1
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2025; 182:26-51. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Williams TL, Verdon G, Kuc RE, Currinn H, Bender B, Solcan N, Schlenker O, Macrae RGC, Brown J, Schütz M, Zhukov A, Sinha S, de Graaf C, Gräf S, Maguire JJ, Brown AJH, Davenport AP. Structural and functional determination of peptide versus small molecule ligand binding at the apelin receptor. Nat Commun 2024; 15:10714. [PMID: 39730334 DOI: 10.1038/s41467-024-55381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
We describe a structural and functional study of the G protein-coupled apelin receptor, which binds two endogenous peptide ligands, apelin and Elabela/Toddler (ELA), to regulate cardiovascular development and function. Characterisation of naturally occurring apelin receptor variants from the UK Genomics England 100,000 Genomes Project, and AlphaFold2 modelling, identifies T892.64 as important in the ELA binding site, and R1684.64 as forming extensive interactions with the C-termini of both peptides. Base editing to introduce an R/H1684.64 variant into human stem cell-derived cardiomyocytes demonstrates that this residue is critical for receptor binding and function. Additionally, we present an apelin receptor crystal structure bound to the G protein-biased, small molecule agonist, CMF-019, which reveals a deeper binding mode versus the endogenous peptides at lipophilic pockets between transmembrane helices associated with GPCR activation. Overall, the data provide proof-of-principle for using genetic variation to identify key sites regulating receptor-ligand engagement.
Collapse
Affiliation(s)
- Thomas L Williams
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Grégory Verdon
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Heather Currinn
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Brian Bender
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Nicolae Solcan
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Oliver Schlenker
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Robyn G C Macrae
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jason Brown
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Marco Schütz
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Andrei Zhukov
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Chris de Graaf
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant, Long Road, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research Institute, Cambridge, UK
| | - Janet J Maguire
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK
| | - Alastair J H Brown
- Nxera Pharma UK Limited (Sosei Heptares), Steinmetz Building, Granta Park, Cambridge, UK.
| | - Anthony P Davenport
- Experimental Medicine & Immunotherapeutics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Ma Y, Patterson B, Zhu L. Biased signaling in GPCRs: Structural insights and implications for drug development. Pharmacol Ther 2024; 266:108786. [PMID: 39719175 DOI: 10.1016/j.pharmthera.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development. Despite the promise of biased agonists to enhance drug efficacy and minimize side effects, a comprehensive understanding of the structural and biophysical mechanisms underlying biased signaling is essential. Recent advancements in GPCR structural biology have provided unprecedented insights into ligand binding, conformational dynamics, and the molecular basis of biased signaling. These insights, combined with improved techniques for characterizing ligand efficacy, have driven the development of biased ligands for several GPCRs, including opioid, angiotensin, and adrenergic receptors. This review synthesizes these developments, from mechanisms to drug discovery in biased signaling, emphasizing the role of structural insights in the rational design of next-generation biased agonists with superior therapeutic profiles. Ultimately, these advances hold the potential to revolutionize GPCR-targeted drug discovery, paving the way for more precise and effective treatments.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brandon Patterson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| |
Collapse
|
4
|
Ye F, Pan X, Zhang Z, Xiang X, Li X, Zhang B, Ning P, Liu A, Wang Q, Gong K, Li J, Zhu L, Qian C, Chen G, Du Y. Structural basis for ligand recognition of the human hydroxycarboxylic acid receptor HCAR3. Cell Rep 2024; 43:114895. [PMID: 39427321 DOI: 10.1016/j.celrep.2024.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Hydroxycarboxylic acid receptor 3 (HCAR3), a class A G-protein-coupled receptor, is an important cellular energy metabolism sensor with a key role in the regulation of lipolysis in humans. HCAR3 is deeply involved in many physiological processes and serves as a valuable target for the treatment of metabolic diseases, tumors, and immune diseases. Here, we report four cryoelectron microscopy (cryo-EM) structures of human HCAR3-Gi1 complexes with or without agonists: the endogenous ligand 3-hydroxyoctanoic acid, the drug niacin, the highly subtype-specific agonist compound 5c (4-(n-propyl)amino-3-nitrobenzoic acid), and the apo form. Together with mutagenesis and functional analyses, we revealed the recognition mechanisms of HCAR3 for different agonists. In addition, the key residues that determine the ligand selectivity between HCAR2 and HCAR3 were also illuminated. Overall, these findings provide a structural basis for the ligand recognition, activation, and selectivity and G-protein coupling mechanisms of HCAR3, which contribute to the design of HCAR3-targeting drugs with high efficacy and selectivity.
Collapse
Affiliation(s)
- Fang Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China; Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xin Pan
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Peiruo Ning
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Qinggong Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Kaizheng Gong
- Department of Cardiology, Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Jiancheng Li
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China.
| |
Collapse
|
5
|
Kaoullas MG, Thal DM, Christopoulos A, Valant C. Ligand bias at the muscarinic acetylcholine receptor family: Opportunities and challenges. Neuropharmacology 2024; 258:110092. [PMID: 39067666 DOI: 10.1016/j.neuropharm.2024.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) that are activated by the endogenous neurotransmitter, acetylcholine (ACh). Disruption of mAChR signalling has been associated with a variety of neurological disorders and non-neurological diseases. Consequently, the development of agonists and antagonists of the mAChRs has been a major avenue in drug discovery. Unfortunately, mAChR ligands are often associated with on-target side effects for two reasons. The first reason is due to the high sequence conservation at the orthosteric ACh binding site among all five receptor subtypes (M1-M5), making on-target subtype selectivity a major challenge. The second reason is due to on-target side effects of mAChR drugs that are associated with the pleiotropic nature of mAChR signalling at the level of a single mAChR subtype. Indeed, there is growing evidence that within the myriad of signalling events produced by mAChR ligands, some will have therapeutic benefits, whilst others may promote cholinergic side effects. This paradigm of drug action, known as ligand bias or biased agonism, is an attractive feature for next-generation mAChR drugs, as it holds the promise of developing drugs devoid of on-target adverse effects. Although relatively simple to detect and even quantify in vitro, ligand bias, as observed in recombinant systems, does not always translate to in vivo systems, which remains a major hurdle in GPCR drug discovery, including the mAChR family. Here we report recent studies that have attempted to detect and quantify ligand bias at the mAChR family, and briefly discuss the challenges associated with biased agonist drug development. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Michaela G Kaoullas
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia.
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, 3052, VIC, Parkville, Melbourne, Australia.
| |
Collapse
|
6
|
Poudel B, Vanegas JM. Structural Rearrangement of the AT1 Receptor Modulated by Membrane Thickness and Tension. J Phys Chem B 2024; 128:9470-9481. [PMID: 39298653 DOI: 10.1021/acs.jpcb.4c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Membrane-embedded mechanosensitive (MS) proteins, including ion channels and G-protein coupled receptors (GPCRs), are essential for the transduction of external mechanical stimuli into biological signals. The angiotensin II type 1 (AT1) receptor plays many important roles in cardiovascular regulation and is associated with diseases such as hypertension and congestive heart failure. The membrane-mediated activation of the AT1 receptor is not well understood, despite this being one of the most widely studied GPCRs within the context of biased agonism. Here, we use extensive molecular dynamics (MD) simulations to characterize the effect of the local membrane environment on the activation of the AT1 receptor. We show that membrane thickness plays an important role in the stability of active and inactive states of the receptor, as well as the dynamic interchange between states. Furthermore, our simulation results show that membrane tension is effective in driving large-scale structural changes in the inactive state such as the outward movement of transmembrane helix 6 to stabilize intermediate active-like conformations. We conclude by comparing our simulation observations with AlphaFold 2 predictions, as a proxy to experimental structures, to provide a framework for how membrane mediated stimuli can facilitate activation of the AT1 receptor through the β-arrestin signaling pathway.
