1
|
Wu Y, Wang S, Guo Z, Sun M, Xu Z, Du Y, Zhu F, Su Y, Xu Z, Xu Y, Gong X, Fang R, Hu J, Peng Y, Ding Z, Liu C, Li A, He W. Hapalindole Q suppresses autophagosome-lysosome fusion by promoting YAP1 degradation via chaperon-mediated autophagy. Proc Natl Acad Sci U S A 2024; 121:e2400809121. [PMID: 39642207 DOI: 10.1073/pnas.2400809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/18/2024] [Indexed: 12/08/2024] Open
Abstract
Autophagy is a conserved catabolic process crucial for maintaining cellular homeostasis and has emerged as a promising therapeutic target for many diseases. Mechanistically novel small-molecule autophagy regulators are highly desirable from a pharmacological point of view. Here, we report the macroautophagy-inhibitory effect of hapalindole Q, a member of the structurally intriguing but biologically understudied hapalindole family of indole terpenoids. This compound promotes the noncanonical degradation of Yes-associated protein 1 (YAP1), the downstream effector of the Hippo signaling pathway, via chaperone-mediated autophagy, disrupting proper distribution of Rab7 and suppressing autophagosome-lysosome fusion in macroautophagy. Its binding to YAP1 is further confirmed by using biophysical techniques. A preliminary structure-activity relationship study reveals that the hapalindole Q scaffold, rather than the isothiocyanate group, is essential for YAP1 binding and degradation. This work not only identifies a macroautophagy inhibitor with a distinct mechanism of action but also provided a molecular scaffold for direct targeting of YAP1, which may benefit the development of therapeutics for both autophagy-related and Hippo-YAP-related diseases.
Collapse
Affiliation(s)
- Yali Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shaonan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Du
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fahui Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yajuan Su
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhou Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruan Fang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiaojiao Hu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yan Peng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaowen Ding
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ang Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weiwei He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Pujol M, Degeilh L, Sauty de Chalon T, Réglier M, Simaan AJ, Decroos C. Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement. J Inorg Biochem 2024; 260:112688. [PMID: 39111220 DOI: 10.1016/j.jinorgbio.2024.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024]
Abstract
New-to-Nature biocatalysis has emerged as a promising tool in organic synthesis thanks to progress in protein engineering. Notably, hemeproteins have been evolved into robust catalysts for carbene and nitrene transfers and related sigmatropic rearrangements. In this work, we report the first example of a [2,3]-sigmatropic Sommelet-Hauser rearrangement initiated by a carbene transfer of the sperm whale myoglobin mutant L29S,H64V,V68F that was previously reported to catalyze the mechanistically similar [2,3]-sigmatropic Doyle-Kirmse rearrangement. This repurposed heme enzyme catalyzes the Sommelet-Hauser rearrangement between ethyl diazoacetate and benzyl thioethers bearing strong electron-withdrawing substituents with good yields and enantiomeric excess. Optimized catalytic conditions in the absence of any reductant led to an increased asymmetric induction with up to 59% enantiomeric excess. This myoglobin mutant is therefore one of the few catalysts for the asymmetric Sommelet-Hauser rearrangement. This work broadens the scope of abiological reactions catalyzed by iron-carbene transferases with a new example of asymmetric sigmatropic rearrangement.
Collapse
Affiliation(s)
- Manon Pujol
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - Lison Degeilh
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France
| | - Christophe Decroos
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille, France; Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, Illkirch, France.
| |
Collapse
|
3
|
Arnold RE, Saska J, Mesquita-Ribeiro R, Dajas-Bailador F, Taylor L, Lewis W, Argent S, Shao H, Houk KN, Denton RM. Total synthesis, biological evaluation and biosynthetic re-evaluation of Illicium-derived neolignans. Chem Sci 2024; 15:11783-11793. [PMID: 39092111 PMCID: PMC11290413 DOI: 10.1039/d4sc03232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 08/04/2024] Open
Abstract
We report the first total syntheses of simonsol F (3), simonsinol (5), fargenin (4), and macranthol (6) in addition to syntheses of simonsol C (2), simonsol G (1), and honokiol (14). The syntheses are based upon a phosphonium ylide-mediated cascade reaction and upon natural product isomerization reactions which proceed through Cope rearrangements of putative biosynthetic dienone intermediates. As a corollary of the natural product isomerization reactions, we propose an alternative biosynthesis of honokiol (14), simonsinol (5), and macranthol (6) which unites the natural products in this family under a single common precursor, chavicol (7). Finally, we demonstrate that simonsol C (2) and simonsol F (3) promote axonal growth in primary mouse cortical neurons.
