTS We identified 35,980 transposon activities among 10 cotton genomes, and the diversity of genomic and epigenomic features was observed among 21 transposon categories. The graphical cotton transposon-related variome was constructed, and 9,614 transposon-related variations with plasticity in the modern cotton cohort were used for eQTL, phenotypic t-test and Mendelian Randomization. 128 genes were identified as gene resources improving fiber length and strength simultaneously. 4 genes were selected from 128 genes to construct the elite gene panel whose utility has been validated in a natural cotton cohort and 2 accessions with phenotypic divergence. Based on the eQTL analysis results, we identified transposon-related variations involved in cotton's environmental adaption and human domestication, providing evidence of their role in cotton's adaption-domestication cooperation. CONCLUSIONS The cotton transposon-related variome revealed the role of transposon-related variations in modern cotton cultivation, providing genomic resources for cotton molecular breeding.
Collapse
Affiliation(s)
- Shang Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hailiang Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, Zhengzhou University, Zhengzhou 450001, China
| | - Youping Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Man He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyun Zuo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiaolian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhongxv Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ji Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Guoli Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
22
|
Tang L, Liu C, Li X, Wang H, Zhang S, Cai X, Zhang J. An aldehyde dehydrogenase gene, GhALDH7B4_A06, positively regulates fiber strength in upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1377682. [PMID: 38736450 PMCID: PMC11082362 DOI: 10.3389/fpls.2024.1377682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
High fiber strength (FS) premium cotton has significant market demand. Consequently, enhancing FS is a major objective in breeding quality cotton. However, there is a notable lack of known functionally applicable genes that can be targeted for breeding. To address this issue, our study used specific length-amplified fragment sequencing combined with bulk segregant analysis to study FS trait in an F2 population. Subsequently, we integrated these results with previous quantitative trait locus mapping results regarding fiber quality, which used simple sequence repeat markers in F2, F2:3, and recombinant inbred line populations. We identified a stable quantitative trait locus qFSA06 associated with FS located on chromosome A06 (90.74-90.83 Mb). Within this interval, we cloned a gene, GhALDH7B4_A06, which harbored a critical mutation site in coding sequences that is distinct in the two parents of the tested cotton line. In the paternal parent Ji228, the gene is normal and referred to as GhALDH7B4_A06O; however, there is a nonsense mutation in the maternal parent Ji567 that results in premature termination of protein translation, and this gene is designated as truncated GhALDH7B4_A06S. Validation using recombinant inbred lines and gene expression analysis revealed that this mutation site is correlated with cotton FS. Virus-induced gene silencing of GhALDH7B4 in cotton caused significant decreases in FS and fiber micronaire. Conversely, GhALDH7B4_A06O overexpression in Arabidopsis boosted cell wall component contents in the stem. The findings of our study provide a candidate gene for improving cotton fiber quality through molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, Hebei, China
| |
Collapse
|
23
|
Feng C, Stetina SR, Erpelding JE. Transcriptome Analysis of Resistant Cotton Germplasm Responding to Reniform Nematodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:958. [PMID: 38611488 PMCID: PMC11013486 DOI: 10.3390/plants13070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Reniform nematode (Rotylenchulus reniformis) is an important microparasite for Upland cotton (Gossypium hirsutum L.) production. Growing resistant cultivars is the most economical management method, but only a few G. barbadense genotypes and some diploid Gossypium species confer high levels of resistance. This study conducted a transcriptome analysis of resistant genotypes to identify genes involved in host plant defense. Seedlings of G. arboreum accessions PI 529728 (A2-100) and PI 615699 (A2-190), and G. barbadense genotypes PI 608139 (GB 713) and PI 163608 (TX 110), were inoculated with the reniform nematode population MSRR04 and root samples were collected on the fifth (D5) and ninth (D9) day after inoculation. Differentially expressed genes (DEGs) were identified by comparing root transcriptomes from inoculated plants with those from non-inoculated plants. Accessions A2-100 and A2-190 showed 52 and 29 DEGs on D5, respectively, with 14 DEGs in common, and 18 DEGs for A2-100 and 11 DEGs for A2-190 on chromosome 5. On D9, four DEGs were found in A2-100 and two DEGs in A2-190. For GB 713, 52 and 43 DEGs were found, and for TX 110, 29 and 117 DEGs were observed on D5 and D9, respectively. Six DEGs were common at the two sampling times for these genotypes. Some DEGs were identified as Meloidogyne-induced cotton (MIC) 3 and 4, resistance gene analogs, or receptor-like proteins. Other DEGs have potential roles in plant defense, such as peroxidases, programmed cell death, pathogenesis related proteins, and systemic acquired resistance. Further research on these DEGs will aid in understanding the mechanisms of resistance to explore new applications for the development of resistant cultivars.
Collapse
Affiliation(s)
- Chunda Feng
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| | - Salliana R Stetina
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| | - John E Erpelding
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| |
Collapse
|
24
|
Liu S, Cheng H, Zhang Y, He M, Zuo D, Wang Q, Lv L, Lin Z, Song G. Fingerprint Finder: Identifying Genomic Fingerprint Sites in Cotton Cohorts for Genetic Analysis and Breeding Advancement. Genes (Basel) 2024; 15:378. [PMID: 38540437 PMCID: PMC10970022 DOI: 10.3390/genes15030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024] Open
Abstract
Genomic data in Gossypium provide numerous data resources for the cotton genomics community. However, to fill the gap between genomic analysis and breeding field work, detecting the featured genomic items of a subset cohort is essential for geneticists. We developed FPFinder v1.0 software to identify a subset of the cohort's fingerprint genomic sites. The FPFinder was developed based on the term frequency-inverse document frequency algorithm. With the short-read sequencing of an elite cotton pedigree, we identified 453 pedigree fingerprint genomic sites and found that these pedigree-featured sites had a role in cotton development. In addition, we applied FPFinder to evaluate the geographical bias of fiber-length-related genomic sites from a modern cotton cohort consisting of 410 accessions. Enriching elite sites in cultivars from the Yangtze River region resulted in the longer fiber length of Yangze River-sourced accessions. Apart from characterizing functional sites, we also identified 12,536 region-specific genomic sites. Combining the transcriptome data of multiple tissues and samples under various abiotic stresses, we found that several region-specific sites contributed to environmental adaptation. In this research, FPFinder revealed the role of the cotton pedigree fingerprint and region-specific sites in cotton development and environmental adaptation, respectively. The FPFinder can be applied broadly in other crops and contribute to genetic breeding in the future.