Collapse
Affiliation(s)
- Bharat Poudel
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Juan M Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
7
|
Gao Y, Frank M, Teusch N, Woschko D, Janiak C, Mándi A, Kurtán T, Hartmann R, Schiedlauske K, van Geelen L, Kalscheuer R, Kaiser J, Gertzen CGW, Gohlke H, Wang BG, Proksch P, Liu Z. Aplospojaveedins A-C, unusual sulfur-containing alkaloids produced by the endophytic fungus Aplosporella javeedii using OSMAC strategy. Front Microbiol 2024; 15:1458622. [PMID: 39397793 PMCID: PMC11466890 DOI: 10.3389/fmicb.2024.1458622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Three sulfur-containing alkaloids aplospojaveedins A-C (1-3) with a hitherto undescribed carbon skeleton comprising octahy-dronaphthalene, α, β-unsaturated lactam and glycine-cysteine moieties were isolated from Aplosporella javeedii. Their structures were elucidated by 1D and 2D NMR spectroscopy, HR-MS, X-ray diffraction analysis, DFT-NMR and TDDFT-ECD calculations. A plausible biosynthetic pathway and putative targets are described. The blind docking suggested that 1-3 may have functional effects on several putative targets such as the GPCR cannabinoid receptor 2 or the integrin α5β1 complex.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Dennis Woschko
- Institute of Inorganic and Structural Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Rudolf Hartmann
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph G. W. Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Zhen Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Saotome K, McGoldrick LL, Ho JH, Ramlall TF, Shah S, Moore MJ, Kim JH, Leidich R, Olson WC, Franklin MC. Structural insights into CXCR4 modulation and oligomerization. Nat Struct Mol Biol 2024:10.1038/s41594-024-01397-1. [PMID: 39313635 DOI: 10.1038/s41594-024-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| | | | - Jo-Hao Ho
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Sweta Shah
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jee Hae Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | |
Collapse
|
9
|
Morales P, Scharf MM, Bermudez M, Egyed A, Franco R, Hansen OK, Jagerovic N, Jakubík J, Keserű GM, Kiss DJ, Kozielewicz P, Larsen O, Majellaro M, Mallo-Abreu A, Navarro G, Prieto-Díaz R, Rosenkilde MM, Sotelo E, Stark H, Werner T, Wingler LM. Progress on the development of Class A GPCR-biased ligands. Br J Pharmacol 2024. [PMID: 39261899 DOI: 10.1111/bph.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 09/13/2024] Open
Abstract
Class A G protein-coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and therapeutic value. In this context, the elucidation of biased signalling has opened up new pharmacological avenues holding promise for safer therapeutics. Functionally selective ligands favour receptor conformations facilitating the recruitment of specific effectors and the modulation of the associated pathways. This review surveys the current drug discovery landscape of GPCR-biased modulators with a focus on recent advances. Understanding the biological effects of this preferential coupling is at different stages depending on the Class A GPCR family. Therefore, with a focus on individual GPCR families, we present a compilation of the functionally selective modulators reported over the past few years. In doing so, we dissect their therapeutic relevance, molecular determinants and potential clinical applications.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Magdalena M Scharf
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marcel Bermudez
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Attila Egyed
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Olivia K Hansen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - György M Keserű
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Judit Kiss
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Olav Larsen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana Mallo-Abreu
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Tobias Werner
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Yang T, Li J, Cheng X, Lu Q, Farooq Z, Fu Y, Lv S, Nan W, Yu B, Duan J, Zhang Y, Fu Y, Jiang H, McCormick PJ, Li Y, Zhang J. Structural analysis of the human C5a-C5aR1 complex using cryo-electron microscopy. J Struct Biol 2024; 216:108117. [PMID: 39153560 DOI: 10.1016/j.jsb.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The complement system is a complex network of proteins that plays a crucial role in the innate immune response. One important component of this system is the C5a-C5aR1 complex, which is critical in the recruitment and activation of immune cells. In-depth investigation of the activation mechanism as well as biased signaling of the C5a-C5aR1 system will facilitate the elucidation of C5a-mediated pathophysiology. In this study, we determined the structure of C5a-C5aR1-Gi complex at a high resolution of 3 Å using cryo-electron microscopy (Cryo-EM). Our results revealed the binding site of C5a, which consists of a polar recognition region on the extracellular side and an amphipathic pocket within the transmembrane domain. Furthermore, we found that C5a binding induces conformational changes of C5aR1, which subsequently leads to the activation of G protein signaling pathways. Notably, a key residue (M265) located on transmembrane helix 6 (TM6) was identified to play a crucial role in regulating the recruitment of β-arrestin driven by C5a. This study provides more information about the structure and function of the human C5a-C5aR1 complex, which is essential for the proper functioning of the complement system. The findings of this study can also provide a foundation for the design of new pharmaceuticals targeting this receptor with bias or specificity.
Collapse
Affiliation(s)
- Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jian Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qiuyuan Lu
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zara Farooq
- William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ying Fu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Sijia Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Boming Yu
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd, Shenzhen, Guangdong 518118, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GE, UK.
| | - Yanyan Li
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
11
|
Ople R, Ramos-Gonzalez N, Li Q, Sobecks BL, Aydin D, Powers AS, Faouzi A, Polacco BJ, Bernhard SM, Appourchaux K, Sribhashyam S, Eans SO, Tsai BA, Dror RO, Varga BR, Wang H, Hüttenhain R, McLaughlin JP, Majumdar S. Signaling Modulation Mediated by Ligand Water Interactions with the Sodium Site at μOR. ACS CENTRAL SCIENCE 2024; 10:1490-1503. [PMID: 39220695 PMCID: PMC11363324 DOI: 10.1021/acscentsci.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
The mu opioid receptor (μOR) is a target for clinically used analgesics. However, adverse effects, such as respiratory depression and physical dependence, necessitate the development of alternative treatments. Recently we reported a novel strategy to design functionally selective opioids by targeting the sodium binding allosteric site in μOR with a supraspinally active analgesic named C6guano. Presently, to improve systemic activity of this ligand, we used structure-based design, identifying a new ligand named RO76 where the flexible alkyl linker and polar guanidine guano group is swapped with a benzyl alcohol, and the sodium site is targeted indirectly through waters. A cryoEM structure of RO76 bound to the μOR-Gi complex confirmed that RO76 interacts with the sodium site residues through a water molecule, unlike C6guano which engages the sodium site directly. Signaling assays coupled with APEX based proximity labeling show binding in the sodium pocket modulates receptor efficacy and trafficking. In mice, RO76 was systemically active in tail withdrawal assays and showed reduced liabilities compared to those of morphine. In summary, we show that targeting water molecules in the sodium binding pocket may be an avenue to modulate signaling properties of opioids, and which may potentially be extended to other G-protein coupled receptors where this site is conserved.
Collapse
Affiliation(s)
- Rohini
S. Ople
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nokomis Ramos-Gonzalez
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Qiongyu Li
- Department
of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Briana L. Sobecks
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Deniz Aydin
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Alexander S. Powers
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Abdelfattah Faouzi
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Benjamin J. Polacco
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Sarah M. Bernhard
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kevin Appourchaux
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sashrik Sribhashyam
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O. Eans
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Bowen A. Tsai
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Ron O. Dror
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Balazs R. Varga
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Haoqing Wang
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ruth Hüttenhain
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jay P. McLaughlin
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Susruta Majumdar
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
12
|
Saha S, Khanppnavar B, Maharana J, Kim H, Carino CMC, Daly C, Houston S, Sharma S, Zaidi N, Dalal A, Mishra S, Ganguly M, Tiwari D, Kumari P, Jhingan GD, Yadav PN, Plouffe B, Inoue A, Chung KY, Banerjee R, Korkhov VM, Shukla AK. Molecular mechanism of distinct chemokine engagement and functional divergence of the human Duffy antigen receptor. Cell 2024; 187:4751-4769.e25. [PMID: 39089252 DOI: 10.1016/j.cell.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/13/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
The Duffy antigen receptor is a seven-transmembrane (7TM) protein expressed primarily at the surface of red blood cells and displays strikingly promiscuous binding to multiple inflammatory and homeostatic chemokines. It serves as the basis of the Duffy blood group system in humans and also acts as the primary attachment site for malarial parasite Plasmodium vivax and pore-forming toxins secreted by Staphylococcus aureus. Here, we comprehensively profile transducer coupling of this receptor, discover potential non-canonical signaling pathways, and determine the cryoelectron microscopy (cryo-EM) structure in complex with the chemokine CCL7. The structure reveals a distinct binding mode of chemokines, as reflected by relatively superficial binding and a partially formed orthosteric binding pocket. We also observe a dramatic shortening of TM5 and 6 on the intracellular side, which precludes the formation of the docking site for canonical signal transducers, thereby providing a possible explanation for the distinct pharmacological and functional phenotype of this receptor.
Collapse
Affiliation(s)
- Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Heeryung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Carlo Marion C Carino
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Carole Daly
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Shane Houston
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Saloni Sharma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nashrah Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Annu Dalal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Divyanshu Tiwari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Poonam Kumari
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Prem N Yadav
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland; Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
13
|
Peng Q, Jiang H, Cheng X, Wang N, Zhou S, Zhang Y, Yang T, Chen Y, Zhang W, Lv S, Nan W, Wang J, Fan GH, Li J, Zhang J. Cryo-EM Structure and Biochemical Analysis of the Human Chemokine Receptor CCR8. Biochemistry 2024; 63:1892-1900. [PMID: 38985857 DOI: 10.1021/acs.biochem.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein-coupled receptor that has emerged as a promising therapeutic target in cancer and autoimmune diseases. In the present study, we solved the cryo-electron microscopy (cryo-EM) structure of the human CCR8-Gi complex in the absence of a ligand at 2.58 Å. Structural analysis and comparison revealed that our apo CCR8 structure undergoes some conformational changes and is similar to that in the CCL1-CCR8 complex structure, indicating an active state. In addition, the key residues of CCR8 involved in the recognition of LMD-009, a potent nonpeptide agonist, were investigated by mutating CCR8 and testing the calcium flux induced by LMD-009-CCR8 interaction. Three mutants of CCR8, Y1133.32A, Y1724.64A, and E2867.39A, showed a dramatically decreased ability in mediating calcium mobilization, indicating their key interaction with LMD-009 and key roles in activation. These structural and biochemical analyses enrich molecular insights into the agonism and activation of CCR8 and will facilitate CCR8-targeted therapy.