Collapse
Affiliation(s)
- Robert E Arnold
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Jan Saska
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | | | | | - Laurence Taylor
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - William Lewis
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Stephen Argent
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| | - Huiling Shao
- University of California, Department of Chemistry and Biochemistry 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 UK
| | - Kendall N Houk
- University of California, Department of Chemistry and Biochemistry 607 Charles E. Young Drive East, Box 951569 Los Angeles CA 90095-1569 UK
| | - Ross M Denton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus Triumph Road Nottingham NG7 2TU UK
| |
Collapse
|
4
|
Kim Y, Jung H, Kumar S, Paton RS, Kim S. Designing solvent systems using self-evolving solubility databases and graph neural networks. Chem Sci 2024; 15:923-939. [PMID: 38239675 PMCID: PMC10793204 DOI: 10.1039/d3sc03468b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Designing solvent systems is key to achieving the facile synthesis and separation of desired products from chemical processes, so many machine learning models have been developed to predict solubilities. However, breakthroughs are needed to address deficiencies in the model's predictive accuracy and generalizability; this can be addressed by expanding and integrating experimental and computational solubility databases. To maximize predictive accuracy, these two databases should not be trained separately, and they should not be simply combined without reconciling the discrepancies from different magnitudes of errors and uncertainties. Here, we introduce self-evolving solubility databases and graph neural networks developed through semi-supervised self-training approaches. Solubilities from quantum-mechanical calculations are referred to during semi-supervised learning, but they are not directly added to the experimental database. Dataset augmentation is performed from 11 637 experimental solubilities to >900 000 data points in the integrated database, while correcting for the discrepancies between experiment and computation. Our model was successfully applied to study solvent selection in organic reactions and separation processes. The accuracy (mean absolute error around 0.2 kcal mol-1 for the test set) is quantitatively useful in exploring Linear Free Energy Relationships between reaction rates and solvation free energies for 11 organic reactions. Our model also accurately predicted the partition coefficients of lignin-derived monomers and drug-like molecules. While there is room for expanding solubility predictions to transition states, radicals, charged species, and organometallic complexes, this approach will be attractive to predictive chemistry areas where experimental, computational, and other heterogeneous data should be combined.
Collapse
Affiliation(s)
- Yeonjoon Kim
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
- Department of Chemistry, Pukyong National University Busan 48513 Republic of Korea
| | - Hojin Jung
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| | - Sabari Kumar
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| | - Seonah Kim
- Department of Chemistry, Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
5
|
Niwa K, Ohashi M, Xie K, Chiang CY, Jamieson CS, Sato M, Watanabe K, Liu F, Houk K, Tang Y. Biosynthesis of Polycyclic Natural Products from Conjugated Polyenes via Tandem Isomerization and Pericyclic Reactions. J Am Chem Soc 2023; 145:13520-13525. [PMID: 37310230 PMCID: PMC10871872 DOI: 10.1021/jacs.3c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report biosynthetic pathways that can synthesize and transform conjugated octaenes and nonaenes to complex natural products. The biosynthesis of (-)-PF1018 involves an enzyme PfB that can control the regio-, stereo-, and periselectivity of multiple reactions starting from a conjugated octaene. Using PfB as a lead, we discovered a homologous enzyme, BruB, that facilitates diene isomerization, tandem 8π-6π-electrocyclization, and a 1,2-divinylcyclobutane Cope rearrangement to generate a new-to-nature compound.
Collapse
Affiliation(s)
- Kanji Niwa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Kaili Xie
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chen-Yu Chiang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Cooper S. Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Fang Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - K.N. Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Zhukhovitskiy AV, Ratushnyy M, Ditzler RAJ. Advancing the Logic of Polymer Synthesis via Skeletal Rearrangements. Synlett 2022. [DOI: 10.1055/s-0041-1737456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractPolymers are ubiquitous materials that have driven technological innovation since the middle of the 20th century. As such, the logic that guides polymer synthesis merit considerable attention. Thus far, this logic has often been ‘forward-synthetic’, which constrains the accessible structures of polymer materials. In this article, we emphasize the benefits of ‘retrosynthetic’ logic and posit that the development of skeletal rearrangements of polymer backbones is central to the realization of this logic. To illustrate this point, we discuss two recent examples from our laboratory – Brook and Ireland–Claisen rearrangements of polymer backbones – and contextualize them in prior reports of sigmatropic rearrangements and skeletal rearrangements of polymers. We envision that further development of skeletal rearrangements of polymers will enable advances in not only the chemistry of such rearrangements and the logic of polymer synthesis, but also polymer re- and upcycling.