Collapse
Affiliation(s)
- Shang Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (Y.Z.); (M.H.); (D.Z.); (Q.W.); (L.L.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Hailiang Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (Y.Z.); (M.H.); (D.Z.); (Q.W.); (L.L.)
- Zhengzhou Research Base, Zhengzhou University, Zhengzhou 450001, China
| | - Youping Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (Y.Z.); (M.H.); (D.Z.); (Q.W.); (L.L.)
| | - Man He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (Y.Z.); (M.H.); (D.Z.); (Q.W.); (L.L.)
| | - Dongyun Zuo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (Y.Z.); (M.H.); (D.Z.); (Q.W.); (L.L.)
| | - Qiaolian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (Y.Z.); (M.H.); (D.Z.); (Q.W.); (L.L.)
| | - Limin Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (Y.Z.); (M.H.); (D.Z.); (Q.W.); (L.L.)
| | - Zhongxv Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guoli Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (Y.Z.); (M.H.); (D.Z.); (Q.W.); (L.L.)
- Zhengzhou Research Base, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
25
|
Hu H, Scheben A, Wang J, Li F, Li C, Edwards D, Zhao J. Unravelling inversions: Technological advances, challenges, and potential impact on crop breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:544-554. [PMID: 37961986 PMCID: PMC10893937 DOI: 10.1111/pbi.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Inversions, a type of chromosomal structural variation, significantly influence plant adaptation and gene functions by impacting gene expression and recombination rates. However, compared with other structural variations, their roles in functional biology and crop improvement remain largely unexplored. In this review, we highlight technological and methodological advancements that have allowed a comprehensive understanding of inversion variants through the pangenome framework and machine learning algorithms. Genome editing is an efficient method for inducing or reversing inversion mutations in plants, providing an effective mechanism to modify local recombination rates. Given the potential of inversions in crop breeding, we anticipate increasing attention on inversions from the scientific community in future research and breeding applications.
Collapse
Affiliation(s)
- Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Centre for Crop & Food Innovation, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - David Edwards
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Australia & Centre for Applied BioinformaticsUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co‐construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| |
Collapse
|
26
|
Wilson IW, Moncuquet P, Yuan Y, Soliveres M, Li Z, Stiller W, Zhu QH. Genetic Mapping and Characterization of Verticillium Wilt Resistance in a Recombinant Inbred Population of Upland Cotton. Int J Mol Sci 2024; 25:2439. [PMID: 38397116 PMCID: PMC10889826 DOI: 10.3390/ijms25042439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Verticillium wilt (VW) is an important and widespread disease of cotton and once established is long-lived and difficult to manage. In Australia, the non-defoliating pathotype of Verticillium dahliae is the most common, and extremely virulent. Breeding cotton varieties with increased VW resistance is the most economical and effective method of controlling this disease and is greatly aided by understanding the genetics of resistance. This study aimed to investigate VW resistance in 240 F7 recombinant inbred lines (RIL) derived from a cross between MCU-5, which has good resistance, and Siokra 1-4, which is susceptible. Using a controlled environment bioassay, we found that resistance based on plant survival or shoot biomass was complex but with major contributions from chromosomes D03 and D09, with genomic prediction analysis estimating a prediction accuracy of 0.73 based on survival scores compared to 0.36 for shoot biomass. Transcriptome analysis of MCU-5 and Siokra 1-4 roots uninfected or infected with V. dahliae revealed that the two cultivars displayed very different root transcriptomes and responded differently to V. dahliae infection. Ninety-nine differentially expressed genes were located in the two mapped resistance regions and so are potential candidates for further identifying the genes responsible for VW resistance.
Collapse
Affiliation(s)
- Iain W. Wilson
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2061, Australia
| | | | - Yuman Yuan
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2061, Australia
| | - Melanie Soliveres
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2061, Australia
| | - Zitong Li
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2061, Australia
| | - Warwick Stiller
- CSIRO Agriculture and Food, Locked Bag 59, Narrabri, NSW 2390, Australia
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2061, Australia
| |
Collapse
|
27
|
Chang X, He X, Li J, Liu Z, Pi R, Luo X, Wang R, Hu X, Lu S, Zhang X, Wang M. High-quality Gossypium hirsutum and Gossypium barbadense genome assemblies reveal the landscape and evolution of centromeres. PLANT COMMUNICATIONS 2024; 5:100722. [PMID: 37742072 PMCID: PMC10873883 DOI: 10.1016/j.xplc.2023.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Centromere positioning and organization are crucial for genome evolution; however, research on centromere biology is largely influenced by the quality of available genome assemblies. Here, we combined Oxford Nanopore and Pacific Biosciences technologies to de novo assemble two high-quality reference genomes for Gossypium hirsutum (TM-1) and Gossypium barbadense (3-79). Compared with previously published reference genomes, our assemblies show substantial improvements, with the contig N50 improved by 4.6-fold and 5.6-fold, respectively, and thus represent the most complete cotton genomes to date. These high-quality reference genomes enable us to characterize 14 and 5 complete centromeric regions for G. hirsutum and G. barbadense, respectively. Our data revealed that the centromeres of allotetraploid cotton are occupied by members of the centromeric repeat for maize (CRM) and Tekay long terminal repeat families, and the CRM family reshapes the centromere structure of the At subgenome after polyploidization. These two intertwined families have driven the convergent evolution of centromeres between the two subgenomes, ensuring centromere function and genome stability. In addition, the repositioning and high sequence divergence of centromeres between G. hirsutum and G. barbadense have contributed to speciation and centromere diversity. This study sheds light on centromere evolution in a significant crop and provides an alternative approach for exploring the evolution of polyploid plants.
