1
|
Ivancová I, Quirante TS, Ondruš M, Pohl R, Vlková M, Žilecká E, Bouřa E, Hocek M. Enzymatic synthesis of reactive RNA probes containing squaramate-linked cytidine or adenosine for bioconjugations and cross-linking with lysine-containing peptides and proteins. Commun Chem 2025; 8:1. [PMID: 39748090 PMCID: PMC11696893 DOI: 10.1038/s42004-024-01399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase. Inhibition of RNA-depending RNA polymerases from Japanese Encephalitis virus was observed through formation of covalent cross-link which was partially identified by MS/MS analysis. Thus, the squaramate-linked NTP analogs are useful building blocks for the synthesis of reactive RNA probes for bioconjugations with primary amines and cross-linking with lysine residues.
Collapse
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Tania Sánchez Quirante
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Prague, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Eva Žilecká
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Prague, Czech Republic.
| |
Collapse
|
2
|
Wang R, Zhou L, Yang Y, Zhao F, Sun X, Liu X, Zou Z, Liang G. Spatially Quantitative Imaging of Enzyme Activity in a Living Cell. J Am Chem Soc 2024; 146:34870-34877. [PMID: 39655641 DOI: 10.1021/jacs.4c14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Enzyme activity plays a key role in cell heterogeneity. Its spatially quantitative imaging in a living cell not only directly displays but also helps people to understand cell heterogeneity. Current methods are hard to achieve due to the short intracellular retention or lack of internal reference of the imaging probes. Herein, we rationally designed a self-referenced Raman probe Val-Cit-Cys(StBu)-Pra-Gly-CBT (Yne-CBT) which takes an intracellular cathepsin B (CTSB)-initiated CBT-Cys click reaction to yield a long-retained cyclic dimer in cell. In the meantime, Raman signal changes of its two chemical bonds (C≡C and C≡N) after the reaction are used for self-referencing and quantitative Raman imaging of CTSB activity. In vitro experiments demonstrated that, with shell-isolated nanoparticle-enhanced Raman spectroscopy technique, 20 μM Yne-CBT was able to quantitatively detect CTSB activity with a limit of detection of 61.4 U L-1. Under a homemade microfluidic channel, Yne-CBT was successfully applied for spatially quantitative imaging CTSB activity in a living cell. Our strategy provides people with a facile method to directly and quantitatively display cell heterogeneity.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Zhou
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yueyan Yang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Furong Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhen Zou
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
3
|
Li Z, Zhao PL, Gao X, Li X, Meng YQ, Li ZQ, Zhai KR, Wei SL, Feng HM, Huang HR, Li B. DUS4L suppresses invasion and metastasis in LUAD via modulation of PI3K/AKT and ERK/MAPK signaling through GRB2. Int Immunopharmacol 2024; 142:113043. [PMID: 39216120 DOI: 10.1016/j.intimp.2024.113043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Limited research has focused on the role of dihydrouridine synthases (DUS) family members in human tumors. Our previous findings indicated an impact of dihydrouridine synthase 4 like (DUS4L) on cell proliferation and apoptosis in lung adenocarcinoma (LUAD) A549 cell, yet its broader functions and regulatory mechanisms in LUAD remain elusive. METHODS Using a LUAD tissue microarray and immunohistochemical (IHC) staining, we validated variations in DUS4L protein expression levels among LUAD patients and assessed its clinical significance. Additional experiments using short hairpin RNA (shRNA) against DUS4L (sh-DUS4L-2), LUAD cell lines, cell function assays (including wound healing, transwell migration and invasion, colony formation, and apoptosis assays), and mouse tumor xenografts were performed to examine the biological roles of DUS4L in LUAD progression. RNA sequencing, proteomic analyses, mass spectrometry, and co-immunoprecipitation experiments were conducted to identify and validate DUS4L-regulated downstream target genes and signaling pathways. RESULTS We identified a consistent upregulation of DUS4L in LUAD tissues. In vitro and in vivo experiments underscored the inhibitory effect of DUS4L downregulation on LUAD progression, including migration, invasion, and proliferation. Mechanistically, DUS4L was found to interact with the signaling molecule GRB2, promoting LUAD progression and metastasis by inducing epithelial-mesenchymal transition (EMT) via the PI3K/AKT and ERK/MAPK pathways. CONCLUSION Our results establish the functional role of DUS4L in driving the progression and metastasis of LUAD, implicating its potential as a candidate therapeutic target for LUAD.
Collapse
Affiliation(s)
- Zheng Li
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Pei-Lin Zhao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Xing Gao
- School of Life Sciences, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Xuan Li
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Yu-Qi Meng
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Zhen-Qing Li
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Ke-Rong Zhai
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Shi-Lin Wei
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Hai-Ming Feng
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Hui-Rong Huang
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China
| | - Bin Li
- Department of Thoracic Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730030, China.
| |
Collapse
|
4
|
Kilz LM, Zimmermann S, Marchand V, Bourguignon V, Sudol C, Brégeon D, Hamdane D, Motorin Y, Helm M. Differential redox sensitivity of tRNA dihydrouridylation. Nucleic Acids Res 2024; 52:12784-12797. [PMID: 39460624 PMCID: PMC11602153 DOI: 10.1093/nar/gkae964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Various transfer RNA (tRNA) modifications have recently been shown to regulate stress-dependent gene expression by modulating messenger RNA translation. Among these modifications, dihydrouridine stands out for its increase of tRNA structural flexibility. However, whether and how dihydrouridine synthesis reacts to environmental stimuli is largely unknown. In this study, we manipulated the intracellular redox state of Escherichia coli using paraquat, revealing differential sensitivities of the three tRNA-dihydrouridine synthases towards oxidative stress. Using liquid chromatography-mass spectrometry quantification of dihydrouridine in various knockout strains, we validated the use of a specific RNA sequencing method, namely AlkAnilineSeq, for the precise mapping of dihydrouridines throughout E. coli tRNAs. We found DusA showing high activity, followed by DusB and DusC, whose activity was decreased under paraquat treatment. The relative sensitivity is most plausibly explained by a paraquat-dependent drop of NADPH availability. These findings are substantiated by in vitro kinetics, revealing DusA as the most active enzyme, followed by DusB, while DusC showed little activity, likely related to the efficacy of the redox reaction of the flavin coenzyme with NADPH. Overall, our study underscores the intricate interplay between redox dynamics and tRNA modification processes, revealing a new facet of the regulatory mechanisms influencing cellular responses to oxidative stress.
