1
|
Guo N, Zhang H, Wang L, Yang Z, Li Z, Wu D, Chen F, Zhu Z, Song L. Metagenomic insights into the influence of pH on antibiotic removal and antibiotic resistance during nitritation: Regulations on functional genus and genes. ENVIRONMENTAL RESEARCH 2024; 261:119689. [PMID: 39068965 DOI: 10.1016/j.envres.2024.119689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The changes in pH and the resulting presence of free nitrous acid (FNA) or free ammonia (FA) often inhibit antibiotic biodegradation during nitritation. However, the specific mechanisms through which pH, FNA and FA influence antibiotic removal and the fate of antibiotic resistance genes (ARGs) are not yet fully understood. In this study, the effects of pH, FNA, and FA on the removal of cefalexin and amoxicillin during nitritation were investigated. The results revealed that the decreased antibiotic removal under both acidic condition (pH 4.5) and alkaline condition (pH 9.5) was due to the inhibition of the expression of amoA in ammonia-oxidizing bacteria and functional genes (hydrolase-encoding genes, transferase-encoding genes, lyase-encoding genes, and oxidoreductase-encoding genes) in heterotrophs. Furthermore, acidity was the primary inhibitor of antibiotic removal at pH 4.5, followed by FNA. Antibiotic removal was primarily inhibited by alkalinity at pH 9.5, followed by FA. The proliferation of ARGs mediated by mobile genetic element was promoted under both acidic and alkaline conditions, attributed to the promotion of FNA and FA, respectively. Overall, this study highlights the inhibitory effects of acidity and alkalinity on antibiotic removal during nitritation.
Collapse
Affiliation(s)
- Ning Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Hengyi Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhuhui Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhao Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhaoliang Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Li Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250000, China.
| |
Collapse
|
2
|
Jia B, Baek JH, Lee JK, Sun Y, Kim KH, Jung JY, Jeon CO. Expanding the β-Lactamase Family in the Human Microbiome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403563. [PMID: 39447121 DOI: 10.1002/advs.202403563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/23/2024] [Indexed: 10/26/2024]
Abstract
β-lactams, the most common antibiotics globally, have resistance primarily determined by β-lactamases. Human microbiota and β-lactams influence mutually; however, β-lactamase variety and abundance in the human microbiome remain partially understood. This study aimed to elucidate the diversity, abundance, and substrate spectrum of β-lactamases. 1369 characterized β-lactamases and 16 204 putative sequences are collected from protein databases. Upon clustering analysis and biochemical assays, nine proteins exhibiting less than 35% identity to those previously characterized are confirmed as β-lactamases. These newly identified β-lactamases originated from eight distinct clusters comprising 1163 β-lactamases. Quantifying healthy participants (n = 2394) across 19 countries using functionally confirmed clusters revealed that Japan have the highest gut β-lactamase abundance (log2[reads per million (RPM)] = 6.52) and Fiji have the lowest (log2[RPM] = 2.31). The β-lactamase abundance is correlated with β-lactam consumption (R = 0.50, p = 0.029) and income (R = 0.51, p = 0.024). Comparing individuals with ailments with healthy participants, β-lactamase abundance in the gut is increased significantly in patients with colorectal cancer, cardiovascular diseases, breast cancer, and epilepsy. These outcomes provide insights into investigating antibiotic resistance, antibiotic stewardship, and gut microbiome-antibiotic interactions.
Collapse
Affiliation(s)
- Baolei Jia
- Xianghu Laboratory, Hangzhou, 311231, China
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jae Kyeong Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ying Sun
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, 1870, Denmark
| | - Kyung Hyun Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon, 34054, Republic of Korea
| | - Ji Young Jung
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
3
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
4
|
Rayamajhi V, Byeon H, An Y, Kim T, Lee J, Lee J, Lee K, Kim C, Shin H, Jung S. Screening and Selection of Antibiotics for Enhanced Production of Astaxanthin by Haematococcus lacustris. Life (Basel) 2024; 14:977. [PMID: 39202719 PMCID: PMC11355620 DOI: 10.3390/life14080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Haematococcus lacustris (Girod-Chantrans) Rostafinski (Chlorophyta) is the richest microalgal source of astaxanthin. Natural astaxanthin from H. lacustris has been widely studied and used for commercial production worldwide. In this study, we examined the effects of 11 antibiotics (dihydrostreptomycin sulphate, neomycin, chloramphenicol, penicillin, streptomycin, ampicillin, kanamycin, gentamycin, hygromycin B, tetracycline, and paromomycin) on the biomass dry weight, growth, and astaxanthin yield of H. lacustris using Jaworski's medium without a nitrogen source. Astaxanthin content in H. lacustris was improved in the presence of ampicillin (0.25 g/L, 0.5 g/L, 1 g/L), chloramphenicol (0.25 g/L), and penicillin (0.25 g/L, 0.5 g/L, 1 g/L) in comparison to the control on day 15. The greatest increase in astaxanthin content on day 15 (6.69-fold) was obtained with the addition of penicillin (0.5 g/L) in comparison to the control. Similarly, on day 15, the cell numbers were also the highest for the H. lacustris culture grown with the addition of penicillin (0.5 g/L).
Collapse
Affiliation(s)
- Vijay Rayamajhi
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea; (V.R.); (T.K.)
| | - Huijeong Byeon
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea; (V.R.); (T.K.)
| | - Yunji An
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea; (V.R.); (T.K.)
| | - Taesoo Kim
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea; (V.R.); (T.K.)
| | - Jihyun Lee
- Korea Fisheries Resources Agency East Sea Branch, Samho-ro, Buk-gu, Pohang 37601, Gyungsangbuk-do, Republic of Korea
| | - JongDae Lee
- Department of Environmental Health Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - KwangSoo Lee
- Department of Sports Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - ChulHyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - HyunWoung Shin
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea; (V.R.); (T.K.)
- AlgaeBio, Inc., Asan 31459, Chungcheongnam-do, Republic of Korea
| | - SangMok Jung
- Research Institute for Basic Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
5
|
Saeed H, Padmesh S, Singh A, Nandy A, Singh SP, Deshwal RK. Impact of veterinary pharmaceuticals on environment and their mitigation through microbial bioremediation. Front Microbiol 2024; 15:1396116. [PMID: 39040911 PMCID: PMC11262132 DOI: 10.3389/fmicb.2024.1396116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Veterinary medications are constantly being used for the diagnosis, treatment, and prevention of diseases in livestock. However, untreated veterinary drug active compounds are interminably discharged into numerous water bodies and terrestrial ecosystems, during production procedures, improper disposal of empty containers, unused medication or animal feed, and treatment procedures. This exhaustive review describes the different pathways through which veterinary medications enter the environment, discussing the role of agricultural practices and improper disposal methods. The detrimental effects of veterinary drug compounds on aquatic and terrestrial ecosystems are elaborated with examples of specific veterinary drugs and their known impacts. This review also aims to detail the mechanisms by which microbes degrade veterinary drug compounds as well as highlighting successful case studies and recent advancements in microbe-based bioremediation. It also elaborates on microbial electrochemical technologies as an eco-friendly solution for removing pharmaceutical pollutants from wastewater. Lastly, we have summarized potential innovations and challenges in implementing bioremediation on a large scale under the section prospects and advancements in this field.
Collapse
Affiliation(s)
- Humaira Saeed
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Abhishek Nandy
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Sujit Pratap Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Ravi K. Deshwal
- Faculty of Biosciences, Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Barabanki, India
| |
Collapse
|
6
|
Zhang H, Zhou J, Wang K, Li Y, Niu L. Interaction patterns and keystone taxa of bacterial and eukaryotic communities during sulfamethoxazole mineralization in lake sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171597. [PMID: 38461980 DOI: 10.1016/j.scitotenv.2024.171597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Sulfamethoxazole (SMX) is a common antibiotic pollutant in aquatic environments, which is highly persistent under various conditions and significantly contributes to the spread of antibiotic resistance. Biodegradation is the major pathway to eliminate antibiotics in the natural environment. The roles of bacteria and eukaryotes in the biodegradation of antibiotics have received considerable attention; however, their successions and co-occurrence patterns during the biodegradation of antibiotics remain unexplored. In this study, 13C-labled SMX was amended to sediment samples from Zhushan Bay (ZS), West Shore (WS), and Gonghu Bay (GH) in Taihu Lake to explore the interplay of bacterial and eukaryotic communities during a 30-day incubation period. The cumulative SMX mineralization on day 30 ranged from 5.2 % to 19.3 %, which was the highest in WS and the lowest in GH. The bacterial community showed larger within-group interactions than between-group interactions, and the positive interactions decreased during incubation. However, the eukaryotic community displayed larger between-group interactions than within-group interactions, and the positive interactions increased during incubation. The proportion of negative interactions between bacteria and eukaryotes increased during incubation. Fifty genera (including 46 bacterial and 4 eukaryotic genera) were identified as the keystone taxa due to their dominance in the co-occurrence network and tolerance to SMX. The cumulative relative abundance of these keystone taxa significantly increased during incubation and was consistent with the SMX mineralization rate. These taxa closely cooperated and played vital roles in co-occurrence networks and microbial community interactions, signifying their crucial role in SMX mineralization. These findings broadened our understanding of the complex interactions of microorganisms under SMX exposure and their potential functions during SMX mineralization, providing valuable insights for in situ bioremediation.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jingya Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Kerong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
7
|
Wei J, Luo J, Peng T, Zhou P, Zhang J, Yang F. Comparative genomic analysis and functional investigations for MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria in ecology. ENVIRONMENTAL RESEARCH 2024; 248:118336. [PMID: 38295970 DOI: 10.1016/j.envres.2024.118336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Microcystins (MCs) significantly threaten the ecosystem and public health. Biodegradation has emerged as a promising technology for removing MCs. Many MCs-degrading bacteria have been identified, including an indigenous bacterium Sphingopyxis sp. YF1 that could degrade MC-LR and Adda completely. Herein, we gained insight into the MCs biodegradation mechanisms and evolutionary dynamics of MCs-degrading bacteria, and revealed the toxic risks of the MCs degradation products. The biochemical characteristics and genetic repertoires of strain YF1 were explored. A comparative genomic analysis was performed on strain YF1 and six other MCs-degrading bacteria to investigate their functions. The degradation products were investigated, and the toxicity of the intermediates was analyzed through rigorous theoretical calculation. Strain YF1 might be a novel species that exhibited versatile substrate utilization capabilities. Many common genes and metabolic pathways were identified, shedding light on shared functions and catabolism in the MCs-degrading bacteria. The crucial genes involved in MCs catabolism mechanisms, including mlr and paa gene clusters, were identified successfully. These functional genes might experience horizontal gene transfer events, suggesting the evolutionary dynamics of these MCs-degrading bacteria in ecology. Moreover, the degradation products for MCs and Adda were summarized, and we found most of the intermediates exhibited lower toxicity to different organisms than the parent compound. These findings systematically revealed the MCs catabolism mechanisms and evolutionary dynamics of MCs-degrading bacteria. Consequently, this research contributed to the advancement of green biodegradation technology in aquatic ecology, which might protect human health from MCs.