Collapse
Affiliation(s)
- Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
28
|
Liu S, Zuo D, Cheng H, He M, Wang Q, Lv L, Zhang Y, Ashraf J, Liu J, Song G. Cotton pedigree genome reveals restriction of cultivar-driven strategy in cotton breeding. Genome Biol 2023; 24:282. [PMID: 38066616 PMCID: PMC10704732 DOI: 10.1186/s13059-023-03124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Many elite genes have been identified from the available cotton genomic data, providing various genetic resources for gene-driven breeding. However, backbone cultivar-driven breeding is the most widely applied strategy. Revealing the genetic basis of cultivar-driven strategy's restriction is crucial for transition of cotton breeding strategy. RESULT CRI12 is a backbone cultivar in cultivar-driven breeding. Here we sequence the pedigree of CRI12 using Nanopore long-read sequencing. We construct a graphical pedigree genome using the high-quality CRI12 genome and 13,138 structural variations within 20 different pedigree members. We find that low hereditary stability of elite segments in backbone cultivars is a drawback of cultivar-driven strategy. We also identify 623 functional segments in CRI12 for multiple agronomic traits in presence and absence variation-based genome-wide association study on three cohorts. We demonstrate that 25 deleterious segments are responsible for the geographical divergence of cotton in pathogen resistance. We also characterize an elite pathogen-resistant gene (GhKHCP) utilized in modern cotton breeding. In addition, we identify 386 pedigree fingerprint segments by comparing the segments of the CRI12 pedigree with those of a large cotton population. CONCLUSION We characterize the genetic patterns of functional segments in the pedigree of CRI12 using graphical genome method, revealing restrictions of cultivar-driven strategies in cotton breeding. These findings provide theoretical support for transitioning from cultivar-driven to gene-driven strategy in cotton breeding.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Dongyun Zuo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Hailiang Cheng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Man He
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qiaolian Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Lv
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Youping Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Javaria Ashraf
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ji Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Guoli Song
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
29
|
Wang N, Li Y, Meng Q, Chen M, Wu M, Zhang R, Xu Z, Sun J, Zhang X, Nie X, Yuan D, Lin Z. Genome and haplotype provide insights into the population differentiation and breeding improvement of Gossypium barbadense. J Adv Res 2023; 54:15-27. [PMID: 36775017 DOI: 10.1016/j.jare.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Sea-island cotton (Gossypium barbadense, Gb) is one of the major sources of high-grade natural fiber. Besides the common annual Gb cotton, perennial Gb cotton is also cultivated, but studies on perennial Gb cotton are rare. OBJECTIVES We aimed to make a systematic analysis of perennial sea-island cotton and lay a foundation for its utilization in breeding, and try to identify the representative structural variations (SVs) in sea-island cotton, and to reveal the population differentiation and adaptive improvement of sea-island cotton. METHODS Through genome assembly of one perennial Gb cotton accession (named Gb_M210936) and comparative genome analysis, variations during Gb cotton domestication were identified by comparing Gb_M210936 with annual Gb accession 3-79 and with wild allotetraploid cotton G. darwinii. Six perennial Gb accessions combining with the resequenced 1,129 cotton accessions were used to conduct population and genetic analysis. Large haplotype blocks (haploblocks), generated from interspecific introgressions and intraspecific inversions, were identified and were used to analyze their effects on population differentiation and agronomic traits of sea-island cotton. RESULTS One reference genome of perennial sea-island cotton was assembled. Representative SVs in sea-island cotton were identified, and 31 SVs were found to be associated with agronomic traits. Perennial Gb cotton had a closer kinship with the wild-to-landrace continuum Gb cotton from south America where Gb cotton is originally domesticated. Haploblocks were associated with agronomic traits improvement of sea-island cotton, promoted sea-island cotton differentiation into three subgroups, were suffered from breeding selection, and may drive Gb cotton to be adapted to central Asian. CONCLUSION Our study made up the lack of perennial Gb cotton genome, and clarified that exotic introgressions improved the traits of sea-island cotton, promoted the population differentiation, and drove sea-island cotton adaptive to central Asia, which will provide new insights for the genetic breeding improvement of sea-island cottons.
Collapse
Affiliation(s)
- Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Meilin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mi Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhiyong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Jie Sun
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
30
|
Huang Y, Qi Z, Li J, You J, Zhang X, Wang M. Genetic interrogation of phenotypic plasticity informs genome-enabled breeding in cotton. J Genet Genomics 2023; 50:971-982. [PMID: 37211312 DOI: 10.1016/j.jgg.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Phenotypic plasticity, or the ability to adapt to and thrive in changing climates and variable environments, is essential for developmental programs in plants. Despite its importance, the genetic underpinnings of phenotypic plasticity for key agronomic traits remain poorly understood in many crops. In this study, we aim to fill this gap by using genome-wide association studies to identify genetic variations associated with phenotypic plasticity in upland cotton (Gossypium hirsutum L.). We identified 73 additive quantitative trait loci (QTLs), 32 dominant QTLs, and 6799 epistatic QTLs associated with 20 traits. We also identified 117 additive QTLs, 28 dominant QTLs, and 4691 epistatic QTLs associated with phenotypic plasticity in 19 traits. Our findings reveal new genetic factors, including additive, dominant, and epistatic QTLs, that are linked to phenotypic plasticity and agronomic traits. Meanwhile, we find that the genetic factors controlling the mean phenotype and phenotypic plasticity are largely independent in upland cotton, indicating the potential for simultaneous improvement. Additionally, we envision a genomic design strategy by utilizing the identified QTLs to facilitate cotton breeding. Taken together, our study provides new insights into the genetic basis of phenotypic plasticity in cotton, which should be valuable for future breeding.
Collapse
Affiliation(s)
- Yuefan Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
31
|
Abro AA, Anwar M, Javwad MU, Zhang M, Liu F, Jiménez-Ballesta R, Salama EA, Ahmed MA. Morphological and physio-biochemical responses under heat stress in cotton: Overview. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 40:e00813. [PMID: 37859996 PMCID: PMC10582760 DOI: 10.1016/j.btre.2023.e00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023]
Abstract
Cotton is an important cash crop in addition to being a fiber commodity, and it plays an essential part in the economies of numerous nations. High temperature is the most critical element affecting its yield from fertilization to harvest. The optimal temperature for root formation is 30 C -35 °C; however, root development ends around 40 °C. Increased temperature, in particular, influences different biochemical and physiological processes associated with cotton plant, resulting in low seed cotton production. Many studies in various agroecological zones used various agronomic strategies and contemporary breeding techniques to reduce heat stress and improve cotton productivity. To attain desired traits, cotton breeders should investigate all potential possibilities, such as generating superior cultivars by traditional breeding, employing molecular techniques and transgenic methods, such as using genome editing techniques. The main objective of this review is to provide the recent information on the environmental factors, such as temperature, heat and drought, influence the growth and development, morphology and physio-chemical alteration associated with cotton. Furthermore, recent advancement in cotton breeding to combat the serious threat of drought and heat stress.