Collapse
Affiliation(s)
- Lea-Marie Kilz
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Simone Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Valérie Bourguignon
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Claudia Sudol
- Sorbonne University, CNRS, Institute of Biology Paris Seine, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris, France
- Collège de France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques (LCPB), 11place Marcelin Berthelot, 75231 Paris France
| | - Damien Brégeon
- Sorbonne University, CNRS, Institute of Biology Paris Seine, Biology of Aging and Adaptation, 7 quai Saint Bernard, 75252 Paris, France
| | - Djemel Hamdane
- Collège de France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques (LCPB), 11place Marcelin Berthelot, 75231 Paris France
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility, 9 Av. De la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, 9 Av. De la Forêtde Haye, 54500 Vandoeuvre-lès-Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Staudingerweg 5, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
5
|
Matsuura J, Akichika S, Wei FY, Suzuki T, Yamamoto T, Watanabe Y, Valášek LS, Mukasa A, Tomizawa K, Chujo T. Human DUS1L catalyzes dihydrouridine modification at tRNA positions 16/17, and DUS1L overexpression perturbs translation. Commun Biol 2024; 7:1238. [PMID: 39354220 PMCID: PMC11445529 DOI: 10.1038/s42003-024-06942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Human cytoplasmic tRNAs contain dihydrouridine modifications at positions 16 and 17 (D16/D17). The enzyme responsible for D16/D17 formation and its cellular roles remain elusive. Here, we identify DUS1L as the human tRNA D16/D17 writer. DUS1L knockout in the glioblastoma cell lines LNZ308 and U87 causes loss of D16/D17. D formation is reconstituted in vitro using recombinant DUS1L in the presence of NADPH or NADH. DUS1L knockout/overexpression in LNZ308 cells shows that DUS1L supports cell growth. Moreover, higher DUS1L expression in glioma patients is associated with poorer prognosis. Upon vector-mediated DUS1L overexpression in LNZ308 cells, 5' and 3' processing of precursor tRNATyr(GUA) is inhibited, resulting in a reduced mature tRNATyr(GUA) level, reduced translation of the tyrosine codons UAC and UAU, and reduced translational readthrough of the near-cognate stop codons UAA and UAG. Moreover, DUS1L overexpression increases the amounts of several D16/D17-containing tRNAs and total cellular translation. Our study identifies a human dihydrouridine writer, providing the foundation to study its roles in health and disease.
Collapse
Affiliation(s)
- Jin Matsuura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Akichika
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Takahiro Yamamoto
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Watanabe
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Science, Kumamoto University, Kumamoto, Japan.
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
6
|
Noguchi K, Suzuki H, Abe R, Horiuchi K, Onoguchi-Mizutani R, Akimitsu N, Ogawa S, Akiyama T, Ike Y, Ino Y, Kimura Y, Ryo A, Doi H, Tanaka F, Suzuki Y, Toyoda A, Yamaguchi Y, Takahashi H. Multi-omics analysis using antibody-based in situ biotinylation technique suggests the mechanism of Cajal body formation. Cell Rep 2024; 43:114734. [PMID: 39283744 DOI: 10.1016/j.celrep.2024.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/30/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Membrane-less subcellular compartments play important roles in various cellular functions. Although techniques exist to identify components of cellular bodies, a comprehensive method for analyzing both static and dynamic states has not been established. Here, we apply an antibody-based in situ biotinylation proximity-labeling technique to identify components of static and dynamic nuclear bodies. Using this approach, we comprehensively identify DNA, RNA, and protein components of Cajal bodies (CBs) and then clarify their interactome. By inhibiting transcription, we capture dynamic changes in CBs. Our analysis reveals that nascent small nuclear RNAs (snRNAs) transcribed in CBs contribute to CB formation by assembling RNA-binding proteins, including frontotemporal dementia-related proteins, RNA-binding motif proteins, and heterogeneous nuclear ribonucleoproteins.
Collapse
Affiliation(s)
- Keisuke Noguchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Keiko Horiuchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Rena Onoguchi-Mizutani
- R&D Department, Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nobuyoshi Akimitsu
- R&D Department, Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shintaro Ogawa
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tomohiko Akiyama
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yoko Ike
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yoko Ino
- Advance Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan
| | - Yayoi Kimura
- Advance Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan; Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8501, Japan.
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
7
|
Jones JD, Franco MK, Giles RN, Eyler DE, Tardu M, Smith TJ, Snyder LR, Polikanov YS, Kennedy RT, Niederer RO, Koutmou KS. Conserved 5-methyluridine tRNA modification modulates ribosome translocation. Proc Natl Acad Sci U S A 2024; 121:e2401743121. [PMID: 39159370 PMCID: PMC11363252 DOI: 10.1073/pnas.2401743121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024] Open
Abstract
While the centrality of posttranscriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one of the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m5U54). Here, we uncover contributions of m5U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m5U in the T-loop (TrmA in Escherichia coli, Trm2 in Saccharomyces cerevisiae) exhibit altered tRNA modification patterns. Furthermore, m5U54-deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that relative to wild-type cells, trm2Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m5U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis.
Collapse
Affiliation(s)
- Joshua D. Jones
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Monika K. Franco
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Rachel N. Giles
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Daniel E. Eyler
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Mehmet Tardu
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Tyler J. Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Laura R. Snyder
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois, Chicago, IL60607
| | | | - Rachel O. Niederer
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Kristin S. Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
8
|
Yu NJ, Jaber QZ, Kleiner RE. Global characterization of RNA modifying enzymes with RNA-mediated activity-based protein profiling (RNABPP). Methods Enzymol 2024; 705:111-125. [PMID: 39389661 DOI: 10.1016/bs.mie.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Post-transcriptional RNA modifications can regulate RNA function and play an important role in gene expression. Studying RNA modifying enzymes and their associated modifications remains a considerable challenge. Here we describe the RNA-mediated activity-based protein profiling (RNABPP) methodology, a chemoproteomic strategy for profiling the activity of RNA modifying enzymes in their native context. RNABPP relies upon metabolic RNA labeling with modified ribonucleoside-based probes, combined with protein-RNA enrichment and quantitative proteomics. The RNABPP approach is a general strategy based on chemical reactivity and enzyme mechanism, making it suitable for probing multiple classes of RNA modifying enzymes across diverse biological systems.
Collapse
Affiliation(s)
- Nathan J Yu
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Qais Z Jaber
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
9
|
Toubdji S, Thullier Q, Kilz LM, Marchand V, Yuan Y, Sudol C, Goyenvalle C, Jean-Jean O, Rose S, Douthwaite S, Hardy L, Baharoglu Z, de Crécy-Lagard V, Helm M, Motorin Y, Hamdane D, Brégeon D. Exploring a unique class of flavoenzymes: Identification and biochemical characterization of ribosomal RNA dihydrouridine synthase. Proc Natl Acad Sci U S A 2024; 121:e2401981121. [PMID: 39078675 PMCID: PMC11317573 DOI: 10.1073/pnas.2401981121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024] Open
Abstract
Dihydrouridine (D), a prevalent and evolutionarily conserved base in the transcriptome, primarily resides in tRNAs and, to a lesser extent, in mRNAs. Notably, this modification is found at position 2449 in the Escherichia coli 23S rRNA, strategically positioned near the ribosome's peptidyl transferase site. Despite the prior identification, in E. coli genome, of three dihydrouridine synthases (DUS), a set of NADPH and FMN-dependent enzymes known for introducing D in tRNAs and mRNAs, characterization of the enzyme responsible for D2449 deposition has remained elusive. This study introduces a rapid method for detecting D in rRNA, involving reverse transcriptase-blockage at the rhodamine-labeled D2449 site, followed by PCR amplification (RhoRT-PCR). Through analysis of rRNA from diverse E. coli strains, harboring chromosomal or single-gene deletions, we pinpoint the yhiN gene as the ribosomal dihydrouridine synthase, now designated as RdsA. Biochemical characterizations uncovered RdsA as a unique class of flavoenzymes, dependent on FAD and NADH, with a complex structural topology. In vitro assays demonstrated that RdsA dihydrouridylates a short rRNA transcript mimicking the local structure of the peptidyl transferase site. This suggests an early introduction of this modification before ribosome assembly. Phylogenetic studies unveiled the widespread distribution of the yhiN gene in the bacterial kingdom, emphasizing the conservation of rRNA dihydrouridylation. In a broader context, these findings underscore nature's preference for utilizing reduced flavin in the reduction of uridines and their derivatives.