Collapse
Affiliation(s)
- Qi Peng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Na Wang
- Cobio Biotechnology Co., Ltd., No. 9 Building, Building 16 of SHUWU, No. 73 Tanmi Road, Jiangbei New District, Nanjing 211500, China
| | - Sili Zhou
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd, Shenzhen, Guangdong 518118, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Sijia Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - JianFei Wang
- Executive Office, Immunophage Biotech Co., Ltd., No 10. Lv Zhou Huan Road, Shanghai 201112, China
| | - Guo-Huang Fan
- Executive Office, Immunophage Biotech Co., Ltd., No 10. Lv Zhou Huan Road, Shanghai 201112, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
14
|
Kobayashi H, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Epitope Mapping of an Anti-Mouse CCR8 Monoclonal Antibody C 8Mab-2 Using Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2024; 43:101-107. [PMID: 38836509 DOI: 10.1089/mab.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
The C-C motif chemokine receptor 8 (CCR8) is highly and selectively expressed in regulatory T (Treg) cells and is associated with tumor progression. The massive accumulation of Treg cells into tumors suppresses the effector function of CD8+ cells against tumor cells. Therefore, selective depletion of Treg cells using anti-CCR8 monoclonal antibodies (mAbs) reinvigorates antitumor immune responses and improves responses to cancer immunotherapy. Previously, we developed an anti-mouse CCR8 (mCCR8) mAb, C8Mab-2, using the Cell-Based Immunization and Screening method. In this study, the binding epitope of C8Mab-2 was investigated using flow cytometry. The mCCR8 extracellular domain-substituted mutant analysis showed that C8Mab-2 recognizes the N-terminal region (1-33 amino acids) of mCCR8. Next, 1×alanine (or glycine) scanning and 2×alanine (or glycine) scanning were conducted in the N-terminal region. The results revealed that the 17-DFFTAP-22 sequence is important for the recognition by C8Mab-2, and Thr20 is a central amino acid of the epitope. These results revealed the involvement of the N-terminus of mCCR8 in the recognition by C8Mab-2.
Collapse
Affiliation(s)
- Hiyori Kobayashi
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Otun O, Aljamous C, Del Nero E, Arimont-Segura M, Bosma R, Zarzycka B, Girbau T, Leyrat C, de Graaf C, Leurs R, Durroux T, Granier S, Cong X, Bechara C. Conformational dynamics underlying atypical chemokine receptor 3 activation. Proc Natl Acad Sci U S A 2024; 121:e2404000121. [PMID: 39008676 PMCID: PMC11287255 DOI: 10.1073/pnas.2404000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Atypical Chemokine Receptor 3 (ACKR3) belongs to the G protein-coupled receptor family but it does not signal through G proteins. The structural properties that govern the functional selectivity and the conformational dynamics of ACKR3 activation are poorly understood. Here, we combined hydrogen/deuterium exchange mass spectrometry, site-directed mutagenesis, and molecular dynamics simulations to examine the binding mode and mechanism of action of ACKR3 ligands of different efficacies. Our results show that activation or inhibition of ACKR3 is governed by intracellular conformational changes of helix 6, intracellular loop 2, and helix 7, while the DRY motif becomes protected during both processes. Moreover, we identified the binding sites and the allosteric modulation of ACKR3 upon β-arrestin 1 binding. In summary, this study highlights the structure-function relationship of small ligands, the binding mode of β-arrestin 1, the activation dynamics, and the atypical dynamic features in ACKR3 that may contribute to its inability to activate G proteins.
Collapse
Affiliation(s)
- Omolade Otun
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Christelle Aljamous
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Elise Del Nero
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Reggie Bosma
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Barbara Zarzycka
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Tristan Girbau
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
- Institut Universitaire de France, Paris75005, France
| |
Collapse
|
16
|
Toy L, Huber ME, Lee M, Bartolomé AA, Ortiz Zacarías NV, Nasser S, Scholl S, Zlotos DP, Mandour YM, Heitman LH, Szpakowska M, Chevigné A, Schiedel M. Fluorophore-Labeled Pyrrolones Targeting the Intracellular Allosteric Binding Site of the Chemokine Receptor CCR1. ACS Pharmacol Transl Sci 2024; 7:2080-2092. [PMID: 39022357 PMCID: PMC11249626 DOI: 10.1021/acsptsci.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal β-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.
Collapse
Affiliation(s)
- Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Max E. Huber
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Minhee Lee
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Ana Alonso Bartolomé
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
- Faculty
of Science, Technology and Medicine, University
of Luxembourg, 2 Avenue
de l’Université, Esch-sur-Alzette L-4365, Luxembourg
| | - Natalia V. Ortiz Zacarías
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Sherif Nasser
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Stephan Scholl
- Institute
for Chemical and Thermal Process Engineering (ICTV), Technische Universität Braunschweig, Langer Kamp 7, Braunschweig 38106, Germany
| | - Darius P. Zlotos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Yasmine M. Mandour
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
- Oncode
Institute, Leiden University, Leiden 2333 CC, Netherlands
| | - Martyna Szpakowska
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
17
|
Wang Y, Shen Z, Mo S, Zhang H, Chen J, Zhu C, Lv S, Zhang D, Huang X, Gu Y, Yu X, Ding X, Zhang X. Crosstalk among proximal tubular cells, macrophages, and fibroblasts in acute kidney injury: single-cell profiling from the perspective of ferroptosis. Hum Cell 2024; 37:1039-1055. [PMID: 38753279 PMCID: PMC11194220 DOI: 10.1007/s13577-024-01072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/27/2024] [Indexed: 06/24/2024]
Abstract
The link between ferroptosis, a form of cell death mediated by iron and acute kidney injury (AKI) is recently gaining widespread attention. However, the mechanism of the crosstalk between cells in the pathogenesis and progression of acute kidney injury remains unexplored. In our research, we performed a non-negative matrix decomposition (NMF) algorithm on acute kidney injury single-cell RNA sequencing data based specifically focusing in ferroptosis-associated genes. Through a combination with pseudo-time analysis, cell-cell interaction analysis and SCENIC analysis, we discovered that proximal tubular cells, macrophages, and fibroblasts all showed associations with ferroptosis in different pathways and at various time. This involvement influenced cellular functions, enhancing cellular communication and activating multiple transcription factors. In addition, analyzing bulk expression profiles and marker genes of newly defined ferroptosis subtypes of cells, we have identified crucial cell subtypes, including Egr1 + PTC-C1, Jun + PTC-C3, Cxcl2 + Mac-C1 and Egr1 + Fib-C1. All these subtypes which were found in AKI mice kidneys and played significantly distinct roles from those of normal mice. Moreover, we verified the differential expression of Egr1, Jun, and Cxcl2 in the IRI mouse model and acute kidney injury human samples. Finally, our research presented a novel analysis of the crosstalk of proximal tubular cells, macrophages and fibroblasts in acute kidney injury targeting ferroptosis, therefore, contributing to better understanding the acute kidney injury pathogenesis, self-repairment and acute kidney injury-chronic kidney disease (AKI-CKD) progression.
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Institute of Kidney and Dialysis, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Cheng Zhu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shiqi Lv
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Di Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Xinhui Huang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yulu Gu
- Division of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213100, Jiangsu, China
| | - Xixi Yu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Institute of Kidney and Dialysis, No. 180 Fenglin Road, Shanghai, 200032, China.
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Medical Center of Kidney Disease, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Kidney and Blood Purification, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Institute of Kidney and Dialysis, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Rodrigo MB, De Min A, Jorch SK, Martin-Higueras C, Baumgart AK, Goldyn B, Becker S, Garbi N, Lemmermann NA, Kurts C. Dual fluorescence reporter mice for Ccl3 transcription, translation, and intercellular communication. J Exp Med 2024; 221:e20231814. [PMID: 38661718 PMCID: PMC11044946 DOI: 10.1084/jem.20231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.