Collapse
Affiliation(s)
- Jia Wei
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China.
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Pengji Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China
| | - Jiajia Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China; Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Rossi F, Duchaine C, Tignat-Perrier R, Joly M, Larose C, Dommergue A, Turgeon N, Veillette M, Sellegri K, Baray JL, Amato P. Temporal variations of antimicrobial resistance genes in aerosols: A one-year monitoring at the puy de Dôme summit (Central France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169567. [PMID: 38145686 DOI: 10.1016/j.scitotenv.2023.169567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The recent characterization of antibiotic resistance genes (ARGs) in clouds evidenced that the atmosphere actively partakes in the global spreading of antibiotic resistance worldwide. Indeed, the outdoor atmosphere continuously receives large quantities of particles of biological origins, emitted from both anthropogenic or natural sources at the near Earth's surface. Nonetheless, our understanding of the composition of the atmospheric resistome, especially at mid-altitude (i.e. above 1000 m a.s.l.), remains largely limited. The atmosphere is vast and highly dynamic, so that the diversity and abundance of ARGs are expected to fluctuate both spatially and temporally. In this work, the abundance and diversity of ARGs were assessed in atmospheric aerosol samples collected weekly between July 2016 and August 2017 at the mountain site of puy de Dôme (1465 m a.s.l., central France). Our results evidence the presence of 33 different subtypes of ARGs in atmospheric aerosols, out of 34 assessed, whose total concentration fluctuated seasonally from 59 to 1.1 × 105 copies m-3 of air. These were heavily dominated by genes from the quinolone resistance family, notably the qepA gene encoding efflux pump mechanisms, which represented >95 % of total ARGs concentration. Its abundance positively correlated with that of bacteria affiliated with the genera Kineococcus, Neorhizobium, Devosia or Massilia, ubiquitous in soils. This, along with the high abundance of Sphingomonas species, points toward a large contribution of natural sources to the airborne ARGs. Nonetheless, the increased contribution of macrolide resistance (notably the erm35 gene) during winter suggests a sporadic diffusion of ARGs from human activities. Our observations depict the atmosphere as an important vector of ARGs from terrestrial sources. Therefore, monitoring ARGs in airborne microorganisms appears necessary to fully understand the dynamics of antimicrobial resistances in the environment and mitigate the threats they may represent.
Collapse
Affiliation(s)
- Florent Rossi
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Caroline Duchaine
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada; Canada Research Chair on Bioaerosols, Canada.
| | - Romie Tignat-Perrier
- Laboratoire Ampère, École Centrale de Lyon, CNRS, Université de Lyon, Ecully, France; Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP, Grenoble, France
| | - Muriel Joly
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Larose
- Laboratoire Ampère, École Centrale de Lyon, CNRS, Université de Lyon, Ecully, France
| | - Aurélien Dommergue
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP, Grenoble, France
| | - Nathalie Turgeon
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Marc Veillette
- Département de biochimie, de microbiologie et de bio-informatique, Faculté́ des sciences et de génie, Université́ Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Karine Sellegri
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie physique, UMR 6016, Clermont-Ferrand, France
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de physique du Globe de Clermont-Ferrand, UAR 833, Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie physique, UMR 6016, Clermont-Ferrand, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
9
|
Hansen ML, Dénes Z, Jarmusch SA, Wibowo M, Lozano-Andrade CN, Kovács ÁT, Strube ML, Andersen AJC, Jelsbak L. Resistance towards and biotransformation of a Pseudomonas-produced secondary metabolite during community invasion. THE ISME JOURNAL 2024; 18:wrae105. [PMID: 38874164 PMCID: PMC11203913 DOI: 10.1093/ismejo/wrae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The role of antagonistic secondary metabolites produced by Pseudomonas protegens in suppression of soil-borne phytopathogens has been clearly documented. However, their contribution to the ability of P. protegens to establish in soil and rhizosphere microbiomes remains less clear. Here, we use a four-species synthetic community (SynCom) in which individual members are sensitive towards key P. protegens antimicrobial metabolites (DAPG, pyoluteorin, and orfamide A) to determine how antibiotic production contributes to P. protegens community invasion and to identify community traits that counteract the antimicrobial effects. We show that P. protegens readily invades and alters the SynCom composition over time, and that P. protegens establishment requires production of DAPG and pyoluteorin. An orfamide A-deficient mutant of P. protegens invades the community as efficiently as wildtype, and both cause similar perturbations to community composition. Here, we identify the microbial interactions underlying the absence of an orfamide A mediated impact on the otherwise antibiotic-sensitive SynCom member, and show that the cyclic lipopeptide is inactivated and degraded by the combined action of Rhodococcus globerulus D757 and Stenotrophomonas indicatrix D763. Altogether, the demonstration that the synthetic community constrains P. protegens invasion by detoxifying its antibiotics may provide a mechanistic explanation to inconsistencies in biocontrol effectiveness in situ.
Collapse
Affiliation(s)
- Morten L Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Zsófia Dénes
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Carlos N Lozano-Andrade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mikael L Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Aaron J C Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| |
Collapse
|
10
|
Du M, Ren Z, Li Q, Pu Q, Li X, Qiu Y, Li Y. Reduced bacterial resistance antibiotics with improved microbiota tolerance in human intestinal: Molecular design and mechanism analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132368. [PMID: 37619278 DOI: 10.1016/j.jhazmat.2023.132368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Antibiotic selectivity and bacterial resistance are critical global public health issues. We constructed a multi-class machine learning model to study antibiotic effects on human intestinal microbiota abundance and identified key features. Binding energies of β-lactam antibiotics with Escherichia coli PBP3 mutant protein were calculated, and a 2D-QSAR model for bacterial resistance was established. Sensitivity analysis identified key features affecting bacterial resistance. By coupling key features from the machine learning model and 2D-QSAR model, we designed ten flucloxacillin (FLU) substitutes that improved intestinal microbiota tolerance and reduced antibiotic bacterial resistance. Concurrently, the substitutes exhibited superior degradability in soil, aquatic environments, and under photolytic conditions, coupled with a reduced environmental toxicity compared to the FLU. Evaluations under combined medication revealed significant improvements in functionality and bacterial resistance for 80% of FLU substitutes, with 50% showing more than a twofold increase. Mechanistic analysis demonstrated enhanced binding to target proteins and increased biodegradability for FLU substitutes due to more concentrated surface charges. Reduced solvent hindrance and increased cell membrane permeability of FLU substitutes, mainly due to enhanced interactions with phospholipid bilayers, contributed to their functional selectivity. This study aims to address poor antibiotic selectivity and strong bacterial resistance, providing guidance for designing antibiotic substitutes.
Collapse
Affiliation(s)
- Meijin Du
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Youli Qiu
- School of Chemical Safety, North China Institute of Science and Technology, Yanjiao 065201, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
11
|
Maatouk M, Merhej V, Pontarotti P, Ibrahim A, Rolain JM, Bittar F. Metallo-Beta-Lactamase-like Encoding Genes in Candidate Phyla Radiation: Widespread and Highly Divergent Proteins with Potential Multifunctionality. Microorganisms 2023; 11:1933. [PMID: 37630493 PMCID: PMC10459063 DOI: 10.3390/microorganisms11081933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The Candidate Phyla Radiation (CPR) was found to harbor a vast repertoire of genes encoding for enzymes with potential antibiotic resistance activity. Among these, as many as 3349 genes were predicted in silico to contain a metallo-beta-lactamase-like (MBL-like) fold. These proteins were subject to an in silico functional characterization by comparing their protein profiles (presence/absence of conserved protein domains) to other MBLs, including 24 already expressed in vitro, along with those of the beta-lactamase database (BLDB) (n = 761). The sequence similarity network (SSN) was then used to predict the functional clusters of CPR MBL-like sequences. Our findings showed that CPR MBL-like sequences were longer and more diverse than bacterial MBL sequences, with a high content of functional domains. Most CPR MBL-like sequences did not show any SSN connectivity with expressed MBLs, indicating the presence of many potential, yet unidentified, functions in CPR. In conclusion, CPR was shown to have many protein functions and a large sequence variability of MBL-like folds, exceeding all known MBLs. Further experimental and evolutionary studies of this superfamily of hydrolyzing enzymes are necessary to illustrate their functional annotation, origin, and expansion for adaptation or specialization within a given niche or compared to a specific substrate.
Collapse
Affiliation(s)
- Mohamad Maatouk
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Vicky Merhej
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Pierre Pontarotti
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Ahmad Ibrahim
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Jean-Marc Rolain
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| | - Fadi Bittar
- Microbes, Evolution, Phylogénie et Infection (MEPHI), Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, 13005 Marseille, France; (M.M.); (P.P.); (A.I.); (J.-M.R.)
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
12
|
Li L, Liu Y, Xiao Q, Xiao Z, Meng D, Yang Z, Deng W, Yin H, Liu Z. Dissecting the HGT network of carbon metabolic genes in soil-borne microbiota. Front Microbiol 2023; 14:1173748. [PMID: 37485539 PMCID: PMC10361621 DOI: 10.3389/fmicb.2023.1173748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/22/2023] [Indexed: 07/25/2023] Open
Abstract
The microbiota inhabiting soil plays a significant role in essential life-supporting element cycles. Here, we investigated the occurrence of horizontal gene transfer (HGT) and established the HGT network of carbon metabolic genes in 764 soil-borne microbiota genomes. Our study sheds light on the crucial role of HGT components in microbiological diversification that could have far-reaching implications in understanding how these microbial communities adapt to changing environments, ultimately impacting agricultural practices. In the overall HGT network of carbon metabolic genes in soil-borne microbiota, a total of 6,770 nodes and 3,812 edges are present. Among these nodes, phyla Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes are predominant. Regarding specific classes, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidia, Actinomycetia, Betaproteobacteria, and Clostridia are dominant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional assignments of glycosyltransferase (18.5%), glycolysis/gluconeogenesis (8.8%), carbohydrate-related transporter (7.9%), fatty acid biosynthesis (6.5%), benzoate degradation (3.1%) and butanoate metabolism (3.0%) are primarily identified. Glycosyltransferase involved in cell wall biosynthesis, glycosylation, and primary/secondary metabolism (with 363 HGT entries), ranks first overwhelmingly in the list of most frequently identified carbon metabolic HGT enzymes, followed by pimeloyl-ACP methyl ester carboxylesterase, alcohol dehydrogenase, and 3-oxoacyl-ACP reductase. Such HGT events mainly occur in the peripheral functions of the carbon metabolic pathway instead of the core section. The inter-microbe HGT genetic traits in soil-borne microbiota genetic sequences that we recognized, as well as their involvement in the metabolism and regulation processes of carbon organic, suggest a pervasive and substantial effect of HGT on the evolution of microbes.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, China
| | - Qinzhi Xiao
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, China
| | - Zhipeng Xiao
- Hengyang Tobacco Company of Hunan Province, Hengyang, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Wenqiao Deng
- Changsha Institute of Agricultural Science, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
13
|
Diene SM, Pontarotti P, Azza S, Armstrong N, Pinault L, Chabrière E, Colson P, Rolain JM, Raoult D. Origin, Diversity, and Multiple Roles of Enzymes with Metallo-β-Lactamase Fold from Different Organisms. Cells 2023; 12:1752. [PMID: 37443786 PMCID: PMC10340364 DOI: 10.3390/cells12131752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
β-lactamase enzymes have generated significant interest due to their ability to confer resistance to the most commonly used family of antibiotics in human medicine. Among these enzymes, the class B β-lactamases are members of a superfamily of metallo-β-lactamase (MβL) fold proteins which are characterised by conserved motifs (i.e., HxHxDH) and are not only limited to bacteria. Indeed, as the result of several barriers, including low sequence similarity, default protein annotation, or untested enzymatic activity, MβL fold proteins have long been unexplored in other organisms. However, thanks to search approaches which are more sensitive compared to classical Blast analysis, such as the use of common ancestors to identify distant homologous sequences, we are now able to highlight their presence in different organisms including Bacteria, Archaea, Nanoarchaeota, Asgard, Humans, Giant viruses, and Candidate Phyla Radiation (CPR). These MβL fold proteins are multifunctional enzymes with diverse enzymatic or non-enzymatic activities of which, at least thirteen activities have been reported such as β-lactamase, ribonuclease, nuclease, glyoxalase, lactonase, phytase, ascorbic acid degradation, anti-cancer drug degradation, or membrane transport. In this review, we (i) discuss the existence of MβL fold enzymes in the different domains of life, (ii) present more suitable approaches to better investigating their homologous sequences in unsuspected sources, and (iii) report described MβL fold enzymes with demonstrated enzymatic or non-enzymatic activities.