Collapse
|
7
|
Houk KN, Xue X, Liu F, Chen Y, Chen X, Jamieson C. Computations on Pericyclic Reactions Reveal the Richness of Ambimodal Transition States and Pericyclases. Isr J Chem 2021. [DOI: 10.1002/ijch.202100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K. N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| | - Xiao‐Song Xue
- Department of Chemistry Nankai University Tianjin 300071 China
| | - Fang Liu
- College of Sciences Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Yu Chen
- School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| | - Cooper Jamieson
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095-1569 USA
| |
Collapse
|
8
|
Hohlman RM, Sherman DH. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Nat Prod Rep 2021; 38:1567-1588. [PMID: 34032254 DOI: 10.1039/d1np00007a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 1984 up to the end of 2020Hapalindoles, fischerindoles, ambiguines and welwitindolinones are all members of a class of indole alkaloid natural products that have been isolated from the Stigonematales order of cyanobacteria. These compounds possess a polycyclic ring system, unique functional groups and various stereo- and regiochemical isomers. Since their initial isolation in 1984, they have been explored as potential therapeutics due to their wide variety of biological activities. Although numerous groups have pursued total syntheses of these densely functionalized structures, hapalindole biosynthesis has only recently been unveiled. Several groups have uncovered a wide range of novel enzymes that catalyze formation and tailoring of the hapalindole-type metabolites. In this article, we provide an overview of these natural products, their biological activities, highlight general synthetic routes, and provide an extensive review on the surprising biosynthetic processes leading to these structurally diverse metabolites.
Collapse
Affiliation(s)
- Robert M Hohlman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA. and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA. and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Hohlman RM, Newmister SA, Sanders JN, Khatri Y, Li S, Keramati NR, Lowell AN, Houk KN, Sherman DH. Structural diversification of hapalindole and fischerindole natural products via cascade biocatalysis. ACS Catal 2021; 11:4670-4681. [PMID: 34354850 DOI: 10.1021/acscatal.0c05656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hapalindoles and related compounds (ambiguines, fischerindoles, welwitindolinones) are a diverse class of indole alkaloid natural products. They are typically isolated from the Stigonemataceae order of cyanobacteria and possess a broad scope of biological activities. Recently the biosynthetic pathway for assembly of these metabolites has been elucidated. In order to generate the core ring system, L-tryptophan is converted into the cis-indole isonitrile subunit before being prenylated with geranyl pyrophosphate at the C-3 position. A class of cyclases (Stig) catalyzes a three-step process including a Cope rearrangement, 6-exo-trig cyclization and electrophilic aromatic substitution to create a polycyclic core. Formation of the initial alkaloid is followed by diverse late-stage tailoring reactions mediated by additional biosynthetic enzymes to give rise to the wide array of structural variations observed in this compound class. Herein, we demonstrate the versatility and utility of the Fam prenyltransferase and Stig cyclases toward core structural diversification of this family of indole alkaloids. Through synthesis of cis-indole isonitrile subunit derivatives, and aided by protein engineering and computational analysis, we have employed cascade biocatalysis to generate a range of derivatives, and gained insights into the basis for substrate flexibility in this system.
Collapse
Affiliation(s)
| | | | - Jacob N. Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | | | | | | | | | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - David H. Sherman
- Department of Microbiology & Immunology, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
| |
Collapse
|
10
|
Liu W, Ma C, Liu W, Zheng Y, Chen CC, Liang A, Luo X, Li Z, Ma W, Song Y, Guo RT, Zhang T. Functional and structural investigation of a novel β-mannanase BaMan113A from Bacillus sp. N16-5. Int J Biol Macromol 2021; 182:899-909. [PMID: 33865894 DOI: 10.1016/j.ijbiomac.2021.04.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Mannan is an important renewable resource whose backbone can be hydrolyzed by β-mannanases to generate manno-oligosaccharides of various sizes. Only a few glycoside hydrolase (GH) 113 family β-mannanases have been functionally and structurally characterize. Here, we report the function and structure of a novel GH113 β-mannanase from Bacillus sp. N16-5 (BaMan113A). BaMan113A exhibits a substrate preference toward manno-oligosaccharides and releases mannose and mannobiose as main hydrolytic products. The crystal structure of BaMan113A suggest that the enzyme shows a semi-enclosed substrate-binding cleft and the amino acids surrounding the +2 subsite form a steric barrier to terminate the substrate-binding tunnel. Based on these structural features, we conducted mutagenesis to engineer BaMan113A to remove the steric hindrance of the substrate-binding tunnel. We found that F101E and N236Y variants exhibit increased specific activity toward mannans comparing to the wild-type enzyme. Meanwhile, the product profiles of these two variants toward polysaccharides changed from mannose to a series of manno-oligosaccharides. The crystal structure of variant N236Y was also determined to illustrate the molecular basis underlying the mutation. In conclusion, we report the functional and structural features of a novel GH113 β-mannanase, and successfully improved its endo-acting activity by using structure-based engineering.