Collapse
Affiliation(s)
- Sabrine Toubdji
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, F-75231, Paris Cedex 05, France
| | - Quentin Thullier
- Université de Lorraine, CNRS, Institut National de la Santé et de la Recherche Médicale, Ingénierie-Biologie-Santé en Lorraine, Epitranscriptomique et Séquençage Core Facility, F-54000Nancy, France
- Université de Lorraine, CNRS, Ingénierie Moléculaire, Cellulaire et Physiopathologie, F-54000Nancy, France
| | - Lea-Marie Kilz
- Institut für Pharmazeutische und Biomedizinische Wissenschaften, Johannes Gutenberg-Universität, MainzD-55128, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, Institut National de la Santé et de la Recherche Médicale, Ingénierie-Biologie-Santé en Lorraine, Epitranscriptomique et Séquençage Core Facility, F-54000Nancy, France
- Université de Lorraine, CNRS, Ingénierie Moléculaire, Cellulaire et Physiopathologie, F-54000Nancy, France
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL32611
| | - Claudia Sudol
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, F-75231, Paris Cedex 05, France
| | - Catherine Goyenvalle
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230Odense M, Denmark
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230Odense M, Denmark
| | - Léo Hardy
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL32611
- Genetics Institute, University of Florida, Gainesville, FL32610
| | - Mark Helm
- Institut für Pharmazeutische und Biomedizinische Wissenschaften, Johannes Gutenberg-Universität, MainzD-55128, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, Institut National de la Santé et de la Recherche Médicale, Ingénierie-Biologie-Santé en Lorraine, Epitranscriptomique et Séquençage Core Facility, F-54000Nancy, France
- Université de Lorraine, CNRS, Ingénierie Moléculaire, Cellulaire et Physiopathologie, F-54000Nancy, France
| | - Djemel Hamdane
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, F-75231, Paris Cedex 05, France
| | - Damien Brégeon
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Institut de Biologie Paris-Seine, F-75252Paris Cedex 05, France
| |
Collapse
|
10
|
XIONG J, FENG T, YUAN BF. [Advances in mapping analysis of ribonucleic acid modifications through sequencing]. Se Pu 2024; 42:632-645. [PMID: 38966972 PMCID: PMC11224946 DOI: 10.3724/sp.j.1123.2023.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 07/06/2024] Open
Abstract
Over 170 chemical modifications have been discovered in various types of ribonucleic acids (RNAs), including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). These RNA modifications play crucial roles in a wide range of biological processes such as gene expression regulation, RNA stability maintenance, and protein translation. RNA modifications represent a new dimension of gene expression regulation known as the "epitranscriptome". The discovery of RNA modifications and the relevant writers, erasers, and readers provides an important basis for studies on the dynamic regulation and physiological functions of RNA modifications. Owing to the development of detection technologies for RNA modifications, studies on RNA epitranscriptomes have progressed to the single-base resolution, multilayer, and full-coverage stage. Transcriptome-wide methods help discover new RNA modification sites and are of great importance for elucidating the molecular regulatory mechanisms of epitranscriptomics, exploring the disease associations of RNA modifications, and understanding their clinical applications. The existing RNA modification sequencing technologies can be categorized according to the pretreatment approach and sequencing principle as direct high-throughput sequencing, antibody-enrichment sequencing, enzyme-assisted sequencing, chemical labeling-assisted sequencing, metabolic labeling sequencing, and nanopore sequencing technologies. These methods, as well as studies on the functions of RNA modifications, have greatly expanded our understanding of epitranscriptomics. In this review, we summarize the recent progress in RNA modification detection technologies, focusing on the basic principles, advantages, and limitations of different methods. Direct high-throughput sequencing methods do not require complex RNA pretreatment and allow for the mapping of RNA modifications using conventional RNA sequencing methods. However, only a few RNA modifications can be analyzed by high-throughput sequencing. Antibody enrichment followed by high-throughput sequencing has emerged as a crucial approach for mapping RNA modifications, significantly advancing the understanding of RNA modifications and their regulatory functions in different species. However, the resolution of antibody-enrichment sequencing is limited to approximately 100-200 bp. Although chemical crosslinking techniques can achieve single-base resolution, these methods are often complex, and the specificity of the antibodies used in these methods has raised concerns. In particular, the issue of off-target binding by the antibodies requires urgent attention. Enzyme-assisted sequencing has improved the accuracy of the localization analysis of RNA modifications and enables stoichiometric detection with single-base resolution. However, the enzymes used in this technique show poor reactivity, specificity, and sequence preference. Chemical labeling sequencing has become a widely used approach for profiling RNA modifications, particularly by altering reverse transcription (RT) signatures such as RT stops, misincorporations, and deletions. Chemical-assisted sequencing provides a sequence-independent RNA modification detection strategy that enables the localization of multiple RNA modifications. Additionally, when combined with the biotin-streptavidin affinity method, low-abundance RNA modifications can be enriched and detected. Nevertheless, the specificity of many chemical reactions remains problematic, and the development of specific reaction probes for particular modifications should continue in the future to achieve the precise localization of RNA modifications. As an indirect localization method, metabolic labeling sequencing specifically localizes the sites at which modifying enzymes act, which is of great significance in the study of RNA modification functions. However, this method is limited by the intracellular labeling of RNA and cannot be applied to biological samples such as clinical tissues and blood samples. Nanopore sequencing is a direct RNA-sequencing method that does not require RT or the polymerase chain reaction (PCR). However, challenges in analyzing the data obtained from nanopore sequencing, such as the high rate of false positives, must be resolved. Discussing sequencing analysis methods for various types of RNA modifications is instructive for the future development of novel RNA modification mapping technologies, and will aid studies on the functions of RNA modifications across the entire transcriptome.
Collapse
|
11
|
Sudol C, Kilz LM, Marchand V, Thullier Q, Guérineau V, Goyenvalle C, Faivre B, Toubdji S, Lombard M, Jean-Jean O, de Crécy-Lagard V, Helm M, Motorin Y, Brégeon D, Hamdane D. Functional redundancy in tRNA dihydrouridylation. Nucleic Acids Res 2024; 52:5880-5894. [PMID: 38682613 PMCID: PMC11162810 DOI: 10.1093/nar/gkae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.