Collapse
Affiliation(s)
- Seydina M. Diene
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Pierre Pontarotti
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- CNRS SNC5039, 13005 Marseille, France
| | - Saïd Azza
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Nicholas Armstrong
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Lucile Pinault
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France
| | - Eric Chabrière
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Philippe Colson
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Jean-Marc Rolain
- MEPHI, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| | - Didier Raoult
- IHU-Méditerranée Infection, 13005 Marseille, France; (S.A.)
| |
Collapse
|
14
|
Chen Z, Liu X, Chen L, Han Y, Shen Y, Chen B, Wang M. Deglycosylation Inactivation Initiated by a Novel Periplasmic Dehydrogenase Complex Provides a Novel Strategy for Eliminating the Recalcitrant Antibiotic Kanamycin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4298-4307. [PMID: 36857046 DOI: 10.1021/acs.est.2c09565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biodegradation using enzyme-based systems is a promising approach to minimize antibiotic loads in the environment. Aminoglycosides are refractory antibiotics that are generally considered non-biodegradable. Here, we provide evidence that kanamycin, a common aminoglycoside antibiotic, can be degraded by an environmental bacterium through deglycosylation of its 4'-amino sugar. The unprecedented deglycosylation inactivation of kanamycin is initiated by a novel periplasmic dehydrogenase complex, which we designated AquKGD, composed of a flavin adenine dinucleotide-dependent dehydrogenase (AquKGDα) and a small subunit (AquKGDγ) containing a twin-arginine signal sequence. We demonstrate that the formation of the AquKGDα-AquKGDγ complex is required for both the degradation activity of AquKGD and its translocation into the periplasm. Native AquKGD was successfully expressed in the periplasmic space of Escherichia coli, and physicochemical analysis indicated that AquKGD is a stable enzyme. AquKGD showed excellent degradation performance, and complete elimination of kanamycin from actual kanamycin manufacturing waste was achieved with immobilized AquKGD. Ecotoxicity and cytotoxicity tests suggest that AquKGD-mediated degradation produces less harmful degradation products. Thus, we propose a novel enzymatic antibiotic inactivation strategy for effective and safe treatment of recalcitrant kanamycin residues.
Collapse
Affiliation(s)
- Zhihong Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Xin Liu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Liwen Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yong Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701-2978, United States
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Mingzi Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China
| |
Collapse
|
15
|
Wei J, Pengji Z, Zhang J, Peng T, Luo J, Yang F. Biodegradation of MC-LR and its key bioactive moiety Adda by Sphingopyxis sp. YF1: Comprehensive elucidation of the mechanisms and pathways. WATER RESEARCH 2023; 229:119397. [PMID: 36459892 DOI: 10.1016/j.watres.2022.119397] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MCs) are harmful to the ecology and public health. Some bacteria can degrade MCs into Adda, but few can destroy Adda. Adda is the key bioactive moiety of MCs and mainly contributes to hepatotoxicity. We had previously isolated an indigenous novel bacterial strain named Sphingopyxis sp. YF1 that can efficiently degrade MCs and its key bioactive moiety Adda, but the mechanisms remained unknown. Here, the biodegradation mechanisms and pathways of Adda were systematically investigated using multi-omics analysis, mass spectrometry and heterologous expression. The transcriptomic and metabolomic profiles of strain YF1 during Adda degradation were revealed for the first time. Multi-omics analyses suggested that the fatty acid degradation pathway was enriched. Specifically, the expression of genes encoding aminotransferase, beta oxidation (β-oxidation) enzymes and phenylacetic acid (PAA) degradation enzymes were significantly up-regulated during Adda degradation. These enzymes were further proven to play important roles in the biodegradation of Adda. Simultaneously, some novel potential degradation products of Adda were identified successfully, including 7‑methoxy-4,6-dimethyl-8-phenyloca-2,4-dienoic acid (C17H22O3), 2-methyl-3‑methoxy-4-phenylbutyric acid (C12H16O3) and phenylacetic acid (PAA, C8H8O2). In summary, the Adda was converted into PAA through aminotransferase and β-oxidation enzymes, then the PAA was further degraded by PAA degradation enzymes, and finally to CO2 via the tricarboxylic acid cycle. This study comprehensively elucidated the novel MC-LR biodegradation mechanisms, especially the new enzymatic pathway of Adda degradation. These findings provide a new perspective on the applications of microbes in the MCs polluted environment.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Zhou Pengji
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Ma X, Zhang L, Ren Y, Yun H, Cui H, Li Q, Guo Y, Gao S, Zhang F, Wang A, Liang B. Molecular Mechanism of Chloramphenicol and Thiamphenicol Resistance Mediated by a Novel Oxidase, CmO, in Sphingomonadaceae. Appl Environ Microbiol 2023; 89:e0154722. [PMID: 36519886 PMCID: PMC9888274 DOI: 10.1128/aem.01547-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzyme inactivation plays a crucial role in the degradation of antibiotics in the environment. Chloramphenicol (CAP) resistance by enzymatic inactivation comprises nitro reduction, amide bond hydrolysis, and acetylation modification. However, the molecular mechanism of enzymatic oxidation of CAP remains unknown. Here, a novel oxidase gene, cmO, was identified and confirmed biochemically. The encoded CmO oxidase could catalyze the oxidation at the C-1' and C-3' positions of CAP and thiamphenicol (TAP) in Sphingobium sp. strain CAP-1. CmO is highly conserved in members of the family Sphingomonadaceae and shares the highest amino acid similarity of 41.05% with the biochemically identified glucose methanol choline (GMC) oxidoreductases. Molecular docking and site-directed mutagenesis analyses demonstrated that CAP was anchored inside the protein pocket of CmO with the hydrogen bonding of key residues glycine (G) 99, asparagine (N) 518, methionine (M) 474, and tyrosine (Y) 380. CAP sensitivity tests demonstrated that the acetyltransferase and CmO could enable a higher level of resistance to CAP than the amide bond-hydrolyzing esterase and nitroreductase. This study provides a better theoretical basis and a novel diagnostic gene for understanding and assessing the fate and resistance risk of CAP and TAP in the environment. IMPORTANCE Rising levels of antibiotic resistance are undermining ecological and human health as a result of the indiscriminate usage of antibiotics. Various resistance mechanisms have been characterized-for example, genes encoding proteins that degrade antibiotics-and yet, this requires further exploration. In this study, we report a novel gene encoding an oxidase involved in the inactivation of typical amphenicol antibiotics (chloramphenicol and thiamphenicol), and the molecular mechanism is elucidated. The findings provide novel data with which to understand the capabilities of bacteria to tackle antibiotic stress, as well as the complex function of enzymes in the contexts of antibiotic resistance development and antibiotic removal. The reported gene can be further employed as an indicator to monitor amphenicol's fate in the environment, thus benefiting risk assessment in this era of antibiotic resistance.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Yijun Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Fengliang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| |
Collapse
|
17
|
Goodarzi Z, Asad S, Mehrshad M. Genome-resolved insight into the reservoir of antibiotic resistance genes in aquatic microbial community. Sci Rep 2022; 12:21047. [PMID: 36473884 PMCID: PMC9726936 DOI: 10.1038/s41598-022-25026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Aquatic microbial communities are an important reservoir of antibiotic resistance genes (ARGs). However, distribution and diversity of different ARG categories in environmental microbes with different ecological strategies is not yet well studied. Despite the potential exposure of the southern part of the Caspian Sea to the release of antibiotics, little is known about its natural resistome profile. We used a combination of Hidden Markov model (HMM), homology alignment and a deep learning approach for comprehensive screening of the diversity and distribution of ARGs in the Caspian Sea metagenomes at genome resolution. Detected ARGs were classified into five antibiotic resistance categories including prevention of access to target (44%), modification/protection of targets (30%), direct modification of antibiotics (22%), stress resistance (3%), and metal resistance (1%). The 102 detected ARG containing metagenome-assembled genomes of the Caspian Sea were dominated by representatives of Acidimicrobiia, Gammaproteobacteria, and Actinobacteria classes. Comparative analysis revealed that the highly abundant, oligotrophic, and genome streamlined representatives of taxa Acidimicrobiia and Actinobacteria modify the antibiotic target via mutation to develop antibiotic resistance rather than carrying extra resistance genes. Our results help with understanding how the encoded resistance categories of each genome are aligned with its ecological strategies.