Collapse
Affiliation(s)
- Wenting Liu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Cuiping Ma
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weidong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yingying Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ailing Liang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
11
|
Chen HP, Abe I. Microbial soluble aromatic prenyltransferases for engineered biosynthesis. Synth Syst Biotechnol 2021; 6:51-62. [PMID: 33778178 PMCID: PMC7973389 DOI: 10.1016/j.synbio.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Prenyltransferase (PTase) enzymes play crucial roles in natural product biosynthesis by transferring isoprene unit(s) to target substrates, thereby generating prenylated compounds. The prenylation step leads to a diverse group of natural products with improved membrane affinity and enhanced bioactivity, as compared to the non-prenylated forms. The last two decades have witnessed increasing studies on the identification, characterization, enzyme engineering, and synthetic biology of microbial PTase family enzymes. We herein summarize several examples of microbial soluble aromatic PTases for chemoenzymatic syntheses of unnatural novel prenylated compounds.
Collapse
Key Words
- Biosynthesis
- DHN, dihydroxynaphthalene
- DMAPP, dimethylallyl diphosphate
- DMATS, dimethylallyltryptophan synthase
- DMSPP, dimethylallyl S-thiolodiphosphate
- Enzyme engineering
- FPP, farnesyl diphosphate
- GFPP, geranyl farnesyl diphosphate
- GPP, geranyl diphosphate
- GSPP, geranyl S- thiolodiphosphate
- IPP, isopentenyl pyrophosphate
- Microbial prenyltransferase
- PPP, phytyl pyrophosphate
- PTase, prenyltransferase
- Prenylation
- RiPP, ribosomally synthesized and posttranslationally modified peptide
- Synthetic biology
- THN, 1,3,6,8-tetrahydroxynaphthalene
Collapse
Affiliation(s)
- He-Ping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
12
|
Khatri Y, Hohlman RM, Mendoza J, Li S, Lowell AN, Asahara H, Sherman DH. Multicomponent Microscale Biosynthesis of Unnatural Cyanobacterial Indole Alkaloids. ACS Synth Biol 2020; 9:1349-1360. [PMID: 32302487 PMCID: PMC7323787 DOI: 10.1021/acssynbio.0c00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genome sequencing and bioinformatics tools have facilitated the identification and expression of an increasing number of cryptic biosynthetic gene clusters (BGCs). However, functional analysis of all components of a metabolic pathway to precisely determine biocatalytic properties remains time-consuming and labor intensive. One way to speed this process involves microscale cell-free protein synthesis (CFPS) for direct gene to biochemical function analysis, which has rarely been applied to study multicomponent enzymatic systems in specialized metabolism. We sought to establish an in vitro transcription/translation (TT)-assay to assess assembly of cyanobacterial-derived hapalindole-type natural products (cNPs) because of their diverse bioactivity profiles and complex structural diversity. Using a CFPS system including a plasmid bearing famD2 prenyltransferase from Fischerella ambigua UTEX 1903, we showed production of the central prenylated intermediate (3GC) in the presence of exogenous geranyl-pyrophosphate (GPP) and cis-indole isonitrile. Further addition of a plasmid bearing the famC1 Stig cyclase resulted in synthesis of both FamD2 and FamC1 enzymes, which was confirmed by proteomics analysis, and catalyzed assembly of 12-epi-hapalindole U. Further combinations of Stig cyclases (FamC1-C4) produced hapalindole U and hapalindole H, while FisC identified from Fischerella sp. SAG46.79 generated 12-epi-fischerindole U. The CFPS system was further employed to screen six unnatural halogenated cis-indole isonitrile substrates using FamC1 and FisC, and the reactions were scaled-up using chemoenzymatic synthesis and identified as 5- and 6-fluoro-12-epi-hapalindole U, and 5- and 6-fluoro-12-epi-fischerindole U, respectively. This approach represents an effective, high throughput strategy to determine the functional role of biosynthetic enzymes from diverse natural product BGCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Haruichi Asahara
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
13
|
Li S, Newmister SA, Lowell AN, Zi J, Chappell CR, Yu F, Hohlman RM, Orjala J, Williams RM, Sherman DH. Control of Stereoselectivity in Diverse Hapalindole Metabolites is Mediated by Cofactor‐Induced Combinatorial Pairing of Stig Cyclases. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shasha Li
- Life Sciences InstituteDepartment of Medicinal ChemistryThe University of Michigan USA
| | | | - Andrew N. Lowell
- Life Science InstituteThe University of Michigan USA
- Department of ChemistryVirginia Tech Blacksburg VA 24061 USA
| | - Jiachen Zi
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Illinois at Chicago Chicago IL 60612 USA
| | - Callie R. Chappell
- Department of Molecular, Cellular & Developmental BiologyThe University of Michigan USA
| | - Fengan Yu
- Life Science InstituteThe University of Michigan USA
| | - Robert M. Hohlman
- Life Sciences InstituteDepartment of Medicinal ChemistryThe University of Michigan USA