Collapse
Affiliation(s)
- Claudia Sudol
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Lea-Marie Kilz
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Quentin Thullier
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Catherine Goyenvalle
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Bruno Faivre
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Sabrine Toubdji
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Murielle Lombard
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Genetics Institute, Gainesville, FL 32610, USA
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Damien Brégeon
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation, Paris 75252, France
| | - Djemel Hamdane
- Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
12
|
Zhang Z, Liu J, Wu Y, Gu Z, Zou L, Liu Y, Geng J, Mao S, Luo M, Guo C, Zhang W, Yao X. The functions and mechanisms of RNA modification in prostate: Current status and future perspectives. Front Genet 2024; 15:1380746. [PMID: 38798700 PMCID: PMC11116725 DOI: 10.3389/fgene.2024.1380746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
The increasing incidence and mortality of prostate cancer worldwide significantly impact the life span of male patients, emphasizing the urgency of understanding its pathogenic mechanism and associated molecular changes that regulate tumor progression for effective prevention and treatment. RNA modification, an important post-transcriptional regulatory process, profoundly influences tumor cell growth and metabolism, shaping cell fate. Over 170 RNA modification methods are known, with prominent research focusing on N6-methyladenosine, N7-methylguanosine, N1-methyladenosine, 5-methylcytidine, pseudouridine, and N4-acetylcytidine modifications. These alterations intricately regulate coding and non-coding RNA post-transcriptionally, affecting the stability of RNA and protein expression levels. This article delves into the latest advancements and challenges associated with various RNA modifications in prostate cancer tumor cells, tumor microenvironment, and core signaling molecule androgen receptors. It aims to provide new research targets and avenues for molecular diagnosis, treatment strategies, and improvement of the prognosis in prostate cancer.
Collapse
Affiliation(s)
- Zhijin Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yang Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Gu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Libin Zou
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yingdi Liu
- Department of Pathology, Shanghai Tenth People’s Hospital, Shanghai, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ming Luo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
14
|
Ji J, Yu NJ, Kleiner RE. Sequence- and Structure-Specific tRNA Dihydrouridylation by hDUS2. ACS CENTRAL SCIENCE 2024; 10:803-812. [PMID: 38680565 PMCID: PMC11046453 DOI: 10.1021/acscentsci.3c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
The post-transcriptional reduction of uridine to dihydrouridine (D) by dihydrouridine synthase (DUS) enzymes is among the most ubiquitous transformations in RNA biology. D is found at multiple sites in tRNAs, and studies in yeast have proposed that each of the four eukaryotic DUS enzymes modifies a different site; however, the molecular basis for this exquisite selectivity is unknown, and human DUS enzymes have remained largely uncharacterized. Here we investigate the substrate specificity of human dihydrouridine synthase 2 (hDUS2) using mechanism-based cross-linking with 5-bromouridine (5-BrUrd)-modified oligonucleotide probes and in vitro dihydrouridylation assays. We find that hDUS2 exclusively modifies U20 across diverse tRNA substrates and identify a minimal GU sequence within the tRNA D loop that underlies selective substrate modification. Further, we use our mechanism-based platform to screen small molecule inhibitors of hDUS2, a potential anticancer target. Our work elucidates the principles of substrate modification by a conserved DUS and provides a general platform for studying RNA modifying enzymes with sequence-defined activity-based probes.
Collapse
Affiliation(s)
- Jingwei Ji
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Nathan J. Yu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Gilbert WV. Recent developments, opportunities, and challenges in the study of mRNA pseudouridylation. RNA (NEW YORK, N.Y.) 2024; 30:530-536. [PMID: 38531650 PMCID: PMC11019745 DOI: 10.1261/rna.079975.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Pseudouridine is an abundant mRNA modification found in diverse organisms ranging from bacteria and viruses to multicellular plants and humans. New developments in pseudouridine profiling provide quantitative tools to map mRNA pseudouridylation sites. Sparse biochemical studies establish the potential for mRNA pseudouridylation to affect most stages of the mRNA life cycle from birth to death. This recent progress sets the stage for deeper investigations into the molecular and cellular functions of specific mRNA pseudouridines, including in disease.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
16
|
Ali MY, Bar-Peled L. Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chem Biol 2024; 31:446-451. [PMID: 38518745 DOI: 10.1016/j.chembiol.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Cellular metabolism encompasses a complex array of interconnected biochemical pathways that are required for cellular homeostasis. When dysregulated, metabolism underlies multiple human pathologies. At the heart of metabolic networks are enzymes that have been historically studied through a reductionist lens, and more recently, using high throughput approaches including genomics and proteomics. Merging these two divergent viewpoints are chemical proteomic technologies, including activity-based protein profiling, which combines chemical probes specific to distinct enzyme families or amino acid residues with proteomic analysis. This enables the study of metabolism at the network level with the precision of powerful biochemical approaches. Herein, we provide a primer on how chemical proteomic technologies custom-built for studying metabolism have unearthed fundamental principles in metabolic control. In parallel, these technologies have leap-frogged drug discovery through identification of novel targets and drug specificity. Collectively, chemical proteomics technologies appear to do the impossible: uniting systematic analysis with a reductionist approach.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
17
|
Rodell R, Robalin N, Martinez NM. Why U matters: detection and functions of pseudouridine modifications in mRNAs. Trends Biochem Sci 2024; 49:12-27. [PMID: 38097411 PMCID: PMC10976346 DOI: 10.1016/j.tibs.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 01/07/2024]
Abstract
The uridine modifications pseudouridine (Ψ), dihydrouridine, and 5-methyluridine are present in eukaryotic mRNAs. Many uridine-modifying enzymes are associated with human disease, underscoring the importance of uncovering the functions of uridine modifications in mRNAs. These modified uridines have chemical properties distinct from those of canonical uridines, which impact RNA structure and RNA-protein interactions. Ψ, the most abundant of these uridine modifications, is present across (pre-)mRNAs. Recent work has shown that many Ψs are present at intermediate to high stoichiometries that are likely conducive to function and at locations that are poised to influence pre-/mRNA processing. Technological innovations and mechanistic investigations are unveiling the functions of uridine modifications in pre-mRNA splicing, translation, and mRNA stability, which are discussed in this review.
Collapse
Affiliation(s)
- Rebecca Rodell
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Robalin
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Martinez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Nakano Y, Gamper H, McGuigan H, Maharjan S, Sun Z, Krishnan K, Yigit E, Li NS, Piccirilli JA, Kleiner R, Nichols N, Hou YM. Genome-Wide Profiling of tRNA Using an Unexplored Reverse Transcriptase with High Processivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.09.569604. [PMID: 38106225 PMCID: PMC10723452 DOI: 10.1101/2023.12.09.569604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Monitoring the dynamic changes of cellular tRNA pools is challenging, due to the extensive post-transcriptional modifications of individual species. The most critical component in tRNAseq is a processive reverse transcriptase (RT) that can read through each modification with high efficiency. Here we show that the recently developed group-II intron RT Induro has the processivity and efficiency necessary to profile tRNA dynamics. Using our Induro-tRNAseq, simpler and more comprehensive than the best methods to date, we show that Induro progressively increases readthrough of tRNA over time and that the mechanism of increase is selective removal of RT stops, without altering the misincorporation frequency. We provide a parallel dataset of the misincorporation profile of Induro relative to the related TGIRT RT to facilitate the prediction of non-annotated modifications. We report an unexpected modification profile among human proline isoacceptors, absent from mouse and lower eukaryotes, that indicates new biology of decoding proline codons.