Collapse
Affiliation(s)
- Zahra Goodarzi
- grid.46072.370000 0004 0612 7950Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- grid.46072.370000 0004 0612 7950Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- grid.6341.00000 0000 8578 2742Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden
| |
Collapse
|
18
|
Qiu D, Xu N, Zhang Q, Zhou W, Wang Y, Zhang Z, Yu Y, Lu T, Sun L, Zhou NY, Peijnenburg WJGM, Qian H. Negative effects of abamectin on soil microbial communities in the short term. Front Microbiol 2022; 13:1053153. [PMID: 36545194 PMCID: PMC9760678 DOI: 10.3389/fmicb.2022.1053153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
With the widespread use of abamectin in agriculture, there is increasing urgency to assess the effects of abamectin on soil microorganisms. Here, we treated plant-soil microcosms with abamectin at concentrations of 0.1 and 1.0 mg/kg and quantified the impacts of abamectin on bulk and rhizosphere soil microbial communities by shotgun metagenomics after 7 and 21 days of exposure. Although abamectin was reported to be easily degradable, it altered the composition of the soil microbial communities, disrupted microbial interactions, and decreased community complexity and stability after 7 days of exposure. After treatment with abamectin at a concentration of 1.0 mg/kg, some opportunistic human diseases, and soil-borne pathogens like Ralstonia were enriched in the soil. However, most ecological functions in soil, particularly the metabolic capacities of microorganisms, recovered within 21 days after abamectin treatment. The horizontal and vertical gene transfer under abamectin treatments increased the levels of antibiotic resistance genes dissemination. Overall, our findings demonstrated the negative effects of abamectin on soil ecosystems in the short-term and highlight a possible long-term risk to public and soil ecosystem health associated with antibiotic resistance genes dissemination.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Wenya Zhou
- College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - W. J. G. M. Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, Netherlands,National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, Netherlands
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, China,*Correspondence: Haifeng Qian,
| |
Collapse
|
19
|
Baquero F, Coque TM, Martínez JL. Natural detoxification of antibiotics in the environment: A one health perspective. Front Microbiol 2022; 13:1062399. [PMID: 36504820 PMCID: PMC9730888 DOI: 10.3389/fmicb.2022.1062399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
The extended concept of one health integrates biological, geological, and chemical (bio-geo-chemical) components. Anthropogenic antibiotics are constantly and increasingly released into the soil and water environments. The fate of these drugs in the thin Earth space ("critical zone") where the biosphere is placed determines the effect of antimicrobial agents on the microbiosphere, which can potentially alter the composition of the ecosystem and lead to the selection of antibiotic-resistant microorganisms including animal and human pathogens. However, soil and water environments are highly heterogeneous in their local composition; thus the permanence and activity of antibiotics. This is a case of "molecular ecology": antibiotic molecules are adsorbed and eventually inactivated by interacting with biotic and abiotic molecules that are present at different concentrations in different places. There are poorly explored aspects of the pharmacodynamics (PD, biological action) and pharmacokinetics (PK, rates of decay) of antibiotics in water and soil environments. In this review, we explore the various biotic and abiotic factors contributing to antibiotic detoxification in the environment. These factors range from spontaneous degradation to the detoxifying effects produced by clay minerals (forming geochemical platforms with degradative reactions influenced by light, metals, or pH), charcoal, natural organic matter (including cellulose and chitin), biodegradation by bacterial populations and complex bacterial consortia (including "bacterial subsistence"; in other words, microbes taking antibiotics as nutrients), by planktonic microalgae, fungi, plant removal and degradation, or sequestration by living and dead cells (necrobiome detoxification). Many of these processes occur in particulated material where bacteria from various origins (microbiota coalescence) might also attach (microbiotic particles), thereby determining the antibiotic environmental PK/PD and influencing the local selection of antibiotic resistant bacteria. The exploration of this complex field requires a multidisciplinary effort in developing the molecular ecology of antibiotics, but could result in a much more precise determination of the one health hazards of antibiotic production and release.
Collapse
Affiliation(s)
- Fernando Baquero
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, and Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,*Correspondence: Fernando Baquero,
| | - Teresa M. Coque
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, and Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFECT), Madrid, Spain
| | | |
Collapse
|
20
|
A Two-Component-System-Governed Regulon That Includes a β-Lactamase Gene is Responsive to Cell Envelope Disturbance. mBio 2022; 13:e0174922. [PMID: 35968954 PMCID: PMC9426598 DOI: 10.1128/mbio.01749-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase production facilitates bacterial survival in nature and affects many infection therapies. However, much of its regulation remains unexplored. We used a genetics-based approach to identify a two-component system (TCS) present in a strain of Burkholderia thailandensis essential for the regulated expression of a class A β-lactamase gene, penL, by sensing subtle envelope disturbance caused by β-lactams, polymyxin B, or other chemical agents. The genes encoding stress responses and resistance to various antibiotics were coregulated, as were the catabolic genes that enabled the B. thailandensis strain to grow on penicillin G or phenylacetate, a degradation product of penicillin G. This regulon has likely evolved to facilitate bacterial survival in the soil microbiome that contains a multitude of antibiotic producers. Practically, this regulatory system makes this TCS, which we named BesRS, an excellent drug target for the purpose of increasing antibiotic efficacy in combination therapies for Burkholderia infections.
Collapse
|
21
|
The Phenylacetic Acid Catabolic Pathway Regulates Antibiotic and Oxidative Stress Responses in Acinetobacter. mBio 2022; 13:e0186321. [PMID: 35467424 PMCID: PMC9239106 DOI: 10.1128/mbio.01863-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The opportunistic pathogen Acinetobacter baumannii is responsible for a wide range of infections that are becoming increasingly difficult to treat due to extremely high rates of multidrug resistance. Acinetobacter's pathogenic potential is thought to rely on a "persist and resist" strategy that facilitates its remarkable ability to survive under a variety of harsh conditions. The paa operon is involved in the catabolism of phenylacetic acid (PAA), an intermediate in phenylalanine degradation, and is the most differentially regulated pathway under many environmental conditions. We found that, under subinhibitory concentrations of antibiotics, A. baumannii upregulates expression of the paa operon while simultaneously repressing chaperone-usher Csu pilus expression and biofilm formation. These phenotypes are reverted either by exogenous addition of PAA and its nonmetabolizable derivative 4-fluoro-PAA or by a mutation that blocks PAA degradation. Interference with PAA degradation increases susceptibility to antibiotics and hydrogen peroxide treatment. Transcriptomic and proteomic analyses identified a subset of genes and proteins whose expression is affected by addition of PAA or disruption of the paa pathway. Finally, we demonstrated that blocking PAA catabolism results in attenuated virulence in a murine catheter-associated urinary tract infection (CAUTI) model. We conclude that the paa operon is part of a regulatory network that responds to antibiotic and oxidative stress and is important for virulence. PAA has known regulatory functions in plants, and our experiments suggest that PAA is a cross-kingdom signaling molecule. Interference with this pathway may lead, in the future, to novel therapeutic strategies against A. baumannii infections. IMPORTANCE Acinetobacter baumannii causes a wide range of infections that are difficult to treat due to increasing rates of multidrug resistance; however, the mechanisms that this pathogen uses to respond to stress are poorly understood. Here, we describe a new mechanism of stress signaling in Acinetobacter that is mediated by the metabolite phenylacetic acid (PAA). We found that disrupting PAA catabolism interfered with A. baumannii's ability to adapt to stress, leading to decreased antibiotic tolerance and hydrogen peroxide resistance. We propose that investigating this stress response could lead to the development of novel therapeutics. In fact, PAA derivatives constitute a group of FDA-approved nonsteroidal anti-inflammatory drugs that could potentially be repurposed as antivirulence therapies to target multidrug-resistant Acinetobacter infections.
Collapse
|
22
|
New Beta-lactamases in Candidate Phyla Radiation: Owning Pleiotropic Enzymes Is a Smart Paradigm for Microorganisms with a Reduced Genome. Int J Mol Sci 2022; 23:ijms23105446. [PMID: 35628255 PMCID: PMC9145738 DOI: 10.3390/ijms23105446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/08/2023] Open
Abstract
The increased exploitation of microbial sequencing methods has shed light on the high diversity of new microorganisms named Candidate Phyla Radiation (CPR). CPR are mainly detected via 16S rRNA/metabarcoding analyses or metagenomics and are found to be abundant in all environments and present in different human microbiomes. These microbes, characterized by their symbiotic/epiparasitic lifestyle with bacteria, are directly exposed to competition with other microorganisms sharing the same ecological niche. Recently, a rich repertoire of enzymes with antibiotic resistance activity has been found in CPR genomes by using an in silico adapted screening strategy. This reservoir has shown a high prevalence of putative beta-lactamase-encoding genes. We expressed and purified five putative beta-lactamase sequences having the essential domains and functional motifs from class A and class B beta-lactamase. Their enzymatic activities were tested against various beta-lactam substrates using liquid chromatography-mass spectrometry (LC-MS) and showed some beta-lactamase activity even in the presence of a beta-lactamase inhibitor. In addition, ribonuclease activity was demonstrated against RNA that was not inhibited by sulbactam and EDTA. None of these proteins could degrade single- and double-stranded-DNA. This study is the first to express and test putative CPR beta-lactamase protein sequences in vitro. Our findings highlight that the reduced genomes of CPR members harbor sequences encoding for beta-lactamases known to be multifunction hydrolase enzymes.
Collapse
|
23
|
Zhang Q, Liu Y, Zhang C, Zhou D. Easily biodegradable substrates are crucial for enhancing antibiotic risk reduction: Low-carbon discharging policies need to be more specified. WATER RESEARCH 2022; 210:117972. [PMID: 34952454 DOI: 10.1016/j.watres.2021.117972] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Governments have formulated stricter wastewater treatment plant (WWTP) discharge standards to address water pollution; however, with the cost of aggravating the refractory of the discharges. These policies are not in line with the classic co-metabolism theory; thus, we evaluated the effects of an easily biodegradable substrate on the removal efficiency of antibiotics and antibiotic resistance genes (ARGs) in the receiving water. In this study, reactor with 8 d of hydraulic retention time (HRT) was constructed to simulate a receiving river, and several antibiotics (0.30 mg/L each) were continuously discharged to the reactor (tetracycline, ciprofloxacin, amoxicillin, chloramphenicol, and sulfamethoxazole). Sodium acetate (NaAc) was used as a representative easily biodegradable substrate, and treatment protocols with and without a co-substrate were compared. The attenuation of the antibiotics in the simulated river and the production and dissemination of ARGs were analyzed. The results showed that 50 mg/L NaAc activated non-specific enzymes (a log2-fold change of 3.1-8.8 compared with 0 mg/L NaAc). The removal rate of the antibiotics was increased by 4-32%, and the toxicity of the downstream water was reduced by 35%. The upregulation of antioxidant enzymes caused the intracellular reactive oxygen species (ROSs) decreased by up to 47%, inhibiting horizontal gene transfer and reducing mobile genetic element-mediated ARGs (mARGs) by 18-56%. Furthermore, NaAc also increased the alpha diversity of the microbial community by 5-15% (Shannon-Wiener Index) and reduced the abundance of human bacterial pathogens by 22-36%. In summary, easily biodegradable substrates in the receiving water are crucial for reducing antibiotic risk.
Collapse
Affiliation(s)
- Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yang Liu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chongjun Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
24
|
Dos S Grignet R, Barros MGA, Panatta AAS, Bernal SPF, Ottoni JR, Passarini MRZ, da C S Gonçalves C. Medicines as an emergent contaminant: the review of microbial biodegration potential. Folia Microbiol (Praha) 2022; 67:157-174. [PMID: 34978661 DOI: 10.1007/s12223-021-00941-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Emerging environmental contaminants, such as medicine waste, are of great concern to the scientific community and to the local environmental and health departments because of their potential long-term effects and ecotoxicological risk. Besides the prolonged use of medicines for the development of modern society, the elucidation of their effect on the ecosystem is relatively recent. Medicine waste and its metabolites can, for instance, cause alterations in microbial dynamics and disturb fish behavior. Bioremediation is an efficient and eco-friendly technology that appears as a suitable alternative to conventional methods of water waste and sludge treatment and has the capacity to remove or reduce the presence of emerging contaminants. Thus, this review has the objective of compiling information on environmental contamination by common medicines and their microbial biodegradation, focusing on five therapeutic classes: analgesics, antibiotics, antidepressants, non-steroidal anti-inflammatory drugs (NSAIDs), and contraceptives. Their effects in the environment will also be analyzed, as well as the possible routes of degradation by microorganisms.