Collapse
Affiliation(s)
- Maria Belen Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Anna De Min
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Selina Kathleen Jorch
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Cristina Martin-Higueras
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Ann-Kathrin Baumgart
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Beata Goldyn
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Sara Becker
- Institute of Virology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Niels A. Lemmermann
- Institute of Virology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
- Institute for Virology, University Medical Center Mainz, Mainz, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| |
Collapse
|
19
|
Masui H, Kawada K, Itatani Y, Hirai H, Nakanishi Y, Kiyasu Y, Hanada K, Okamoto M, Hirata W, Nishikawa Y, Sugimoto N, Tamura T, Sakai Y, Obama K. Synergistic antitumor activity by dual blockade of CCR1 and CXCR2 expressed on myeloid cells within the tumor microenvironment. Br J Cancer 2024; 131:63-76. [PMID: 38750114 PMCID: PMC11231281 DOI: 10.1038/s41416-024-02710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Chemokine signaling within the tumor microenvironment can promote tumor progression. Although CCR1 and CXCR2 on myeloid cells could be involved in tumor progression, it remains elusive what effect would be observed if both of those are blocked. METHODS We employed two syngeneic colorectal cancer mouse models: a transplanted tumor model and a liver metastasis model. We generated double-knockout mice for CCR1 and CXCR2, and performed bone marrow (BM) transfer experiments in which sub-lethally irradiated wild-type mice were reconstituted with BM from either wild-type, Ccr1-/-, Cxcr2-/- or Ccr1-/-Cxcr2-/- mice. RESULTS Myeloid cells that express MMP2, MMP9 and VEGF were accumulated around both types of tumors through CCR1- and CXCR2-mediated pathways. Mice reconstituted with Ccr1-/-Cxcr2-/- BM exhibited the strongest suppression of tumor growth and liver metastasis compared with other three groups. Depletion of CCR1+CXCR2+ myeloid cells led to a higher frequency of CD8+ T cells, whereas the numbers of Ly6G+ neutrophils, FOXP3+ Treg cells and CD31+ endothelial cells were significantly decreased. Furthermore, treatment with a neutralizing anti-CCR1 mAb to mice reconstituted with Cxcr2-/- BM significantly suppressed tumor growth and liver metastasis. CONCLUSION Dual blockade of CCR1 and CXCR2 pathways in myeloid cells could be an effective therapy against colorectal cancer.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Surgery, Kurashiki Central Hospital, Okayama, Japan.
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideyo Hirai
- Laboratory of Stem Cell Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiyuki Kiyasu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Keita Hanada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Michio Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Wataru Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyo Nishikawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoko Sugimoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Tamura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Japanese Red Cross Osaka Hospital, Osaka, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Kayastha K, Zhou Y, Brünle S. Structural perspectives on chemokine receptors. Biochem Soc Trans 2024; 52:1011-1024. [PMID: 38856028 PMCID: PMC11346446 DOI: 10.1042/bst20230358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Chemokine receptors are integral to the immune system and prime targets in drug discovery that have undergone extensive structural elucidation in recent years. We outline a timeline of these structural achievements, discuss the intracellular negative allosteric modulation of chemokine receptors, analyze the mechanisms of orthosteric receptor activation, and report on the emerging concept of biased signaling. Additionally, we highlight differences of G-protein binding among chemokine receptors. Intracellular allosteric modulators in chemokine receptors interact with a conserved motif within transmembrane helix 7 and helix 8 and exhibit a two-fold inactivation mechanism that can be harnessed for drug-discovery efforts. Chemokine recognition is a multi-step process traditionally explained by a two-site model within chemokine recognition site 1 (CRS1) and CRS2. Recent structural studies have extended our understanding of this complex mechanism with the identification of CRS1.5 and CRS3. CRS3 is implicated in determining ligand specificity and surrounds the chemokine by almost 180°. Within CRS3 we identified the extracellular loop 2 residue 45.51 as a key interaction mediator for chemokine binding. Y2917.43 on the other hand was shown in CCR1 to be a key determinant of signaling bias which, along with specific chemokine-dependent phosphorylation ensembles at the G-protein coupled receptors (GPCR's) C-terminus, seems to play a pivotal role in determining the direction of signal bias in GPCRs.
Collapse
Affiliation(s)
- Kanwal Kayastha
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Yangli Zhou
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Steffen Brünle
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
21
|
Zhang Z, Zheng Y, Xu L, Yue Y, Xu K, Li F, Xu F. Molecular recognition of the atypical chemokine-like peptide GPR15L by its cognate receptor GPR15. Cell Discov 2024; 10:69. [PMID: 38918398 PMCID: PMC11199581 DOI: 10.1038/s41421-024-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Affiliation(s)
- Zhongyuan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - You Zheng
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lu Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yang Yue
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Kexin Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
22
|
Szwabowski GL, Griffing M, Mugabe EJ, O’Malley D, Baker LN, Baker DL, Parrill AL. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Int J Mol Sci 2024; 25:6876. [PMID: 38999982 PMCID: PMC11241240 DOI: 10.3390/ijms25136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel L. Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| | - Abby L. Parrill
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| |
Collapse
|
23
|
Urvas L, Chiesa L, Bret G, Jacquemard C, Kellenberger E. Benchmarking AlphaFold-Generated Structures of Chemokine-Chemokine Receptor Complexes. J Chem Inf Model 2024; 64:4587-4600. [PMID: 38809680 DOI: 10.1021/acs.jcim.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
AlphaFold and AlphaFold-Multimer have become two essential tools for the modeling of unknown structures of proteins and protein complexes. In this work, we extensively benchmarked the quality of chemokine-chemokine receptor structures generated by AlphaFold-Multimer against experimentally determined structures. Our analysis considered both the global quality of the model, as well as key structural features for chemokine recognition. To study the effects of template and multiple sequence alignment parameters on the results, a new prediction pipeline called LIT-AlphaFold (https://github.com/LIT-CCM-lab/LIT-AlphaFold) was developed, allowing extensive input customization. AlphaFold-Multimer correctly predicted differences in chemokine binding orientation and accurately reproduced the unique binding orientation of the CXCL12-ACKR3 complex. Further, the predictions of the full receptor N-terminus provided insights into a putative chemokine recognition site 0.5. The accuracy of chemokine N-terminus binding mode prediction varied between complexes, but the confidence score permitted the distinguishing of residues that were very likely well positioned. Finally, we generated a high-confidence model of the unsolved CXCL12-CXCR4 complex, which agreed with experimental mutagenesis and cross-linking data.
Collapse
Affiliation(s)
- Lauri Urvas
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400 Illkirch, France
| | - Luca Chiesa
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400 Illkirch, France
| | - Guillaume Bret
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400 Illkirch, France
| | - Célien Jacquemard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400 Illkirch, France
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
24
|
Shen Q, Tang X, Wen X, Cheng S, Xiao P, Zang S, Shen D, Jiang L, Zheng Y, Zhang H, Xu H, Mao C, Zhang M, Hu W, Sun J, Zhang Y, Chen Z. Molecular Determinant Underlying Selective Coupling of Primary G-Protein by Class A GPCRs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310120. [PMID: 38647423 PMCID: PMC11187927 DOI: 10.1002/advs.202310120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Indexed: 04/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.
Collapse
Affiliation(s)
- Qingya Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Xinyan Tang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Xin Wen
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
| | - Shizhuo Cheng
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Peng Xiao
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
| | - Shao‐Kun Zang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Dan‐Dan Shen
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceZhejiang Chinese Medical UniversityHangzhou310053China
| | - Huibing Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Haomang Xu
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Chunyou Mao
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and EquipmentZhejiang UniversityHangzhou310016China
| | - Min Zhang
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310027China
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Jin‐Peng Sun
- Advanced Medical Research InstituteMeili Lake Translational Research ParkCheeloo College of MedicineShandong UniversityJinan250012China
- Department of Biochemistry and Molecular BiologyShandong University School of MedicineJinan250012China
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesPeking UniversityKey Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191China
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital & Liangzhu LaboratoryHangzhou310058China
- MOE Frontier Science Center for Brain Research and Brain‐Machine IntegrationZhejiang University School of MedicineHangzhou310058China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated HospitalNHC and CAMS Key Laboratory of Medical NeurobiologySchool of Basic Medical SciencesZhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceZhejiang Chinese Medical UniversityHangzhou310053China
| |
Collapse
|
25
|
Wang WW, Ji SY, Zhang W, Zhang J, Cai C, Hu R, Zang SK, Miao L, Xu H, Chen LN, Yang Z, Guo J, Qin J, Shen DD, Liang P, Zhang Y, Zhang Y. Structure-based design of non-hypertrophic apelin receptor modulator. Cell 2024; 187:1460-1475.e20. [PMID: 38428423 DOI: 10.1016/j.cell.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/27/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Apelin is a key hormone in cardiovascular homeostasis that activates the apelin receptor (APLNR), which is regarded as a promising therapeutic target for cardiovascular disease. However, adverse effects through the β-arrestin pathway limit its pharmacological use. Here, we report cryoelectron microscopy (cryo-EM) structures of APLNR-Gi1 complexes bound to three agonists with divergent signaling profiles. Combined with functional assays, we have identified "twin hotspots" in APLNR as key determinants for signaling bias, guiding the rational design of two exclusive G-protein-biased agonists WN353 and WN561. Cryo-EM structures of WN353- and WN561-stimulated APLNR-G protein complexes further confirm that the designed ligands adopt the desired poses. Pathophysiological experiments have provided evidence that WN561 demonstrates superior therapeutic effects against cardiac hypertrophy and reduced adverse effects compared with the established APLNR agonists. In summary, our designed APLNR modulator may facilitate the development of next-generation cardiovascular medications.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Su-Yu Ji
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
| | - Chenxi Cai
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rubi Hu
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shao-Kun Zang
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Luwei Miao
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Haomang Xu
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Li-Nan Chen
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Zongkuai Yang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jia Guo
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jiao Qin
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Dan-Dan Shen
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Ping Liang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
26
|
Jiang S, Lin X, Wu L, Wang L, Wu Y, Xu Z, Xu F. Unveiling the structural mechanisms of nonpeptide ligand recognition and activation in human chemokine receptor CCR8. SCIENCE ADVANCES 2024; 10:eadj7500. [PMID: 38306437 PMCID: PMC10836724 DOI: 10.1126/sciadv.adj7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
The human CC chemokine receptor 8 (CCR8) is an emerging therapeutic target for cancer immunotherapy and autoimmune diseases. Understanding the molecular recognition of CCR8, particularly with nonpeptide ligands, is valuable for drug development. Here, we report three cryo-electron microscopy structures of human CCR8 complexed with Gi trimers in the ligand-free state or activated by nonpeptide agonists LMD-009 and ZK 756326. A conserved Y1.39Y3.32E7.39 motif in the orthosteric binding pocket is shown to play a crucial role in the chemokine and nonpeptide ligand recognition. Structural and functional analyses indicate that the lack of conservation in Y1143.33 and Y1724.64 among the CC chemokine receptors could potentially contribute to the selectivity of the nonpeptide ligand binding to CCR8. These findings present the characterization of the molecular interaction between a nonpeptide agonist and a chemokine receptor, aiding the development of therapeutics targeting related diseases through a structure-based approach.