Collapse
|
19
|
Jones JD, Franco MK, Tardu M, Smith TJ, Snyder LR, Eyler DE, Polikanov Y, Kennedy RT, Niederer RO, Koutmou KS. Conserved 5-methyluridine tRNA modification modulates ribosome translocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566704. [PMID: 37986750 PMCID: PMC10659410 DOI: 10.1101/2023.11.12.566704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
While the centrality of post-transcriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m 5 U54). Here, we uncover contributions of m 5 U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m 5 U in the T-loop (TrmA in E. coli , Trm2 in S. cerevisiae ) exhibit altered tRNA modifications patterns. Furthermore, m 5 U54 deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that, relative to wild-type cells, trm2 Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m 5 U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis.
Collapse
|
20
|
Yu NJ, Dai W, Li A, He M, Kleiner RE. Cell type-specific translational regulation by human DUS enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565399. [PMID: 37965204 PMCID: PMC10635104 DOI: 10.1101/2023.11.03.565399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dihydrouridine is an abundant and conserved modified nucleoside present on tRNA, but characterization and functional studies of modification sites and associated DUS writer enzymes in mammals is lacking. Here we use a chemical probing strategy, RNABPP-PS, to identify 5-chlorouridine as an activity-based probe for human DUS enzymes. We map D modifications using RNA-protein crosslinking and chemical transformation and mutational profiling to reveal D modification sites on human tRNAs. Further, we knock out individual DUS genes in two human cell lines to investigate regulation of tRNA expression levels and codon-specific translation. We show that whereas D modifications are present across most tRNA species, loss of D only perturbs the translational function of a subset of tRNAs in a cell type-specific manner. Our work provides powerful chemical strategies for investigating D and DUS enzymes in diverse biological systems and provides insight into the role of a ubiquitous tRNA modification in translational regulation.
Collapse
|
21
|
Ji J, Yu NJ, Kleiner RE. A minimal sequence motif drives selective tRNA dihydrouridylation by hDUS2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565616. [PMID: 37961591 PMCID: PMC10635142 DOI: 10.1101/2023.11.04.565616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The post-transcriptional reduction of uridine to dihydrouridine (D) by dihydrouridine synthase (DUS) enzymes is among the most ubiquitous transformations in RNA biology. D is found at multiple sites in tRNAs and studies in yeast have proposed that each of the four eukaryotic DUS enzymes modifies a different site, however the molecular basis for this exquisite selectivity is unknown and human DUS enzymes have remained largely uncharacterized. Here we investigate the substrate specificity of human dihydrouridine synthase 2 (hDUS2) using mechanism-based crosslinking with 5-bromouridine (5-BrUrd)-modified oligonucleotide probes and in vitro dihydrouridylation assays. We find that hDUS2 modifies U20 in the D loop of diverse tRNA substrates and identify a minimal GU motif within the tRNA tertiary fold required for directing its activity. Further, we use our mechanism-based platform to screen small molecule inhibitors of hDUS2, a potential anti-cancer target. Our work elucidates the principles of substrate modification by a conserved DUS and provides a general platform to studying RNA modifying enzymes with sequence-defined activity-based probes.
Collapse
|
22
|
Dai W, Yu NJ, Kleiner RE. Chemoproteomic Approaches to Studying RNA Modification-Associated Proteins. Acc Chem Res 2023; 56:2726-2739. [PMID: 37733063 PMCID: PMC11025531 DOI: 10.1021/acs.accounts.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for N6-methyladenosine (m6A) and N1-methyladenosine (m1A) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both m6A and m1A to mediate transcript destabilization. Furthermore, m6A also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.
Collapse
Affiliation(s)
| | | | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
23
|
Witzenberger M, Burczyk S, Settele D, Mayer W, Welp L, Heiss M, Wagner M, Monecke T, Janowski R, Carell T, Urlaub H, Hauck S, Voigt A, Niessing D. Human TRMT2A methylates tRNA and contributes to translation fidelity. Nucleic Acids Res 2023; 51:8691-8710. [PMID: 37395448 PMCID: PMC10484741 DOI: 10.1093/nar/gkad565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
5-Methyluridine (m5U) is one of the most abundant RNA modifications found in cytosolic tRNA. tRNA methyltransferase 2 homolog A (hTRMT2A) is the dedicated mammalian enzyme for m5U formation at tRNA position 54. However, its RNA binding specificity and functional role in the cell are not well understood. Here we dissected structural and sequence requirements for binding and methylation of its RNA targets. Specificity of tRNA modification by hTRMT2A is achieved by a combination of modest binding preference and presence of a uridine in position 54 of tRNAs. Mutational analysis together with cross-linking experiments identified a large hTRMT2A-tRNA binding surface. Furthermore, complementing hTRMT2A interactome studies revealed that hTRMT2A interacts with proteins involved in RNA biogenesis. Finally, we addressed the question of the importance of hTRMT2A function by showing that its knockdown reduces translation fidelity. These findings extend the role of hTRMT2A beyond tRNA modification towards a role in translation.
Collapse
Affiliation(s)
- Monika Witzenberger
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - David Settele
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Wieland Mayer
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Heiss
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Mirko Wagner
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Carell
- Department of Chemistry and Biochemistry, Ludwig-Maximilians University Munich, München, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Aaron Voigt
- Department of Neurology, Faculty of Medicine, RWTH Aachen, Aachen, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
24
|
Breger K, Kunkler CN, O'Leary NJ, Hulewicz JP, Brown JA. Ghost authors revealed: The structure and function of human N 6 -methyladenosine RNA methyltransferases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1810. [PMID: 37674370 PMCID: PMC10915109 DOI: 10.1002/wrna.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023]
Abstract
Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N6 -methyladenosine (m6 A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m6 A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m6 A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m6 A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N6 position of adenosine, producing m6 A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m6 A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m6 A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m6 A marks in human viruses and parasites, assigning m6 A marks in the transcriptome to specific methyltransferases, small molecules targeting m6 A methyltransferases, and the enzymes responsible for hypermodified m6 A marks and their biological functions in humans. Understanding m6 A methyltransferases is a critical steppingstone toward establishing the m6 A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nathan J O'Leary
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
25
|
Kleiner RE. Chemical Approaches To Investigate Post-transcriptional RNA Regulation. ACS Chem Biol 2023; 18:1684-1697. [PMID: 37540831 PMCID: PMC11031734 DOI: 10.1021/acschembio.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
RNA plays a central role in biological processes, and its activity is regulated by a host of diverse chemical and biochemical mechanisms including post-transcriptional modification and interactions with RNA-binding proteins. Here, we describe our efforts to illuminate RNA biology through the application of chemical tools, focusing on post-transcriptional regulatory mechanisms. We describe the development of an activity-based protein profiling approach for discovery and characterization of RNA-modifying enzymes. Next, we highlight novel approaches for RNA imaging based upon metabolic labeling with modified nucleosides and engineering of the nucleotide salvage pathway. Finally, we discuss profiling RNA-protein interactions using small molecule-dependent RNA editing and synthetic photo-cross-linkable oligonucleotide probes. Our work provides enabling technologies for deciphering the complexity of RNA and its diverse functions in biology.