Collapse
Affiliation(s)
- Rosane Dos S Grignet
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Maria G A Barros
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Andressa A S Panatta
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Suzan P F Bernal
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Julia R Ottoni
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Michel R Z Passarini
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil
| | - Caroline da C S Gonçalves
- Instituto Latino-Americano de Ciências da Vida E da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu - PR, 85870-650, Brazil.
| |
Collapse
|
25
|
Abstract
In the struggle with antibiotic resistance, we are losing. There is now a serious threat of moving into a postantibiotic world. High levels of resistance, in terms of both frequency and strength, have evolved against all clinically approved antibiotics worldwide. The usable life span of new clinically approved antibiotics is typically less than a decade before resistance reaches frequencies so high as to require only guarded usage. However, microbes have produced antibiotics for millennia without resistance becoming an existential issue. If resistance is the inevitable consequence of antibiotic usage, as has been the human experience, why has it not become an issue for microbes as well, especially since resistance genes are as prevalent in nature as the genes responsible for antibiotic production? Here, we ask how antibiotics can exist given the almost ubiquitous presence of resistance genes in the very microbes that have produced and used antibiotics since before humans walked the planet. We find that the context of both production and usage of antibiotics by microbes may be key to understanding how resistance is managed over time, with antibiotic synthesis and resistance existing in a paired relationship, much like a cipher and key, that impacts microbial community assembly. Finally, we put forward the cohesive, ecologically based "secret society" hypothesis to explain the longevity of antibiotics in nature.
Collapse
Affiliation(s)
- Fabrizio Spagnolo
- Biology Department, Queens College of The City University of New York, Flushing, New York, USA
| | - Monica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College, The City University of New York, Bayside, New York, USA
| | - John J. Dennehy
- Biology Department, Queens College of The City University of New York, Flushing, New York, USA
- The Graduate Center of The City University of New York, New York, New York, USA
| |
Collapse
|
26
|
Reductive inactivation of the hemiaminal pharmacophore for resistance against tetrahydroisoquinoline antibiotics. Nat Commun 2021; 12:7085. [PMID: 34873166 PMCID: PMC8648761 DOI: 10.1038/s41467-021-27404-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is becoming one of the major crises, among which hydrolysis reaction is widely employed by bacteria to destroy the reactive pharmacophore. Correspondingly, antibiotic producer has canonically co-evolved this approach with the biosynthetic capability for self-resistance. Here we discover a self-defense strategy featuring with reductive inactivation of hemiaminal pharmacophore by short-chain dehydrogenases/reductases (SDRs) NapW and homW, which are integrated with the naphthyridinomycin biosynthetic pathway. We determine the crystal structure of NapW·NADPH complex and propose a catalytic mechanism by molecular dynamics simulation analysis. Additionally, a similar detoxification strategy is identified in the biosynthesis of saframycin A, another member of tetrahydroisoquinoline (THIQ) antibiotics. Remarkably, similar SDRs are widely spread in bacteria and able to inactive other THIQ members including the clinical anticancer drug, ET-743. These findings not only fill in the missing intracellular events of temporal-spatial shielding mode for cryptic self-resistance during THIQs biosynthesis, but also exhibit a sophisticated damage-control in secondary metabolism and general immunity toward this family of antibiotics. Antibiotic-producing organisms need to co-evolve self-protection mechanisms to avoid any damage to themselves caused by the antibiotic pharmacophore (the reactive part of the compound). In this study, the authors report a self-defense strategy in naphthyridinomycin (NDM)-producing Streptomyces lusitanus, that comprises reductive inactivation of the hemiaminal pharmacophore by short-chain dehydrogenases/reductases (SDRs) NapW and HomW.
Collapse
|
27
|
Ren J, Deng L, Li C, Dong L, Li Z, Zhao J, Zhang J, Niu D. Safety of composts consisting of hydrothermally treated penicillin fermentation residue: Degradation products, antibiotic resistance genes and bacterial diversity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118075. [PMID: 34492529 DOI: 10.1016/j.envpol.2021.118075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 05/18/2023]
Abstract
Combining hydrothermal treatment and composting is an effective method to dispose of penicillin fermentation residue (PFR), but the safety and related mechanism are still unclear. In this study, penicillin solution was hydrothermally treated to decipher its degradation mechanism, and then hydrothermally treated PFR (HT-PFR) was mixed with bulking agents at ratios of 2:0 (CK), 2:1.5 (T1), and 2:5 (T2) to determine the absolute abundance of antibiotic resistance genes (ARGs) and the succession of bacterial community. Results showed that penicillin was degraded to several new compounds without the initial lactam structure after hydrothermal treatment. During composting, temperature and pH of the composts increased with the raising of HT-PFR proportion, except the pH at days 2. After 52 days of composting, the absolute copies of ARGs (blaTEM, blaCMY2, and blaSFO) and the relative abundance of bacteria related to pathogens were reduced significantly (P < 0.05). Especially, the total amount of ARGs in the samples of CK and T1 were decreased to equal level (around 5 log10 copies/g), which indicated that more ARGs were degraded in the latter by the composting process. In the CK samples, Bacteroidetes and Proteobacteria accounted for ~69.8% of the total bacteria, but they were gradually replaced by Firmicutes with increasing proportions of HT-PFR, which can be caused by the high protein content in PFR. Consisting with bacterial community, more gram-positive bacteria were observed in T1 and T2, and most of them are related to manganese oxidation and chitinolysis. As composting proceeded, bacteria having symbiotic or pathogenic relationships with animals and plants were reduced, but those related to ureolysis and cellulolysis were enriched. Above all, hydrothermal treatment is effective in destroying the lactam structure of penicillin, which makes that most ARGs and pathogenic bacteria are eliminated in the subsequent composting.
Collapse
Affiliation(s)
- Jianjun Ren
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Liujie Deng
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Co., Ltd., Yili, 835007, China
| | - Chunyu Li
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Liping Dong
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Co., Ltd., Yili, 835007, China
| | - Zhijie Li
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Co., Ltd., Yili, 835007, China
| | - Jian Zhao
- Department of Forensic Pathology, Guangzhou Forensic Science Institute and Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, 510000, China
| | - Jin Zhang
- Hebei Cixin Environmental Technology Co., Ltd., Langfang, 065600, China
| | - Dongze Niu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
28
|
Assessment of the efficiency of synergistic photocatalysis on penicillin G biodegradation by whole cell Paracoccus sp. J Biol Eng 2021; 15:25. [PMID: 34706751 PMCID: PMC8554860 DOI: 10.1186/s13036-021-00275-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The Paracoccus sp. strain isolated from sludge was identified and evaluated for catalytic activity in the degradation of penicillin G. Results High degradation efficiency and synergistic catalytic effects of the whole cell and visible light without additional catalysts were observed. The key factors influencing the degradation and kinetics of penicillin G were investigated. The results showed the phenylacetic acid, which was produced during penicillin G biodegradation, exhibited stronger inhibiting effects on KDSPL-02. However, this effect was reduced by visible light irradiation without any additional photocatalyst; furthermore, the rate of penicillin G biodegradation was accelerated, reaching a 100% rate in 12 h at a penicillin G concentration of 1.2 g/L. Four key intermediates produced during penicillin G degradation were isolated and identified by LC–MS, 1H NMR, and 13C NMR. Enzymes involved in the PAA pathway were proposed from a genomic analysis of KDSPL-02. Conclusions These results provide a new method for bio-degrading of penicillin or other antibiotic pollutants using photoaccelerating biocatalysts with greater efficiency and more environmentally friendly conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-021-00275-4.
Collapse
|
29
|
Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126618. [PMID: 34329102 DOI: 10.1016/j.jhazmat.2021.126618] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Rakesh Bhatt
- Department of Civil Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
30
|
Yue Y, Liu YJ, Wang J, Vukanti R, Ge Y. Enrichment of potential degrading bacteria accelerates removal of tetracyclines and their epimers from cow manure biochar amended soil. CHEMOSPHERE 2021; 278:130358. [PMID: 33813338 DOI: 10.1016/j.chemosphere.2021.130358] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/07/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
The excessive usage of tetracyclines in animal husbandry and aquaculture invariably leads to deterioration of the microbial quality of nearby soils. We previously reported the accelerated removal of tetracyclines and their intermediates from the cow manure biochar amended soil (CMB). However, little is known about the underlying changes in the microbial community that mediate the accelerated removal of tetracyclines from the CMB. Here, we compared the concentration of parent tetracyclines along with their intermediates, microbial biomass, and microbial (fungal and bacterial) community in CMB and the control soil (CK) on the day of 1, 5, 10, 20, 30, 45, and 60. The biochar amendment accelerated the removal of tetracyclines and their epimers from the soil. Bacterial community composition varied between the CMB and CK. The relative abundance and richness of the bacteria that correlated with the degradation of tetracyclines and their epimers was significantly higher in the CMB as compared to the CK. Specifically, the CMB had a more intricate network of the degrading bacteria with the three keystone genera viz. Acidothermus sp., Sphingomonas sp., and Blastococcus sp., whereas, the CK had a simple network with Sphingomonas sp. as the keystone genus. Overall, the biochar amendment accelerated the removal of tetracyclines and their epimers through the enrichment of potential tetracycline degrading bacteria in the soil; thus, it can be applied for the in situ remediation of soils contaminated with tetracyclines.
Collapse
Affiliation(s)
- Yan Yue
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yong-Jun Liu
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Raja Vukanti
- Department of Microbiology, Bhavan's Vivekananda College, Secunderabad, 500094, India
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Zhao Z, Xue R, Fu L, Chen C, Ndayisenga F, Zhou D. Carbon dots enhance the recovery of microalgae bioresources from wastewater containing amoxicillin. BIORESOURCE TECHNOLOGY 2021; 335:125258. [PMID: 34029866 DOI: 10.1016/j.biortech.2021.125258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The cultivation of microalgae using wastewater could bring some major economic benefits; however, the toxics in wastewater typically lead to a reduction in bioresource production. In this study, carbon dots (CDs) could enhance the photosynthetic activity of Chlorella under antibiotic stress because they might optimize photoluminescence by red-shifting incident light. Adding of 1 mg/L CDs increased the specific growth rate of Chlorella by 36.0% (day 8-13) and 52.7% (day 14-18) and significantly increased photosystems II activity. This treatment also increased amoxicillin removal by 18.6%. Thus, the toxicity of residuals was significantly eliminated (P < 0.05). The removal of nitrogen and phosphorous was increased by 14.6% and 9.9%, respectively. The production of pigments, lipids and proteins was increased by 16.6%, 19.5% and 24.8%, respectively. This work provided a new strategy of using CDs to mediate the coupling of microalgal bioresources production and toxic wastewater purification.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ren Xue
- Shanxi Taigang Engineering Technology Co. Ltd., Taiyuan 030000, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
32
|
Zhang X, Zhu R, Li W, Ma J, Lin H. Genomic insights into the antibiotic resistance pattern of the tetracycline-degrading bacterium, Arthrobacter nicotianae OTC-16. Sci Rep 2021; 11:15638. [PMID: 34341372 PMCID: PMC8329189 DOI: 10.1038/s41598-021-94840-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
Although many bacteria have the potential to remove antibiotic residues from environmental niches, the benefits of using antibiotic-degrading bacteria to manage antibiotic pollution should be assessed against the risk of the potential expansion of antimicrobial resistance. This study investigated the antibiotic resistance pattern of the bacterium Arthrobacter nicotianae OTC-16, which shows substantial biodegradation of oxytetracycline (OTC)/tetracycline. The results showed that this strain could be resistant to at least seven categories of 15 antibiotics, based on antimicrobial susceptibility testing. The genome of A. nicotianae OTC-16 contains one chromosome (3,643,989 bp) and two plasmids (plasmid1, 123,894 bp and plasmid2, 29,841 bp). Of the 3,561 genes isolated, eight were related to antibiotic resistance. During OTC degradation by the strain OTC-16, the expression of ant2ia, sul1, tet33, and cml_e8 in the plasmid, and one gene (tetV) in the chromosome were tracked using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Only the plasmid-derived resistance genes were up-regulated in the presence of OTC. The presence of OTC increased the tolerance of strain OTC-16 to streptomycin sulphate. The findings of this study can help deepen our understanding of the behavioural characteristics of resistance genes and adaptive evolution of drug-resistant bacteria.