Collapse
Affiliation(s)
- Shan Jiang
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Ziyi Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research Center, Shanghai 201210, China
| |
Collapse
|
27
|
Kozma MT, Pérez-Moreno JL, Gandhi NS, Hernandez Jeppesen L, Durica DS, Ventura T, Mykles DL. In silico analysis of crustacean hyperglycemic hormone family G protein-coupled receptor candidates. Front Endocrinol (Lausanne) 2024; 14:1322800. [PMID: 38298185 PMCID: PMC10828670 DOI: 10.3389/fendo.2023.1322800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024] Open
Abstract
Ecdysteroid molting hormone synthesis is directed by a pair of molting glands or Y-organs (YOs), and this synthesis is inhibited by molt-inhibiting hormone (MIH). MIH is a member of the crustacean hyperglycemic hormone (CHH) neuropeptide superfamily, which includes CHH and insect ion transport peptide (ITP). It is hypothesized that the MIH receptor is a Class A (Rhodopsin-like) G protein-coupled receptor (GPCR). The YO of the blackback land crab, Gecarcinus lateralis, expresses 49 Class A GPCRs, three of which (Gl-CHHR-A9, -A10, and -A12) were provisionally assigned as CHH-like receptors. CrusTome, a transcriptome database assembled from 189 crustaceans and 12 ecdysozoan outgroups, was used to deorphanize candidate MIH/CHH GPCRs, relying on sequence homology to three functionally characterized ITP receptors (BNGR-A2, BNGR-A24, and BNGR-A34) in the silk moth, Bombyx mori. Phylogenetic analysis and multiple sequence alignments across major taxonomic groups revealed extensive expansion and diversification of crustacean A2, A24, and A34 receptors, designated CHH Family Receptor Candidates (CFRCs). The A2 clade was divided into three subclades; A24 clade was divided into five subclades; and A34 was divided into six subclades. The subclades were distinguished by conserved motifs in extracellular loop (ECL) 2 and ECL3 in the ligand-binding region. Eleven of the 14 subclades occurred in decapod crustaceans. In G. lateralis, seven CFRC sequences, designated Gl-CFRC-A2α1, -A24α, -A24β1, -A24β2, -A34α2, -A34β1, and -A34β2, were identified; the three A34 sequences corresponded to Gl-GPCR-A12, -A9, and A10, respectively. ECL2 in all the CFRC sequences had a two-stranded β-sheet structure similar to human Class A GPCRs, whereas the ECL2 of decapod CFRC-A34β1/β2 had an additional two-stranded β-sheet. We hypothesize that this second β-sheet on ECL2 plays a role in MIH/CHH binding and activation, which will be investigated further with functional assays.
Collapse
Affiliation(s)
- Mihika T. Kozma
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Neha S. Gandhi
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - David S. Durica
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tomer Ventura
- Centre for BioInnovation and School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Coastal and Marine Sciences Institute, University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
28
|
Sun D, Sun Y, Janezic E, Zhou T, Johnson M, Azumaya C, Noreng S, Chiu C, Seki A, Arenzana TL, Nicoludis JM, Shi Y, Wang B, Ho H, Joshi P, Tam C, Payandeh J, Comps-Agrar L, Wang J, Rutz S, Koerber JT, Masureel M. Structural basis of antibody inhibition and chemokine activation of the human CC chemokine receptor 8. Nat Commun 2023; 14:7940. [PMID: 38040762 PMCID: PMC10692165 DOI: 10.1038/s41467-023-43601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.
Collapse
Affiliation(s)
- Dawei Sun
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Yonglian Sun
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Eric Janezic
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Tricia Zhou
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Matthew Johnson
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Caleigh Azumaya
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Sigrid Noreng
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
- Septerna Inc., South San Francisco, CA, 94080, USA
| | - Cecilia Chiu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Akiko Seki
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
- Tune Therapeutics, Durham, NC, 27701, USA
| | - Teresita L Arenzana
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
- HIBio, South San Francisco, CA, 94080, USA
| | - John M Nicoludis
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Yongchang Shi
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Baomei Wang
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Hoangdung Ho
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Prajakta Joshi
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
- Exelixis Inc., Alameda, CA, 94502, USA
| | - Laëtitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jianyong Wang
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - Matthieu Masureel
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
29
|
Park JH, Kawakami K, Ishimoto N, Ikuta T, Ohki M, Ekimoto T, Ikeguchi M, Lee DS, Lee YH, Tame JRH, Inoue A, Park SY. Structural basis for ligand recognition and signaling of hydroxy-carboxylic acid receptor 2. Nat Commun 2023; 14:7150. [PMID: 37932263 PMCID: PMC10628104 DOI: 10.1038/s41467-023-42764-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
Hydroxycarboxylic acid receptors (HCAR1, HCAR2, and HCAR3) transduce Gi/o signaling upon biding to molecules such as lactic acid, butyric acid and 3-hydroxyoctanoic acid, which are associated with lipolytic and atherogenic activity, and neuroinflammation. Although many reports have elucidated the function of HCAR2 and its potential as a therapeutic target for treating not only dyslipidemia but also neuroimmune disorders such as multiple sclerosis and Parkinson's disease, the structural basis of ligand recognition and ligand-induced Gi-coupling remains unclear. Here we report three cryo-EM structures of the human HCAR2-Gi signaling complex, each bound with different ligands: niacin, acipimox or GSK256073. All three agonists are held in a deep pocket lined by residues that are not conserved in HCAR1 and HCAR3. A distinct hairpin loop at the HCAR2 N-terminus and extra-cellular loop 2 (ECL2) completely enclose the ligand. These structures also reveal the agonist-induced conformational changes propagated to the G-protein-coupling interface during activation. Collectively, the structures presented here are expected to help in the design of ligands specific for HCAR2, leading to new drugs for the treatment of various diseases such as dyslipidemia and inflammation.
Collapse
Affiliation(s)
- Jae-Hyun Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Naito Ishimoto
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Toru Ekimoto
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Computational Life Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
- HPC- and AI-driven Drug Development Platform Division, Center for Computational Science, RIKEN, Yokohama, 230-0045, Japan
| | - Dong-Sun Lee
- Bio-Health Materials Core-Facility Center and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk, 28119, Republic of Korea
- Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Gyeonggi, 17546, Republic of Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, 980-8578, Japan
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
30
|
Ramos-Gonzalez N, Paul B, Majumdar S. IUPHAR themed review: Opioid efficacy, bias, and selectivity. Pharmacol Res 2023; 197:106961. [PMID: 37844653 DOI: 10.1016/j.phrs.2023.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Drugs acting at the opioid receptor family are clinically used to treat chronic and acute pain, though they represent the second line of treatment behind GABA analogs, antidepressants and SSRI's. Within the opioid family mu and kappa opioid receptor are commonly targeted. However, activation of the mu opioid receptor has side effects of constipation, tolerance, dependence, euphoria, and respiratory depression; activation of the kappa opioid receptor leads to dysphoria and sedation. The side effects of mu opioid receptor activation have led to mu receptor drugs being widely abused with great overdose risk. For these reasons, newer safer opioid analgesics are in high demand. For many years a focus within the opioid field was finding drugs that activated the G protein pathway at mu opioid receptor, without activating the β-arrestin pathway, known as biased agonism. Recent advances have shown that this may not be the way forward to develop safer analgesics at mu opioid receptor, though there is still some promise at the kappa opioid receptor. Here we discuss recent novel approaches to develop safer opioid drugs including efficacy vs bias and fine-tuning receptor activation by targeting sub-pockets in the orthosteric site, we explore recent works on the structural basis of bias, and we put forward the suggestion that Gα subtype selectivity may be an exciting new area of interest.