Collapse
Affiliation(s)
- Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Muhammad Umer Javwad
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mjie Zhang
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | | | - Ehab A. A. Salama
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore- 641003, India
- Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture - Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
- School of Agriculture, Yunnan University, Chenggong District, Kunming, 650091, Yunnan, China
| |
Collapse
|
32
|
You J, Liu Z, Qi Z, Ma Y, Sun M, Su L, Niu H, Peng Y, Luo X, Zhu M, Huang Y, Chang X, Hu X, Zhang Y, Pi R, Liu Y, Meng Q, Li J, Zhang Q, Zhu L, Lin Z, Min L, Yuan D, Grover CE, Fang DD, Lindsey K, Wendel JF, Tu L, Zhang X, Wang M. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nat Genet 2023; 55:1987-1997. [PMID: 37845354 PMCID: PMC10632151 DOI: 10.1038/s41588-023-01530-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants.
Collapse
Affiliation(s)
- Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Niu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yabing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuefan Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
33
|
Li S, Kong L, Xiao X, Li P, Liu A, Li J, Gong J, Gong W, Ge Q, Shang H, Pan J, Chen H, Peng Y, Zhang Y, Lu Q, Shi Y, Yuan Y. Genome-wide artificial introgressions of Gossypium barbadense into G. hirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits. J Adv Res 2023; 53:1-16. [PMID: 36460274 PMCID: PMC10658236 DOI: 10.1016/j.jare.2022.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The simultaneous improvement of fiber quality and yield for cotton is strongly limited by the narrow genetic backgrounds of Gossypium hirsutum (Gh) and the negative genetic correlations among traits. An effective way to overcome the bottlenecks is to introgress the favorable alleles of Gossypium barbadense (Gb) for fiber quality into Gh with high yield. OBJECTIVES This study was to identify superior loci for the improvement of fiber quality and yield. METHODS Two sets of chromosome segment substitution lines (CSSLs) were generated by crossing Hai1 (Gb, donor-parent) with cultivar CCRI36 (Gh) and CCRI45 (Gh) as genetic backgrounds, and cultivated in 6 and 8 environments, respectively. The kmer genotyping strategy was improved and applied to the population genetic analysis of 743 genomic sequencing data. A progeny segregating population was constructed to validate genetic effects of the candidate loci. RESULTS A total of 68,912 and 83,352 genome-wide introgressed kmers were identified in the CCRI36 and CCRI45 populations, respectively. Over 90 % introgressions were homologous exchanges and about 21 % were reverse insertions. In total, 291 major introgressed segments were identified with stable genetic effects, of which 66(22.98 %), 64(21.99 %), 35(12.03 %), 31(10.65 %) and 18(6.19 %) were beneficial for the improvement of fiber length (FL), strength (FS), micronaire, lint-percentage (LP) and boll-weight, respectively. Thirty-nine introgression segments were detected with stable favorable additive effects for simultaneous improvement of 2 or more traits in Gh genetic background, including 6 could increase FL/FS and LP. The pyramiding effects of 3 pleiotropic segments (A07:C45Clu-081, D06:C45Clu-218, D02:C45Clu-193) were further validated in the segregating population. CONCLUSION The combining of genome-wide introgressions and kmer genotyping strategy showed significant advantages in exploring genetic resources. Through the genome-wide comprehensive mining, a total of 11 clusters (segments) were discovered for the stable simultaneous improvement of FL/FS and LP, which should be paid more attention in the future.
Collapse
Affiliation(s)
- Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linglei Kong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke 843900, China
| | - Yuanming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
34
|
Song H, Wang Y, Shao H, Li Z, Hu P, Yap-Chiongco MK, Shi P, Zhang T, Li C, Wang Y, Ma P, Vinther J, Wang H, Kocot KM. Scaphopoda is the sister taxon to Bivalvia: Evidence of ancient incomplete lineage sorting. Proc Natl Acad Sci U S A 2023; 120:e2302361120. [PMID: 37738291 PMCID: PMC10556646 DOI: 10.1073/pnas.2302361120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
The almost simultaneous emergence of major animal phyla during the early Cambrian shaped modern animal biodiversity. Reconstructing evolutionary relationships among such closely spaced branches in the animal tree of life has proven to be a major challenge, hindering understanding of early animal evolution and the fossil record. This is particularly true in the species-rich and highly varied Mollusca where dramatic inconsistency among paleontological, morphological, and molecular evidence has led to a long-standing debate about the group's phylogeny and the nature of dozens of enigmatic fossil taxa. A critical step needed to overcome this issue is to supplement available genomic data, which is plentiful for well-studied lineages, with genomes from rare but key lineages, such as Scaphopoda. Here, by presenting chromosome-level genomes from both extant scaphopod orders and leveraging complete genomes spanning Mollusca, we provide strong support for Scaphopoda as the sister taxon of Bivalvia, revitalizing the morphology-based Diasoma hypothesis originally proposed 50 years ago. Our molecular clock analysis confidently dates the split between Bivalvia and Scaphopoda at ~520 Ma, prompting a reinterpretation of controversial laterally compressed Early Cambrian fossils, including Anabarella, Watsonella, and Mellopegma, as stem diasomes. Moreover, we show that incongruence in the phylogenetic placement of Scaphopoda in previous phylogenomic studies was due to ancient incomplete lineage sorting (ILS) that occurred during the rapid radiation of Conchifera. Our findings highlight the need to consider ILS as a potential source of error in deep phylogeny reconstruction, especially in the context of the unique nature of the Cambrian Explosion.
Collapse
Affiliation(s)
- Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yunan Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Haojing Shao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Pinli Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | | | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Cui Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yiguan Wang
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Peizhen Ma
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jakob Vinther
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
- School of Earth Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Haiyan Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Kevin M. Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35487
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL35487
| |
Collapse
|
35
|
Zhang Y, Lu HW, Ruan J. GAEP: a comprehensive genome assembly evaluating pipeline. J Genet Genomics 2023; 50:747-754. [PMID: 37245652 DOI: 10.1016/j.jgg.2023.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
With the rapid development of sequencing technologies, especially the maturity of third-generation sequencing technologies, there has been a significant increase in the number and quality of published genome assemblies. The emergence of these high-quality genomes has raised higher requirements for genome evaluation. Although numerous computational methods have been developed to evaluate assembly quality from various perspectives, the selective use of these evaluation methods can be arbitrary and inconvenient for fairly comparing the assembly quality. To address this issue, we have developed the Genome Assembly Evaluating Pipeline (GAEP), which provides a comprehensive assessment pipeline for evaluating genome quality from multiple perspectives, including continuity, completeness, and correctness. Additionally, GAEP includes new functions for detecting misassemblies and evaluating the assembly redundancy, which performs well in our testing. GAEP is publicly available at https://github.com/zy-optimistic/GAEP under the GPL3.0 License. With GAEP, users can quickly obtain accurate and reliable evaluation results, facilitating the comparison and selection of high-quality genome assemblies.