Collapse
Affiliation(s)
- Xin Zhang
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Rongrong Zhu
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weilin Li
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junwei Ma
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hui Lin
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
33
|
Crofts TS, McFarland AG, Hartmann EM. Mosaic Ends Tagmentation (METa) Assembly for Highly Efficient Construction of Functional Metagenomic Libraries. mSystems 2021; 6:e0052421. [PMID: 34184912 PMCID: PMC8269240 DOI: 10.1128/msystems.00524-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Functional metagenomic libraries, physical bacterial libraries which allow the high-throughput capture and expression of microbiome genes, have been instrumental in the sequence-naive and cultivation-independent exploration of metagenomes. However, preparation of these libraries is often limited by their high DNA input requirement and their low cloning efficiency. Here, we describe a new method, mosaic ends tagmentation (METa) assembly, for highly efficient functional metagenomic library preparation. We applied tagmentation to metagenomic DNA from soil and gut microbiomes to prepare DNA inserts for high-throughput cloning into functional metagenomic libraries. The presence of mosaic end sequences in the resulting DNA fragments synergized with homology-based assembly cloning to result in a 300-fold increase in cloning efficiency compared to traditional blunt-cloning-based protocols. We show that compared to published libraries prepared by state-of-the-art protocols, METa assembly is on average ca. 20- to 200-fold more efficient and can prepare gigabase-sized libraries with as little as 200 ng of input DNA. We show the usefulness of METa assembly first by using a normative 5-μg mass of soil metagenomic DNA to prepare a 700-Gb library that allowed us to discover novel nourseothricin resistance genes and a potentially new mode of resistance to this antibiotic and second by using only 300 ng of goose fecal metagenomic DNA to prepare a 27-Gb library that captured numerous tetracycline and colistin resistance genes. METa assembly provides a streamlined, flexible, and efficient method for preparing functional metagenomic libraries, enabling new avenues of genetic and biochemical research into low-biomass or scarce microbiomes. IMPORTANCE Medically and industrially important genes can be recovered from microbial communities by high-throughput sequencing, but precise annotation is often limited to characterized genes and their relatives. Cloning a metagenome en masse into an expression host to produce a functional metagenomic library, directly connecting genes to functions, is a sequence-naive and cultivation-independent method to discover novel genes. The process of preparing these libraries is DNA greedy and inefficient, however. Here, we describe a library preparation method that is an order of magnitude more efficient and less DNA greedy. This method is consistently efficient across libraries prepared from cultures, a soil microbiome, and a goose fecal microbiome and allowed us to discover new antibiotic resistance genes and mechanisms. This library preparation method will potentially allow the functional metagenomic exploration of microbiomes that were previously off limits due to their rarity or low microbial biomass, such as biomedical swabs or exotic samples.
Collapse
Affiliation(s)
- Terence S. Crofts
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Alexander G. McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
34
|
Wang P, Shen C, Cong Q, Xu K, Lu J. Enzyme-catalyzed biodegradation of penicillin fermentation residues by β-lactamase OtLac from Ochrobactrum tritici. Microb Cell Fact 2021; 20:117. [PMID: 34120587 PMCID: PMC8201694 DOI: 10.1186/s12934-021-01606-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biodegradation of antibiotics is a promising method for the large-scale removal of antibiotic residues in the environment. However, the enzyme that is involved in the biodegradation process is the key information to be revealed. RESULTS In this study, the beta-lactamase from Ochrobactrum tritici that mediates the biodegradation of penicillin V was identified and characterized. When searching the proteins of Ochrobactrum tritici, the β-lactamase (OtLac) was identified. OtLac consists of 347 amino acids, and predicted isoelectric point is 7.0. It is a class C β-lactamase according to BLAST analysis. The coding gene of OtLac was amplified from the genomic DNA of Ochrobactrum tritici. The OtLac was overexpressed in E. coli BL21 (DE3) and purified with Ni2+ column affinity chromatography. The biodegradation ability of penicillin V by OtLac was identified in an in vitro study and analyzed by HPLC. The optimal temperature for OtLac is 32 ℃ and the optimal pH is 7.0. Steady-state kinetics showed that OtLac was highly active against penicillin V with a Km value of 17.86 μM and a kcat value of 25.28 s-1 respectively. CONCLUSIONS OtLac demonstrated biodegradation activity towards penicillin V potassium, indicating that OtLac is expected to degrade penicillin V in the future.
Collapse
Affiliation(s)
- Peng Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
- Hebei Province Pharmaceutical Chemical Engineering Technology Research Center, Shijiazhuang, 050018, China.
| | - Chen Shen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Qinqin Cong
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Kaili Xu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jialin Lu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
35
|
Ranjan VK, Mukherjee S, Basak C, Chakraborty R. Abundance of New Delhi Metallo-β-Lactamase-Producing Acinetobacter, Escherichia, Proteus, and Pseudomonas spp. in Mahananda and Karala Rivers of India. Microb Drug Resist 2021; 27:1603-1615. [PMID: 33956535 DOI: 10.1089/mdr.2019.0449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we report a high incidence of New Delhi metallo-β-lactamase (NDM)-producing and ampicillin-catabolizing bacteria within carbapenem-resistant bacterial populations in the waters of two important rivers, Mahananda and Karala, bisecting two most populous towns, Siliguri and Jalpaiguri, respectively, in the northern West Bengal, India. Isolates producing NDM belonged to four genera, Acinetobacter, Escherichia, Proteus, and Pseudomonas; among which few were phylogenetically determined as putatively novel species. Class 1 integrons with the frequent presence of aadA and aac(6')-Ib gene cassettes in 50% of NDM-bearing isolates are indicative of possible selective pressures generated out of unregulated use of streptomycin, in agriculture practiced by the cultivators and tea planters living in locales drained by these two rivers, in their up- and downstream, and amikacin in the most crowded government-sponsored "sadar" and district hospitals of Siliguri and Jalpaiguri. NDM-delivering bacteria in rivers have genuine consequences for city inhabitants who are dependent on public water and sanitation facilities. Standard reconnaissance of antibiotic resistance, consolidating ecological sampling just as the assessment of clinical isolates, should be set up as a need.
Collapse
Affiliation(s)
- Vivek Kumar Ranjan
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Shriparna Mukherjee
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India.,Department of Botany, Prasannadeb Women's College, Jalpaiguri, India
| | - Chandana Basak
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India
| |
Collapse
|
36
|
Billet L, Pesce S, Rouard N, Spor A, Paris L, Leremboure M, Mounier A, Besse-Hoggan P, Martin-Laurent F, Devers-Lamrani M. Antibiotrophy: Key Function for Antibiotic-Resistant Bacteria to Colonize Soils-Case of Sulfamethazine-Degrading Microbacterium sp. C448. Front Microbiol 2021; 12:643087. [PMID: 33841365 PMCID: PMC8032547 DOI: 10.3389/fmicb.2021.643087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic and repeated exposure of environmental bacterial communities to anthropogenic antibiotics have recently driven some antibiotic-resistant bacteria to acquire catabolic functions, enabling them to use antibiotics as nutritive sources (antibiotrophy). Antibiotrophy might confer a selective advantage facilitating the implantation and dispersion of antibiotrophs in contaminated environments. A microcosm experiment was conducted to test this hypothesis in an agroecosystem context. The sulfonamide-degrading and resistant bacterium Microbacterium sp. C448 was inoculated in four different soil types with and without added sulfamethazine and/or swine manure. After 1 month of incubation, Microbacterium sp. (and its antibiotrophic gene sadA) was detected only in the sulfamethazine-treated soils, suggesting a low competitiveness of the strain without antibiotic selection pressure. In the absence of manure and despite the presence of Microbacterium sp. C448, only one of the four sulfamethazine-treated soils exhibited mineralization capacities, which were low (inferior to 5.5 ± 0.3%). By contrast, manure addition significantly enhanced sulfamethazine mineralization in all the soil types (at least double, comprised between 5.6 ± 0.7% and 19.5 ± 1.2%). These results, which confirm that the presence of functional genes does not necessarily ensure functionality, suggest that sulfamethazine does not necessarily confer a selective advantage on the degrading strain as a nutritional source. 16S rDNA sequencing analyses strongly suggest that sulfamethazine released trophic niches by biocidal action. Accordingly, manure-originating bacteria and/or Microbacterium sp. C448 could gain access to low-competition or competition-free ecological niches. However, simultaneous inputs of manure and of the strain could induce competition detrimental for Microbacterium sp. C448, forcing it to use sulfamethazine as a nutritional source. Altogether, these results suggest that the antibiotrophic strain studied can modulate its sulfamethazine-degrading function depending on microbial competition and resource accessibility, to become established in an agricultural soil. Most importantly, this work highlights an increased dispersal potential of antibiotrophs in antibiotic-polluted environments, as antibiotics can not only release existing trophic niches but also form new ones.