Collapse
Affiliation(s)
- Nokomis Ramos-Gonzalez
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Barnali Paul
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Susruta Majumdar
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
31
|
Wang Y, Liu W, Xu Y, He X, Yuan Q, Luo P, Fan W, Zhu J, Zhang X, Cheng X, Jiang Y, Xu HE, Zhuang Y. Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins. Nat Chem Biol 2023; 19:1351-1360. [PMID: 37169960 DOI: 10.1038/s41589-023-01339-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
The complement receptors C3aR and C5aR1, whose signaling is selectively activated by anaphylatoxins C3a and C5a, are important regulators of both innate and adaptive immune responses. Dysregulations of C3aR and C5aR1 signaling lead to multiple inflammatory disorders, including sepsis, asthma and acute respiratory distress syndrome. The mechanism underlying endogenous anaphylatoxin recognition and activation of C3aR and C5aR1 remains elusive. Here we reported the structures of C3a-bound C3aR and C5a-bound C5aR1 as well as an apo-C3aR structure. These structures, combined with mutagenesis analysis, reveal a conserved recognition pattern of anaphylatoxins to the complement receptors that is different from chemokine receptors, unique pocket topologies of C3aR and C5aR1 that mediate ligand selectivity, and a common mechanism of receptor activation. These results provide crucial insights into the molecular understanding of C3aR and C5aR1 signaling and structural templates for rational drug design for treating inflammation disorders.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiyi Liu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ping Luo
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenjia Fan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingpeng Zhu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
32
|
Zhao C, Wang H, Liu Y, Cheng L, Wang B, Tian X, Fu H, Wu C, Li Z, Shen C, Yu J, Yang S, Hu H, Fu P, Ma L, Wang C, Yan W, Shao Z. Biased allosteric activation of ketone body receptor HCAR2 suppresses inflammation. Mol Cell 2023; 83:3171-3187.e7. [PMID: 37597514 DOI: 10.1016/j.molcel.2023.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023]
Abstract
Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body β-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or β-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.
Collapse
Affiliation(s)
- Chang Zhao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Heli Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Ying Liu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan, China
| | - Bo Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Hong Fu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Jingjing Yu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Shengyong Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, China.
| |
Collapse
|
33
|
Våbenø J, Oliva-Santiago M, Jørgensen AS, Karlshøj S, Rosenkilde MM. Identification of a Salt Bridge That Is Functionally Important for Chemokine Receptor CXCR1 but not CXCR2. ACS Pharmacol Transl Sci 2023; 6:1120-1128. [PMID: 37588755 PMCID: PMC10425996 DOI: 10.1021/acsptsci.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 08/18/2023]
Abstract
CXC chemokine receptors 1 (CXCR1) and 2 (CXCR2) have high sequence similarity and overlapping chemokine ligand profiles. Residue positions 3.32 and 7.39 are critical for signal transduction in the related CXCR4, and in these positions CXCR1 and CXCR2 contain oppositely charged residues (Lys3.32 and Glu7.39). Experimental and computed receptor structures reveal the possible formation of a salt bridge between transmembrane (TM) helices 3 and 7 via these two residues. To investigate the functional importance of Lys1173.32 and Glu2917.39 in CXCR1, along with the flanking Glu1183.33, we performed a signaling study on 16 CXCR1 mutants using two different CXCL8 isoforms. While single Ala-mutation (K1173.32A, E2917.39A) and charge reversal (K1173.32E, E2917.39K) resulted in nonfunctional receptors, double (K1173.32E-E2917.39K) and triple (K1173.32E-E1183.33A-E2917.39K) mutants rescued CXCR1 function. In contrast, the corresponding mutations did not affect the CXCR2 function to the same extent. Our findings show that the Lys3.32-Glu7.39 salt bridge between TM3 and -7 is functionally important for CXCR1 but not for CXCR2, meaning that signal transduction for these highly homologous receptors is not conserved.
Collapse
Affiliation(s)
- Jon Våbenø
- Helgeland
Hospital Trust, Prestmarkveien
1, 8800 Sandnessjøen, Norway
| | - Marta Oliva-Santiago
- Laboratory
for Molecular Pharmacology, Department of Biomedical Sciences, Faculty
of Health and Medical Sciences, University
of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Astrid S. Jørgensen
- Laboratory
for Molecular Pharmacology, Department of Biomedical Sciences, Faculty
of Health and Medical Sciences, University
of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Stefanie Karlshøj
- Laboratory
for Molecular Pharmacology, Department of Biomedical Sciences, Faculty
of Health and Medical Sciences, University
of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mette M. Rosenkilde
- Laboratory
for Molecular Pharmacology, Department of Biomedical Sciences, Faculty
of Health and Medical Sciences, University
of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
34
|
Zhang X, Kang Z, Yin D, Gao J. Role of neutrophils in different stages of atherosclerosis. Innate Immun 2023; 29:97-109. [PMID: 37491844 PMCID: PMC10468622 DOI: 10.1177/17534259231189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils constitute the first line of defense in human immunity and can be attracted to inflamed and infected sites by various chemokines. As essential players in immune processes, neutrophils theoretically play integral roles in the course of chronic inflammation-induced atherosclerosis. However, because neutrophils are rarely found in atherosclerotic lesions, their involvement in the pathophysiological progression of atherosclerosis has been largely underestimated or ignored. Recent research has revealed convincing evidence showing the presence of neutrophils in atherosclerotic lesions and has revealed neutrophil contributions to different atherosclerosis stages in mice and humans. This review describes the underlying mechanisms of neutrophils in different stages of atherosclerosis and highlights potential neutrophil-targeted therapeutic strategies relevant to atherosclerosis. An in-depth understanding of neutrophils' roles in atherosclerosis pathology will promote exploration of new methods for the prevention and treatment of atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
35
|
Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Front Immunol 2023; 14:1184014. [PMID: 37575219 PMCID: PMC10420067 DOI: 10.3389/fimmu.2023.1184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Chemokine G-protein coupled receptors are validated drug targets for many diseases, including cancer, neurological, and inflammatory disorders. Despite much time and effort spent on therapeutic development, very few chemokine receptor antagonists are approved for clinical use. Among potential reasons for the slow progress in developing chemokine receptor inhibitors, antagonist tolerance, a progressive reduction in drug efficacy after repeated administration, is likely to play a key role. The mechanisms leading to antagonist tolerance remain poorly understood. In many cases, antagonist tolerance is accompanied by increased receptor concentration on the cell surface after prolonged exposure to chemokine receptor antagonists. This points to a possible role of altered receptor internalization and presentation on the cell surface, as has been shown for agonist (primarily opioid) tolerance. In addition, examples of antagonist tolerance in the context of other G-protein coupled receptors suggest the involvement of noncanonical signal transduction in opposing the effects of the antagonists. In this review, we summarize the available progress and challenges in therapeutic development of chemokine receptor antagonists, describe the available knowledge about antagonist tolerance, and propose new avenues for future investigation of this important phenomenon. Furthermore, we highlight the modern methodologies that have the potential to reveal novel mechanisms leading to antagonist tolerance and to propel the field forward by advancing the development of potent "tolerance-free" antagonists of chemokine receptors.
Collapse
Affiliation(s)
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
36
|
Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2023; 15:107. [PMID: 37291639 DOI: 10.1186/s13195-023-01254-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential processes/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are significantly altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum). METHODS We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses were performed for exploring the source of heterogeneity. RESULTS Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, p = 0.004) were significant for the comparison of MCI with healthy controls. CONCLUSIONS Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
37
|
Sipprell SE, Johnson MB, Leach W, Suptela SR, Marriott I. Staphylococcus aureus Infection Induces the Production of the Neutrophil Chemoattractants CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by Murine Osteoblasts. Infect Immun 2023; 91:e0001423. [PMID: 36880752 PMCID: PMC10112169 DOI: 10.1128/iai.00014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus is the principal causative agent of osteomyelitis, a serious bacterial infection of bone that is associated with progressive inflammatory damage. Bone-forming osteoblasts have increasingly been recognized to play an important role in the initiation and progression of detrimental inflammation at sites of infection and have been demonstrated to release an array of inflammatory mediators and factors that promote osteoclastogenesis and leukocyte recruitment following bacterial challenge. In the present study, we describe elevated bone tissue levels of the potent neutrophil-attracting chemokines CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 in a murine model of posttraumatic staphylococcal osteomyelitis. RNA sequencing (RNA-Seq) gene ontology analysis of isolated primary murine osteoblasts showed enrichment in differentially expressed genes involved in cell migration and chemokine receptor binding and chemokine activity following S. aureus infection, and a rapid increase in the expression of mRNA encoding CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7, in these cells. Importantly, we have confirmed that such upregulated gene expression results in protein production with the demonstration that S. aureus challenge elicits the rapid and robust release of these chemokines by osteoblasts and does so in a bacterial dose-dependent manner. Furthermore, we have confirmed the ability of soluble osteoblast-derived chemokines to elicit the migration of a neutrophil-like cell line. As such, these studies demonstrate the robust production of CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by osteoblasts in response to S. aureus infection, and the release of such neutrophil-attracting chemokines provides an additional mechanism by which osteoblasts could drive the inflammatory bone loss associated with staphylococcal osteomyelitis.