Collapse
Affiliation(s)
- Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
26
|
Jones JD, Franco MK, Smith TJ, Snyder LR, Anders AG, Ruotolo BT, Kennedy RT, Koutmou KS. Methylated guanosine and uridine modifications in S. cerevisiae mRNAs modulate translation elongation. RSC Chem Biol 2023; 4:363-378. [PMID: 37181630 PMCID: PMC10170649 DOI: 10.1039/d2cb00229a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 02/22/2023] Open
Abstract
Chemical modifications to protein encoding messenger RNAs (mRNAs) influence their localization, translation, and stability within cells. Over 15 different types of mRNA modifications have been observed by sequencing and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) approaches. While LC-MS/MS is arguably the most essential tool available for studying analogous protein post-translational modifications, the high-throughput discovery and quantitative characterization of mRNA modifications by LC-MS/MS has been hampered by the difficulty of obtaining sufficient quantities of pure mRNA and limited sensitivities for modified nucleosides. We have overcome these challenges by improving the mRNA purification and LC-MS/MS pipelines. The methodologies we developed result in no detectable non-coding RNA modifications signals in our purified mRNA samples, quantify 50 ribonucleosides in a single analysis, and provide the lowest limit of detection reported for ribonucleoside modification LC-MS/MS analyses. These advancements enabled the detection and quantification of 13 S. cerevisiae mRNA ribonucleoside modifications and reveal the presence of four new S. cerevisiae mRNA modifications at low to moderate levels (1-methyguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, and 5-methyluridine). We identified four enzymes that incorporate these modifications into S. cerevisiae mRNAs (Trm10, Trm11, Trm1, and Trm2, respectively), though our results suggest that guanosine and uridine nucleobases are also non-enzymatically methylated at low levels. Regardless of whether they are incorporated in a programmed manner or as the result of RNA damage, we reasoned that the ribosome will encounter the modifications that we detect in cells. To evaluate this possibility, we used a reconstituted translation system to investigate the consequences of modifications on translation elongation. Our findings demonstrate that the introduction of 1-methyguanosine, N2-methylguanosine and 5-methyluridine into mRNA codons impedes amino acid addition in a position dependent manner. This work expands the repertoire of nucleoside modifications that the ribosome must decode in S. cerevisiae. Additionally, it highlights the challenge of predicting the effect of discrete modified mRNA sites on translation de novo because individual modifications influence translation differently depending on mRNA sequence context.
Collapse
Affiliation(s)
- Joshua D Jones
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Monika K Franco
- Program in Chemical Biology, University of Michigan, 930 N University Ann Arbor MI 48109 USA
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Laura R Snyder
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Anna G Anders
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
- Program in Chemical Biology, University of Michigan, 930 N University Ann Arbor MI 48109 USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, 930 N University Ann Arbor MI 48109 USA +1-734-764-5650
- Program in Chemical Biology, University of Michigan, 930 N University Ann Arbor MI 48109 USA
| |
Collapse
|
27
|
Uddin N, Binzel DW, Shu D, Fu TM, Guo P. Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome. Acta Pharm Sin B 2023; 13:1383-1399. [PMID: 37139430 PMCID: PMC10149909 DOI: 10.1016/j.apsb.2022.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Exosome is an excellent vesicle for in vivo delivery of therapeutics, including RNAi and chemical drugs. The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering therapeutics to cytosol without endosome trapping. However, being composed of a lipid-bilayer membrane without specific recognition capacity for aimed-cells, the entry into nonspecific cells can lead to potential side-effects and toxicity. Applying engineering approaches for targeting-capacity to deliver therapeutics to specific cells is desirable. Techniques with chemical modification in vitro and genetic engineering in cells have been reported to decorate exosomes with targeting ligands. RNA nanoparticles have been used to harbor tumor-specific ligands displayed on exosome surface. The negative charge reduces nonspecific binding to vital cells with negatively charged lipid-membrane due to the electrostatic repulsion, thus lowering the side-effect and toxicity. In this review, we focus on the uniqueness of RNA nanoparticles for exosome surface display of chemical ligands, small peptides or RNA aptamers, for specific cancer targeting to deliver anticancer therapeutics, highlighting recent advances in targeted delivery of siRNA and miRNA that overcomes the previous RNAi delivery roadblocks. Proper understanding of exosome engineering with RNA nanotechnology promises efficient therapies for a wide range of cancer subtypes.
Collapse
Affiliation(s)
- Nasir Uddin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Daniel W. Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Tian-Min Fu
- Department of Biological Chemistry & Pharmacology, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, the Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, College of Medicine, the Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Eyberg J, Ringenberg M, Richert C. Caging of a Strongly Pairing Fluorescent Thymidine Analog with Soft Nucleophiles. Chemistry 2023; 29:e202203289. [PMID: 36395348 PMCID: PMC10107337 DOI: 10.1002/chem.202203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Controlling the pairing strength of nucleobases in DNA through reactions with compounds found inside the cell is a formidable challenge. Here we report how a thiazolyl substituent turns a strongly pairing ethynylpyridone C-nucleoside into a reactive residue in oligonucleotides. The thiazolyl-bearing pyridone reacts with soft nucleophiles, such as glutathione, but not with hard nucleophiles like hydroxide or carbonate. The addition products pair much more weakly with adenine in a complementary strand than the starting material, and also change their fluorescence. This makes oligonucleotides containing the new deoxynucleoside interesting for controlled release. Due to its reactivity toward N, P, S, and Se-nucleophiles, and the visual signal accompanying chemical conversion, the fluorescent nucleotide reported here may also have applications in chemical biology, sensing and diagnostics.
Collapse
Affiliation(s)
- Juri Eyberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Mark Ringenberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
29
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|
30
|
Bao Z, Li T, Liu J. Determining RNA Natural Modifications and Nucleoside Analog-Labeled Sites by a Chemical/Enzyme-Induced Base Mutation Principle. Molecules 2023; 28:1517. [PMID: 36838506 PMCID: PMC9958784 DOI: 10.3390/molecules28041517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The natural chemical modifications of messenger RNA (mRNA) in living organisms have shown essential roles in both physiology and pathology. The mapping of mRNA modifications is critical for interpreting their biological functions. In another dimension, the synthesized nucleoside analogs can enable chemical labeling of cellular mRNA through a metabolic pathway, which facilitates the study of RNA dynamics in a pulse-chase manner. In this regard, the sequencing tools for mapping both natural modifications and nucleoside tags on mRNA at single base resolution are highly necessary. In this work, we review the progress of chemical sequencing technology for determining both a variety of naturally occurring base modifications mainly on mRNA and a few on transfer RNA and metabolically incorporated artificial base analogs on mRNA, and further discuss the problems and prospects in the field.