Collapse
Affiliation(s)
- Loren Billet
- AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Agroécologie, Dijon, France
- INRAE, UR RiverLy, Villeurbanne, France
| | | | - Nadine Rouard
- AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Aymé Spor
- AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Laurianne Paris
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Martin Leremboure
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Arnaud Mounier
- AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Pascale Besse-Hoggan
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Marion Devers-Lamrani
- AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, Agroécologie, Dijon, France
| |
Collapse
|
37
|
Qi M, Liang B, Zhang L, Ma X, Yan L, Dong W, Kong D, Zhang L, Zhu H, Gao SH, Jiang J, Liu SJ, Corvini PFX, Wang A. Microbial Interactions Drive the Complete Catabolism of the Antibiotic Sulfamethoxazole in Activated Sludge Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3270-3282. [PMID: 33566597 DOI: 10.1021/acs.est.0c06687] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbial communities are believed to outperform monocultures in the complete catabolism of organic pollutants via reduced metabolic burden and increased robustness to environmental challenges; however, the interaction mechanism in functional microbiomes remains poorly understood. Here, three functionally differentiated activated sludge microbiomes (S1: complete catabolism of sulfamethoxazole (SMX); S2: complete catabolism of the phenyl part of SMX ([phenyl]-SMX) with stable accumulation of its heterocyclic product 3-amino-5-methylisoxazole (3A5MI); A: complete catabolism of 3A5MI rather than [phenyl]-SMX) were enriched. Combining time-series cultivation-independent microbial community analysis, DNA-stable isotope probing, molecular ecological network analysis, and cultivation-dependent function verification, we identified key players involved in the SMX degradation process. Paenarthrobacter and Nocardioides were primary degraders for the initial cleavage of the sulfonamide functional group (-C-S-N- bond) and 3A5MI degradation, respectively. Complete catabolism of SMX was achieved by their cross-feeding. The co-culture of Nocardioides, Acidovorax, and Sphingobium demonstrated that the nondegraders Acidovorax and Sphingobium were involved in the enhancement of 3A5MI degradation. Moreover, we unraveled the internal labor division patterns and connections among the active members centered on the two primary degraders. Overall, the proposed methodology is promisingly applicable and would help generate mechanistic, predictive, and operational understanding of the collaborative biodegradation of various contaminants. This study provides useful information for synthetic activated sludge microbiomes with optimized environmental functions.
Collapse
Affiliation(s)
- Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchen Dong
- Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhen Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
38
|
Diene SM, Pinault L, Armstrong N, Azza S, Keshri V, Khelaifia S, Chabrière E, Caetano-Anolles G, Rolain JM, Pontarotti P, Raoult D. Dual RNase and β-lactamase Activity of a Single Enzyme Encoded in Archaea. Life (Basel) 2020; 10:life10110280. [PMID: 33202677 PMCID: PMC7697635 DOI: 10.3390/life10110280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/11/2023] Open
Abstract
β-lactam antibiotics have a well-known activity which disturbs the bacterial cell wall biosynthesis and may be cleaved by β-lactamases. However, these drugs are not active on archaea microorganisms, which are naturally resistant because of the lack of β-lactam target in their cell wall. Here, we describe that annotation of genes as β-lactamases in Archaea on the basis of homologous genes is a remnant of identification of the original activities of this group of enzymes, which in fact have multiple functions, including nuclease, ribonuclease, β-lactamase, or glyoxalase, which may specialized over time. We expressed class B β-lactamase enzyme from Methanosarcina barkeri that digest penicillin G. Moreover, while weak glyoxalase activity was detected, a significant ribonuclease activity on bacterial and synthetic RNAs was demonstrated. The β-lactamase activity was inhibited by β-lactamase inhibitor (sulbactam), but its RNAse activity was not. This gene appears to have been transferred to the Flavobacteriaceae group especially the Elizabethkingia genus, in which the expressed gene shows a more specialized activity on thienamycin, but no glyoxalase activity. The expressed class C-like β-lactamase gene, from Methanosarcina sp., also shows hydrolysis activity on nitrocefin and is more closely related to DD-peptidase enzymes. Our findings highlight the need to redefine the nomenclature of β-lactamase enzymes and the specification of multipotent enzymes in different ways in Archaea and bacteria over time.
Collapse
Affiliation(s)
- Seydina M. Diene
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
| | - Lucile Pinault
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
| | - Nicholas Armstrong
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
| | - Said Azza
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
| | - Vivek Keshri
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
| | | | - Eric Chabrière
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
| | - Gustavo Caetano-Anolles
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Jean-Marc Rolain
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
| | - Pierre Pontarotti
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
- CNRS, 13005 Marseille, France;
| | - Didier Raoult
- MEPHI, IHU-Mediterranee Infection, Aix Marseille University, 19-21 Bd Jean Moulin, 13005 Marseille, France; (S.M.D.); (V.K.); (E.C.); (J.-M.R.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), IHU-Méditerranée Infection, 13005 Marseille, France; (L.P.); (N.A.); (S.A.)
- IHU-Méditerranée Infection, 13005 Marseille, France;
- Correspondence: ; Tel.: +33-4-1373-2401
| |
Collapse
|
39
|
Ranjan VK, Mukherjee S, Thakur S, Gupta K, Chakraborty R. Pandrug-resistant Pseudomonas sp. expresses New Delhi metallo-β-lactamase-1 and consumes ampicillin as sole carbon source. Clin Microbiol Infect 2020; 27:472.e1-472.e5. [PMID: 33160034 DOI: 10.1016/j.cmi.2020.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/21/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study aims to investigate ampicillin catabolism in a pandrug-resistant strain, Pseudomonas sp. MR 02 of P. putida lineage. METHODS The characterization of carbapenem resistance was done following the standard protocol. The broth macrodilution method was used to determine the MIC values of antimicrobial agents both in the presence and in the absence of phenylalanine-β-naphthylamide. High MIC values (>10 000 mg/L) of ampicillin led to speculation that it may serve as a growth substrate, and thus minimal medium was used to evaluate ampicillin as a nutrient. The growth of MR 02 was measured in minimal medium in the presence or absence of 0.4 mM EDTA, supplemented with ampicillin as sole carbon, nitrogen and energy source. RNA-seq was used to generate expression profiles of genes in ampicillin or glucose-grown cells. The blaNDM-1 gene of MR 02 was cloned in the pHSG398 vector and expressed in Escherichia coli DH5α. RESULTS Phenotypic analysis along with genome sequence data identifies Pseudomonas sp. MR 02 as a pandrug-resistant strain. Transcriptome data has revealed that blaNDM-1 was among the top 50 differentially expressed genes in ampicillin grown cells compared to the glucose grown cells in the minimal medium. Heterologous expression of blaNDM-1 gene in E. coli DH5α enabled its growth and subsistence on ampicillin as the sole source of carbon and energy. DISCUSSION The ability of a pandrug-resistant Pseudomonas sp. MR 02 to consume ampicillin for growth has a huge implication in the bioremediation of β-lactam residues in the environment.
Collapse
Affiliation(s)
- Vivek Kumar Ranjan
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Shriparna Mukherjee
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India; Department of Botany, Prasannadeb Women's College, Jalpaiguri, India
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Siliguri, India
| | - Krutika Gupta
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India.
| |
Collapse
|
40
|
The Combination of Carbon Source and the Addition of Phenylacetic Acid (PAA) to Growth Medium Penicillium chrysogenum to Enhance of Penicillin (Pen G) Production. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.9.312-318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nutrition factor governs the growth and production of Penicillin G (Pen G) by Penicillium chrysogenum in a broth medium. Proper nutrition can improve Pen G antibiotic production. In this research, the optimal condition for Pen G production from P. chrysogenum in a standard culture medium and various carbon sources medium (glucose, lactose, maltose, and sucrose) were done for ten days. Phenylacetic Acid (PAA) precursor at 0.0 – 0.6 gL-1 (increment 0.1) was used to improve Pen G production. The Pen G was detected by HPLC, compared with the standard (Penicillin G Sodium Salt). The results showed that the PDB standard medium and lactose medium (150 rpm, at 30°C) produced 0.425 gL-1 and 0.107 gL-1 Pen G. Addition of 0.6 gL-1 PAA improved the Pen G production up to 0.045 gL-1 in the PDB medium, become the final concentration of 0.470 gL-1 and 2.460 gL-1 in the lactose medium, become the final concentration of 2.565 gL-1. The antibiotic’s activity against the pathogenic bacteria, i.e., B. subtilis, S. aureus, and S. typhi employing the disk diffusion method, has been done. The TLC method’s detection of the potential Pen G spots was conducted with ethyl acetate: distilled water: acetic acid (60:20:20) as the mobile phase. The Pen G extracts could inhibit the growth of all tested bacteria in Rf 0.65. This study informs the proper combination of carbon source and precursor effects and increases the bioproduction of Pen G from P. chrysogenum.
Collapse
|
41
|
Zhang C, Dong S, Chen C, Zhang Q, Zhou D. Co-substrate addition accelerated amoxicillin degradation and detoxification by up-regulating degradation related enzymes and promoting cell resistance. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122574. [PMID: 32278124 DOI: 10.1016/j.jhazmat.2020.122574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
β-Lactam antibiotics are the most commonly used antibiotics, and are difficult to remove by conventional biological treatments because of their persistent and toxic nature. The addition of co-substrates has been successfully employed to improve the removal of refractory pollutants. So, we hypothesized that the co-substrate strategy would increase antibiotic degradation and benefit microbial survival. In this work, we reported that co-substrate (acetate) addition up-regulated key degrading enzymes and resistance related genes in a model bacteria strain (L. aquatilis) when being treated with 0.055 mM amoxicillin (AMO). β-Lactamase, amidases, transaminase, and amide C-N hydrolase showed increased activation. As a result, AMO removal reached ∼95 %, a ∼60 % increase over the control. Furthermore, the addition of acetate drove the down-stream TCA cycle, which accelerated the detoxification of the intermediates and reduced the microbial inhibition by the antibiotic products to as low as ∼15 %. Besides, the expression levels of genes encoding the efflux pump, penicillin binding proteins, and β-Lactamase were up-regulated, and the inhibition of peptidoglycan biosynthesis was down-regulated. The cell density was enhanced by ∼170 % and showed improved DNA replication. In conclusion, the addition of the co-substrate accelerated AMO degradation and detoxification by up-regulating degrading enzymes and promoting cell resistance.
Collapse
Affiliation(s)
- Chongjun Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Shuangshi Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Qifeng Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
42
|
Globally Abundant " Candidatus Udaeobacter" Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere 2020; 5:5/4/e00186-20. [PMID: 32641424 PMCID: PMC7343977 DOI: 10.1128/msphere.00186-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Verrucomicrobia affiliated with "Candidatus Udaeobacter" belong to the most abundant soil bacteria worldwide. Although the synthesis of antibiotics presumably evolved in soil, and environmental pollution with antimicrobials increases, the impact of these complex molecules on "Ca Udaeobacter" remains to be elucidated. In this study, we demonstrate that "Ca. Udaeobacter" representatives residing in grassland as well as forest soil ecosystems show multidrug resistance and even take advantage of antibiotics release. Soils treated with up to six different antibiotics exhibited a higher "Ca. Udaeobacter" abundance than corresponding controls after 3, 8, and 20 days of incubation. In this context, we provide evidence that "Ca. Udaeobacter" representatives may utilize nutrients which are released due to antibiotic-driven lysis of other soil microbes and thereby reduce energetically expensive synthesis of required biomolecules. Moreover, genomic analysis revealed the presence of genes conferring resistance to multiple classes of antibiotics and indicated that "Ca. Udaeobacter" representatives most likely oxidize the trace gas H2 to generate energy. This energy might be required for long-term persistence in terrestrial habitats, as already suggested for other dominant soil bacteria. Our study illustrates, for the first time, that globally abundant "Ca. Udaeobacter" benefits from release of antibiotics, which confers advantages over other soil bacteria and represents a so-far overlooked fundamental lifestyle feature of this poorly characterized verrucomicrobial genus. Furthermore, our study suggests that "Ca. Udaeobacter" representatives can utilize H2 as an alternative electron donor.IMPORTANCE Soil bacteria have been investigated for more than a century, but one of the most dominant terrestrial groups on Earth, "Candidatus Udaeobacter," remains elusive and largely unexplored. Its natural habitat is considered a major reservoir of antibiotics, which directly or indirectly impact phylogenetically diverse microorganisms. Here, we found that "Ca. Udaeobacter" representatives exhibit multidrug resistance and not only evade harmful effects of antimicrobials but even benefit from antibiotic pressure in soil. Therefore, "Ca. Udaeobacter" evidently affects the composition of soil resistomes worldwide and might represent a winner of rising environmental pollution with antimicrobials. In addition, our study indicates that "Ca. Udaeobacter" representatives utilize H2 and thereby contribute to global hydrogen cycling. The here-reported findings provide insights into elementary lifestyle features of "Ca. Udaeobacter," potentially contributing to its successful global dissemination.