Collapse
Affiliation(s)
- Yong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hong-Wei Lu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 311401, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
36
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
37
|
Li Z, Zhang Z, Liu Y, Ma Y, Lv X, Zhang D, Gu Q, Ke H, Wu L, Zhang G, Ma Z, Wang X, Sun Z. Identification and Expression Analysis of EPSPS and BAR Families in Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3366. [PMID: 37836107 PMCID: PMC10574212 DOI: 10.3390/plants12193366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Weeds seriously affect the yield and quality of crops. Because manual weeding is time-consuming and laborious, the use of herbicides becomes an effective way to solve the harm caused by weeds in fields. Both 5-enolpyruvyl shikimate-3-phosphate synthetase (EPSPS) and acetyltransferase genes (bialaphos resistance, BAR) are widely used to improve crop resistance to herbicides. However, cotton, as the most important natural fiber crop, is not tolerant to herbicides in China, and the EPSPS and BAR family genes have not yet been characterized in cotton. Therefore, we explore the genes of these two families to provide candidate genes for the study of herbicide resistance mechanisms. In this study, 8, 8, 4, and 5 EPSPS genes and 6, 6, 5, and 5 BAR genes were identified in allotetraploid Gossypium hirsutum and Gossypium barbadense, diploid Gossypium arboreum and Gossypium raimondii, respectively. Members of the EPSPS and BAR families were classified into three subgroups based on the distribution of phylogenetic trees, conserved motifs, and gene structures. In addition, the promoter sequences of EPSPS and BAR family members included growth and development, stress, and hormone-related cis-elements. Based on the expression analysis, the family members showed tissue-specific expression and differed significantly in response to abiotic stresses. Finally, qRT-PCR analysis revealed that the expression levels of GhEPSPS3, GhEPSPS4, and GhBAR1 were significantly upregulated after exogenous spraying of herbicides. Overall, we characterized the EPSPS and BAR gene families of cotton at the genome-wide level, which will provide a basis for further studying the functions of EPSPS and BAR genes during growth and development and herbicide stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, College of Agronomy, Hebei Agricultural University, Baoding 071000, China; (Z.L.); (Z.Z.); (Y.L.); (Y.M.); (X.L.); (D.Z.); (Q.G.); (H.K.); (L.W.); (G.Z.); (Z.M.)
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, College of Agronomy, Hebei Agricultural University, Baoding 071000, China; (Z.L.); (Z.Z.); (Y.L.); (Y.M.); (X.L.); (D.Z.); (Q.G.); (H.K.); (L.W.); (G.Z.); (Z.M.)
| |
Collapse
|
38
|
Xu X, Chen B, Zhang J, Lan S, Wu S. Whole-genome resequencing analysis of the medicinal plant Gardenia jasminoides. PeerJ 2023; 11:e16056. [PMID: 37744244 PMCID: PMC10512932 DOI: 10.7717/peerj.16056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Background Gardenia jasminoides is a species of Chinese medicinal plant, which has high medicinal and economic value and rich genetic diversity, but the study on its genetic diversity is far not enough. Methods In this study, one wild and one cultivated gardenia materials were resequenced using IlluminaHiSeq sequencing platform and the data were evaluated to understand the genomic characteristics of G. jasminoides. Results After data analysis, the results showed that clean data of 11.77G, Q30 reached 90.96%. The average comparison rate between the sample and reference genome was 96.08%, the average coverage depth was 15X, and the genome coverage was 85.93%. The SNPs of FD and YP1 were identified, and 3,087,176 and 3,241,416 SNPs were developed, respectively. In addition, SNP non-synonymous mutation, InDel mutation, SV mutation and CNV mutation were also detected between the sample and the reference genome, and KEGG, GO and COG database annotations were made for genes with DNA level variation. The structural gene variation in the biosynthetic pathway of crocin and gardenia, the main medicinal substance of G. jasminoides was further explored, which provided basic data for molecular breeding and genetic diversity of G. jasminoides in the future.
Collapse
Affiliation(s)
- Xinyu Xu
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian, China
- College of Landscape and Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bihua Chen
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian, China
| | - Juan Zhang
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian, China
| | - Siren Lan
- College of Landscape and Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shasha Wu
- College of Landscape and Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
39
|
Chen B, Wang Z, Jiao M, Zhang J, Liu J, Zhang D, Li Y, Wang G, Ke H, Cui Q, Yang J, Sun Z, Gu Q, Wang X, Wu J, Wu L, Zhang G, Wang X, Ma Z, Zhang Y. Lysine 2-Hydroxyisobutyrylation- and Succinylation-Based Pathways Act Inside Chloroplasts to Modulate Plant Photosynthesis and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301803. [PMID: 37492013 PMCID: PMC10520639 DOI: 10.1002/advs.202301803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Indexed: 07/27/2023]
Abstract
Crops must efficiently allocate their limited energy resources to survival, growth and reproduction, including balancing growth and defense. Thus, investigating the underlying molecular mechanism of crop under stress is crucial for breeding. Chloroplasts immunity is an important facet involving in plant resistance and growth, however, whether and how crop immunity modulated by chloroplast is influenced by epigenetic regulation remains unclear. Here, the cotton lysine 2-hydroxyisobutyrylation (Khib) and succinylation (Ksuc) modifications are firstly identified and characterized, and discover that the chloroplast proteins are hit most. Both modifications are strongly associated with plant resistance to Verticillium dahliae, reflected by Khib specifically modulating PR and salicylic acid (SA) signal pathway and the identified GhHDA15 and GhSRT1 negatively regulating Verticillium wilt (VW) resistance via removing Khib and Ksuc. Further investigation uncovers that photosystem repair protein GhPSB27 situates in the core hub of both Khib- and Ksuc-modified proteins network. The acylated GhPSB27 regulated by GhHDA15 and GhSRT1 can raise the D1 protein content, further enhancing plant biomass- and seed-yield and disease resistance via increasing photosynthesis and by-products of chloroplast-derived reactive oxygen species (cROS). Therefore, this study reveals a mechanism balancing high disease resistance and high yield through epigenetic regulation of chloroplast protein, providing a novel strategy to crop improvements.