Collapse
Affiliation(s)
- Sophie E. Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Whitney Leach
- Department of Molecular Biology, Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
38
|
Wang J, Chen G, Liao Q, Lyu W, Liu A, Zhu L, Du Y, Ye RD. Cryo-EM structure of the human chemerin receptor 1-Gi protein complex bound to the C-terminal nonapeptide of chemerin. Proc Natl Acad Sci U S A 2023; 120:e2214324120. [PMID: 36881626 PMCID: PMC10089180 DOI: 10.1073/pnas.2214324120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023] Open
Abstract
Chemerin is a processed protein that acts on G protein-coupled receptors (GPCRs) for its chemotactic and adipokine activities. The biologically active chemerin (chemerin 21-157) results from proteolytic cleavage of prochemerin and uses its C-terminal peptide containing the sequence YFPGQFAFS for receptor activation. Here we report a high-resolution cryo-electron microscopy (cryo-EM) structure of human chemerin receptor 1 (CMKLR1) bound to the C-terminal nonapeptide of chemokine (C9) in complex with Gi proteins. C9 inserts its C terminus into the binding pocket and is stabilized through hydrophobic interactions involving its Y1, F2, F6, and F8, as well as polar interactions between G4, S9, and several amino acids lining the binding pocket of CMKLR1. Microsecond scale molecular dynamics simulations support a balanced force distribution across the whole ligand-receptor interface that enhances thermodynamic stability of the captured binding pose of C9. The C9 interaction with CMKLR1 is drastically different from chemokine recognition by chemokine receptors, which follow a two-site two-step model. In contrast, C9 takes an "S"-shaped pose in the binding pocket of CMKLR1 much like angiotensin II in the AT1 receptor. Our mutagenesis and functional analyses confirmed the cryo-EM structure and key residues in the binding pocket for these interactions. Our findings provide a structural basis for chemerin recognition by CMKLR1 for the established chemotactic and adipokine activities.
Collapse
Affiliation(s)
- Junlin Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, P.R. China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| |
Collapse
|
39
|
Zhao J, Fu H, Yu J, Hong W, Tian X, Qi J, Sun S, Zhao C, Wu C, Xu Z, Cheng L, Chai R, Yan W, Wei X, Shao Z. Prospect of acromegaly therapy: molecular mechanism of clinical drugs octreotide and paltusotine. Nat Commun 2023; 14:962. [PMID: 36810324 PMCID: PMC9944328 DOI: 10.1038/s41467-023-36673-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Somatostatin receptor 2 (SSTR2) is highly expressed in neuroendocrine tumors and represents as a therapeutic target. Several peptide analogs mimicking the endogenous ligand somatostatin are available for clinical use, but poor therapeutic effects occur in a subset of patients, which may be correlated with subtype selectivity or cell surface expression. Here, we clarify the signal bias profiles of the first-generation peptide drug octreotide and a new-generation small molecule paltusotine by evaluating their pharmacological characteristics. We then perform cryo-electron microscopy analysis of SSTR2-Gi complexes to determine how the drugs activate SSTR2 in a selective manner. In this work, we decipher the mechanism of ligand recognition, subtype selectivity and signal bias property of SSTR2 sensing octreotide and paltusotine, which may aid in designing therapeutic drugs with specific pharmacological profiles against neuroendocrine tumors.
Collapse
Affiliation(s)
- Jie Zhao
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hong Fu
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingjing Yu
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weiqi Hong
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chang Zhao
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zheng Xu
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Cheng
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xiawei Wei
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China. .,Department of Nephrology, Hainan General Hospital, Haikou, Hainan, 570311, China.
| |
Collapse
|
40
|
Mechanism of activation and biased signaling in complement receptor C5aR1. Cell Res 2023; 33:312-324. [PMID: 36806352 PMCID: PMC9937529 DOI: 10.1038/s41422-023-00779-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/13/2023] [Indexed: 02/19/2023] Open
Abstract
The complement system plays an important role in the innate immune response to invading pathogens. The complement fragment C5a is one of its important effector components and exerts diverse physiological functions through activation of the C5a receptor 1 (C5aR1) and associated downstream G protein and β-arrestin signaling pathways. Dysfunction of the C5a-C5aR1 axis is linked to numerous inflammatory and immune-mediated diseases, but the structural basis for activation and biased signaling of C5aR1 remains elusive. Here, we present cryo-electron microscopy structures of the activated wild-type C5aR1-Gi protein complex bound to each of the following: C5a, the hexapeptidic agonist C5apep, and the G protein-biased agonist BM213. The structures reveal the landscape of the C5a-C5aR1 interaction as well as a common motif for the recognition of diverse orthosteric ligands. Moreover, combined with mutagenesis studies and cell-based pharmacological assays, we deciphered a framework for biased signaling using different peptide analogs and provided insight into the activation mechanism of C5aR1 by solving the structure of C5aR1I116A mutant-Gi signaling activation complex induced by C089, which exerts antagonism on wild-type C5aR1. In addition, unusual conformational changes in the intracellular end of transmembrane domain 7 and helix 8 upon agonist binding suggest a differential signal transduction process. Collectively, our study provides mechanistic understanding into the ligand recognition, biased signaling modulation, activation, and Gi protein coupling of C5aR1, which may facilitate the future design of therapeutic agents.
Collapse
|
41
|
Chen Y, Zhou Q, Wang J, Xu Y, Wang Y, Yan J, Wang Y, Zhu Q, Zhao F, Li C, Chen CW, Cai X, Bathgate RAD, Shen C, Eric Xu H, Yang D, Liu H, Wang MW. Ligand recognition mechanism of the human relaxin family peptide receptor 4 (RXFP4). Nat Commun 2023; 14:492. [PMID: 36717591 PMCID: PMC9886975 DOI: 10.1038/s41467-023-36182-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Members of the insulin superfamily regulate pleiotropic biological processes through two types of target-specific but structurally conserved peptides, insulin/insulin-like growth factors and relaxin/insulin-like peptides. The latter bind to the human relaxin family peptide receptors (RXFPs). Here, we report three cryo-electron microscopy structures of RXFP4-Gi protein complexes in the presence of the endogenous ligand insulin-like peptide 5 (INSL5) or one of the two small molecule agonists, compound 4 and DC591053. The B chain of INSL5 adopts a single α-helix that penetrates into the orthosteric pocket, while the A chain sits above the orthosteric pocket, revealing a peptide-binding mode previously unknown. Together with mutagenesis and functional analyses, the key determinants responsible for the peptidomimetic agonism and subtype selectivity were identified. Our findings not only provide insights into ligand recognition and subtype selectivity among class A G protein-coupled receptors, but also expand the knowledge of signaling mechanisms in the insulin superfamily.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Lingang Laboratory, Shanghai, 200031, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Youwei Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Wang
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Jiahui Yan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yibing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qi Zhu
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - Fenghui Zhao
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chenghao Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Chuan-Wei Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Chun Shen
- Genova Biotech (Changzhou) Co., Ltd, Changzhou, 213125, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China. .,Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
42
|
Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023; 66:1083-1111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of G protein-coupled receptors (GPCRs) is triggered by ligand binding to their orthosteric sites, which induces ligand-specific conformational changes. Agonists and antagonists bound to GPCR orthosteric sites provide detailed information on ligand-binding modes. Among these, peptide ligands play an instrumental role in GPCR pharmacology and have attracted increased attention as therapeutic drugs. The recent breakthrough in GPCR structural biology has resulted in the remarkable availability of peptide-bound GPCR complexes. Despite the several structural similarities shared by these receptors, they exhibit distinct features in terms of peptide recognition and receptor activation. From this perspective, we have summarized the current status of peptide-bound GPCR structural complexes, largely focusing on the interactions between the receptor and its peptide ligand at the orthosteric site. In-depth structural investigations have yielded valuable insights into the molecular mechanisms underlying peptide recognition. This study would contribute to the discovery of GPCR peptide drugs with improved therapeutic effects.