Collapse
|
43
|
Perri R, Kolvenbach BA, Corvini PFX. Subsistence and complexity of antimicrobial resistance on a community-wide level. Environ Microbiol 2020; 22:2463-2468. [PMID: 32286010 PMCID: PMC7383678 DOI: 10.1111/1462-2920.15018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
There are a multitude of resistance strategies that microbes can apply to avoid inhibition by antimicrobials. One of these strategies is the enzymatic modification of the antibiotic, in a process generally termed inactivation. Furthermore, some microorganisms may not be limited to the mere inactivation of the antimicrobial compounds. They can continue by further enzymatic degradation of the compounds' carbon backbone, taking nutritional and energetic advantage of the former antibiotic. This driving force to harness an additional food source in a complex environment adds another level of complexity to the reasonably well-understood process of antibiotic resistance proliferation on a single cell level: It brings bioprotection into play at the level of microbial community. Despite the possible implications of a resistant community in a host and a lurking antibiotic failure, knowledge of degradation pathways of antibiotics and their connections is scarce. Currently, it is limited to only a few families of antibiotics (e.g. β-lactams and sulfonamides). In this article, we discuss the fluctuating nature of the relationship between antibiotic resistance and the biodegradation of antibiotics. This distinction mainly depends on the genetic background of the microbe, as general resistance genes can be recruited to function in a biodegradation pathway.
Collapse
Affiliation(s)
- Riccardo Perri
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Boris A. Kolvenbach
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Philippe F. X. Corvini
- Institute for Ecopreneurship, School of Life SciencesUniversity of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| |
Collapse
|
44
|
Ma X, Liang B, Qi M, Yun H, Shi K, Li Z, Guo Y, Yan P, Liu SJ, Wang A. Novel Pathway for Chloramphenicol Catabolism in the Activated Sludge Bacterial Isolate Sphingobium sp. CAP-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7591-7600. [PMID: 32412239 DOI: 10.1021/acs.est.9b07324] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The chlorinated nitroaromatic antibiotic chloramphenicol (CAP) is a refractory contaminant that is widely present in various environments. However, few CAP-mineralizing bacteria have been documented, and a complete CAP catabolism pathway has yet to be identified. In this study, the bacterial strain Sphingobium sp. CAP-1 was isolated from an activated sludge sample and was shown to be capable of aerobically subsisting on CAP as the sole carbon, nitrogen, and energy source while simultaneously and efficiently degrading CAP. p-Nitrobenzoic acid (PNBA), p-nitrobenzaldehyde (PNBD), protocatechuate (PCA), and the novel side chain C3-hydroxy-oxygenated product of CAP (O-CAP) were identified during CAP degradation. Strain CAP-1 was able to convert O-CAP to intermediate product PNBA. The putative functional genes associated with PNBA catabolism into the tricarboxylic acid cycle via PCA and floc formation were also identified by genome sequencing and comparative proteome analysis. A complete pathway for CAP catabolism was proposed. The discovery of a novel CAP oxidation/detoxification process and a complete pathway for CAP catabolism enriches the fundamental understanding of the bacterial catabolism of antibiotics, providing new insights into the microbial-mediated fate, transformation, and resistance risk of CAP in the environment. The molecular basis of CAP catabolism and floc formation in strain CAP-1 also offers theoretical guidance for the enhanced bioremediation of CAP-containing environments.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Yun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Peisheng Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
45
|
Lopez NV, Farsar CJ, Harmon DE, Ruiz C. Urban and agricultural soils in Southern California are a reservoir of carbapenem-resistant bacteria. Microbiologyopen 2020; 9:1247-1263. [PMID: 32246583 PMCID: PMC7294306 DOI: 10.1002/mbo3.1034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023] Open
Abstract
Carbapenems are last‐resort β‐lactam antibiotics used in healthcare facilities to treat multidrug‐resistant infections. Thus, most studies on identifying and characterizing carbapenem‐resistant bacteria (CRB) have focused on clinical settings. Relatively, little is still known about the distribution and characteristics of CRBs in the environment, and the role of soil as a potential reservoir of CRB in the United States remains unknown. Here, we have surveyed 11 soil samples from 9 different urban or agricultural locations in the Los Angeles–Southern California area to determine the prevalence and characteristics of CRB in these soils. All samples tested contained CRB with a frequency of <10 to 1.3 × 104 cfu per gram of soil, with most agricultural soil samples having a much higher relative frequency of CRB than urban soil samples. Identification and characterization of 40 CRB from these soil samples revealed that most of them were members of the genera Cupriavidus, Pseudomonas, and Stenotrophomonas. Other less prevalent genera identified among our isolated CRB, especially from agricultural soils, included the genera Enterococcus, Bradyrhizobium, Achromobacter, and Planomicrobium. Interestingly, all of these carbapenem‐resistant isolates were also intermediate or resistant to at least 1 noncarbapenem antibiotic. Further characterization of our isolated CRB revealed that 11 Stenotrophomonas, 3 Pseudomonas, 1 Enterococcus, and 1 Bradyrhizobium isolates were carbapenemase producers. Our findings show for the first time that both urban and agricultural soils in Southern California are an underappreciated reservoir of bacteria resistant to carbapenems and other antibiotics, including carbapenemase‐producing CRB.
Collapse
Affiliation(s)
- Nicolas V. Lopez
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Cameron J. Farsar
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Dana E. Harmon
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Cristian Ruiz
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| |
Collapse
|
46
|
Biodegradation of antibiotics: The new resistance determinants – part II. N Biotechnol 2020; 54:13-27. [DOI: 10.1016/j.nbt.2019.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/17/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
|
47
|
Huang F, Li X, Guo J, Feng H, Yang F. Aromatic hydrocarbon compound degradation of phenylacetic acid by indigenous bacterial Sphingopyxis isolated from Lake Taihu. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1164-1171. [PMID: 31833448 DOI: 10.1080/15287394.2019.1703510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aromatic compound phenylacetic acid (PAA) is present in the environment, and released in the catabolism of phenylalanine, 2-phenylethylamine, or environmental contaminants such as ethylbenzene and styrene. PAA was also proposed to be involved in human chronic kidney disease development. Several bacteria and fungi utilize these aromatic acids as sole carbon source either during aerobic or anaerobic conditions. The aromatic structure of PAA makes this compound resistant toward oxidation or reduction, because the stabilizing resonance energy of the aromatic ring system is difficult to overcome. In the case of bacteria that utilize aromatic compounds as growth substrates, the aromatic ring system limits survival due to a lack of carbon source. Sphingopyxis sp. YF1 isolated from Lake Taihu was found to be beneficial in bioremediation of aromatic compounds. This study thus aimed to examine the influence of environmental factors such as temperature, PAA concentration, and pH on the effectiveness of Sphingopyxis sp. YF1 to degrade aromatic compounds using PAA as model compound. Data showed the highest PAA-degrading rate of strain Sphingopyxis sp. YF1 was 7.6 mg/L·h under the condition of 20°C, pH 9 with a 1000 μg/ml concentration of PAA. Evidence indicates that PAA-degrading ability of strain Sphingopyxis sp. YF1 appears to be primarily influenced by the concentration of PAA, followed by temperature and pH. PAA-degrading gene PAAase was identified in this strain using polymerase chain reaction (PCR) method. These results illustrate that the bacteria Sphingopyxis sp. YF1 removes PAA effectively at certain environmental conditions and this proves beneficial in bioremediation of aromatic compounds.
Collapse
Affiliation(s)
- Feiyu Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiaoyu Li
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jian Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hai Feng
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health Southeast University, Nanjing, China
| |
Collapse
|
48
|
González-Bello C, Rodríguez D, Pernas M, Rodríguez Á, Colchón E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J Med Chem 2019; 63:1859-1881. [PMID: 31663735 DOI: 10.1021/acs.jmedchem.9b01279] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infections caused by resistant bacteria are nowadays too common, and some pathogens have even become resistant to multiple types of antibiotics, in which case few or even no treatments are available. In recent years, the most successful strategy in anti-infective drug discovery for the treatment of such problematic infections is the combination therapy "antibiotic + inhibitor of resistance". These inhibitors allow the repurposing of antibiotics that have already proven to be safe and effective for clinical use. Three main types of compounds have been developed to block the principal bacterial resistance mechanisms: (i) β-lactamase inhibitors; (ii) outer membrane permeabilizers; (iii) efflux pump inhibitors. This Perspective is focused on β-lactamase inhibitors that disable the most prevalent cause of antibiotic resistance in Gram-negative bacteria, i.e., the deactivation of the most widely used antibiotics, β-lactams (penicillins, cephalosporines, carbapenems, and monobactams), by the production of β-lactamases. An overview of the most recently identified β-lactamase inhibitors and of combination therapy is provided. The article also covers the mechanism of action of the different types of β-lactamase enzymes as a basis for inhibitor design and target inactivation.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Marina Pernas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ángela Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Esther Colchón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
49
|
Wright GD. Environmental and clinical antibiotic resistomes, same only different. Curr Opin Microbiol 2019; 51:57-63. [DOI: 10.1016/j.mib.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
50
|
Abstract
Nonribosomal peptides are assemblages, including antibiotics, of canonical amino acids and other molecules. β-lactam antibiotics act on bacterial cell walls and can be cleaved by β-lactamases. β-lactamase activity in humans has been neglected, even though eighteen enzymes have already been annotated such in human genome. Their hydrolysis activities on antibiotics have not been previously investigated. Here, we report that human cells were able to digest penicillin and this activity was inhibited by β-lactamase inhibitor, i.e. sulbactam. Penicillin degradation in human cells was microbiologically demonstrated on Pneumococcus. We expressed a MBLAC2 human β-lactamase, known as an exosome biogenesis enzyme. It cleaved penicillin and was inhibited by sulbactam. Finally, β-lactamases are widely distributed, archaic, and have wide spectrum, including digesting anticancer and β-lactams, that can be then used as nutriments. The evidence of the other MBLAC2 role as a bona fide β-lactamase allows for reassessment of β-lactams and β-lactamases role in humans.
Collapse
|