Collapse
Affiliation(s)
- Ziming Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Lombard M, Reed CJ, Pecqueur L, Faivre B, Toubdji S, Sudol C, Brégeon D, de Crécy-Lagard V, Hamdane D. Evolutionary Diversity of Dus2 Enzymes Reveals Novel Structural and Functional Features among Members of the RNA Dihydrouridine Synthases Family. Biomolecules 2022; 12:1760. [PMID: 36551188 PMCID: PMC9775027 DOI: 10.3390/biom12121760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dihydrouridine (D) is an abundant modified base found in the tRNAs of most living organisms and was recently detected in eukaryotic mRNAs. This base confers significant conformational plasticity to RNA molecules. The dihydrouridine biosynthetic reaction is catalyzed by a large family of flavoenzymes, the dihydrouridine synthases (Dus). So far, only bacterial Dus enzymes and their complexes with tRNAs have been structurally characterized. Understanding the structure-function relationships of eukaryotic Dus proteins has been hampered by the paucity of structural data. Here, we combined extensive phylogenetic analysis with high-precision 3D molecular modeling of more than 30 Dus2 enzymes selected along the tree of life to determine the evolutionary molecular basis of D biosynthesis by these enzymes. Dus2 is the eukaryotic enzyme responsible for the synthesis of D20 in tRNAs and is involved in some human cancers and in the detoxification of β-amyloid peptides in Alzheimer's disease. In addition to the domains forming the canonical structure of all Dus, i.e., the catalytic TIM-barrel domain and the helical domain, both participating in RNA recognition in the bacterial Dus, a majority of Dus2 proteins harbor extensions at both ends. While these are mainly unstructured extensions on the N-terminal side, the C-terminal side extensions can adopt well-defined structures such as helices and beta-sheets or even form additional domains such as zinc finger domains. 3D models of Dus2/tRNA complexes were also generated. This study suggests that eukaryotic Dus2 proteins may have an advantage in tRNA recognition over their bacterial counterparts due to their modularity.
Collapse
Affiliation(s)
- Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| | - Sabrine Toubdji
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Claudia Sudol
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université 7 quai Saint Bernard, CEDEX 05, 75252 Paris, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, CEDEX 05, 75231 Paris, France
| |
Collapse
|
32
|
Kossinova OA, Gopanenko AV, Babaylova ES, Tupikin AE, Kabilov MR, Malygin AA, Karpova GG. Reorganization of the Landscape of Translated mRNAs in NSUN2-Deficient Cells and Specific Features of NSUN2 Target mRNAs. Int J Mol Sci 2022; 23:ijms23179740. [PMID: 36077143 PMCID: PMC9456143 DOI: 10.3390/ijms23179740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The RNA cytosine C5 methyltransferase NSUN2 has a variety of RNA substrates and plays an important role in mRNA metabolism. NSUN2 binds to specific sequences enriched in exosomal mRNAs, suggesting its possible involvement in the sorting of mRNAs into exosomes. We applied the photoactivatable.4-thiouridine-enhanced cross-linking and immunoprecipitation assay involving high-throughput RNA sequencing (RNA-seq) to HEK293T cells to determine NSUN2 mRNA targets. NSUN2 cross-linking sites were found in more than one hundred relatively abundant mRNAs with a high GC content and a pronounced secondary structure. Then, utilizing RNA-seq for the total and polysome-associated mRNA from HEK293T cells with and without the knockdown of NSUN2, we identified differentially expressed genes, as well as genes with altered translational efficiency (GATEs). It turned out that the up-regulated GATE mRNAs were much shorter on average than the down-regulated ones, and their GC content was higher; moreover, they contained motifs with C residues located in GC-rich environments. Our findings reveal the specific features of mRNAs that make them potential targets for NSUN2 and expand our understanding of the role of NSUN2 in controlling translation and, possibly, in mRNA sorting into exosomes implemented through the methylation of cytosine residues.
Collapse
|
33
|
Arguello AE, Li A, Sun X, Eggert TW, Mairhofer E, Kleiner RE. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases. Nat Commun 2022; 13:4176. [PMID: 35853884 PMCID: PMC9296451 DOI: 10.1038/s41467-022-31876-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
Epitranscriptomic RNA modifications can regulate fundamental biological processes, but we lack approaches to map modification sites and probe writer enzymes. Here we present a chemoproteomic strategy to characterize RNA 5-methylcytidine (m5C) dioxygenase enzymes in their native context based upon metabolic labeling and activity-based crosslinking with 5-ethynylcytidine (5-EC). We profile m5C dioxygenases in human cells including ALKBH1 and TET2 and show that ALKBH1 is the major hm5C- and f5C-forming enzyme in RNA. Further, we map ALKBH1 modification sites transcriptome-wide using 5-EC-iCLIP and ARP-based sequencing to identify ALKBH1-dependent m5C oxidation in a variety of tRNAs and mRNAs and analyze ALKBH1 substrate specificity in vitro. We also apply targeted pyridine borane-mediated sequencing to measure f5C sites on select tRNA. Finally, we show that f5C at the wobble position of tRNA-Leu-CAA plays a role in decoding Leu codons under stress. Our work provides powerful chemical approaches for studying RNA m5C dioxygenases and mapping oxidative m5C modifications and reveals the existence of novel epitranscriptomic pathways for regulating RNA function. Kleiner and co-workers profile RNA 5-methylcytidine (m5C) dioxygenase enzymes using an activity-based metabolic probing strategy. They reveal ALKBH1 as the major 5-formylcytidine (f5C) writer and characterize modification sites across mRNA and tRNA.
Collapse
Affiliation(s)
- A Emilia Arguello
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Tanner W Eggert
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | | | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
34
|
Brégeon D, Pecqueur L, Toubdji S, Sudol C, Lombard M, Fontecave M, de Crécy-Lagard V, Motorin Y, Helm M, Hamdane D. Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chem Biol 2022; 17:1638-1657. [PMID: 35737906 DOI: 10.1021/acschembio.2c00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Until recently, post-transcriptional modifications of RNA were largely restricted to noncoding RNA species. However, this belief seems to have quickly dissipated with the growing number of new modifications found in mRNA that were originally thought to be primarily tRNA-specific, such as dihydrouridine. Recently, transcriptomic profiling, metabolic labeling, and proteomics have identified unexpected dihydrouridylation of mRNAs, greatly expanding the catalog of novel mRNA modifications. These data also implicated dihydrouridylation in meiotic chromosome segregation, protein translation rates, and cell proliferation. Dihydrouridylation of tRNAs and mRNAs are introduced by flavin-dependent dihydrouridine synthases. In this review, we will briefly outline the current knowledge on the distribution of dihydrouridines in the transcriptome, their chemical labeling, and highlight structural and mechanistic aspects regarding the dihydrouridine synthases enzyme family. A special emphasis on important research directions to be addressed will also be discussed. This new entry of dihydrouridine into mRNA modifications has definitely added a new layer of information that controls protein synthesis.
Collapse
Affiliation(s)
- Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Sabrine Toubdji
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Claudia Sudol
- IBPS, Biology of Aging and Adaptation, Sorbonne Université, Paris 75252, France
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy F-54000, France
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy F-54000, France
| | - Mark Helm
- Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| |
Collapse
|
35
|
Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem 2022; 285:106780. [PMID: 35313212 PMCID: PMC9373004 DOI: 10.1016/j.bpc.2022.106780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Messenger RNAs (mRNAs) serve as blueprints for protein synthesis by the molecular machine the ribosome. The ribosome relies on hydrogen bonding interactions between adaptor aminoacyl-transfer RNA molecules and mRNAs to ensure the rapid and faithful translation of the genetic code into protein. There is a growing body of evidence suggesting that chemical modifications to mRNA nucleosides impact the speed and accuracy of protein synthesis by the ribosome. Modulations in translation rates have downstream effects beyond protein production, influencing protein folding and mRNA stability. Given the prevalence of such modifications in mRNA coding regions, it is imperative to understand the consequences of individual modifications on translation. In this review we present the current state of our knowledge regarding how individual mRNA modifications influence ribosome function. Our comprehensive comparison of the impacts of 16 different mRNA modifications on translation reveals that most modifications can alter the elongation step in the protein synthesis pathway. Additionally, we discuss the context dependence of these effects, highlighting the necessity of further study to uncover the rules that govern how any given chemical modification in an mRNA codon is read by the ribosome.