Collapse
Affiliation(s)
- Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Mengjia Jiao
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jie Liu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Yanbin Li
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Qiuxia Cui
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Xingyi Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| |
Collapse
|
40
|
Song B, Ning W, Wei D, Jiang M, Zhu K, Wang X, Edwards D, Odeny DA, Cheng S. Plant genome resequencing and population genomics: Current status and future prospects. MOLECULAR PLANT 2023; 16:1252-1268. [PMID: 37501370 DOI: 10.1016/j.molp.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Advances in DNA sequencing technology have sparked a genomics revolution, driving breakthroughs in plant genetics and crop breeding. Recently, the focus has shifted from cataloging genetic diversity in plants to exploring their functional significance and delivering beneficial alleles for crop improvement. This transformation has been facilitated by the increasing adoption of whole-genome resequencing. In this review, we summarize the current progress of population-based genome resequencing studies and how these studies affect crop breeding. A total of 187 land plants from 163 countries have been resequenced, comprising 54 413 accessions. As part of resequencing efforts 367 traits have been surveyed and 86 genome-wide association studies have been conducted. Economically important crops, particularly cereals, vegetables, and legumes, have dominated the resequencing efforts, leaving a gap in 49 orders, including Lycopodiales, Liliales, Acorales, Austrobaileyales, and Commelinales. The resequenced germplasm is distributed across diverse geographic locations, providing a global perspective on plant genomics. We highlight genes that have been selected during domestication, or associated with agronomic traits, and form a repository of candidate genes for future research and application. Despite the opportunities for cross-species comparative genomics, many population genomic datasets are not accessible, impeding secondary analyses. We call for a more open and collaborative approach to population genomics that promotes data sharing and encourages contribution-based credit policy. The number of plant genome resequencing studies will continue to rise with the decreasing DNA sequencing costs, coupled with advances in analysis and computational technologies. This expansion, in terms of both scale and quality, holds promise for deeper insights into plant trait genetics and breeding design.
Collapse
Affiliation(s)
- Bo Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Huazhong Agricultural University, College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Kun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xingwei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, Nairobi, Kenya
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
41
|
Ye Y, Wang P, Zhang M, Abbas M, Zhang J, Liang C, Wang Y, Wei Y, Meng Z, Zhang R. UAV-based time-series phenotyping reveals the genetic basis of plant height in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:937-951. [PMID: 37154288 DOI: 10.1111/tpj.16272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Plant height (PH) is an important agronomic trait affecting crop architecture, biomass, resistance to lodging and mechanical harvesting. Elucidating the genetic governance of plant height is crucial because of the global demand for high crop yields. However, during the rapid growth period of plants the PH changes a lot on a daily basis, which makes it difficult to accurately phenotype the trait by hand on a large scale. In this study, an unmanned aerial vehicle (UAV)-based remote-sensing phenotyping platform was applied to obtain time-series PHs of 320 upland cotton accessions in three different field trials. The results showed that the PHs obtained from UAV images were significantly correlated with ground-based manual measurements, for three trials (R2 = 0.96, 0.95 and 0.96). Two genetic loci on chromosomes A01 and A11 associated with PH were identified by genome-wide association studies (GWAS). GhUBP15 and GhCUL1 were identified to influence PH in further analysis. We obtained a time series of PH values for three field conditions based on remote sensing with UAV. The key genes identified in this study are of great value for the breeding of ideal plant architecture in cotton.
Collapse
Affiliation(s)
- Yulu Ye
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Man Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaxin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
42
|
Huo WQ, Zhang ZQ, Ren ZY, Zhao JJ, Song CX, Wang XX, Pei XY, Liu YG, He KL, Zhang F, Li XY, Li W, Yang DG, Ma XF. Unraveling genomic regions and candidate genes for multiple disease resistance in upland cotton using meta-QTL analysis. Heliyon 2023; 9:e18731. [PMID: 37576216 PMCID: PMC10412778 DOI: 10.1016/j.heliyon.2023.e18731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance. Here, an improved and comprehensive meta-QTL analysis was conducted on 487 disease resistant QTLs from 31 studies in the last two decades. A consensus linkage map with genetic overall length of 3006.59 cM containing 8650 markers was constructed. A total of 28 Meta-QTLs (MQTLs) were discovered, among which nine MQTLs were identified as related to resistance to multiple diseases. Candidate genes were predicted based on public transcriptome data and enriched in pathways related to disease resistance. This study used a method based on the integration of Meta-QTL, known genes and transcriptomics to reveal major genomic regions and putative candidate genes for resistance to multiple diseases, providing a new basis for marker-assisted selection of high disease resistance in cotton breeding.
Collapse
Affiliation(s)
- Wen-Qi Huo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi-Qiang Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhong-Ying Ren
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jun-Jie Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Cheng-Xiang Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xing-Xing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao-Yu Pei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan-Gai Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun-Lun He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xin-Yang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dai-Gang Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiong-Feng Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
43
|
Manivannan A, Cheeran Amal T. Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Mol Biol Rep 2023; 50:6937-6953. [PMID: 37349608 DOI: 10.1007/s11033-023-08565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Understanding the complex cotton genome is of paramount importance in devising a strategy for sustainable agriculture. Cotton is probably the most economically important cash crop known for its cellulose-rich fiber content. The cotton genome has become an ideal model for deciphering polyploidization due to its polyploidy, setting it apart from other major crops. However, the main challenge in understanding the functional and regulatory functions of many genes in cotton is still the complex cotton polyploidy genome, which is not limited to a single role. Cotton production is vulnerable to the sensitive effects of climate change, which can alter or aggravate soil, pests, and diseases. Thus, conventional plant breeding coupled with advanced technologies has led to substantial progress being made in cotton production. GENOMICS APPROACHES IN COTTON In the frontier areas of genomics research, cotton genomics has gained momentum accomplished by robust high-throughput sequencing platforms combined with novel computational tools to make the cotton genome more tractable. Advances in long-read sequencing have allowed for the generation of the complete set of cotton gene transcripts giving incisive scientific knowledge in cotton improvement. In contrast, the integration of the latest sequencing platforms has been used to generate multiple high-quality reference genomes in diploid and tetraploid cotton. While pan-genome and 3D genomic studies are still in the early stages in cotton, it is anticipated that rapid advances in sequencing, assembly algorithms, and analysis pipelines will have a greater impact on advanced cotton research. CONCLUSIONS This review article briefly compiles substantial contributions in different areas of the cotton genome, which include genome sequencing, genes, and their molecular regulatory networks in fiber development and stress tolerance mechanism. This will greatly help us in understanding the robust genomic organization which in turn will help unearth candidate genes for functionally important agronomic traits.