| | - Jimmy Orjala
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of Illinois at Chicago Chicago IL 60612 USA
| | - Robert M. Williams
- Department of ChemistryColorado State University Fort Collins CO 80523 USA
- University of Colorado Cancer Center Aurora CO 80045 USA
| | - David H. Sherman
- Life Sciences InstituteDepartments of Medicinal Chemistry, Chemistry, Microbiology & ImmunologyThe University of Michigan 210 Washtenaw Avenue Ann Arbor MI 48109-2216n USA
| |
Collapse
|
14
|
Li S, Newmister SA, Lowell AN, Zi J, Chappell CR, Yu F, Hohlman RM, Orjala J, Williams RM, Sherman DH. Control of Stereoselectivity in Diverse Hapalindole Metabolites is Mediated by Cofactor-Induced Combinatorial Pairing of Stig Cyclases. Angew Chem Int Ed Engl 2020; 59:8166-8172. [PMID: 32052896 PMCID: PMC7274885 DOI: 10.1002/anie.201913686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 11/07/2022]
Abstract
Stereospecific polycyclic core formation of hapalindoles and fischerindoles is controlled by Stig cyclases through a three-step cascade involving Cope rearrangement, 6-exo-trig cyclization, and a final electrophilic aromatic substitution. Reported here is a comprehensive study of all currently annotated Stig cyclases, revealing that these proteins can assemble into heteromeric complexes, induced by Ca2+ , to cooperatively control the stereochemistry of hapalindole natural products.
Collapse
Affiliation(s)
- Shasha Li
- Life Sciences Institute, Department of Medicinal Chemistry, The University of Michigan, USA
| | | | - Andrew N Lowell
- Life Science Institute, The University of Michigan, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jiachen Zi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Callie R Chappell
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, USA
| | - Fengan Yu
- Life Science Institute, The University of Michigan, USA
| | - Robert M Hohlman
- Life Sciences Institute, Department of Medicinal Chemistry, The University of Michigan, USA
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Robert M Williams
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
- University of Colorado Cancer Center, Aurora, CO, 80045, USA
| | - David H Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, The University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216n, USA
| |
Collapse
|
15
|
Rudolf JD, Chang CY. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases. Nat Prod Rep 2020; 37:425-463. [PMID: 31650156 PMCID: PMC7101268 DOI: 10.1039/c9np00051h] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to July 2019 Terpene synthases (TSs) are responsible for generating much of the structural diversity found in the superfamily of terpenoid natural products. These elegant enzymes mediate complex carbocation-based cyclization and rearrangement cascades with a variety of electron-rich linear and cyclic substrates. For decades, two main classes of TSs, divided by how they generate the reaction-triggering initial carbocation, have dominated the field of terpene enzymology. Recently, several novel and unconventional TSs that perform TS-like reactions but do not resemble canonical TSs in sequence or structure have been discovered. In this review, we identify 12 families of non-canonical TSs and examine their sequences, structures, functions, and proposed mechanisms. Nature provides a wide diversity of enzymes, including prenyltransferases, methyltransferases, P450s, and NAD+-dependent dehydrogenases, as well as completely new enzymes, that utilize distinctive reaction mechanisms for TS chemistry. These unique non-canonical TSs provide immense opportunities to understand how nature evolved different tools for terpene biosynthesis by structural and mechanistic characterization while affording new probes for the discovery of novel terpenoid natural products and gene clusters via genome mining. With every new discovery, the dualistic paradigm of TSs is contradicted and the field of terpene chemistry and enzymology continues to expand.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| |
Collapse
|
16
|
Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020; 143:104558. [PMID: 32198108 DOI: 10.1016/j.fitote.2020.104558] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023]
Abstract
Indole alkaloids have attracted attention because of their therapeutic properties, being anti-inflammatory, antinociceptive, antitumoural, antioxidant and antimicrobial. These compounds present a wide structural diversity, which is directly related to the genera of the producing plants, as well as the biological activities. Indole alkaloids have attracted attention over the last decade because of this combination of bioactivity and structural diversity. Therefore, this review presented recent (2012-2018) advances in alkaloids, focusing on new compounds, extraction methods and biological activities. As such, approximately 70 articles were identified, which showed 261 new compounds produced by plants of the families Apocynaceae, Rubiaceae, Annonaceae and Loganiaceae. In addition, different extraction methods were identified, and the structures of the new compounds were analysed. In addition to indole molecules, there were mono-indole-, di-indole-, vinblastine-, vimblastine-, gelsedine-, geissospermidine-, koumine-, geissospermidine-, iboga-, perakine-, corynanthe-, vincamine-, ajmaline-, aspidorpema-, strychnos-type, β-carboline alkaloids and indole alkaloid glucosides. The reported biological activities are mainly anticancer, antibacterial, antimalarial, antifungal, antiparasitic, and antiviral, as well as anti-acetylcholinesterase and anti-butyrylcolinesterase properties. This review serves as a guide for those wishing to find the most recently identified alkaloid structures and their associated activities.