Collapse
Affiliation(s)
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, USA; Department of Chemistry, University of Michigan, USA.
| |
Collapse
|
36
|
Finet O, Yague-Sanz C, Marchand F, Hermand D. The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function. RNA Biol 2022; 19:735-750. [PMID: 35638108 PMCID: PMC9176250 DOI: 10.1080/15476286.2022.2078094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universal dihydrouridine (D) epitranscriptomic mark results from a reduction of uridine by the Dus family of NADPH-dependent reductases and is typically found within the eponym D-loop of tRNAs. Despite its apparent simplicity, D is structurally unique, with the potential to deeply affect the RNA backbone and many, if not all, RNA-connected processes. The first landscape of its occupancy within the tRNAome was reported 20 years ago. Its potential biological significance was highlighted by observations ranging from a strong bias in its ecological distribution to the predictive nature of Dus enzymes overexpression for worse cancer patient outcomes. The exquisite specificity of the Dus enzymes revealed by a structure-function analyses and accumulating clues that the D distribution may expand beyond tRNAs recently led to the development of new high-resolution mapping methods, including Rho-seq that established the presence of D within mRNAs and led to the demonstration of its critical physiological relevance.
Collapse
Affiliation(s)
- Olivier Finet
- URPHYM-GEMO, The University of Namur, Namur, Belgium
| | | | | | | |
Collapse
|
37
|
Kelley M, Uhran M, Herbert C, Yoshida G, Watts ER, Limbach PA, Benoit JB. Abundances of transfer RNA modifications and transcriptional levels of tRNA-modifying enzymes are sex-associated in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103741. [PMID: 35181477 PMCID: PMC9034435 DOI: 10.1016/j.ibmb.2022.103741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 06/03/2023]
Abstract
As carriers of multiple human diseases, understanding the mechanisms behind mosquito reproduction may have implications for remediation strategies. Transfer RNA (tRNA) acts as the adapter molecule of amino acids and are key components in protein synthesis. A critical factor in the function of tRNAs is chemical modifications which contribute to codon-anticodon interactions. Here, we provide an assessment of tRNA modifications between sexes for three mosquito species and examine the correlation of transcript levels underlying key proteins involved in tRNA modification. Thirty-three tRNA modifications were detected among mosquito species and most of these modifications are higher in females compared to males for three mosquito species. Analysis of previous male and female RNA-seq datasets indicated a similar increase in transcript levels of tRNA-modifying enzymes in females among six mosquito species, supporting our observed female enrichment of tRNA modifications. Tissues-specific expressional studies revealed higher transcript levels for tRNA-modifying enzymes in the ovaries for Aedes aegypti, but not male reproductive tissues. These studies suggest that tRNA modifications may be critical to reproduction in mosquitoes, representing a potential novel target for control through suppression of fecundity.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA.
| | - Melissa Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Cassandra Herbert
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Emmarie R Watts
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Patrick A Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45211, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45211, USA.
| |
Collapse
|
38
|
D’Esposito RJ, Myers CA, Chen AA, Vangaveti S. Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes (Basel) 2022; 13:540. [PMID: 35328093 PMCID: PMC8949676 DOI: 10.3390/genes13030540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
RNA is critical to a broad spectrum of biological and viral processes. This functional diversity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold into; and a host of post-transcriptional chemical modifications. While there are many experimental techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS) play a significant role in complementing experimental data and providing mechanistic insights. The accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted by the RNA modifications adds another layer of complexity to an already challenging problem. Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the insufficiency or absence of relevant experimental data. This review provides an overview of the state of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as well as insights into relevant reference experiments necessary for their calibration.
Collapse
Affiliation(s)
- Rebecca J. D’Esposito
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
| | - Christopher A. Myers
- Department of Physics, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA;
| | - Alan A. Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
39
|
Bartee D, Nance KD, Meier JL. Site-Specific Synthesis of N4-Acetylcytidine in RNA Reveals Physiological Duplex Stabilization. J Am Chem Soc 2022; 144:3487-3496. [PMID: 35172571 PMCID: PMC11583671 DOI: 10.1021/jacs.1c11985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
N4-Acetylcytidine (ac4C) is a post-transcriptional modification of RNA that is conserved across all domains of life. All characterized sites of ac4C in eukaryotic RNA occur in the central nucleotide of a 5'-CCG-3' consensus sequence. However, the thermodynamic consequences of cytidine acetylation in this context have never been assessed due to its challenging synthesis. Here, we report the synthesis and biophysical characterization of ac4C in its endogenous eukaryotic sequence context. First, we develop a synthetic route to homogeneous RNAs containing electrophilic acetyl groups. Next, we use thermal denaturation to interrogate the biochemical effects of ac4C on duplex stability and mismatch discrimination in a native sequence found in human rRNA. Finally, we demonstrate the ability of this chemistry to incorporate ac4C into the complex modification landscape of human tRNA and use duplex melting to highlight an enforcing role for ac4C in this unique sequence context. By enabling ex vivo biophysical analyses of nucleic acid acetylation in its physiological sequence context, these studies establish a chemical foundation for understanding the function of a universally conserved nucleobase in biology and disease.
Collapse
Affiliation(s)
- David Bartee
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Kellie D Nance
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
40
|
Wang Y, Zhang X, Liu H, Zhou X. Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chem Soc Rev 2021; 50:13481-13497. [PMID: 34792050 DOI: 10.1039/d1cs00920f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RNA modification, like other epigenetic modifications such as DNA modification and histone modification, is an emerging player in the field of the posttranscriptional regulation of gene expression. More than 160 kinds of RNA modifications have been identified, and they are widely distributed in different types of RNA. Recently, researchers have increasingly used advanced technologies to study modified nucleic acids in order to elucidate their biological functions and expand the understanding of the central laws of epigenetics. In this tutorial review, we comprehensively outline current advanced techniques for decoding RNA modifications, highlighting some of the bottlenecks in existing approaches as well as new opportunities that may lead to innovations. With this review, we expect to provide chemistry and biology students and researchers with ideas for solving some challenging problems, such as how to simultaneously detect multiple types of modifications within the same system. Moreover, some low-coverage modifications that may act as 'candidates' in important transcriptional processes need to be further explored. These novel approaches have the potential to lay a foundation for understanding the nuanced complexities of the biological functions of RNA modification.
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Hui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
41
|
Kleiner RE. Interrogating the transcriptome with metabolically incorporated ribonucleosides. Mol Omics 2021; 17:833-841. [PMID: 34635895 DOI: 10.1039/d1mo00334h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA is a central player in biological processes, but there remain major gaps in our understanding of transcriptomic processes and the underlying biochemical mechanisms regulating RNA in cells. A powerful strategy to facilitate molecular analysis of cellular RNA is the metabolic incorporation of chemical probes. In this review, we discuss current approaches for RNA metabolic labeling with modified ribonucleosides and their integration with Next-Generation Sequencing, mass spectrometry-based proteomics, and fluorescence microscopy in order to interrogate RNA behavior in its native context.
Collapse
Affiliation(s)
- Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
42
|
Affiliation(s)
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|