Collapse
Affiliation(s)
- Yuxin Shi
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yi Chen
- Department of Ultrasound Interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
43
|
Dmitrieva DA, Kotova TV, Safronova NA, Sadova AA, Dashevskii DE, Mishin AV. Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. BIOCHEMISTRY (MOSCOW) 2023; 88:S192-S226. [PMID: 37069121 DOI: 10.1134/s0006297923140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are an important family of membrane proteins responsible for many physiological functions in human body. High resolution GPCR structures are required to understand their molecular mechanisms and perform rational drug design, as GPCRs play a crucial role in a variety of diseases. That is difficult to obtain for the wild-type proteins because of their low stability. In this review, we discuss how this problem can be solved by using protein design strategies developed to obtain homogeneous stabilized GPCR samples for crystallization and cryoelectron microscopy.
Collapse
Affiliation(s)
- Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Tatiana V Kotova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nadezda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexandra A Sadova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
44
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
45
|
Xiang G, Acosta-Ruiz A, Radoux-Mergault A, Kristt M, Kim J, Moon JD, Broichhagen J, Inoue A, Lee FS, Stoeber M, Dittman JS, Levitz J. Control of Gα q signaling dynamics and GPCR cross-talk by GRKs. SCIENCE ADVANCES 2022; 8:eabq3363. [PMID: 36427324 PMCID: PMC9699688 DOI: 10.1126/sciadv.abq3363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Numerous processes contribute to the regulation of G protein-coupled receptors (GPCRs), but relatively little is known about rapid mechanisms that control signaling on the seconds time scale or regulate cross-talk between receptors. Here, we reveal that the ability of some GPCR kinases (GRKs) to bind Gαq both drives acute signaling desensitization and regulates functional interactions between GPCRs. GRK2/3-mediated acute desensitization occurs within seconds, is rapidly reversible, and can occur upon local, subcellular activation. This rapid desensitization is kinase independent, insensitive to pharmacological inhibition, and generalizable across receptor families and effectors. We also find that the ability of GRK2 to bind G proteins also enables it to regulate the extent and timing of Gαq-dependent signaling cross-talk between GPCRs. Last, we find that G protein/GRK2 interactions enable a novel form of GPCR trafficking cross-talk. Together, this work reveals potent forms of Gαq-dependent GPCR regulation with wide-ranging pharmacological and physiological implications.
Collapse
Affiliation(s)
- Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Jihye Kim
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jared D. Moon
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | | | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jeremy S. Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Corresponding author.
| |
Collapse
|
46
|
Syeda MZ, Hong T, Zhang C, Ying S, Shen H. Eosinophils: A Friend or Foe in Human Health and Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 9:26-38. [PMID: 36756082 PMCID: PMC9900469 DOI: 10.1159/000528156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
Background Since their discovery, around 150 years, eosinophils research has been a field of changing perspective, and new directions are emerging since then. Summary Initially, eosinophils were perceived as terminally differentiated cytotoxic effector cells. Clearly, eosinophils are capable of playing functions other than immune responses, which is not surprising given their intricate interactions with pathogens as well as other circulating leukocytes. Attempts to comprehend the eosinophil biology and functions have yielded remarkable insights into their roles in human health and sickness. The use of FDA-approved eosinophils-targeting biologics has provided exciting opportunities to directly explore the contributions of eosinophils in disease etiology in humans. Key Messages In this review, we will focus on the eosinophils' lifecycle and discuss the current state of knowledge from mouse models and retrospective human studies demonstrating eosinophils' roles in the pathogenesis of human diseases such as asthma, cancer, and kidney disorders. Despite three recently approved anti-eosinophil agents, a number of key questions and challenges remain far from settled, thereby generating opportunity to further explore this enigmatic cell. A comprehensive understanding of eosinophils biology and function will surely aid in developing improved therapeutic strategies against eosinophils-associated disorders.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Tu Hong
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,State Key Lab of Respiratory Disease, Guangzhou, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China,*Songmin Ying,
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,State Key Lab of Respiratory Disease, Guangzhou, China,**Huahao Shen,
| |
Collapse
|
47
|
Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell 2022; 185:4361-4375.e19. [PMID: 36368306 DOI: 10.1016/j.cell.2022.09.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Morphine and fentanyl are among the most used opioid drugs that confer analgesia and unwanted side effects through both G protein and arrestin signaling pathways of μ-opioid receptor (μOR). Here, we report structures of the human μOR-G protein complexes bound to morphine and fentanyl, which uncover key differences in how they bind the receptor. We also report structures of μOR bound to TRV130, PZM21, and SR17018, which reveal preferential interactions of these agonists with TM3 side of the ligand-binding pocket rather than TM6/7 side. In contrast, morphine and fentanyl form dual interactions with both TM3 and TM6/7 regions. Mutations at the TM6/7 interface abolish arrestin recruitment of μOR promoted by morphine and fentanyl. Ligands designed to reduce TM6/7 interactions display preferential G protein signaling. Our results provide crucial insights into fentanyl recognition and signaling of μOR, which may facilitate rational design of next-generation analgesics.
Collapse
|
48
|
Shao Z, Tan Y, Shen Q, Hou L, Yao B, Qin J, Xu P, Mao C, Chen LN, Zhang H, Shen DD, Zhang C, Li W, Du X, Li F, Chen ZH, Jiang Y, Xu HE, Ying S, Ma H, Zhang Y, Shen H. Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3. Cell Discov 2022; 8:44. [PMID: 35570218 PMCID: PMC9108096 DOI: 10.1038/s41421-022-00403-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/20/2022] [Indexed: 11/20/2022] Open
Abstract
Chemokine receptors are a family of G-protein-coupled receptors with key roles in leukocyte migration and inflammatory responses. Here, we present cryo-electron microscopy structures of two human CC chemokine receptor-G-protein complexes: CCR2 bound to its endogenous ligand CCL2, and CCR3 in the apo state. The structure of the CCL2-CCR2-G-protein complex reveals that CCL2 inserts deeply into the extracellular half of the transmembrane domain, and forms substantial interactions with the receptor through the most N-terminal glutamine. Extensive hydrophobic and polar interactions are present between both two chemokine receptors and the Gα-protein, contributing to the constitutive activity of these receptors. Notably, complemented with functional experiments, the interactions around intracellular loop 2 of the receptors are found to be conserved and play a more critical role in G-protein activation than those around intracellular loop 3. Together, our findings provide structural insights into chemokine recognition and receptor activation, shedding lights on drug design targeting chemokine receptors.
Collapse
Affiliation(s)
- Zhehua Shao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangxia Tan
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingya Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Li Hou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingpeng Yao
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Peiyu Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijie Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xufei Du
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songmin Ying
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Honglei Ma
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, Zhejiang, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- State Key Lab of Respiratory Disease, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends Biochem Sci 2022; 47:570-581. [PMID: 35396120 DOI: 10.1016/j.tibs.2022.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
Three classes of G-protein-coupled receptor (GPCR) partners - G proteins, GPCR kinases, and arrestins - preferentially bind active GPCRs. Our analysis suggests that the structures of GPCRs bound to these interaction partners available today do not reveal a clear conformational basis for signaling bias, which would have enabled the rational design of biased GRCR ligands. In view of this, three possibilities are conceivable: (i) there are no generalizable GPCR conformations conducive to binding a particular type of partner; (ii) subtle differences in the orientation of individual residues and/or their interactions not easily detectable in the receptor-transducer structures determine partner preference; or (iii) the dynamics of GPCR binding to different types of partners rather than the structures of the final complexes might underlie transducer bias.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | |
Collapse
|
50
|
Zhuang Y, Wang L, Guo J, Sun D, Wang Y, Liu W, Xu HE, Zhang C. Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nat Commun 2022; 13:1054. [PMID: 35217703 PMCID: PMC8881469 DOI: 10.1038/s41467-022-28586-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
The formylpeptide receptors (FPRs) mediate pattern recognition of formylated peptides derived from invading pathogens or mitochondria from dead host cells. They can also sense other structurally distinct native peptides and even lipid mediators to either promote or resolve inflammation. Pharmacological targeting of FPRs represents a novel therapeutic approach in treating inflammatory diseases. However, the molecular mechanisms underlying FPR ligand recognition are elusive. We report cryo-EM structures of Gi-coupled FPR1 and FPR2 bound to a formylpeptide and Gi-coupled FPR2 bound to two synthetic peptide and small-molecule agonists. Together with mutagenesis data, our structures reveal the molecular mechanism of formylpeptide recognition by FPRs and structural variations of FPR1 and FPR2 leading to their different ligand preferences. Structural analysis also suggests that diverse FPR agonists sample a conserved activation chamber at the bottom of ligand-binding pockets to activate FPRs. Our results provide a basis for rational drug design on FPRs.
Collapse
Affiliation(s)
- Youwen Zhuang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jia Guo
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dapeng Sun
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yue Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weiyi Liu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|