Collapse
Affiliation(s)
- Pauline Fagundes Rosales
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil; IFRS -Federal Institute of Education, Science and Technology of Rio Grande do Sul, Campus Bento Gonçalves, Brazil
| | - Gabriela Sandri Bordin
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Adriana Escalona Gower
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Sidnei Moura
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil.
| |
Collapse
|
17
|
Knoot CJ, Khatri Y, Hohlman RM, Sherman DH, Pakrasi HB. Engineered Production of Hapalindole Alkaloids in the Cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol 2019; 8:1941-1951. [PMID: 31284716 PMCID: PMC6724726 DOI: 10.1021/acssynbio.9b00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria produce numerous valuable bioactive secondary metabolites (natural products) including alkaloids, isoprenoids, nonribosomal peptides, and polyketides. However, the genomic organization of the biosynthetic gene clusters, complex gene expression patterns, and low compound yields synthesized by the native producers currently limits access to the vast majority of these valuable molecules for detailed studies. Molecular cloning and expression of such clusters in heterotrophic hosts is often precarious owing to genetic and biochemical incompatibilities. Production of such biomolecules in photoautotrophic hosts analogous to the native producers is an attractive alternative that has been under-explored. Here, we describe engineering of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce key compounds of the hapalindole family of indole-isonitrile alkaloids. Engineering of the 42-kbp "fam" hapalindole pathway from the cyanobacterium Fischerella ambigua UTEX 1903 into S2973 was accomplished by rationally reconstructing six to seven core biosynthetic genes into synthetic operons. The resulting Synechococcus strains afforded controllable production of indole-isonitrile biosynthetic intermediates and hapalindoles H and 12-epi-hapalindole U at a titer of 0.75-3 mg/L. Exchanging genes encoding fam cyclase enzymes in the synthetic operons was employed to control the stereochemistry of the resulting product. Establishing a robust expression system provides a facile route to scalable levels of similar natural and new forms of bioactive hapalindole derivatives and its structural relatives (e.g., fischerindoles, welwitindolinones). Moreover, this versatile expression system represents a promising tool for exploring other functional characteristics of orphan gene products that mediate the remarkable biosynthesis of this important family of natural products.
Collapse
Affiliation(s)
- Cory J Knoot
- Department of Biology , Washington University , St. Louis , Missouri 63130 , United States
| | - Yogan Khatri
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Robert M Hohlman
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - David H Sherman
- Life Sciences Institute , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Himadri B Pakrasi
- Department of Biology , Washington University , St. Louis , Missouri 63130 , United States
| |
Collapse
|
18
|
Structural basis for stereoselective dehydration and hydrogen-bonding catalysis by the SAM-dependent pericyclase LepI. Nat Chem 2019; 11:812-820. [PMID: 31332284 PMCID: PMC6708486 DOI: 10.1038/s41557-019-0294-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/14/2019] [Indexed: 12/04/2022]
Abstract
LepI is an S-adenosylmethionine (SAM)-dependent pericyclase that catalyzes the formation of 2-pyridone natural product leporin C. Biochemical characterization showed LepI can catalyze the stereoselective dehydration to yield a reactive (E)-quinone methide that can undergo bifurcating intramolecular Diels-Alder (IMDA) and hetero-Diels-Alder (HDA) cyclizations from an ambimodal transition state, as well as a [3,3]-retro-Claisen rearrangement to recycle the IMDA product into leporin C. Here we solved the X-ray crystal structures of SAM-bound LepI and in complex with a substrate analog, the product leporin C, and a retro-Claisen reaction transition-state analog to understand the structural basis for the multitude of reactions. Structural and mutational analysis revealed how Nature evolves a classic methyltransferase active site into one that can serve as a dehydratase and a multifunctional pericyclase. Catalysis of both sets of reactions employs H133 and R295, two active site residues that are not found in canonical methyltransferases. An alternative role of SAM, which is not found to be in direct contact with the substrate, is also proposed.