Collapse
Affiliation(s)
- Alagarsamy Manivannan
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
44
|
Yang J, Zhang H, Chen H, Sun Z, Ke H, Wang G, Meng C, Wu L, Zhang Y, Wang X, Ma Z. Genome-wide association study reveals novel SNPs and genes in Gossypium hirsutum underlying Aphis gossypii resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:171. [PMID: 37420143 DOI: 10.1007/s00122-023-04415-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
A. gossypii resistance showed great variability in G. hirsutum varieties. One hundred and seventy-six SNPs associated with A. gossypii resistance were identified using GWAS. Four candidate resistance genes were functionally validated. Aphis gossypii is an economically important sap-feeding pest and is widely distributed in the world's cotton-producing regions. Identification of cotton genotypes and developing cultivars with improved A. gossypii resistance (AGR) is essential and desirable for sustainable agriculture. In the present study, A. gossypii was offered no choice but to propagate on 200 Gossypium hirsutum accessions. A relative aphid reproduction index (RARI) was used to evaluate the AGR, which showed large variability in cotton accessions and was classified into 6 grades. A significantly positive correlation was found between AGR and Verticillium wilt resistance. A total of 176 SNPs significantly associated with the RARI were identified using GWAS. Of these, 21 SNPs could be repeatedly detected in three replicates. Cleaved amplified polymorphic sequence, a restriction digestion-based genotyping assay, was developed using SNP1 with the highest observed -log10(P-value). Four genes within the 650 kb region of SNP1 were further identified, including GhRem (remorin-like), GhLAF1 (long after far-red light 1), GhCFIm25 (pre-mRNA cleavage factor Im 25 kDa subunit) and GhPMEI (plant invertase/pectin methylesterase inhibitor superfamily protein). The aphid infection could induce their expression and showed a significant difference between resistant and susceptible cotton varieties. Silencing of GhRem, GhLAF1 or GhCFIm25 could significantly increase aphid reproduction on cotton seedlings. Silencing of GhRem significantly reduced callose deposition, which is reasonably believed to be the cause for the higher AGR. Our results provide insights into understanding the genetic regulation of AGR in cotton and suggest candidate germplasms, SNPs and genes for developing cultivars with improved AGR.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Huimin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Haonan Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
45
|
Niu H, Kuang M, Huang L, Shang H, Yuan Y, Ge Q. Lint percentage and boll weight QTLs in three excellent upland cotton (Gossypium hirsutum): ZR014121, CCRI60, and EZ60. BMC PLANT BIOLOGY 2023; 23:179. [PMID: 37020180 PMCID: PMC10074700 DOI: 10.1186/s12870-023-04147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Upland cotton (Gossypium hirsutum L.) is the most economically important species in the cotton genus (Gossypium spp.). Enhancing the cotton yield is a major goal in cotton breeding programs. Lint percentage (LP) and boll weight (BW) are the two most important components of cotton lint yield. The identification of stable and effective quantitative trait loci (QTLs) will aid the molecular breeding of cotton cultivars with high yield. RESULTS Genotyping by target sequencing (GBTS) and genome-wide association study (GWAS) with 3VmrMLM were used to identify LP and BW related QTLs from two recombinant inbred line (RIL) populations derived from high lint yield and fiber quality lines (ZR014121, CCRI60 and EZ60). The average call rate of a single locus was 94.35%, and the average call rate of an individual was 92.10% in GBTS. A total of 100 QTLs were identified; 22 of them were overlapping with the reported QTLs, and 78 were novel QTLs. Of the 100 QTLs, 51 QTLs were for LP, and they explained 0.29-9.96% of the phenotypic variation; 49 QTLs were for BW, and they explained 0.41-6.31% of the phenotypic variation. One QTL (qBW-E-A10-1, qBW-C-A10-1) was identified in both populations. Six key QTLs were identified in multiple-environments; three were for LP, and three were for BW. A total of 108 candidate genes were identified in the regions of the six key QTLs. Several candidate genes were positively related to the developments of LP and BW, such as genes involved in gene transcription, protein synthesis, calcium signaling, carbon metabolism, and biosynthesis of secondary metabolites. Seven major candidate genes were predicted to form a co-expression network. Six significantly highly expressed candidate genes of the six QTLs after anthesis were the key genes regulating LP and BW and affecting cotton yield formation. CONCLUSIONS A total of 100 stable QTLs for LP and BW in upland cotton were identified in this study; these QTLs could be used in cotton molecular breeding programs. Putative candidate genes of the six key QTLs were identified; this result provided clues for future studies on the mechanisms of LP and BW developments.
Collapse
Affiliation(s)
- Hao Niu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, The Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meng Kuang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, The Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Longyu Huang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, The Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, The Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, The Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, The Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
46
|
Li Y, Si Z, Wang G, Shi Z, Chen J, Qi G, Jin S, Han Z, Gao W, Tian Y, Mao Y, Fang L, Hu Y, Chen H, Zhu X, Zhang T. Genomic insights into the genetic basis of cotton breeding in China. MOLECULAR PLANT 2023; 16:662-677. [PMID: 36738104 DOI: 10.1016/j.molp.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The excellent Upland cotton (Gossypium hirsutum) cultivars developed since 1949 have made a huge contribution to cotton production in China, the world's largest producer and consumer of cotton. However, the genetic and genomic basis for the improvements of these cotton cultivars remains largely unclear. In this study, we selected 16 Upland cotton cultivars with important historical status in Chinese cotton breeding and constructed a multiparent, advanced generation, intercross (MAGIC) population comprising 920 recombinant inbred lines. A genome-wide association study using the MAGIC population identified 54 genomic loci associated with lint yield and fiber quality. Of them, 25 (46.30%) pleiotropic genomic loci cause simultaneous changes of lint yield and/or fiber quality traits, revealing complex trade-offs and linkage drags in Upland cotton agronomic traits. Deep sequencing data of 11 introduced ancestor cultivars and publicly available resequencing datasets of 839 cultivars developed in China during the past 70 years were integrated to explore the historical distribution and origin of the elite or selected alleles. Interestingly, 85% of these elite alleles were selected and fixed from different American ancestors, consistent with cotton breeding practices in China. However, seven elite alleles of native origin that are responsible for Fusarium wilt resistance, early maturing, good-quality fiber, and other characteristics were not found in American ancestors but have greatly contributed to Chinese cotton breeding and wide cultivation. Taken together, these results provide a genetic basis for further improving cotton cultivars and reveal that the genetic composition of Chinese cotton cultivars is narrow and mainly derived from early introduced American varieties.