Collapse
|
19
|
Awakawa T, Abe I. Molecular basis for the plasticity of aromatic prenyltransferases in hapalindole biosynthesis. Beilstein J Org Chem 2019; 15:1545-1551. [PMID: 31354873 PMCID: PMC6632223 DOI: 10.3762/bjoc.15.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Aromatic prenyltransferases (PTases) are enzymes that catalyze Friedel–Crafts reactions between aromatic compounds and isoprenoid diphosphates. In hapalindole biosynthesis, the aromatic PTases AmbP1 and AmbP3 exhibit surprisingly plastic selectivities. AmbP1 not only transfers the geranyl group on the C-3 of cis-indolylvinyl isonitrile, but also on the C-2, which is supressed in the presence of Mg2+ ions. AmbP3 transfers the dimethylallyl group on C-2 of hapalindole U in the reverse manner, but on C-2 of its C-10 stereoisomer in the normal manner. This review highlights the molecular bases of the AmbP1 and AmbP3 functions, elucidated through their X-ray crystal structures. The knowledge presented here will contribute to the understanding of aromatic PTase reactions and will enhance their uses as biocatalysts.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
21
|
Abstract
Enzyme-mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron-based enzymes use O2 to generate high valent iron-oxo species to homolyze unactivated C-H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S-adenosylmethionine (SAM) to generate the 5'-deoxyadenosyl radical as a powerful oxidant to initiate C-H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as "thwarted oxygenases".
Collapse
Affiliation(s)
- Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
22
|
Tang X, Xue J, Yang Y, Ko TP, Chen CY, Dai L, Guo RT, Zhang Y, Chen CC. Structural insights into the calcium dependence of Stig cyclases. RSC Adv 2019; 9:13182-13185. [PMID: 35520811 PMCID: PMC9063808 DOI: 10.1039/c9ra00960d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
The Stig cyclases from Stigonematalean cyanobacteria are classified as a novel type of calcium-dependent cyclases which catalyze an uncommon reaction cascade comprising Cope rearrangement, 6-exo-trig cyclization, and electrophilic aromatic substitution. Previously we found two calcium ions near the substrate-binding pocket. The calcium-coordinating residues are conserved in all Stig cyclases. In the present study, we use site-directed mutagenesis to investigate the role of calcium coordination. By individually mutating the coordinating residues in either of the Ca2+-binding sites to alanine, the enzyme activity is significantly reduced, suggesting that the presence of Ca2+ in both sites is essential for catalysis. Furthermore, the crystal structure of N137A, in which the Ca2+-binding N137 is replaced by Ala, shows significant local conformational changes, resulting in a squeezed substrate-binding pocket that makes substrate entry ineffective. In conclusion, calcium coordination is important in setting up the structural elements for catalysis. These results add to the fundamental understanding of the mechanism of action of the calcium-dependent Stig cyclases.
Collapse
Affiliation(s)
- Xueke Tang
- School of Life Sciences, University of Science and Technology of ChinaHefei 230026China,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjin 300308China
| | - Jing Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei UniversityWuhan430062China,College of Biotechnology, Tianjin University of Science and TechnologyTianjin 300457China
| | - Yunyun Yang
- School of Pharmaceutical Sciences, Tsinghua UniversityBeijing 100084China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia SinicaTaipei 11529Taiwan
| | - Chin-Yu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei UniversityWuhan430062China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei UniversityWuhan430062China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei UniversityWuhan430062China,Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjin 300308China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Tsinghua UniversityBeijing 100084China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei UniversityWuhan430062China
| |
Collapse
|
23
|
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H)Stanford University Stanford CA 94305 USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
24
|
Chen C, Hu X, Tang X, Yang Y, Ko T, Gao J, Zheng Y, Huang J, Yu Z, Li L, Han S, Cai N, Zhang Y, Liu W, Guo R. The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chun‐Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
| | - Xiangying Hu
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Xueke Tang
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- School of Life SciencesUniversity of Science and Technology of China Anhui 230026 China
| | - Yunyun Yang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Tzu‐Ping Ko
- Institute of Biological ChemistryAcademia Sinica Taipei 11529 Taiwan
| | - Jian Gao
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Yingying Zheng
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Jian‐Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
| | - Zhengsen Yu
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Liping Li
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Shuai Han
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Ningning Cai
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Rey‐Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
25
|
Chen C, Hu X, Tang X, Yang Y, Ko T, Gao J, Zheng Y, Huang J, Yu Z, Li L, Han S, Cai N, Zhang Y, Liu W, Guo R. The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angew Chem Int Ed Engl 2018; 57:15060-15064. [DOI: 10.1002/anie.201808231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/24/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Chun‐Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
| | - Xiangying Hu
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Xueke Tang
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
- School of Life SciencesUniversity of Science and Technology of China Anhui 230026 China
| | - Yunyun Yang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Tzu‐Ping Ko
- Institute of Biological ChemistryAcademia Sinica Taipei 11529 Taiwan
| | - Jian Gao
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Yingying Zheng
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Jian‐Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
| | - Zhengsen Yu
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Liping Li
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Shuai Han
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Ningning Cai
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences; MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical BiologyTsinghua University Beijing 100084 China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Rey‐Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei ProvinceHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei University Wuhan 430062 China
- Industrial Enzymes National Engineering LaboratoryTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
26
|
Sato H, Uchiyama M, Saito K, Yamazaki M. The Energetic Viability of Δ¹-Piperideine Dimerization in Lysine-derived Alkaloid Biosynthesis. Metabolites 2018; 8:metabo8030048. [PMID: 30200334 PMCID: PMC6161264 DOI: 10.3390/metabo8030048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 11/16/2022] Open
Abstract
Lys-derived alkaloids widely distributed in plant kingdom have received considerable attention and have been intensively studied; however, little is known about their biosynthetic mechanisms. In terms of the skeleton formation, for example, of quinolizidine alkaloid biosynthesis, only the very first two steps have been identified and the later steps remain unknown. In addition, there is no available information on the number of enzymes and reactions required for their skeletal construction. The involvement of the Δ1-piperideine dimerization has been proposed for some of the Lys-derived alkaloid biosyntheses, but no enzymes for this dimerization reaction have been reported to date; moreover, it is not clear whether this dimerization reaction proceeds spontaneously or enzymatically. In this study, the energetic viability of the Δ1-piperideine dimerizations under neutral and acidic conditions was assessed using the density functional theory computations. In addition, a similar type of reaction in the dipiperidine indole alkaloid, nitramidine, biosynthesis was also investigated. Our findings will be useful to narrow down the candidate genes involved in the Lys-derived alkaloid biosynthesis.
Collapse
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Masanobu Uchiyama
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
- RIKEN Center for Sustainable Resource Science (Yokohama campus), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
27
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2018; 35:702-706. [PMID: 30058659 DOI: 10.1039/c8np90024h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pepluanol C from Euphorbia peplus.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UKG12 8QQ.
| | | |
Collapse
|
28
|
Skiba MA, Maloney FP, Dan Q, Fraley AE, Aldrich CC, Smith JL, Brown WC. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods Enzymol 2018; 604:45-88. [PMID: 29779664 PMCID: PMC5992914 DOI: 10.1016/bs.mie.2018.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural diversity and complexity of marine natural products have made them a rich and productive source of new bioactive molecules for drug development. The identification of these new compounds has led to extensive study of the protein constituents of the biosynthetic pathways from the producing microbes. Essential processes in the dissection of biosynthesis have been the elucidation of catalytic functions and the determination of 3D structures for enzymes of the polyketide synthases and nonribosomal peptide synthetases that carry out individual reactions. The size and complexity of these proteins present numerous difficulties in the process of going from gene to structure. Here, we review the problems that may be encountered at the various steps of this process and discuss some of the solutions devised in our and other labs for the cloning, production, purification, and structure solution of complex proteins using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
| | | | - Qingyun Dan
- University of Michigan, Ann Arbor, MI, United States
| | - Amy E Fraley
- University of Michigan, Ann Arbor, MI, United States
| | | | - Janet L Smith
- University of Michigan, Ann Arbor, MI, United States.
| | - W Clay Brown
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|