Collapse
Affiliation(s)
- Yiqian Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoping Wang
- Xinjiang Production and Construction Corps Seventh Division Agricultural Research Institute, Kuintun, China
| | - Zhuolin Shi
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoan Qi
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenhao Gao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Tian
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yun Mao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Chen
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Jin S, Han Z, Hu Y, Si Z, Dai F, He L, Cheng Y, Li Y, Zhao T, Fang L, Zhang T. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. MOLECULAR PLANT 2023; 16:678-693. [PMID: 36760124 DOI: 10.1016/j.molp.2023.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Structural variations (SVs) have long been described as being involved in the origin, adaption, and domestication of species. However, the underlying genetic and genomic mechanisms are poorly understood. Here, we report a high-quality genome assembly of Gossypium barbadense acc. Tanguis, a landrace that is closely related to formation of extra-long-staple (ELS) cultivated cotton. An SV-based pan-genome (Pan-SV) was then constructed using a total of 182 593 non-redundant SVs, including 2236 inversions, 97 398 insertions, and 82 959 deletions from 11 assembled genomes of allopolyploid cotton. The utility of this Pan-SV was then demonstrated through population structure analysis and genome-wide association studies (GWASs). Using segregation mapping populations produced through crossing ELS cotton and the landrace along with an SV-based GWAS, certain SVs responsible for speciation, domestication, and improvement in tetraploid cottons were identified. Importantly, some of the SVs presently identified as associated with the yield and fiber quality improvement had not been identified in previous SNP-based GWAS. In particular, a 9-bp insertion or deletion was found to associate with elimination of the interspecific reproductive isolation between Gossypium hirsutum and G. barbadense. Collectively, this study provides new insights into genome-wide, gene-scale SVs linked to important agronomic traits in a major crop species and highlights the importance of SVs during the speciation, domestication, and improvement of cultivated crop species.
Collapse
Affiliation(s)
- Shangkun Jin
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zegang Han
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yan Hu
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhanfeng Si
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lu He
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Cheng
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqian Li
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lei Fang
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
48
|
Zhao H, Chen Y, Liu J, Wang Z, Li F, Ge X. Recent advances and future perspectives in early-maturing cotton research. THE NEW PHYTOLOGIST 2023; 237:1100-1114. [PMID: 36352520 DOI: 10.1111/nph.18611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cotton's fundamental requirements for long periods of growth and specific seasonal temperatures limit the global arable areas that can be utilized to cultivate cotton. This constraint can be alleviated by breeding for early-maturing varieties. By delaying the sowing dates without impacting the boll-opening time, early-maturing varieties not only mitigate the yield losses brought on by unfavorable weathers in early spring and late autumn but also help reducing the competition between cotton and other crops for arable land, thereby optimizing the cropping system. This review presents studies and breeding efforts for early-maturing cotton, which efficiently pyramid early maturity, high-quality, multiresistance traits, and suitable plant architecture by leveraging pleiotropic genes. Attempts are also made to summarize our current understanding of the molecular mechanisms underlying early maturation, which involves many pathways such as epigenetic, circadian clock, and hormone signaling pathways. Moreover, new avenues and effective measures are proposed for fine-scale breeding of early-maturing crops to ensure the healthy development of the agricultural industry.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yanli Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, Hainan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
49
|
Yang Z, Gao C, Zhang Y, Yan Q, Hu W, Yang L, Wang Z, Li F. Recent progression and future perspectives in cotton genomic breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:548-569. [PMID: 36226594 DOI: 10.1111/jipb.13388] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content. Progress in cotton genomics promotes the advancement of cotton genetics, evolutionary studies, functional genetics, and breeding, and has ushered cotton research and breeding into a new era. Here, we summarize high-impact genomics studies for cotton from the last 10 years. The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studies. We next review recent progress in cotton molecular biology and genetics, which builds on cotton genome sequencing efforts, population studies, and functional genomics, to provide insights into the mechanisms shaping abiotic and biotic stress tolerance, plant architecture, seed oil content, and fiber development. We also suggest the application of novel technologies and strategies to facilitate genome-based crop breeding. Explosive growth in the amount of novel genomic data, identified genes, gene modules, and pathways is now enabling researchers to utilize multidisciplinary genomics-enabled breeding strategies to cultivate "super cotton", synergistically improving multiple traits. These strategies must rise to meet urgent demands for a sustainable cotton industry.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingdi Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
50
|
Jia X, Wang S, Zhao H, Zhu J, Li M, Wang G. QTL mapping and BSA-seq map a major QTL for the node of the first fruiting branch in cotton. FRONTIERS IN PLANT SCIENCE 2023; 14:1113059. [PMID: 36760643 PMCID: PMC9905821 DOI: 10.3389/fpls.2023.1113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Understanding the genetic basis of the node of the first fruiting branch (NFFB) improves early-maturity cotton breeding. Here we report QTL mapping on 200 F2 plants and derivative F2:3 and F2:4 populations by genotyping by sequencing (GBS). BC1F2 population was constructed by backcrossing one F2:4 line with the maternal parent JF914 and used for BSA-seq for further QTL mapping. A total of 1,305,642 SNPs were developed between the parents by GBS, and 2,907,790 SNPs were detected by BSA-seq. A high-density genetic map was constructed containing 11,488 SNPs and spanning 4,202.12 cM in length. A total of 13 QTL were mapped in the 3 tested populations. JF914 conferred favorable alleles for 11 QTL, and JF173 conferred favorable alleles for the other 2 QTL. Two stable QTL were repeatedly mapped in F2:3 and F2:4, including qNFFB-D3-1 and qNFFB-D6-1. Only qNFFB-D3-1 contributed more than 10% of the phenotypic variation. This QTL covered about 24.7 Mb (17,130,008-41,839,226 bp) on chromosome D3. Two regions on D3 (41,779,195-41,836,120 bp, 41,836,768-41,872,287 bp) were found by BSA-seq and covered about 92.4 Kb. This 92.4 Kb region overlapped with the stable QTL qNFFB-D3-1 and contained 8 annotated genes. By qRT-PCR, Ghir_D03G012430 showed a lower expression level from the 1- to 2-leaf stage and a higher expression level from the 3- to 6-leaf stage in the buds of JF173 than that of JF914. Ghir_D03G012390 reached the highest level at the 3- and 5-leaf stages in the buds of JF173 and JF914, respectively. As JF173 has lower NFFB and more early maturity than JF914, these two genes might be important in cell division and differentiation during NFFB formation in the seedling stage. The results of this study will facilitate a better understanding of the genetic basis of NFFB and benefit cotton molecular breeding for improving earliness traits.
Collapse
Affiliation(s)
| | | | | | | | - Miao Li
- Institution of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, China
| | | |
Collapse
|